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SOME VARIATIONAL PRINCIPLES FOR THE METRIC MEAN

DIMENSION OF A SEMIGROUP ACTION

FAGNER B. RODRIGUES*, THOMAS JACOBUS, AND MARCUS V. SILVA

Abstract. In this manuscript we show that the metric mean dimension of
a free semigroup action satisfies three variational principles: (a) the first one
is based on a definition of Shapira’s entropy, introduced in [22] for a singles
dynamics and extended for a semigroup action in this note; (b) the second
one treats about a definition of Katok’s entropy for a free semigroup action
introduced in [8]; (c) lastly we consider the local entropy function for a free

semigroup action and show that the metric mean dimension satisfies a varia-
tional principle in terms of such function. Our results are inspired in the ones
obtained by [19], [28], [24] and [23].

1. Introduction

The aim of this note is to explore the notion of metric mean dimension for
a free semigroup action. The notion of metric mean dimension for a dynamical
system f : (X, d) → (X, d), denoted by mdimM (X,φ, d′), was introduced in [18]
and may be related to the problem of whether or not a given dynamical system
can be embedded in the shift space (([0, 1]N)Z, σ). It refines the topological entropy
for systems with infinite entropy, which, in the case of a manifold of dimension
greater than one, form a residual subset of the set consisting of homeomorphisms
defined on the manifold (see [29]). In fact, every system with finite topological
entropy has metric mean dimension equals to zero. The metric mean dimension
depends on the metric d, therefore it is not a topological invariant. However, for a
metrizable topological space X , mdimM (X,φ) = infd′ mdimM (X,φ, d′) is invariant
under topological conjugacy, where the infimum is taken over all the metrics on X
which induce the topology on X . By the other hand, as showed in [19] and in [28],
the metric mean dimension is strongly related with the ergodic behaviour of the
system, since it satisfies a kind of variational principle.

In [8] the authors considered the compact metric space (Y N, D) and (X, d),
where (Y, dY ) is a compact metric space and D is the product metric induced by
dY . In this setting they introduced the notion of metric mean dimension for a free
semigroup action and proved that for certain classes of random walks; the ones
induced by homogeneous probability measures on Y , it is possible to obtain a kind
of Bufetov’s formula (see [4] for Bufetov’s formula for the topological entropy of a
free semigroup action).

Our main goal here is to consider a compactly generated free semigroup of con-
tinuous maps acting on a compact metric and prove that the metric mean dimension
satisfies several variational principles: (a) the first one is based on a definition of
Shapira’s entropy, introduced in [22] for a singles dynamics and extended for a semi-
group action in this note; (b) the second one treats about a definition of Katok’s
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entropy for a free semigroup action introduced in [8]; (c) lastly we consider the
local entropy function for a free semigroup action and show that the metric mean
dimension satisfies a variational principle in terms of such function. Our results are
inspired in the ones obtained by [19], [28], [24] and [23]. As a second objective, we
extend the definition of metric mean dimension when we have a compactly gener-
ated semigroup and the the topological entropy is the one defined in [14]. In this
context we obtain a partial variational principle for the metric mean dimension.

This paper is organized as follows. In Section 2 we present the main definitions
and the main results. In Section 3 we recall some results and definitions about box
dimension, homogeneous measures and G-homogeneous measures. In Section 4 we
prove the main theorems.

2. Definitions and Main results

We start recalling the main concepts we use and describing the systems we will
work with.

2.1. Metric mean dimension of a map. Let (X, d) be a compact metric space.
Given a continuous map f : X → X and a non-negative integer n, define the dy-
namical metric dn : X ×X → [0,∞) by

dn(x, z) = max
{

d(x, z), d(f(x), f(z)), . . . , d(fn(x), fn(z))
}

which generates the same topology as d. Having fixed ε > 0, we say that a set
E ⊂ X is (n, ε)–separated by f if dn(x, z) > ε for every x, z ∈ E. In the particular
case of n = 1, we will call such a set ε–separated. Denote by s(f, n, ε) the maximal
cardinality of all (n, ε)–separated subsets of X by f . Due to the compactness of X ,
the number s(f, n, ε) is finite for every n ∈ N and ε > 0. We say that R ⊂ X is a
(n, ε)–spanning set if for any x ∈ X there exists z ∈ R such that dn(x, z) < ε. When
n = 1, we say that the set is ε–spanning. Let r(n, ε) be the minimum cardinality
of the (n, ε)–spanning subsets of X .

Definition 2.1. The lower metric mean dimension of f with respect to the fixed
metric d is given by

mdimM

(

X, f, d
)

= lim inf
ε→ 0+

h(f, ε)

| log ε|

where

h(f, ε) = lim sup
n→∞

1

n
log s(f, n, ε).

Similarly, the upper metric mean dimension of f with respect to d is the limit

mdimM

(

X, f, d
)

= lim sup
ε→ 0+

h(f, ε)

| log ε|
.

Clearly, mdimM

(

X, f, d
)

= mdimM

(

X, f, d
)

= 0 whenever the topological en-

tropy of f , given by htop(f) = limε→ 0+ h(f, ε), is finite.

2.2. Compactly generated semigroup action of continuous maps. Let (X, d)
and (Y, dY ) be compact metric spaces and (gy)y ∈Y be a family of continuous maps
gy : X → X . Denote by G the free semigroup having the set G1 = {gy : y ∈ Y }
as generator, where the semigroup operation ◦ is the composition of maps. Let S

be the induced free semigroup action

S : G×X → X
(g, x) 7→ g(x)



SOME VARIATIONAL PRINCIPLES FOR THE METRIC MEAN DIMENSION OF A SEMIGROUP ACTION3

which is said to be compactly generated by Y , and denote by TG the associated
skew product given by

TG : Y N ×X → Y N ×X

(ω, x) 7→
(

σ(ω), gω1(x)
)

,
(2.1)

where ω = (ω1, ω2, . . . ) is an element of the full unilateral space of sequences Y N

and σ denotes the shift map acting on Y N. It will be a standing assumption that
TG is a continuous map. If for every n ∈ N and ω = (ω1, ω2, . . . ) ∈ Y N we write

fn
ω = gωn

. . . gω1

then

T n
G(ω, x) =

(

σn(ω), fn
ω (x)

)

.

Consider the set G∗
1 = G1 \ {id} and, for each n ∈ N, let G∗

n denote the space
of concatenations of n elements in G∗

1. Similarly, define G =
⋃

n∈N0
Gn, where

G0 = {id} and g ∈ Gn if and only if g = gωn
. . . gω2 gω1 , with gωj

∈ G1 (for

notational simplicity’s sake we will use gj gi instead of the composition gj ◦ gi). In
what follows, we will assume that the generator set G1 is minimal, meaning that
no function gy ∈ G1, for y ∈ Y , can be expressed as a composition of the remaining
generators. To summon an element g of G∗

n, we will write |g| = n instead of
g ∈ G∗

n. Each element g of Gn may be seen as a word which originates from the
concatenation of n elements in G1. Yet, different concatenations may generate the
same element in G. Nevertheless, in the computations to be done, we shall consider
different concatenations instead of the elements in G they create.

2.3. Random walks. A random walk P on Y N is a Borel probability measure in
this space of sequences which is invariant by the shift map σ. For instance, we may
consider a finite subset F = {p1, . . . , pk} of Y , a probability vector (a1, · · · , ak) (that

is, a selection of positive real numbers ai such that
∑k

i=1 ai = 1), the probability

measure ν =
∑k

i=1 ai δpi
on F and the Borel product measure Pν = νN on Y N. Such

a Pν will be called a Bernoulli measure, which is said to be symmetric if ai =
1
k
for

every i ∈ {1, · · · , k}, in which case we denote it by Pk. If Y is a Lie group, a natural
symmetric random walk is given by νN where ν is the Haar measure. We denote by
P(Y N) the space of Borel probability measures on Y N and by PB(Y

N) its subset
of Bernoulli elements. It will be clear later on that the role of each random walk
is to point out a particular complex feature of the dynamics, here defined in terms
of either the topological entropy (definition in Subsection 2.4) or the metric mean
dimension (definition in Subsection 2.6).

2.4. Topological entropy of an action S. Given ε > 0 and g := gωn
. . . gω2 gω1 ∈

Gn, the nth-dynamical ball Bn(x, g, ε) is the set

Bn(x, g, ε) :=
{

z ∈ X : d(g
j
(z), g

j
(x)) 6 ε, ∀ 0 6 j 6 n

}

where, for every 0 6 j 6 n, the notation g
j
stands for the concatenation gωj

. . . gω2 gω1

in Gj , and g
0
= id. Observe that this is a classical ball with respect to the dynam-

ical metric dg defined by

dg(x, z) := max
06 j 6n

d(g
j
(x), g

j
(z)). (2.2)

Notice also that both the dynamical ball and the dynamical metric depend on
the underlying concatenation of generators gωn

. . . gω1 and not on the semigroup
element g, since the latter may have distinct representations.



4 F. RODRIGUES, T. JACOBUS, AND M. SILVA

Given g = gωn
. . . gω1 ∈ Gn, we say that a set K ⊂ X is (g, n, ε)–separated

if dg(x, z) > ε for any two distinct elements x, z ∈ K. The largest cardinality

of any (g, n, ε)–separated subset on X is denoted by s(g, n, ε) (or, equivalently,

s(gωn
. . . gω1 , n, ε)). A set K ⊂ X is said to be (g, n, ε)–spanning if for every x ∈ X

there is k ∈ K such that dg(x, k) 6 ε. The smallest cardinality of any (g, n, ε)–

spanning subset on X is denoted by b(g, n, ε) (or b(gωn
. . . gω1 , n, ε)).

Definition 2.2. The topological entropy of the semigroup action S with respect to a
fixed set of generators G1 and a random walk P in Y N is given by

htop(S,P) := lim
ε→ 0+

lim sup
n→∞

1

n
log

∫

Y N

s(gωn
. . . gω1 , n, ε) dP(ω)

where ω = ω1 ω2 · · ·ωn · · · . The topological entropy of the semigroup action S is
then defined by

htop(S) = sup
P

htop(S,P).

We observe that the semigroup may have multiple generating sets, and the dy-
namical or ergodic properties (as the topological entropy) depend on the chosen
generator set. More information regarding these concepts in the case of finitely
generated free semigroup actions may be read in [5, 6, 7].

2.5. Entropy function. Let (X, d) be a compact metric space. For each ε > 0
and x ∈ X , define

hd(x, ε) = inf{B(K, S, ε) : K is compact neighbourhood of x},

where

B(K, S, ε) = lim sup
n→∞

1

n
log

(

∫

Σ+
p

b(K, gωn
. . . gω1 , ε) dP(ω)

)

,

and b(K, gωn
. . . gω1 , ε) denotes the minimum cardinality of a (gωn

. . . gω1 , ε)-spanning
set. As hd(x, ε) increases as ε decreases to zero, it is well defined the following

hd(x) = lim
ε→0+

hd(x, ε) (2.3)

and it is less or equal to htop(X, S). In fact, it depends only on the topology of X
and we can denote by htop(x).

Definition 2.3. Let S : G×X → X be a continuous finitely generated free semigroup
action. The function htop : X → [0, htop(X, S)], x 7→ htop(x) is called the entropy
function of S.

Since B(K, S, ε) ≤ S(K, S, ε) ≤ B(K, S, ε/2), we have

htop(x) = lim
ε→0

inf{Sd(K, S, ε) : K is compact neighbourhood of x}.

By [21, Theorem C] we have that

sup
x∈X

lim
ε→0

hd(x, ε) = htop(S,P).

2.6. Metric mean dimension of a semigroup action. Let (X, d) be a compact
metric space and S be the free semigroup action induced on (X, d) by a family of
continuous maps (gy : X → X)y∈Y . The following definition for the semigroup
setting was introduced in [9].
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Definition 2.4. The upper and lower metric mean dimension of the free semigroup
action S on (X, d) with respect to a fixed set of generators G1 and a random walk
P in Y N are given respectively by

mdimM

(

X, S, d,P
)

= lim sup
ε→ 0+

h(X, S,P, ε)

− log ε

mdimM

(

X, S, d,P
)

= lim inf
ε→ 0+

h(X, S,P, ε)

− log ε

where

h(X, S,P, ε) = lim sup
n→∞

1

n
log

∫

Y N

s(gωn
. . . gω1 , n, ε) dP(ω). (2.4)

Our first result shows that the metric mean dimension of a semigroup action
may be computed in terms of the entropy function.

Theorem A. Let (X, d) be a compact metric space and S be the free semigroup
action induced on (X, d) by a family of continuous maps (gy : X → X)y∈Y . Then

mdimM

(

X, S, d,P
)

= lim sup
ε→ 0+

sup
x∈X

hd(x, ε)

− log ε
,

for every P ∈ M(Y N).

2.7. Katok’s entropy. In [7] the authors considered an extension of the Katok’s
entropy when the dynamical systems under consideration is a free semigroup action.

Definition 2.5. Given probability measure P on Y N and a Borel probability measure
ν on X , δ ∈ (0, 1) and ε > 0, define

hK
ν (S, ε, δ) = lim sup

n→∞

1

n
log

∫

Σ+
p

sν(gωn
. . . gω1 , n, ε, δ) dP(ω) (2.5)

where ω = ω1 ω2 · · ·ωn · · · ,

sν(gωn
. . . gω1 , n, ε, δ) = inf

{E ⊆X : ν(E)> 1−δ}
s(gωn

. . . gω1 , n, ε, E)

and s(gωn
. . . gω1 , n, ε, E) denotes the maximal cardinality of the (gωn

. . . gω1 , n, ε)-
separated subsets of E.

The entropy of the semigroup action S with respect to ν and P is defined by

hK
ν (S,P) = lim

δ→0
lim
ε→0

lim sup
n→∞

1

n
log

∫

Σ+
p

sν(gωn
. . . gω1 , n, ε, δ) dP(ω) (2.6)

Observe that the previous limit is well defined due to the monotonicity of the
function

(ε, δ) 7→
1

n
log

∫

Σ+
p

sν(gωn
. . . gω1 , n, ε, δ) dP(ω)

on the unknowns ε and δ. Moreover, if the set of generators is G1 = {Id, f}, we
recover the notion proposed by Katok for a single dynamics f .

In [28] the authors proved that for a compact metric space (X, d) and a contin-
uous map f : X → X holds the following variational principle for the metric mean
dimension

mdimM

(

X, f, d,P
)

= lim
δ→0

lim sup
ε→ 0+

sup
ν∈M(X)

hK
ν (X, f, ε, δ)

− log ε
,

which, in the case where the dynamical systems is given by a free semigroup action,
may be extend as:
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Theorem B. Let (X, d) be a compact metric space and S be the free semigroup
action induced on (X, d) by a family of continuous maps (gy : X → X)y∈Y . Then

mdimM

(

X, S, d,P
)

≥ lim
δ→0

lim sup
ε→ 0+

sup
ν∈M(X)

hK
ν (S,P, ε, δ)

− log ε
,

for every P ∈ M(Y N). If P = γN, with γ an homogeneous probability measure on
Y , then

mdimM

(

X, S, d,P
)

= lim
δ→0

lim sup
ε→ 0+

sup
ν∈M(X)

hK
ν (S,P, ε, δ)

− log ε
.

2.8. Entropy of an open cover for a free semigroup action. Consider P ∈
M(Y N). Let U = {U1, . . . , Uk} be a finite open cover of X . For each ω ∈ Y N and
n ∈ N define

U(ω, n) =
{

Ui0 ∩ (f1
ω)

−1(Ui1) ∩ · · · ∩ (fn−1
ω )−1(Uin−1) : Uij ∈ U

}

.

Let Nν(U , w, n) is the minimal cardinal of a subcover of U(w, n). Finally, define

htop(U , S,P) = lim sup
n→∞

1

n
log

∫

Y N

N(U , ω, n) dP(ω).

As a consequence of [27, Theorem 2.4] we have that

htop(Y
N ×X, S,P) = sup

U
htop(U , S,P),

where the open covers under consideration in the above supremum are those which
are finite and with finite topological entropy.

2.9. Shapira’s entropy of a semigroup action. For ν ∈ M(X), for δ ∈ (0, 1)
let Nν(U , w, n, δ) the minimal cardinal of a subcover of U(w, n), up to a set of
ν-measure less than δ > 0. Define

hS
ν (U , S,P) = lim

δ→0
lim sup
n→∞

1

n
log

∫

Y N

Nν(U , ω, n, δ) dP(ω). (2.7)

We call hν(U , S,P) the metric entropy of the cover U with respect to ν. As

Nν(U , ω, n, δ) ≤ N(U , ω, n) for every δ ∈ (0, 1),

we have that hS
ν (U , S,P) ≤ htop(U , S,P). It is important to mention that when

G1 = {f}, our definition coincides with the classical one given in [22].
Before we state our theorem we need to introduce some notation. Associated to

an open cover U ofX , let Ũ = {[i]×V : i = 1, . . . , p and V ∈ U} and, for ν ∈ M(X),
denote Π(σ, ν)erg the set of TG-invariant measures so that the marginal in Σ+

p is
σ-invariant and ν is the marginal in X .

Theorem C. Let (X, d) be a compact metric space and S be the free semigroup
action induced on (X, d) by a finite family of continuous maps (gi : X → X)pi=1.
Under the above conditions we have that
(a) htop(U , S, ηp) = htop(Ũ , TG)− log p;

(b) htop(U , S, ηp) = sup
{

hS
ν (U , S, ηp) : ν ∈ M(X) and Π(σ, ν)erg 6= ∅

}

,

where ηp =
(

1
p
, . . . , 1

p

)N

.

As a direct consequence of Theorem C and [7] we have the following.
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Corollary 1. Let (X, d) be a compact metric space and S be the free semigroup
action induced on (X, d) by a finite family of continuous maps (gi : X → X)pi=1.
Then

htop(S, ηp) = sup
U

sup
{ν∈M(X) and Π(σ,ν)erg 6=∅}

hS
ν (U , S, ηp))

= htop(FG)− log p,

where ηp =
(

1
p
, . . . , 1

p

)N

.

In [23] it was proved that, for a compact metric space (X, d) and a continuous
map f : X → X ,

mdimM

(

X, f, d
)

= lim sup
ε→ 0+

sup
ν∈M(X)

inf
diam(U)≤ε

hS
ν (U , f)

− log ε
.

In the next theorem we extend such result to the semigroup setting.

Theorem D. Let (X, d) be a compact metric space and S be the free semigroup
action induced on (X, d) by a family of continuous maps (gy : X → X)y∈Y . If
P = γN and γ ∈ M(Y ) is homogeneous, then

mdimM

(

X, S, d,P
)

= lim sup
ε→ 0+

sup
{ν∈M(X):Π(σ,ν)erg 6=∅}

inf
diam(U)≤ε

hS
ν (S,U)

− log ε
.

2.10. Ghys-Langevan-Walczack entropy. Ghys, Langevin and Walczak pro-
posed in [14] the following definition of topological entropy of a semigroup action
given by a finitely generated . A subset E of a compact metric space (X, dX) is
(n, ε)-separated points by elements of S if for any x 6= y in E there exists 0 6 j 6 n
and g ∈ Gj such that d(g(x), g(y)) > ε. The topological entropy of the semigroup
action S, induced by a semigroup G generated by a finite set G1 of continuous maps,
is given by

hGLW (S) = lim
ε→ 0+

lim sup
n→+∞

1

n
log s(n, ε) (2.8)

where s(n, ε) is the largest cardinality of (n, ε)-separated points by elements of S.
Observe that, since X is compact, s(n, ε) is finite for every n ∈ N and ε > 0.
Moreover, the map

ε > 0 7→ hGLW (S, ε) = lim sup
n→+∞

1

n
log s(n, ε)

is monotonic, so hGLW (S) is well defined (though it depends on the set G1 of
generators). This is a purely topological notion, independent of any previously
fixed random walk on the semigroup. Observe also that

sup
g ∈G1

htop(g) 6 hGLW (S)

but this inequality may be strict (cf. [14]).

2.10.1. Metric mean dimension in the GLW setting. As a natural extension of the
metric mean dimension for a single dynamics we can consider the upper GLW-
metric mean dimension as

mdim
GLW

M

(

X, S, d
)

= lim sup
ε→0

hGLW (S, ε)

− log ε
. (2.9)

As a direct consequence of the above definition we have that for any P ∈ M(Y ),

mdimM

(

X, S,P, d
)

≤ mdim
GLW

M

(

X, S, d
)

,
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and in the case where the generating setting consists of a single dynamics the two
definitions coincide with the classical one.

2.10.2. Local measure entropy and measure metric mean dimension. For n ∈ N let

BG
n (x, ε) = {y ∈ X : d(g(x), g(y)) < ε for all g ∈ Gj , 0 ≤ j ≤ n}

the dynamical ball of center x, radius ε and depth n. For any ν ∈ M(X) the
quantity

hG
ν (x) = lim

ε→0
hG
ν (x, ε)

where

hG
ν (x, ε) = lim sup

n→∞
−
1

n
log ν(BG

n (x, ε))

is called the local upper ν-measure entropy at the point x. If one takes lim inf with
respect to n in the above definition we the local lower ν-measure entropy at the
point x, denoted by hν,G(x). These quantities were defined and explored in [3],
where the author proved that in the case of ν being a G-homogeneous measure
hG
ν (x) = hGLW (S), for all x ∈ X (see Section 3 for the definition of G-homogeneous

measure).
In order to have a concept related to the metric mean dimension we define the

local upper measure metric mean dimension as

mdimν

(

X, S, d
)

= lim sup
ε→0

hG
ν (x, ε)

− log ε
. (2.10)

If one takes lim inf in ε we have the lower local upper measure metric mean dimen-

sion, denoted by mdimν

(

X, S, d
)

.

If, instead of hG
ν (x, ε) we consider hν,G(x, ε) we have the upper local lower mea-

sure metric mean dimension and lower local lower measure metric mean dimension,

denoted by mdim
′
ν

(

X, S, d
)

and mdim′
ν

(

X, S, d
)

, respectively.

Remark 2.6. All the above definitions could be made in terms of dynamical balls.

In the case the where the ambient space X is an oriented manifold it admits
a volume form dV which induces a natural volume measure νv on the Borel sets
defined as

νv(A) =

∫

A

dV.

The next gives a kind of partial variational principle for the metric mean dimension
of the group action in terms of the volume measure.

Theorem E. Let (G,G1) be a finitely generated group of homeomorphisms of a
compact closed and oriented manifold (M,d). Let s ∈ (0,∞) and νv the natural
volume on M . If

mdimνv (x, d) ≤ s for all x ∈ M then mdim
GLW

M

(

X, S, d
)

≤ s.

Our last theorem shows that, in the case where the group action admits a strongly
G-homogeneous measure ν we have an equality between the local measure metric
measure mean dimension of ν and the metric mean dimension of the group action
(see Section 3 for the definition of strongly G-homogeneous measure).

Theorem F. Let (X, d) be a compact metric space and S be the semigroup action
induced on (X, d) by a finite family of continuous maps (gi : X → X)pi=1.
(a) If ν ∈ M(X) is strongly G-homogeneous then

mdim
GLW

M

(

X, S, d
)

= lim sup
ε→0

hG
ν (x, ε)

− log ε
.
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(b) Let ν be a Borel measure on X and s ∈ (0,∞). If

inf
x∈X

mdim
′

ν (x, d) ≥ s then mdim
GLW

M

(

X, S, d
)

≥ s.

3. Some facts about homogeneous measures and G-homogeneous

measures

In order to obtain a text as self-contained as possible, in this section we recall
the definitions of upper box dimension, homogeneous measure and G-homogeneous
measure.

3.1. Upper box dimension. Let (Y, dY ) be a compact metric space.

Definition 3.1. The upper box dimension of (Y, dY ) is given by

dimBY = lim sup
ε→ 0+

logN(ε)

| log ε|
, (3.1)

where N(ε) stands for the maximal cardinality of an ε–separated set in (Y, dY ).

Consider now a Borel probability measure ν on Y .

Definition 3.2. The upper box dimension of ν is given by

dimB ν = lim
δ→ 0+

inf
{

dimB Z : Z ⊂ Y and ν(Z) > 1− δ
}

.

It is worth mentioning that, although the upper box dimension of a set Z co-
incides with the upper box dimension of its closure, the upper box dimension of
a probability measure is intended to estimate the size of subsets rather than the
entire support of the measure (that is, the smallest closed subset with full measure).
Indeed, it may happen that dimB ν < dimB (supp ν) (cf. Example 7.1 in [26]). We
refer the reader to [11, 26] for excellent accounts on dimension theory.

3.2. Homogeneous measures. Let ν be a Borel probability measure on the com-
pact metric space (Y, dY ). A balanced measure should give the same probability to
any two balls with the same radius, but this is in general a too strong demanding.
Instead, we weaken the request in the following way.

Definition 3.3. We say that ν is homogeneous if there exists L > 0 such that

ν
(

B(y1, 2ε)
)

6 Lν
(

B(y2, ε)
)

∀ y1, y2 ∈ supp ν ∀ ε > 0. (3.2)

For instance, the Lebesgue measure on [0, 1], atomic measures and probabil-
ity measures absolutely continuous with respect to the latter ones, with densities
bounded away from zero and infinity, are examples of homogeneous probability mea-
sures. We denote by HY the set of such homogeneous Borel probability measures
on Y .

By definition, every homogeneous measure satisfies

ν
(

B(y, 2ε)
)

6 Lν
(

B(y, ε)
)

∀ y ∈ supp ν ∀ ε > 0 (3.3)

and, as ν
(

B(y1, ε)
)

6 ν
(

B(y1, 2ε)
)

,

ν
(

B(y1, ε)
)

6 Lν
(

B(y2, ε)
)

∀ y1, y2 ∈ supp ν ∀ ε > 0. (3.4)

A measure ν satisfying (3.3) is said to be a doubling measure. Although the two
concepts (3.3) and (3.4) are unrelated in general, if Y is a subset of an Euclidean
space R

k then any probability ν satisfying (3.4) is a doubling measure. Indeed,
as there is a constant Ck such that Leb(B(y, r)) = Ck r

k for every y ∈ Y and
every r > 0, any ball B(y, 2ε) can be covered by at most 2k balls of radius ε; we
now apply (3.2). For a discussion on conditions on Y which ensure the existence of
homogeneous measures and further relations between homogeneity and the doubling
property we refer the reader to [3, Section 4] and references therein.
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3.3. G-homogeneous measures. For a compactly generated semigroup by a con-
tinuous family (gy : X → X)y∈Y acting on a metric space, we say that a Borel
measure ν ∈ M(X) is G-homogeneous if

(a) ν(K) < ∞, for any compact set K ⊂ X ;
(b) there exists K0 ⊂ X such that ν(K0) > 0;
(c) for any ε > 0 there exist δ(ε) > 0 and c > 0 such that

ν(BG
n (x, δ(ε))) ≤ c · ν(BG

n (y, ε))

holds for any n ∈ N and all x, y ∈ X . In the case where δ(ε) = O(ε) we say
that ν is strongly G-homogeneous.

As examples of spaces which admit a strongly G-homogeneous measure we have
the following:
1. The canonical volume form dV on a closed, compact and oriented Riemannian
manifold X determines a strongly G-homogeneous measure ν if G is a finitely
generated group of isometries.
2. If X is a locally compact topological group, µ is a right invariant measure and G
is a finitely generated group by G1 = {idX , T1, T

−1
1 , T2, T

−1
2 , . . . , Tp, T

−1
p }, a finite

and symmetric set of homeomorphisms, then µ is strongly G-homogeneous (see [3,
Proposition 4.6]).

4. Proofs

In this section we prove our main results.

4.1. Proof of Theorem A. It is clear from the definition of the entropy function
that hd(x, ε) ≤ h(X, S,P, ε), for all x ∈ X , and it implies that

mdimM

(

X, S, d,P
)

≥ lim sup
ε→ 0+

sup
x∈X

hd(x, ε)

− log ε
.

To prove the converse inequality we start noticing that, for a fixed ε > 0, if X =
∪k
i=1Fi, finite union of closed sets, then B(X, S, ε,P) ≤ maxi B(Fi, S, ε,P). Then

cover X by closed balls of radius 1, say B1 = {B1
1 , . . . , B

1
ℓ1
} such cover. Let B1

j1

be the closed ball in the given cover where the maximum occurs. Now cover B1
j1

by a finite family of closed balls of radius at most 1
2 denoted by {B2

1 , . . . , B
2
ℓ2
}.

Again there exists B2
j2

∈ B2 for which B(X, S, ε,P) ≤ B(B2
j2
, S, ε,P). Follwoing by

induction, for each k ∈ N, there exists a closed ball of radius at most 1
k
so that

B(X, S, ε,P) ≤ B(Bk
jk
, S, ε,P). Moreover, by the previous construction we have a

sequence of nested closed balls {Bk
jk
}k∈N whose diameter goes to zero. So, there

exists x̄ = ∩k∈NB
k
jk

and for any closed neighbourhood F of x̄ we have Bx
jk

⊂ F , for
k ∈ N large enough. It gives

hd(x̄, ε) ≥ B(F, S, ε,P) ≥ B(Bk
jk
, S, ε,P) ≥ B(X, S, ε,P).

Hence

lim sup
ε→ 0+

sup
x∈X

hd(x, ε)

− log ε
≥ mdimM

(

X, S, d,P
)

and it finishes the proof.
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4.2. Proof of Theorem B. First we notice that for any ν ∈ M(X) and δ > 0,
ν(X) > 1− δ and so, for every ε > 0, n ∈ N and ω ∈ Y N

s(gωn
. . . gω1 , n, ε) ≥ sν(gωn

. . . gω1 , n, ε, δ).

It implies that, for any ν ∈ M(X)

h(X, S,P, ε) ≥ hK
ν (X, S,P, ε, δ).

Hence,

mdimM

(

X, S, d,P
)

≥ lim
δ→0

lim sup
ε→ 0+

sup
ν∈M(X)

hK
ν (S,P, ε, δ)

− log ε
. (4.1)

If P = γN with γ ∈ HY , by (4.3) we know that for ν ∈ M(X) and µ ∈ Π(σ, ν) 6= ∅,

hK
ν (X, S,P, ε, δ) ≥ sup

µ∈Π(σ,ν)

hK
µ (Y N ×X,TG, ε, δ)− logNZ(ε).

It follows that

lim
δ→0

lim sup
ε→ 0+

sup
ν∈M(X)

hK
ν (S,P, ε, δ)

− log ε
≥ lim

δ→0
lim sup
ε→ 0+

sup
µ∈MTG

(Y N×X)

hK
ν (TG, ε, δ)

− log ε
− dimB(supp(γ))

= mdimM

(

Y N ×X,TG, D × d
)

− dimB(supp(γ))

= mdimM

(

X, S, d,P
)

.

By (4.1) we have the desired equality and conclude the proof.

4.3. Proof of Theorem C. Take i0, . . . , in−1 ∈ {1, . . . , p}, Uj0 , . . . , Ujn−1 ∈ U and
consider

([i0]× Uj0) ∩
(

T−1
G ([i1]× Uj1

)

∩ · · · ∩ T−1
G

(

[in−1]× Ujn−1

)

= [i0 . . . in−1]×
(

Uj0 ∩ · · · ∩ (fn−1
ω )−1(Ujn−1)

)

,

where ω belongs to the cylinder set [i0 . . . in−1]. If we denote by U(ω, n) = {Vj0 ∩
· · · ∩ (fn−1

ω )−1(Vjn−1) : Vjℓ ∈ U} the open cover of X induced by ω, we have that

N(U , ω, n) coincides with the minimum number of open sets of Ũ (n) necessary to
cover [i0 . . . in−1]×X . So,

htop(U , S, ηp) + log p = lim
n→∞

1

n
log





1

pn

∑

g∈Gn

N(U , g, n)



+ log p

= lim
n→∞

1

n
logN(Ũ , TG, n)

= htop(Ũ , TG).

It proves item (i).
For the second item take δ ∈ (0, 1) and ν ∈ M(X) so that Π(σ, ν)erg 6= ∅. For

µ ∈ Π(σ, ν)erg we have that
∑

g∈Gn

Nν(U , g, n, δ) = Nµ(U , TG, n, δ).

The equality comes from the fact that if
∑

g∈Gn

Nν(U , g, n, δ) > Nµ(U , TG, n, δ),
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there exists a cylinder [i0 . . . in−1] so that [i0 . . . in−1] × X is covered by at most
Nν(U , g, n, δ)− 1 open sets, where w = i0 . . . in−1. As (πX)∗(µ) = ν, it contradicts

the minimality of Nν(U , g, n, δ). So,

sup
{ν∈M(X) and Π(σ,ν)erg 6=∅}

hS
ν (U , S)

= sup
{ν∈M(X) and Π(σ,ν)erg 6=∅}

lim
n→∞

1

n
log





1

pn

∑

g∈Gn

Nν(U , g, n)





= sup
µ∈ETG

(Σ+
p ×X)

lim
n→∞

1

n
logNµ(Ũ , TG, n)− log p

= htop(Ũ , TG)− log p

= htop(U , S, ηp),

which concludes the proof of the second item.

4.4. Proof of Theorem D. Before we start the proof we observe that Definition
2.5 could be made in terms of spanning sets. More precisely, given ε > 0, a
positive integer n and g = gωn

. . . gω1 , we say that a subset A of E ⊂ X is a

(gωn
. . . gω1 , n, ε, E)−spanning set if for any x ∈ E there exists y ∈ A so that

Dg(x, y) < ε. By the compactness of X , given ε, n and g as before, there exists a

finite (g, n, ε, E)−spanning set.
We denote by b(gωn

. . . gω1 , n, ε, E) the minimum cardinality of a (gωn
. . . gω1 , n, ε, E)-

spanning. For δ > 0 we set

bν(gωn
. . . gω1 , n, ε, δ) = inf

{E⊆X : ν(E)> 1−δ}
b(gωn

. . . gω1 , n, ε, E).

It is not difficult to see that

hK
ν (S,P) = lim

δ→0
lim
ε→0

lim sup
n→∞

1

n
log

∫

Σ+
p

bν(gωn
. . . gω1 , n, ε, δ) dP(ω).

Let us proceed to the proof of the theorem. Fix ε > 0 and consider a positive

integer k = k(ε) ≥ 1 so that
∑

i≥k
diam(Y )

2i < ε
2 . For γ ∈ HY , take Z = supp(γ) and

choose a maximal ε
4 -separated set E ⊂ Z, whose cardinality is denoted by NZ(ε).

By the definition of upper box dimension,

lim sup
ε→0

NZ(ε)

− log ε
= dimB(Z).

For each n ∈ N and each point (p1, . . . , pn+k) ∈ En+k, consider the cylinder

Ci1...in+k
=
{

ω ∈ Y N : ωi ∈ B
(

pi,
ε

4

)

, for i = 1, . . . , n+ k
}

.

Note that the collection of cylinders defined above covers ZN and has diameter less
than ε.

Now, for the fixed ε let U0 be an open cover of X with diam(U0) ≤ ε and

Leb(U0) ≥ ε. If U is an open cover of X with diameter less or equal to
ε

8
, ω ∈ Y N,

as Leb(U0) ≥ diam(U), U(ω, n) refines U0(ω, n). It implies that, for δ ∈ (0, 1),
Nν(S,U , gωn

. . . gω1 , n, δ) ≥ Nν(S,U0, gωn
. . . gω1 , n, δ). Thus, once

Nν(S,U , gωn
. . . gω1 , n, δ) ≥ sν(S, gωn

. . . gω1 , n, ε, δ) ≥ bν(S, gωn
. . . gω1 , n, ε, δ),

for all ω ∈ Y N and n ∈ N, we have that
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∫

Y N

Nν(S,U , gωn
. . . gω1 , n, δ) dP(ω) ≥

∫

Y N

Nν(S,U0, gωn
. . . gω1, n, δ) dP

≥

∫

Y N

sν(S, gωn
. . . gω1 , n, ε, δ) dP

≥

∫

Y N

bν(S, gωn
. . . gω1 , n, ε, δ) dP (4.2)

≥
∑

i=(i1...in+k)

min
ω∈Ci∩ZN

bν(S, gωn
. . . gω1 , n, ε, δ)×min

i
P(Ci ∩ Z).

Now we notice that the image of bν(S, ·, n, ε, δ) : Ci → Z+ has a minimum in Z+

and such minimum is attained by some ω(i) ∈ Ci. So, This together with (4.2), the
fact that P is a product measure and the homogeneity assumption on γ imply that

∫

Y N

Nν(S,U , gωn
. . . gω1 , n, δ) dP(ω) (4.3)

≥

∫

Y N

bν(gωn
. . . gω1 , n, ε, δ) dP(ω)

>

[

∑

i=(i1,i2,...,in+K)

min
ω∈Ci∩ZN

bν(gωn
. . . gω1 , n, ε, δ)

]

×min
i

P(Ci ∩ ZN)

>
∑

i

bν(gω(i) , n, ε, δ) × min
i

n+K−1
∏

j=0

γ
(

B(pij ,
ε

4
) ∩ Z

)

> bµ(TG |ZN×X , n, ε, δ)

(

1

L2

)n+K (
1

NZ(ε)

)n+K

> Nµ(TG |ZN×X ,V0, n, δ)

(

1

L2

)n+K (
1

NZ(ε)

)n+K

where by gω(i) we mean g
ω

(i)
n

. . . g
ω

(i)
1

if ω(i)|[1,n] = ω
(i)
1 . . . ω

(i)
n and µ ∈ Π(σ, ν), V0

is an open cover with Leb(V0) ≤ ε and L > 0 is specified by the homogeneity of γ
and does not depend on neither ε nor n. Notice that the inequality

∑

i

bν(gω(i) , n, ε, δ) > bµ(TG |ZN×X , n, ε, δ)

is a consequence of the fact that, if {x
(i)
1 , . . . , xb(g

ω(i) ,n,ε)} is a (gω(i) , n, ε)–spanning

set for a subset Z ⊂ Z, satisfying ν(Z) ≥ 1− δ, with smallest cardinality, then

⋃

i

{(

ω(i), x
(i)
1

)

, . . . ,
(

ω(i), x
(i)
b(g

ω(i) ,n,ε)

)}

is a (TG, n, ε)–spanning set for Y N × Z and µ(Y N × Z) = ν(Z) ≥ 1 − δ. Besides,
the inequality

min
i

n+K−1
∏

j=0

γ
(

B(pij ,
ε

4
)
)

>

(

1

L2

)n+K (
1

NZ(ε)

)n+K

is due to the homogeneity of γ, which implies that, for every q ∈ supp ν, any pij
and all i,

γ
(

B(pij , ε)
)

>
1

L
γ
(

B(q, ε)
)

∀ ε > 0
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and the fact that, as
⋃

e∈E B(e, ε
4 ) = Z,

1 = γ

(

⋃

e∈E

B(e,
ε

4
)

)

6
∑

e∈E

γ
(

B(e,
ε

4
)
)

6 NZ(ε)Lγ
(

B(q,
ε

4
)
)

thus

γ
(

B(q,
ε

4
)
)

>
1

L

1

NZ(ε)
.

Then we notice that, by (4.3)

sup
{ν∈M:Π(σ,ν)erg 6=∅}

hS
ν (S, ε,P) ≥ sup

µ∈E(TG)

hS
µ(TG,V0)− logNZ(ε)

= htop(TG,V0)− logNZ(ε)

≥ h(TG, 3ε)− logNZ(ε).

Therefore,

lim sup
ε→0

hS(S, ε,P)

− log ε
> mdimM

(

ZN ×X,TG, D × d
)

− lim sup
ε→ 0+

logNZ(ε)

− log ε
(4.4)

= mdimM

(

ZN ×X,TG, D × d
)

− dimBZ

= mdimM

(

(supp ν)N ×X,TG, D × d
)

− dimB (supp ν)

= mdimM

(

X, S, d,P
)

.

For the converse inequality we observe that

∫

Y N

Nν(S,U0, gωn
. . . gω1 , n, δ) dP(ω) ≤

∫

Y N

sν(S, Leb(U0), gωn
. . . gω1 , n, δ) dP

≤
∑

i=(i1...in+k)

[

max
ω∈Ci∩ZN

sν(S, Leb(U0), gωn
. . . gω1 , n, δ)× P(Ci)

]

.

Now we notice that the image of sν(S, ·, n, Leb(U0)) : Ci → Z+ is contained in
[0, s(TG, n, Leb(U0)). So, it has a maximum in Z+ and such maximum is attained
by some ω(i) ∈ Ci. So, using the fact that

Nν(S,U0, gωn
. . . gω1 , n, δ) ≤ sν(S, gωn

. . . gω1 , n, Leb(U0), δ)

and

∑

i=(i1...in+k)

sν(S, gωn
. . . gω1 , n, Leb(U0), δ) ≤ sµ(TG, n, Leb(U0))

and that γ is homegeneous we obtain
∫

Y N

Nν(S,U0, gωn
. . . gω1 , n, δ) dP(ω)

≤

∫

Y N

sν(S, gωn
. . . gω1 , n, Leb(U0), δ) dP

≤
∑

i=(i1...in+k)

[

sν(S, gωn
. . . gω1 , n, Leb(U0), δ)× max

ω∈Ci∩ZN

P (Ci)

]

≤ sµ(TG, n, Leb(U0))

(

1

NZ(Leb(U0))

)n+K

≤ Nµ(TG,V0, n)

(

1

NZ(Leb(U0))

)n+K

,
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where V0 is a finite collection of open sets which covers Y N × X up to a set of

µ-measure less than δ,
ε

4
≤ Leb(U0) = diam(V0) ≤ ε and Leb(V0) ≥

ε

8
.

hS(S, ε,P) = sup
{ν∈M(X):Π(σ,ν)erg 6=∅}

inf
diam(U)≤ε

hS
ν (S,U ,P)

≤ sup
{ν∈M(X):Π(σ,ν)erg 6=∅}

hS
ν (S,U0,P)

= sup
{ν∈M(X):Π(σ,ν)erg 6=∅}

lim sup
n→∞

1

n
log

∫

Y N

Nν(S,U0, gωn
. . . gω1 , n, δ) dP(ω)

≤ sup
{ν∈M(X):Π(σ,ν)erg 6=∅}

sup
µ∈Π(σ,ν)

lim sup
n→∞

1

n
logNµ(TG,V0, n, δ)− logNZ(Leb(U0))

= htop(TG,V0)− logNZ

(ε

4

)

≤ lim sup
n→∞

1

n
log s(TG, n, Leb(V0))− logNZ

(ε

4

)

≤ lim sup
n→∞

1

n
log s

(

TG, n,
ε

8

)

− logNZ

(ε

4

)

.

Hence,

lim sup
ε→0

hS(S, ε,P)

− log ε
≤ lim sup

ε→0

[

h
(

TG,
ε
8

)

− log ε
−

logNZ

(

ε
4

)

− log ε

]

(4.5)

= mdimM

(

Y Y ×X,TG, D × d
)

− dimB(Z)

= mdimM

(

X, S, d,P
)

.

By (4.4) and (4.5) we obtain the result.

4.5. Proof of Theorem E. let νv be the natural volume measure onX and assume
that mdimνv

(x, d) ≥ s, for all x ∈ X . Fix η > 0 and let

Xk =

{

x ∈ X :
lim supn→∞ − 1

n
log ν(BG

n (x, ε))

− log ε
> (s− δ/2) for all ε ∈ (0,

1

k
)

}

.

By hypotheses, X =
⋃

k∈N
Xk. For ε ∈ (0, 1

5·k ] and x ∈ Xk, there exists n(x) ∈ N

so that for any N ≥ n(x) we have

νv(B
G
n (x, ε)) ≥ e−(s+δ)N ·− log ε.

Since X is a compact Riemannian manifold it has bounded geometry (see [10] for
more details on manifolds of bounded geometry). It implies that each function
fm : Xk → R given by fm(x) := νv(B

G
m(x, ε)) is continuous and so

N0 := sup{n(x) : x ∈ Xk} < ∞.

By Vitali Covering Lemma, for any N ≥ N0 it is possible to choose from the

cover BN := {BG
N (x, ε) : x ∈ XK} of Xk a subset FN ⊂ Xk and a family DN :=

{BG
N(x, ε) : x ∈ FN} of disjoint balls for which we have

Xk ⊂ Xk ⊂
⋃

x∈FN

BG
N (x, 5ε) ⊂

⋃

x∈FN

BG
N (x, 6ε)

and
νv(B

G
N (x, ε)) ≥ e−(s+δ)N ·− log ε for all x ∈ FN .

So, as the family DN is given by disjoint balls,

♯(FN ) · e−(s+δ)N ·− log ε =
∑

x∈FN

e−(s+δ)N ·− log ε ≤
∑

x∈FN

νv(B
G
N (x, ε)) ≤ 1.



16 F. RODRIGUES, T. JACOBUS, AND M. SILVA

As

hGLW (Xk, S, 6ε) ≤ lim sup
n→∞

1

N
log ♯(FN )

we have

sup
k∈N

mdim
GLW

M (Xk, S, d) = lim sup
ε→0

hGLW (Xk, S, 6ε)

− log ε
≤ s− δ

since Xk ⊂ Xk+1 for all k ∈ N and X =
⋃

k∈N
Xk we have

mdim
GLW

M (X, S, d) ≤ s− δ.

As δ ≥ 0 may be considered arbitrary small we have

mdim
GLW

M (X, S, d) ≤ s

and it finishes the proof.

4.6. Proof of Theorem F. The following lemma is an important tool in the proof.

Lemma 4.1. Let ν ∈ M(X) be a G-homogeneous probability measure. Then

mdimν (x, d) = mdimν (y, d), for all x, y ∈ X.

Proof. For ε > 0, by G-homogeneity, there exists δ(ε) > 0 and c > 0 so that

ν(BG
n (x, δ(ε))) ≤ c · ν(BG

n (y, ε)),

and it implies

hG
ν (x, δ(ε)) = lim sup

n→∞
−
1

n
log ν(BG

n (x, δ(ε))) ≤ lim sup
n→∞

−
1

n
log ν(BG

n (y, ε)) = hG
ν (y, ε),

and so

lim sup
ε→0

hG
ν (x, δ(ε))

− log δ(ε)
≤ lim sup

ε→0

hG
ν (y, ε)

− log ε
, for all x, y ∈ X,

which gives mdimν (x, d) ≤ mdimν (y, d). By switching the roles of x and y in
the previous computations one obtains the converse inequality and finishes the
proof. �

As a consequence of Lemma 4.1 we obtain that makes sense to define the measure
metric mean dimension of a semigroup action with to respect of a G-homogeneous
measure as the following:

mdimν (S, d) = lim sup
ε→0

hG
ν (x, ε)

− log ε
, for any x ∈ X

since the limsup considered is constant in X .

Proposition 4.1. Let G be a compactly generated semigroup and ν be a strongly
G-homogeneous probability measure on a compact metric space (X, d). Then

mdimν (X, S, d) = mdim
GLW

M (X, S, d).

Proof. Fix ε > 0 and take E a maximal (n, ε)-separated set in X . Then, by the
maximality property of E, BG

n (x, ε/2)∩BG
n (y, ε/2) for any x, y ∈ E. In particular,

for a fixed x ∈ E

ν(X) ≥
∑

y∈E

ν
(

BG
n (y, ε/2)

)

≥ s(n, ε) · ν(BG
n (x, ε/2)).

By the G-homogeneity there exist 0 < δ(ε) < ε and c > 0 so that ν(BG
n (y, δ(ε))) ≤

c · ν(BG
n (x, ε/2)), for all x, y ∈ X . It follows that

lim sup
n→∞

1

n
log s(n, ε) ≤ lim sup

n→∞
−
1

n
log ν(BG

n (y, δ(ε))).
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Now, by the strongly G-homogeneity

mdim
GLW

M (X, S, d) = lim sup
ε→0

hGLW (S, ε)

− log ε

≤ lim sup
ε→0

hG
ν (δ(ε))

− log δ(ε)

log δ(ε)

log ε

= mdimν (X, S, d).

and then mdim
GLW

M (X, S, d) ≤ mdimν (S, d).
For the opposite inequality, fix δ > 0 and notice that that if F is a (n, ε)-spanning

set of minimal cardinality b(n, ε), then X ⊂
⋃

x∈F BG
n (x, 2δ). Given ε > 0 there

exist 0 < δ(ε) < ε and c > 0 for which

ν
(

BG
n (x, 2δ(ε))

)

≤ c · ν
(

BG
n (y, ε)

)

for all x, y ∈ X and n ∈ N.

It guarantees that

c · b(n, δ(ε)) · ν
(

BG
n (y, ε)

)

≥ ν(X) > 0

and so, by the strong G-homogeneity, we have

mdim
GLW

M (X, S, d) = lim sup
ε→0

hGLW (S, δ(ε))

− log δ(ε)

≥ lim sup
ε→0

hGLW
ν (δ(ε))

− log ε

log ε

log δ(ε)

= mdimν (X, S, d),

and it ends the proof. �

Let us proceed to the proof of Theorem F. For the first we notice that it is a
consequence of Proposition 4.1. For part (b) let ν be a Borel measure on X so that
mdimν (x, d) ≥ s, for all x ∈ X . Fix η > 0 and let

Xk =

{

x ∈ X :
lim supn→∞ − 1

n
log ν(BG

n (x, ε))

− log ε
> (s− δ/2) for all ε ∈ (0,

1

k
)

}

.

By hypotheses, X =
⋃

k∈N
Xk. It follows that 0 < ν(X) ≤

∑

k ν(Xk), which
guarantees the existence of some k0 ∈ N for which we have ν(Xk0 ) > 0. Again, we
can wright Xk0 =

⋃

N∈N
Xk0,N where

Xk0,N =

{

x ∈ Xk0 :
− log ν(BG

n (x, ε))

−n log ε
> (s− δ/2) for all n ≥ N

}

.

In such case, there exists N0 ∈ N for which ν(Xk0,N0) > 0. In particular,

ν(BG
n (x, ε)) ≤ e−n(s−δ)·(− log ε), for all x ∈ Xk0,N0 , ε ∈ (0,

1

k
) and n ≥ N0.

Now, for each integer N ≥ N0 consider the open cover of Xk0,N0 given by BN =
{BG

N(x, ε) : x ∈ Xk0,N0}. In such case we have that for a subcover C of BN

inf
C

·♯(C)e−N(s−δ)·(− log ε) = inf
C







∑

BG
N
(x,ε)∈C

e−N(s−δ)·(− log ε)







≥ ν(Xk0,N0).

As cov(X,N, ε) ≥ cov(Xk0,N0 , N, ε), for all N and ε > 0, we have

cov(X,N, ε)e−N(s−δ)·(− log ε) ≥ ν(Xk0,N0),

and it implies that

lim sup
N→∞

1

N
log cov(X,N, ε)e−N(s−δ)·(− log ε) ≥ 0
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and so,

hGLW (X, S, ε) ≥ (s− δ) · (− log ε).

Hence

mdim
GLW

M (X, S, d) = lim sup
ε→0

hGLW (X, S, ε)

− log ε
≥ s− δ.

As the inequality was obtained for an arbitrary δ we conclude that

mdim
GLW

M (X, S, d) = lim sup
ε→0

hGLW (X, S, ε)

− log ε
≥ s,

as part (b) states.
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