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THE COX-VOINOV LAW FOR TRAVELING WAVES IN THE PARTIAL

WETTING REGIME

MANUEL V. GNANN AND ANOUK C. WISSE

Abstract. We consider the thin-film equation ∂th+∂y

(

m(h)∂3
yh

)

= 0 in {h > 0} with partial-

wetting boundary conditions and inhomogeneous mobility of the form m(h) = h3 + λ3−nhn,
where h ≥ 0 is the film height, λ > 0 is the slip length, y > 0 denotes the lateral variable, and
n ∈ (0, 3) is the mobility exponent parameterizing the nonlinear slip condition. The partial-
wetting regime implies the boundary condition ∂yh = const. > 0 at the triple junction ∂{h > 0}
(nonzero microscopic contact angle). Existence and uniqueness of traveling-wave solutions to
this problem under the constraint ∂2

yh → 0 as h → ∞ have been proved in previous work by
Chiricotto and Giacomelli in [Commun. Appl. Ind. Math., 2(2):e–388, 16, 2011]. We are
interested in the asymptotics as h ↓ 0 and h → ∞. By reformulating the problem as h ↓ 0 as
a dynamical system for the difference between the solution and the microscopic contact angle,
values for n are found for which linear as well as nonlinear resonances occur. These resonances
lead to a different asymptotic behavior of the solution as h ↓ 0 depending on n.

Together with the asymptotics as h → ∞ characterizing the Cox-Voinov law for the velocity-
dependent macroscopic contact angle as found by Giacomelli, the first author of this work, and
Otto in [Nonlinearity, 29(9):2497–2536, 2016], the rigorous asymptotics of traveling-wave so-
lutions to the thin-film equation in partial wetting can be characterized. Furthermore, our
approach enables us to analyze the relation between the microscopic and macroscopic con-
tact angle. It is found that the Cox-Voinov law for the macroscopic contact angle depends
continuously differentiably on the microscopic contact angle.

1. Introduction

1.1. The thin-film equation formulated as a classical free-boundary problem. The
following thin-film equation with boundary conditions in a moving domain (Y,∞) is studied:

∂th+ ∂y
(

(h3 + λ3−nhn)∂3yh
)

= 0 for t > 0 and y > Y, (1.1a)

h = 0 for t > 0 and y = Y, (1.1b)

∂yh = k > 0 for t > 0 and y = Y, (1.1c)

lim
y↓Y

(h2 + λ3−nhn−1)∂3yh = dY
dt for t > 0. (1.1d)

Here, h = h(t, y) denotes the height of a liquid thin film on a flat surface at time t > 0 and
base point y ∈ (Y,∞), where Y is a function of time t ≥ 0, which is visualized in Figure 1. For
simplicity we assume translation invariance in the third physical direction (perpendicular to the
(y, z)-plane). Equation (1.1a) is a lubrication model, which means that it describes the flow of
the fluid of a thin and viscous film in which the dynamics in the vertical direction z are averaged
out. It has the form of a continuity equation

∂th+ ∂y (hu) = 0,

where h is the film height and u is the velocity of the fluid in the horizontal direction y which
is averaged in the vertical direction z. In the case of equation (1.1a), the velocity of the flow
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Figure 1. Example of a thin film as described by (1.1)

u is given by u = (h2 + λ3−nhn−1)∂3yh. The equation can be derived from the Navier-Stokes
free-boundary problem, which has been done in detail for instance in [48, Chapter 2, Section B].

The exponent n is called the mobility exponent and we consider n ∈ (0, 3). This is because on
one hand, if n ≤ 0 the speed of propagation of the film is infinite. On the other hand, in case
of n ≥ 3 or λ = 0 (vanishing slip length), the boundary of the film does not move [20,38]. Note
that the regime n ∈ (0, 1) is physically not justified as well, as the film height h can in certain
situations become negative (see for instance [5]). Hence, our results for n ∈ (0, 1) should be
considered as purely motivated from the mathematical perspective while the parameter regime
n ∈ [1, 3) is of mathematical as well as physical interest. In particular, this interval contains
the physically relevant values n = 1 (free slip in the Hele-Shaw cell, see e.g. [31, 42, 43], or the
Greenspan slip condition [33]) and n = 2 (linear Navier slip, see e.g. [4, 39, 47, 48]).

The film covers the interval (Y,∞) and has a free boundary at y = Y called contact line or triple
junction since it parametrizes the in our case straight but time-dependent line where liquid, gas,
and solid meet. The trivial constraint (1.1b) entails that the height of the thin film at the
triple junction is zero. Condition (1.1c) implies that the contact angle between the solid and
the film at the contact line is equal to θ = arctan k, where k > 0 (partial-wetting regime).
Since in lubrication approximation k is necessarily small, we simply call k the (microscopic)
contact angle. The kinematic condition (1.1d) implies that, on approaching the contact line, the
vertically averaged horizontal velocity u is the same as the free boundary’s velocity dY

dt .

1.2. Microscopic versus macroscopic contact angle. The capillary forces acting at the
triple junction are depicted in Figure 2. Young’s law (cf. [4])

solid

liquid

gas

θ
γgs

γgl

γls

Figure 2. Surface tensions acting on a liquid at the triple junction.

γgs = γls + cos(θ)γgl (1.2)

gives the relation between the microscopic contact angle θ and the surface tensions γgs, γls, and
γgl between gas and solid, liquid and solid, and gas and liquid, respectively. If γgs < γls + γgl,
then θ > 0 (nonzero contact angle), a global equilibrium can be attained, and the liquid thin film
is said to partially wet the solid. If on the other hand γgs ≥ γls + γgl, then θ = 0 (zero contact
angle), a global equilibrium is not attained, and the thin film eventually covers the entire solid
(complete-wetting regime).
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While microscopically Young’s law (1.2) applies, the apparent macroscopic contact angle is
dynamic and in general depends on the flow (for instance through the velocity at the contact
line, cf. [53] and references therein). The difference is schematically visualized in Figure 3.

solid

liquid

gas

K

(a) Schematic of the apparent macroscopic contact

angle K.
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(b) The previous schematic plot zoomed in near the

triple junction. The macroscopic contact angle K
and the microscopic contact angle k are shown. The

traveling wave is depicted as a dashed line.

Figure 3

The main purpose of this note is to investigate the relation between the microscopic and macro-
scopic contact angle k and K, respectively, in the regime of quasi-static motion, where K meets
the Cox-Voinov law [12, 37, 54, 56] in an intermediate asymptotic regime which needs to be
matched to the bulk solution. This justifies the use of a traveling-wave ansatz, which only cap-
tures two asymptotic regimes (Young’s and the Cox-Voinov law) and is further explained in §2.2.
We expect that this behavior is generic, that is, general solutions exhibit the same behavior in
corresponding asymptotic regimes, depending on which addend in the mobility dominates the
dynamics. The matched asymptotic expansions of Cox [12] indicate that the same behavior is
to be expected for Stokes flow. Note that significant deviations from the behavior characterized
in what follows can be expected if the initial datum dominates the qualitative behavior (see
for instance waiting-time phenomena investigated in [9,13,14,24,26,29] in the complete-wetting
regime and references therein), or if the film thickness decreases below the slip length λ, so
that the term hn in (1.1a) is dominating (see for instance self-similar asymptotics investigated
in [2,6–8,32,52] in the complete-wetting regime and references therein). Additionally note that
for very thin films (at the order of only a few fluid molecules thickness), thermal fluctuations
modelled by an additional stochastic forcing play a role (see [16, 35], where the corresponding
stochastic thin-film equation was proposed first). Rigorous analytic results on the latter model
can be found in [15, 25, 27, 34, 46, 51].

2. Setting and main result

In this section, the ordinary boundary-value problem describing the traveling wave is formulated
and suitably transformed. Afterwards our main theorem is stated. Note that the transformations
presented in the sequel are similar to those used in [28, §1], where complete-wetting boundary
conditions have been treated.
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2.1. The traveling-wave problem of the thin-film equation. Using the travling-wave
ansatz h = H, where H only depends on x = y + V t and V is the constant and finite ve-
locity of the film, and assuming that Y |t=0 = 0 by translation invariance, the above problem
(1.1) can be rewritten in terms of the third-order ordinary differential equation (ODE)

(H2 + λ3−nHn−1)d
3H
dx3

= −V in (0,∞) (2.1a)

with boundary conditions

H = 0 at x = 0, (2.1b)

dH
dx = k at x = 0, (2.1c)

(H2 + λ3−nHn−1)d
3H
dx3

= −V at x = 0. (2.1d)

Indeed, the boundary conditions (2.1b), (2.1c), and (2.1d) follow trivially from the boundary
conditions (1.1b), (1.1c), and (1.1d), respectively. Furthermore, the partial differential equation
(PDE) (1.1a) turns into the ODE

V dH
dx + d

dx

(

(H3 + λ3−nHn)d
3H
dx3

)

= 0 in (0,∞).

Integrating in x leads to

V H + (H3 + λ3−nHn)d
3H
dx3

= c in (0,∞),

where c is a constant. The boundary conditions (2.1b) and (2.1d) entail c = 0, so that (2.1a) is
obtained by dividing through H.

Under the additional assumption of vanishing curvature in the bulk, that is,

d2H
dx2

→ 0 as x→ ∞. (2.1e)

Chiricotto and Giacomelli have found in [10] that the boundary-value problem (2.1a) for n = 2
has a unique classical solution H = HCG which is three times continuously differentiable in x > 0
with HCG and dHCG

dx continuous in x ≥ 0. Their reasoning also applies to n ∈ (0, 3), which is
why we can assume from hereon that a unique H = HCG solving (2.1) for n ∈ (0, 3) exists. For
the reader’s convenience, we give a streamlined version of the existence and uniqueness proof
in [10] in a different set of variables in Theorem A.1 in Appendix A.

Note that by applying the scalings

H 7→ λH, x 7→ (3V )−
1
3 λx, and k 7→ (3V )

1
3 k, (2.2)

we may without loss of generality assume λ = 1 and V = 1
3 , so that equations (2.1) turn into

finding H such that
(

H2 +Hn−1
)

d3H
dx3

= −1
3 for x > 0, (2.3a)

H = 0 at x = 0, (2.3b)

dH
dx = k at x = 0, (2.3c)

d2H
dx2

→ 0 as x→ ∞, (2.3d)

which is uniquely solved by H = HCG.

2.2. The Cox-Voinov law. Recall that we have chosen n ∈ (0, 3), so that as x→ ∞ the term
H2 dominates Hn−1 in equation (2.3a). This is why the expected behavior of the differential
equation (2.3a) is determined by

H2 d3H
dx3 = −1

3 as x→ ∞. (2.4)

Then, it can be easily recognized that (2.4) is approximately solved by the asymptotic

H = x(lnx)
1
3 (1 + o(1)) as x→ ∞. (2.5)

In fact, an implicit solution of (2.4) in terms of Airy functions was found by Duffy and Wilson
in [19], from which the asymptotic (2.5) can be derived. Formally differentiating (2.5) with
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respect to x, raising it to the power of three, and reverting the normalization of the speed V
gives

(

dH
dx

)3
= 3V lnx(1 + o(1)) as x→ ∞. (2.6)

Again, we note that equation (2.6) can be made rigorous using [19]. Because the lubrication
approximation assumes small slopes, dH

dx is in this approximation, as x → ∞, equal to the
macroscopic contact angle. Hence, this asymptotic implies that the cube of the macroscopic
contact angle is, up to a logarithmic correction, proportional to the speed of the free boundary.
This will be referred to as the Cox-Voinov law [12, 56], in what follows, though the relation
between microscopic and macroscopic contact angle has been analyzed also by Tanner [54] and
Hocking [36]. Corresponding rigorous results regarding intermediate-in-time asymptotics, known
as Tanner’s law [54], can be found in [18, 30].

Note that the subsequent results are limited since we are considering a droplet that infinitely
extends to x → ∞. In realistic situations, the apparent/macroscopic contact angle can be
measured at an inflection point close to the contact line (point of maximum slope, see [54]).
Thus, the Cox-Voinov law is only an intermediate asymptotic and needs to be matched to a
bulk solution (see [22] for matched-asymptotics arguments). Carrying this out rigorously is
rather delicate and exceeds the presentation of this note.

For the subsequent results, it is important to note that the solution to (2.4) is invariant under
translation in x, that is, replacement of x 7→ x+ c for any c ∈ R, and the scaling transformation
(x,H) 7→ (Bx,BH) for any B > 0, which leads to a two-parameter family of solutions meet-
ing the asymptotic (2.5). The translation invariance will be removed by a suitable coordinate
transformation in the following section. The remaining parameter B will be used in order to
rigorously match the asymptotic (2.6) to the microscopic Young angle k of the unique classical
solution to (2.3). The precise mathematical result is given in Theorem 2.1 in §2.5 below.

2.3. Coordinate transformation. Obviously, equation (2.3a) is translation-invariant in x.
For the classical solution H = HCG of problem (2.3), we also have the following properties:

(a) It holds HCG > 0 for all x > 0. This is true because HCG > 0 for 0 < x ≪ 1 due to

(2.3c) and k > 0. On the other hand, continuity of HCG and d3HCG
dx3

, and (2.3a) prevent
HCG from becoming zero, which yields HCG > 0 for all x > 0.

(b) We have d3HCG

dx3
< 0 for all x > 0 by (2.3a) and (a).

(c) We get d2HCG
dx2 > 0 for all x > 0 by (2.3d) and (b).

(d) We have dHCG
dx > 0 for all x > 0 by (2.3b), k > 0, and (c).

The above shows that HCG is a strictly increasing function, so that (2.3a) can be rewritten in
terms of x = xCG as a function of H, thus removing the translation invariance in x and leading
to a second-order ODE instead of the third-order ODE (2.3a). This equation, however, includes

xCG, dxCG
dH , and d2xCG

dH2 , which makes it inconvenient for a monotonicity argument. Instead, we
opt for the choice

ψ :=
(

dH
dx

)2
=
(

dx
dH

)−2
> 0 as a function of H (2.7)

in what follows. Then, problem (2.3) turns into finding ψ such that

d2ψ
dH2 + 2

3(H
2 +Hn−1)−1ψ− 1

2 = 0 for H > 0, (2.8a)

where the boundary conditions are given by

ψ = k2 at H = 0, (2.8b)

dψ
dH → 0 as H → ∞. (2.8c)

Indeed, we have

dψ
dH

(2.7)
= 2dH

dx
d2H
dx2

dx
dH = 2d2H

dx2
, d2ψ

dH2 = 2d3H
dx3

dx
dH

(2.7)
= 2d3H

dx3
ψ− 1

2 ,

and thus
d2ψ
dH2

(2.3a)
= −2

3

(

H2 +Hn−1
)−1

ψ− 1
2 ,
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which yields (2.8a). On the other hand, the boundary conditions (2.8b) and (2.8c) follow directly
from the definition of ψ in (2.7) and the boundary conditions of (2.3b)–(2.3d). The main result
of Chiricotto and Giacomelli in [10] implies that (2.8) has a unique classical solution ψ = ψCG

being twice continuously differentiable in H > 0 and right-continuous at H = 0. The result and
proof generalized to n ∈ (0, 3) and adapted to the system (2.8) can be found in Appendix A,
Theorem A.1.

2.4. The Cox-Voinov law in new coordinates. With help of (2.7), the leading-order equa-
tion (2.4) can now be rephrased as

d2ψ
dH2 + 2

3H
−2ψ− 1

2 = 0 for large H > 0 (2.9a)

with Cox-Voinov asymptotic

ψ = (lnH)
2
3 (1 + o(1)) as H → ∞. (2.9b)

The family of solutions to (2.9a) meeting (2.9b) is now one-parametric because of the scaling
invariance H 7→ BH for any B > 0. It is proved in [28, Proposition 3.1] that problem (2.9a)
has a unique solution ψ = ψCV being twice continuously differentiable for H > 0 large if we
additionally demand the refined asymptotic

ψ
3
2 = lnH − 1

3 ln (lnH) + o(1) as H → ∞. (2.9c)

We select this solution ψCV from now on.

2.5. The main result. The rest of this paper is devoted to proving the following result, giving
a precise characterization of the asymptotic regimes as H → ∞ and H ↓ 0 and their dependence
on the parameters n (mobility exponent) and k (microscopic contact angle).

Theorem 2.1. Suppose n ∈ (0, 3) and k > 0. The unique solution ψ = ψCG to (2.8) being
twice continuously differentiable in H > 0 and right-continuous at H = 0, has the following
asymptotic regimes:

(a) There exists a real parameter B > 0 and a function R∞ of H such that

ψCG = ψCV|H 7→BH (1 +R∞) for H > 0 sufficiently large, (2.10)

where C > 0 is a constant, ψCV is chosen as in §2.4, and

R∞ = O
(

(ln(H))−1H−(3−n)
)

as H → ∞.

The parameter B and the correction R∞ are continuously differentiable functions of k >
0.

(b) It holds

ψCG = k2(1 + µ) as H ↓ 0, (2.11)

where µ has the following properties:
i) For n ∈ (0, 3) \

{

3− 1
m
: m ∈ N

}

(non-resonant case) it holds µ = v|(ζ,̺)=(H,H3−n)

as H ↓ 0, where v is analytic in (ζ, ̺) around (ζ, ̺) = (0, 0) and smooth in k > 0
with v|(ζ,̺)=(0,0) = 0.

ii) For n = 3 − 1
m

with m ∈ N (resonant case) it holds µ = v|(ζ,̺,σ)=(H,H3−n,H lnH)

as H ↓ 0, where v is analytic in (ζ, ̺, σ) around (ζ, ̺, σ) = (0, 0, 0) and smooth in
k > 0 with v|(ζ,̺,σ)=(0,0,0) = 0.

We emphasize that Theorem 2.1 is the analogue of [28, Theorem 2.1] in which complete-wetting
boundary conditions (k = 0) are studied. The asymptotic (2.10) of Theorem 2.1 contains
information on the apparent (macroscopic) contact angle. Indeed, because the parameter B and
the remainder R∞ depend continuously differentiably on the microscopic contact angle k > 0,
we obtain from (2.7), (2.9c), and (2.10) that

(

dH
dx

)3
= ln(BH)− 1

3 ln (lnH) + o(1) as H → ∞,
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where B > 0 and o(1) depend continuously differentiably on k > 0. This separable ODE yields

H = x (ln(Bx))
1
3 (1 + o(1)) as x→ ∞,

so that we obtain
(

dH
dx

)3
= ln(Bx) + o(1) as x→ ∞,

which after undoing the scalings (2.2) yields
(

dH
dx

)3
= 3V ln

(

B(3V )
1
3λ−1x

)

+ o(1) as x→ ∞,

where B > 0 and o(1) depend in all instances continuously differentiably on k > 0. In conclusion,
we have shown that the macroscopic contact angle depends continuously differentiably on the
microscopic contact angle and thus by Young’s law (1.2) on the physically adjustable surface
tensions acting at the interfaces. This is the novelty compared to [28], where k = 0 was considered
and the dependence of the asymptotic as H → ∞ on the parameter n ∈

(

3
2 ,

7
3

)

(mobility
exponent) was studied. Further note that Eggers in [21] has studied the same problem and by
matched asymptotics has determined an expansion of B in terms of the inverse of a rescaled
capillary number (proportional to the velocity V of the contact line divided by the cube k3 of
the microscopic contact angle). Our result provides a rigorous justification of an existence of
such an expansion to leading order. Further note that we strongly believe that the arguments
provided in the present note can be lifted to prove smoothness of B and R∞ in Theorem 2.1 in
k > 0. However, this would require to revisit many of the technical steps carried out in [28, §5]
in order to prove smoothness in B > 0 of the solution manifold meeting the Cox-Voinov law,
characterized in [28, Proposition 3.1] (Proposition 4.2 in this note), while not providing any
significantly new mathematical insights.

The asymptotics (2.11), on the other hand, give us information about the behavior of the solution
close to the contact line (microscopic regime). We recognize that the value of ψCG as H ↓ 0 is
equal to k2 with a precisely characterized correction continuously differentiably depending on

k > 0. In particular, on noting that d2HCG
dx2 gives up to a constant the pressure at the interface

(it is proportional to the curvature which in lubrication approximation is merely the second

derivative of the profile in the spatial variable), the derivative dψCG
dH gives up to a constant the

pressure, that is, we obtain the singularity

dψCG
dH = k2 ∂ζv|(ζ,̺)=(H,H3−n) + (3− n)k2 ∂̺v|(ζ,̺)=(H,H3−n)H

2−n as H ↓ 0

for n ∈ (0, 3) \
{

3− 1
m
: m ∈ N

}

and

dψCG
dH = k2 ∂ζv|(ζ,̺,σ)=(H,H3−n,H lnH) + (3− n)k2 ∂̺v|(ζ,̺,σ)=(H,H3−n,H lnH)H

2−n

+ k2 ∂σv|(ζ,̺,σ)=(H,H3−n,H lnH) (1 + lnH) as H ↓ 0

for n = 3 − 1
m

with m ∈ N. Here, we have v := bζ + w|ξ=bζ , where b = bCG ∈ R is a
uniquely determined parameter matching the solution to the Cox-Voinov manifold characterized
by the asymptotics (2.10) and w is uniquely determined in Propositions 3.5 and 3.6 in §3.4
below. Similar singular expansions have been found in [1, Theorems 3.2 and 3.3] in case of
source-type self-similar solutions with dynamic contact angle condition and in [39–41] in case of
the thin-film equation with homogeneous mobility and partial-wetting boundary conditions. In
case of partial wetting, we also refer to [17] for existence, uniqueness, and regularity in higher
dimensions, to [23, 44] for existence, uniqueness, and stability, and to [3, 45, 49] for existence
results on weak solutions.

2.6. Outline. The rest of the paper is devoted to the proof of Theorem 2.1. This relies on
one hand on a precise characterization of the solution manifold near the contact line (cf. §3)
using dynamical-systems techniques and the matching of this solution manifold with the solution
manifold as H → ∞ as characterized in [28, Proposition 3.1] (cf. Proposition 4.2). This matching
argument is carried out in §4. In Appendix A we give a streamlined version of the existence and
uniqueness proof of [10] for the system (2.8) instead of (2.3).
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3. The solution manifold near the contact line

Note that the construction of a solution manifold at the contact line is in part based on the
analysis in [1, §4.2–4.4] in which partial-wetting boundary conditions for the source-type self-
similar solution with homogeneous mobility are treated. Our reasoning is different in that we
choose to study a dynamical system that is changed compared to [1, §4.2–4.4] with the advantage
that the contact line corresponds to a hyperbolic fixed point. Furthermore, we additionally
discuss the smooth dependence on the parameter k > 0.

3.1. Reformulation as a dynamical system. In this section, a dynamical system will be
formulated to characterize the error between ψ solving (2.8a) and (2.8b) and the squared mi-
croscopic contact angle k2 as H ↓ 0.

3.1.1. Coordinate transformations. We first apply the coordinate transformation

s := lnH, (3.1a)

which shifts the contact line H = 0 to s = −∞. Secondly, we introduce the new dependent
variable µ with

µ := ψ
k2

− 1, (3.1b)

determining the error between ψ and k2. On noting that d
dH

(3.1a)
= e−s d

ds , the transformations
(3.1) turn problem (2.8) into

d2µ
ds2

− dµ
ds +

2
3k3(1+e−(3−n)s)

(1 + µ)−
1
2 = 0 for s ∈ R, (3.2a)

µ→ 0 as s→ −∞, (3.2b)

e−s dµds → 0 as s→ ∞, (3.2c)

which is uniquely solved by µ = µCG given by (3.1) with ψ = ψCG.

3.1.2. The dynamical system. Equation (3.2a) will now be reformulated as an autonomous three-
dimensional continuous dynamical system using the functions

r := e
3−n
3
s, q := e−

3−n
3
sµ and p := e−

3−n
3
s dµ
ds . (3.3)

If µ = µCG we write (r, q, p) = (rCG, qCG, pCG). The dynamical system becomes

d
ds (r, q, p) = F, (3.4a)

where

F :=
(

3−n
3 r,−3−n

3 q + p, n3 p−
2

3k3
r2

1+r3 (1 + rq)−
1
2

)

. (3.4b)

It can be easily verified that for our choice n ∈ (0, 3) the point (0, 0, 0) is the unique fixed point
of the system (3.4a). In the next lemma we will see that any solution (r, q, p), which under the
transformations (3.3) meets (3.2a) and (3.2b), converges to this fixed point as s→ −∞ and we
additionally characterize the asymptotic behavior.

Lemma 3.1. Suppose k > 0, n ∈ (0, 3), that µ is an in s ∈ R twice continuously differentiable
solution to (3.2a) and (3.2b), and let (r, q, p) be defined by (3.3). Then it holds

r = e
3−n
3
s for all s ∈ R, (3.5a)

q =















O

(

e
n
3
s
)

for 0 < n < 2,

− 2
3k3
se

n
3
s(1 + o(1)) for n = 2,

2
3(3−n)(n−2)k3 e

2
3
(3−n)s(1 + o(1)) for 2 < n < 3,

as s→ −∞, (3.5b)

p =















O

(

e
n
3
s
)

for 0 < n < 2,

− 2
3k3 se

n
3
s(1 + o(1)) for n = 2,

2
3(n−2)k3 e

2
3
(3−n)s(1 + o(1)) for 2 < n < 3,

as s→ −∞, (3.5c)

so that in particular (r, q, p) → (0, 0, 0) as s→ −∞.
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Proof. We have r
(3.3)
= e

3−n
3
s so that (3.5a) immediately follows.

In order to determine the asymptotic behavior of p, we compute

p
(3.3)
= e−

3−n
3
s dµ
ds

(3.1b)
= e

−
3−n
3 s

k2
dψ
ds

(3.1a)
= e

n
3 s

k2
dψ
dH . (3.6)

Hence, the asymptotic of p is determined by the asymptotic of dψ
dH . Therefore, note that from

(3.1b) and (3.2b) it follows that ψ = k2(1+ o(1)) as H ↓ 0 and equation (2.8a) (which by virtue
of (3.1) is equivalent to (3.2a)) gives

d2ψ
dH2 = −2

3(H
2 +Hn−1)−1ψ− 1

2 = − 2
3kH

1−n(1 + o(1)) as H ↓ 0.

In order to obtain an expression for dψ
dH , take ε > 0 and write

dψ
dH = dψ

dH

∣

∣

∣

H=ε
−

∫ ε

H

d2ψ
dH2

∣

∣

∣

H=H̃
dH̃ = dψ

dH

∣

∣

∣

H=ε
+ 2

3k (1 + o(1))

∫ ε

H

H̃1−ndH̃

=

{

C(ε)− 2
3(2−n)kH

2−n(1 + o(1)) as H ↓ 0 for n 6= 2,

C(ε)− 2
3k (lnH)(1 + o(1)) as H ↓ 0 for n = 2,

where C(ε) is a constant only depending on ε. This implies

dψ
dH =











C(ε)(1 + o(1)) as H ↓ 0 for 0 < n < 2,

− 2
3k lnH(1 + o(1)) as H ↓ 0 for n = 2,
2

3(n−2)kH
2−n(1 + o(1)) as H ↓ 0 for 2 < n < 3,

so that because of (3.1a) and (3.6) we obtain (3.5c).

Finally, since

q
(3.2b),(3.3)

= e−
3−n
3
s

∫ s

−∞
e

3−n
3
s̃ p|s=s̃ ds̃,

we obtain (3.5b) from (3.5c). �

3.2. Characterization of the unstable manifold.

3.2.1. Hyperbolicity and linearization. Equation (3.4a) can be linearized around the fixed point
(r, q, p) = (0, 0, 0), resulting in

DF
(3.4b)
=







3−n
3 0 0
0 −3−n

3 1

− 2
3k3

2r−r4

(1+r3)2 (1 + rq)−
1
2 + 1

3k3
r

1+r3
rq

(1+rq)
3
2

1
3k3

r3

1+r3 (1 + rq)−
3
2

n
3






,

so that

DF |(r,q,p)=(0,0,0) =





3−n
3 0 0
0 −3−n

3 1
0 0 n

3



 ,

where DF denotes the Jacobian matrix of F evaluated in (0, 0, 0). The eigenvalues are distinct
and equal to 3−n

3 , −3−n
3 , and n

3 , so that because of n ∈ (0, 3) the fixed point (r, q, p) = (0, 0, 0)
is hyperbolic with two-dimensional unstable manifold M− and one-dimensional stable manifold

M+. Note that hyperbolicity is ensured by including the factors e−
3−n
3
s in the definitions of r,

q, and p, as otherwise the system would have infinitely many non-hyperbolic fixed points.

The linearized system can be diagonalized, that is,

DF |(r,q,p)=(0,0,0) =





1 0 0
0 1 1
0 0 1









3−n
3 0 0
0 −3−n

3 0
0 0 n

3









1 0 0
0 1 −1
0 0 1



 . (3.7)

The representation (3.7) is convenient in order to characterize the unstable manifold.
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3.2.2. The unstable manifold.

Lemma 3.2. For n ∈ (0, 3) and k > 0, let µ be an in s ∈ R twice continuously differentiable
solution to (3.2a) and (3.2b) and let (r, q, p) be defined by (3.3). Then (r, q, p) lies on the unstable
manifold M− of the fixed point (0, 0, 0) of the dynamical system (3.4). The unstable manifold
M− can be parameterized by p = p−, where p− as a function of (r, q, k) is analytic in (r, q) in a
neighborhood of (r, q) = 0 meeting the partial differential equation

(

r∂r − q∂q −
n

3−n

)

p− + 3
3−np

−∂qp
− = − 2

(3−n)k3
r2

1+r3 (1 + rq)−
1
2 (3.8)

and smooth in k > 0 with

p− = 0 at (r, q) = (0, 0), (3.9a)

∂rp
− = 0 at (r, q) = (0, 0), (3.9b)

∂qp
− = 1 at (r, q) = (0, 0), (3.9c)

∂2rp
− = − 4

3k3(3−n)
at (r, q) = (0, 0), (3.9d)

∂jr∂
ℓ
qp

− = 0 at (r, q) = (0, 0) for (j, ℓ) ∈ N
2
0 with j ≤ ℓ− 2. (3.9e)

Proof. The tangent space to the unstable manifold M− at (0, 0, 0) is spanned by the vectors
(cf. (3.7))

v1 := (1, 0, 0) and v2 := (0, 1, 1).

A vector perpendicular to v1 and v2 is given by

v1 × v2 = (0,−1, 1),

so that the tangent space to M− at (0, 0, 0) is given by

p = q. (3.10)

Hence, M− can be parameterized by p = p−, where p− is a function of (r, q, k). The analyt-
icity of F in (r, q, p) = (0, 0, 0) (cf. (3.4b)) implies that M− is analytic in a neighboorhood of
(r, q, p) = (0, 0, 0) by [11, Theorem 4.1]. The first three partial derivatives (3.9a), (3.9b), and
(3.9c) evaluated in (r, q) = (0, 0), are immediate from (3.10) and the smoothness in k > 0 is
proved for instance in [50, p. 165–166] or [55, §9.2, Theorem 9.6].

We now compute ∂2rp
−
∣

∣

(r,q)=(0,0)
in (3.9d). Observe that on M− it holds p = p−, so that

dp
ds = ∂rp

− dr
ds + ∂qp

− dq
ds

and thus using (3.4) to substitute derivatives in s, we obtain the partial differential equation

3−n
3 r∂rp

− +
(

p− − 3−n
3 q
)

∂qp
− = n

3 p
− − 2

3k3
r2

1+r3
(1 + rq)−

1
2 ,

which is equivalent to (3.8). Using the already computed (3.9a), (3.9b), and (3.9c), it follows
after differentiating (3.8) in r twice and evaluating at (r, q) = (0, 0) that

(

2− n
3−n

)

(

∂2rp
−
)∣

∣

(r,q)=(0,0)
+ 3

3−n

(

∂2rp
−
)∣

∣

(r,q)=(0,0)
= − 4

(3−n)k3
,

leading to
(

∂2rp
−
)∣

∣

(r,q)=(0,0)
= − 4

3(3−n)k3
as stated in (3.9d).

For the proof of (3.9e) we argue inductively. Taking ∂r and ∂q derivatives of (3.8) we get

(

r∂r − q∂q −
n+(ℓ−j)(3−n)

3−n

)

∂jr∂
ℓ
qp

− + 3
3−n

∑

0≤j′≤j

∑

0≤ℓ′≤ℓ

(

j

j′

)(

ℓ

ℓ′

)

(

∂j−j
′

r ∂ℓ−ℓ
′

q p−
)(

∂j
′

r ∂
ℓ′+1
q p−

)

= −2(−1)ℓ+1

(3−n)k3
1
2 ·

3
2 · . . . ·

2ℓ−1
2 ∂jr

(

rℓ+2

1+r3 (1 + rq)−
2ℓ+1

2

)
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and evaluating at (r, q) = (0, 0) leads to

(n+ (ℓ− j)(3 − n))
(

∂jr∂
ℓ
qp

−
)∣

∣

∣

(r,q)=(0,0)

− 3
∑

0≤j′≤j

∑

0≤ℓ′≤ℓ

(

j

j′

)(

ℓ

ℓ′

)

(

∂j−j
′

r ∂ℓ−ℓ
′

q p−
)∣

∣

∣

(r,q)=(0,0)

(

∂j
′

r ∂
ℓ′+1
q p−

)∣

∣

∣

(r,q)=(0,0)
= 0, (3.11)

where we suppose (j, ℓ) ∈ N
2
0 with j ≤ ℓ − 2. If we assume that

(

∂j
′′

r ∂ℓ
′′

q p
−
)∣

∣

∣

(r,q)=(0,0)
= 0 for

(j′′, ℓ′′) ∈ N
2
0 provided

• ℓ′′ ≤ ℓ− 1, or
• ℓ′′ = ℓ and j′′ ≤ j − 1,

then it follows from (3.9c) and (3.11) that

(ℓ− j − 1)(3 − n)
(

∂jr∂
ℓ
qp

−
)∣

∣

∣

(0,0,k)
= 0,

which because of j ≤ ℓ− 2 implies (3.9e). �

3.3. The ODE lifted on the unstable manifold.

3.3.1. Formulation of the ODE. In what follows, motivated by (3.3) and (3.9), we define

g := r p−
∣

∣

q=r−1µ
− µ+ 2

3k3(3−n)
r3 (3.12a)

and

̺ := r3. (3.12b)

We have the following result:

Corollary 3.3. Let n ∈ (0, 3). Then the dependent variable g as a function of (̺, µ, k) is
analytic in (̺, µ) in a neighborhood of (̺, µ) = (0, 0), smooth in k > 0, and meets the conditions

g = ∂µg = ∂̺g = 0 at (̺, µ) = (0, 0). (3.13a)

Furthermore, for any in s ∈ R twice continuously differentiable µ solving (3.2a) and (3.2b) it
holds for H > 0 sufficiently small

(

H d
dH − 1

)

µ = g|̺=H3−n − 2
3k3(3−n)H

3−n. (3.13b)

Proof. Because of (3.9e) of Lemma 3.2 and (3.12a), it holds

g =
∑

j≥0, ℓ≥0,
j+ℓ≥1

1

(j + ℓ− 1)!ℓ!
∂j+ℓ−1
r ∂ℓqp

−
∣

∣

∣

(r,q)=(0,0)
rjµℓ − µ+

2

3k3(3− n)
r3, (3.14)

so that g is analytic in (r, µ) in a neighborhood of (r, µ) = (0, 0) and smooth in k > 0. In view
of (3.1a), (3.3), and (3.12a), it holds

(

H d
dH − 1

)

µ = g|
r=H

3−n
3

− 2
3k3(3−n)

H3−n.

Because of

p−
(3.12a)
= r−1g + r−1µ− 2

3k3(3−n)
r2,

r∂rp
− (3.12a)

= − r−1g + ∂rg + r−1µ∂µg −
4

3k3(3−n)
r2,

∂qp
− (3.12a)

= ∂µg + 1,

q∂qp
− (3.12a)

= r−1µ∂µg + r−1µ,
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on identifying µ = rq, the PDE (3.8) of Lemma 3.2 turns into

− r−1g + ∂rg + r−1µ∂µg −
4

3k3(3−n)r
2 − r−1µ∂µg − r−1µ− n

3−nr
−1g − n

3−nr
−1µ+ 2n

3k3(3−n)2 r
2

+ 3
3−n

(

r−1g + r−1µ− 2
3k3(3−n)r

2
)

(∂µg + 1)

= − 2
(3−n)k3

r2

1+r3
(1 + µ)−

1
2 ,

which simplifies to
(

(3− n)r∂r + 3µ∂µ −
2

k3(3−n)
r3∂µ

)

g + 3g∂µg = 2
k3
r3
(

1−
(

1 + r3
)−1

(1 + µ)−
1
2

)

. (3.15a)

We obtain with help of (3.14)

g|(r,µ)=(0,0) = 0, (3.15b)

∂rg|(r,µ)=(0,0) = p−
∣

∣

(r,q)=(0,0)

(3.9a)
= 0, (3.15c)

∂µg|(r,µ)=(0,0) = ∂qp
−
∣

∣

(r,q)=(0,0)
− 1

(3.9c)
= 0. (3.15d)

Writing

g =

∞
∑

j,ℓ=0

aj,ℓr
jµℓ and 2

k3
r3
(

1−
(

1 + r3
)−1

(1 + µ)−
1
2

)

=

∞
∑

j,ℓ=0

cj,ℓr
jµℓ,

where

aj,ℓ = cj,ℓ = 0 for (j, ℓ) ∈ {(0, 0), (1, 0), (0, 1)} (3.16a)

by (3.15b)–(3.15d) and the definition, respectively, we obtain after insertion into (3.15a) the
relation

aj,ℓ =
cj,ℓ +

2(ℓ+1)
k3(3−n)

aj−3,ℓ+1 − 3
∑

j′+j′′=j

∑

ℓ′+ℓ′′=ℓ+1 ℓ
′′aj′,ℓ′aj′′,ℓ′′

(3− n)j + 3ℓ
for j + ℓ ≥ 1, (3.16b)

where we let aj−3,ℓ+1 = 0 if j ≤ 2. Note that because of (3.16a) it holds ℓ′′aj′,ℓ′aj′′,ℓ′′ = 0 if
j′ + ℓ′ ≥ j + ℓ or j′′ + ℓ′′ ≥ j + ℓ. Hence, for j + ℓ = m fixed, (3.16b) uniquely determines
aj,m−j for j ∈ {0, . . . ,m} inductively starting from j = 0. Induction in m = j + ℓ using (3.16)
then uniquely determines the coefficients aj,ℓ with (j, ℓ) ∈ N

2
0 and thus g in a neighborhood of

(r, µ) = (0, 0), where it is analytic in (r, µ).

Using ̺ = r3 and 3̺∂̺ = r∂r, (3.15a), (3.15b), and (3.15d) turn into
(

(3− n)̺∂̺ + µ∂µ −
2

3k3(3−n)̺∂µ

)

g + g∂µg = 2
3k3 ̺

(

1− (1 + ̺)−1 (1 + µ)−
1
2

)

, (3.17a)

where

g = 0 at (̺, µ) = (0, 0) by (3.15b), (3.17b)

∂µg = 0 at (̺, µ) = (0, 0) by (3.15d). (3.17c)

Taking a derivative ∂̺ of (3.17a) and using (3.17b) and (3.17c), we infer that

∂̺g = 0 at (̺, µ) = (0, 0). (3.17d)

Writing

g =

∞
∑

j,ℓ=0

Aj,ℓ̺
jµℓ and 2

3k3
̺
(

1− (1 + ̺)−1 (1 + µ)−
1
2

)

=

∞
∑

j,ℓ=0

Cj,ℓ̺
jµℓ,

where

Aj,ℓ = Cj,ℓ = 0 for (j, ℓ) ∈ {(0, 0), (1, 0), (0, 1)} (3.18a)



THE COX-VOINOV LAW IN THE PARTIAL WETTING REGIME 13

by (3.17b)–(3.17c) and the definition, respectively, we get inserted into (3.17a) the relation

Aj,ℓ =
Cj,ℓ +

2(ℓ+1)
3k3(3−n)

Aj−1,ℓ+1 −
∑

j′+j′′=j

∑

ℓ′+ℓ′′=ℓ+1 ℓ
′′Aj′,ℓ′Aj′′,ℓ′′

(3− n)j + ℓ
for j + ℓ ≥ 1, (3.18b)

where we use the convention Aj−1,ℓ+1 = 0 if j = 0. Because of (3.18a) we have ℓ′′Aj′,ℓ′Aj′′,ℓ′′ = 0
if j′ + ℓ′ ≥ j + ℓ or j′′ + ℓ′′ ≥ j + ℓ. Thus, for j + ℓ = m fixed, (3.18b) determines Aj,m−j with
j ∈ {0, . . . ,m} inductively in j starting with j = 0. Then all coefficients Aj,ℓ with (j, ℓ) ∈
N
2
0 are determined by induction in m = j + ℓ. Hence, problem (3.17) has a solution that is

analytic in (̺, µ) in a neighborhood of (̺, µ) = 0, thus meeting the boundary conditions (3.13a).
On identifying ̺ = r3, this is in particular a solution to (3.15) that is analytic in (r, µ) in a
neighborhood of (r, µ) = (0, 0), for which we have proved uniqueness beforehand. �

3.3.2. Uniqueness.

Lemma 3.4. Let n ∈ (0, 3) and k > 0. Suppose that µ1 and µ2 are continuously differentiable
in H > 0 and solve
(

H d
dH − 1

)

µj = g|(̺,µ)=(H3−n,µj)
− 2

3k3(3−n)
H3−n for H > 0 sufficiently small. (3.19a)

Further suppose that there exists δ > 0 such that

lim
Hց0

H−δµj = 0 for j ∈ {1, 2}. (3.19b)

Then it holds

µj =











O (H) for 0 < n < 2,

O (−H lnH) for n = 2,

O
(

H3−n
)

for 2 < n < 3,

as H ↓ 0, (3.20a)

and there exists a constant β ∈ R such that

µ1 − µ2 =











βH (1 +O (H)) for 0 < n < 2,

βH (1 +O (−H lnH)) for n = 2,

βH
(

1 +O
(

H3−n
))

for 2 < n < 3,

as H ↓ 0. (3.20b)

Proof. We have

(

H d
dH − 1

)

µj
(3.19a)
= g|(̺,µ)=(H3−n,µj)

− 2
3k3(3−n)

H3−n

= a|(̺,µ)=(H3−n,µj)
µj −

2
3k3(3−n)

H3−n,

where by (3.13a) the dependent variable a is a function of (̺, µ, k) being analytic in (̺, µ) and
smooth in k > 0 such that a = 0 at (̺, µ) = (0, 0). This implies

H d
dH

(

H−1 exp

(
∫ ε

H

a|(̺,µ)=(H̃3−n, µj |H=H̃)
dH̃
H̃

)

µj

)

= − 2
3k3(3−n)H

2−n exp

(∫ ε

H

a|(̺,µ)=(H̃3−n, µj |H=H̃)
dH̃
H̃

)

for ε > 0 small and thus

H−1 exp

(∫ ε

H

a|(̺,µ)=(H̃3−n, µj |H=H̃)
dH̃
H̃

)

µj

= ε−1 µj|H=ε +
2

3k3(3−n)

∫ ε

H

H2−n
1 exp

(
∫ ε

H1

a|
(̺,µ)=

(

H3−n
2 , µj |H=H2

)

dH2
H2

)

dH1
H1

=











O (1) for 0 < n < 2,

O (− lnH) for n = 2,

O
(

H2−n
)

for 2 < n < 3,

as H ↓ 0. This gives (3.20a).
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For proving (3.20b), observe that

H2 d
dH

(

H−1(µ1 − µ2)
)

=
(

H d
dH − 1

)

(µ1 − µ2)

(3.19a)
= g|(̺,µ)=(H3−n,µ1)

− g|(̺,µ)=(H3−n,µ2)

= c|̺=H3−n (µ1 − µ2) ,

that is,

H d
dH

(

H−1(µ1 − µ2)
)

= c|̺=H3−n H
−1 (µ1 − µ2) for H > 0, (3.21)

where by (3.13a) the dependent variable c is a function of (µ1, µ2, ̺, k) which is analytic in
(µ1, µ2, ̺) and additionally c = 0 at (µ1, µ2, ̺) = (0, 0, 0). Integrating (3.21) from H = ε > 0
yields

H−1 (µ1 − µ2) = ε−1 (µ1 − µ2)|H=ε exp

(

−

∫ ε

H

c|(µ1,µ2,̺)=(µ1|H=H̃
, µ2|H=H̃

,H̃3−n)
dH̃
H̃

)

.

Because of (3.20a) the integral
∫ ε

0 c|̺=H3−n
dH
H

is finite, so that the limit

β := lim
Hց0

H−1 (µ1 − µ2)

exists. Integrating (3.21) from H = 0 then yields

H−1(µ1 − µ2) = β exp

(∫ H

0
c|(µ1,µ2,̺)=(µ1|H=H̃

, µ2|H=H̃
,H̃3−n)

dH̃
H̃

)

(3.20a)
=











β (1 +O (H)) for 0 < n < 2,

β (1 +O (−H lnH)) for n = 2,

β
(

1 +O
(

H3−n
))

for 2 < n < 3,

from which (3.20b) is immediate. �

3.4. Fixed-point problem. In this subsection, we characterize a one-parametric family of
solutions to the ordinary initial-value problem (IVP) (3.19) of Lemma 3.4. This is split in the
non-resonant case in §3.4.1 and the resonant case in §3.4.2. Note that resonances have been
characterized in [1, §4.3] in case of the source-type self-similar solution with dynamic nonzero
contact angle and that the resonances in the situation at hand are the same. The relevant
resonances occur for values n = 3− 1

m
, where m ∈ N.

In what follows, suppose that µ ∈ C0 ([0,∞)) ∩ C1 ((0,∞)) meets (3.19), that is,
(

H d
dH − 1

)

µ = g|̺=H3−n − 2
3k3(3−n)

H3−n for H > 0 sufficiently small (3.22a)

and

µ = 0 at H = 0. (3.22b)

In view of (3.20) of Lemma 3.4 a solution µ to (3.22) cannot be expected to be smooth. In what
follows we characterize the singularity of µ in H = 0 and the dependence on k > 0 explicitly.

3.4.1. Non-resonant case. Consider n ∈ (0, 3) \
{

3− 1
m
: m ∈ N

}

. We unfold the singularity in
H = 0 by identifying

µ = w + ξ provided ξ = bH and ̺ = H3−n (3.23)

for a constant b ∈ R, where w is a function of (ξ, ̺, k) such that

(ξ∂ξ + (3− n)̺∂̺ − 1)w = g|µ=w+ξ −
2

3k3(3−n)
̺ around (ξ, ̺) = (0, 0) (3.24a)

subject to the boundary conditions

(w, ∂ξw) = (0, 0) at (ξ, ̺) = (0, 0). (3.24b)

In the following proposition we will construct a solution to (3.24) which is analytic in (ξ, ̺) and
smoothly depends on k > 0. Using (3.1a), (3.3), (3.5b) of Lemma 3.1, Corollary 3.3, Lemma 3.4,



THE COX-VOINOV LAW IN THE PARTIAL WETTING REGIME 15

and the existence and uniqueness result of [10] or Theorem A.1 in Appendix A, it follows that
there exists exactly one b = bCG ∈ R such that µCG = w+ ξ provided ξ = bCGH and ̺ = H3−n.

Proposition 3.5 (non-resonant case). For n ∈ (0, 3) \
{

3− 1
m
: m ∈ N

}

problem (3.24) has a
solution w which is analytic in (ξ, ̺) in a neighborhood of (ξ, ̺) = (0, 0) and smooth in k > 0.

Proof. The proof of existence of an in (ξ, ̺) analytic solution to (3.24) follows with almost
the same reasoning as in [1, Proposition 4.9] using Banach’s fixed-point theorem. Since we
additionally prove smoothness in k > 0, we apply the Banach-space valued version of the implicit-
function theorem instead of Banach’s fixed-point theorem. Therefore, we rewrite (3.24) in the
following way: Using a power-series expansion around (ξ, ̺) = (0, 0), it is straight-forward to
verify that (3.24) is equivalent to

G = 0 with G := w − T

[

g|µ=w+ξ −
2

3k3(3−n)̺
]

, (3.25)

where the linear operator T is defined for in (ξ, ̺) around (ξ, ̺) = (0, 0) analytic functions φ
with (φ, ∂ξφ) = (0, 0) in (ξ, ̺) = (0, 0) by

T φ :=
∑

(j,ℓ)∈I

1

(j + (3− n)ℓ− 1)j!ℓ!
∂jξ∂

ℓ
̺φ
∣

∣

∣

(ξ,̺)=(0,0)
ξj̺ℓ

with I := (N0)
2\{(0, 0), (1, 0)} in view of (3.24b). Note that the choice of n /∈

{

3− 1
m
: m ∈ N

}

and the definition of I ensure that j + (3− n)ℓ− 1 6= 0 for all (j, ℓ) ∈ I . In order to construct a
solution w to (3.25), we use the norm

‖φ‖ε :=
∑

(j,ℓ)∈N2
0

εj+2ℓ

j!ℓ!

∣

∣

∣

∣

∂jξ∂
ℓ
̺φ
∣

∣

∣

(ξ,̺)=(0,0)

∣

∣

∣

∣

for in (ξ, ̺) around (ξ, ̺) = (0, 0) analytic φ with (φ, ∂ξφ) = (0, 0) in (ξ, ̺) = (0, 0), where ε > 0
will be chosen sufficiently small. The corresponding Banach space of all such φ with ‖φ‖ε < ∞
is denoted by Wε. From the definition, it is elementary to see that ‖·‖ε is sub-multiplicative,
that is, it holds ‖φ1φ2‖ε ≤ ‖φ1‖ε ‖φ2‖ε for φ1, φ2 ∈Wε. One further obtains

‖T φ‖ε =
∑

(j,ℓ)∈I

εj+2ℓ

j!ℓ! |j + (3− n)ℓ− 1|

∣

∣

∣

∣

∂jξ∂
ℓ
̺φ
∣

∣

∣

(ξ,̺)=(0,0)

∣

∣

∣

∣

≤ C
∑

(j,ℓ)∈I

εj+2ℓ

j!ℓ!

∣

∣

∣

∣

∂jξ∂
ℓ
̺φ
∣

∣

∣

(ξ,̺)=(0,0)

∣

∣

∣

∣

= C ‖φ‖ε ,

where C−1 := min(j,ℓ)∈I |j + (3− n)ℓ− 1| > 0. Hence, Wε ∋ φ 7→ T φ ∈ Wε is a bounded linear
operator and thus in particular analytic. For any w ∈ Wε, we recognize that by the chain rule
G is analytic in w with Gâteaux (and Fréchet) derivative

(DwG )φ = φ− T

[

∂µg|µ=w+ξ φ
]

,

where φ ∈ Wε. With help of Corollary 3.3 it follows that for w ∈ Wε such that ‖w‖ε < δ with
δ > 0 sufficiently small and ε > 0 sufficiently small there exists C1 <∞ independent of ε and δ
such that
∥

∥

∥
T

[

∂µg|µ=w+ξ φ
]∥

∥

∥

ε
≤ C

∥

∥

∥
∂µg|µ=w+ξ φ

∥

∥

∥

ε
≤ C

∥

∥

∥
∂µg|µ=w+ξ

∥

∥

∥

ε
‖φ‖ε

(3.13a)

≤ C1 (ε+ δ) ‖φ‖ε .

This implies that for δ > 0 and ε > 0 sufficiently small, DwG is invertible for w ∈ Wε with
‖w‖ε < δ by the Neumann series, that is, Wε ∋ φ 7→ DwGφ ∈ Wε is for w ∈ Wε with ‖w‖ε < δ
an isomorphism of Banach spaces.

Now, by the chain rule we recognize that G has infinitely many mixed Gâteaux derivatives in
directions w ∈Wε and k > 0, so that in particular Wε×(0,∞) ∋ (w, k) 7→ G ∈ R is continuously
Fréchet differentiable. The Banach-space valued implicit-function theorem yields for ε > 0 and
δ > 0 small existence of a unique and in k > 0 continuously differentiable w = wk such that
(3.25) holds true. Hence, wk in particular solves (3.24). Implicitly differentiatiating (3.25) yields



16 MANUEL V. GNANN AND ANOUK C. WISSE

∂kwk = −
(

DwG |w=wk

)−1
∂kG |w=wk

. Now, ∂kG |w=wk
is continuously differentiable in k > 0 and

because
(

DwG |w=wk

)−1
=

∞
∑

j=0

(

T

[

∂µg|µ=wk+ξ
·
])j

,

we see by partially differentiating the above series in k > 0 that
(

DwG |w=wk

)−1
is continuously

differentiable in k > 0. Hence, wk is twice continuously differentiable in k > 0 and a bootstrap
argument yields smoothness in k > 0. As a consequence, we have proved the theorem for
w = wk. �

3.4.2. Resonant case. Consider the resonant case n = 3− 1
m

for an m ∈ N. We now identify

µ = w + ξ if ξ = bH, ̺ = H3−n = H
1
m , and σ = H lnH (3.26)

for a constant b ∈ R, where w is a function of (ξ, ̺, σ, k) such that in view of (3.22) we have

(mξ∂ξ + ̺∂̺ +m (σ + ̺m) ∂σ −m)w = m g|µ=w+ξ −
2m

3k3(3− n)
̺ around (ξ, ̺, σ) = (0, 0, 0),

(3.27a)
(

w, ∂ξw, ∂
m
̺ w
)

= (0, 0, 0) at (ξ, ̺, σ) = (0, 0, 0).
(3.27b)

The condition ∂m̺ w = 0 at (ξ, ̺, σ) = (0, 0, 0) is necessary in order to exclude non-uniqueness of
w under the identification (3.26).

The following proposition provides an existence result of an in (ξ, ̺, σ) analytic solution to (3.27)
which smoothly depends on k > 0. With help of (3.1a), (3.3), (3.5b) of Lemma 3.1, Lemma 3.3,
Lemma 3.4, and the uniqueness proved in [10] or Theorem A.1 in Appendix A, we conclude that
there exists exactly one b = bCG ∈ R such that µCG = w+ ξ provided ξ = bCGH and ̺ = H3−n.

Proposition 3.6 (resonant case). Suppose n = 3− 1
m

for an m ∈ N. Then (3.27) has a solution
w which is analytic in (ξ, ̺, σ) around (ξ, ̺, σ) = (0, 0, 0) and smooth in k > 0.

Proof. As in the proof of Proposition 3.5, we do not entirely rely on the reasoning in [1, Propo-
sition 4.10], establishing existence of an analytic solution in an analogous case using Banach’s
fixed-point theorem, but opt for an application of the implicit-function theorem in order to
additionally obtain smoothness in k > 0.

Therefore, we first define for an in (ξ, ̺, σ) around (ξ, ̺, σ) = (0, 0, 0) analytic φ the norm

‖φ‖ε :=
∑

(j,ℓ,p)∈N3
0

εj+mℓ+p

j!ℓ!p!

∣

∣

∣

∣

∂kξ ∂
ℓ
̺∂

p
σφ
∣

∣

∣

(ξ,̺,σ)=(0,0,0)

∣

∣

∣

∣

.

It is easy to see that ‖·‖ε is sub-multiplicative.

As a second preliminary step, we consider the linear problem

(mξ∂ξ + ̺∂̺ +m (σ + ̺m) ∂σ −m)T φ = φ around (ξ, ̺, σ) = (0, 0, 0), (3.28a)
(

T φ, ∂ξT φ, ∂
m
̺ T φ

)

= (0, 0, 0) at (ξ, ̺, σ) = (0, 0, 0). (3.28b)

Choosing φ := m g|µ=w+ξ −
2m

3k3(3−n)
̺, we recognize that

φ = m g|µ=w
(3.27b)
= m g|µ=0

(3.13a)
= 0 at (ξ, ̺, σ) = (0, 0, 0),

(3.29a)

∂ξφ = m ∂µg|µ=w (1 + ∂ξw)
(3.27b)
= m ∂µg|µ=0 (1 + ∂ξw)

(3.13a)
= 0 at (ξ, ̺, σ) = (0, 0, 0),

(3.29b)

∂σφ = m ∂µg|µ=w ∂σw
(3.27b)
= m ∂µg|µ=0 ∂σw

(3.13a)
= 0 at (ξ, ̺, σ) = (0, 0, 0).

(3.29c)
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Hence, we may use the power-series expansions

φ =
∑

(j,ℓ,p)∈N3
0

1

j!ℓ!p!
∂jξ∂

ℓ
̺∂

p
σφ
∣

∣

∣

(ξ,̺,σ)=(0,0,0)
ξj̺ℓσp,

T φ =
∑

(j,ℓ,p)∈N3
0

1

j!ℓ!p!
∂jξ∂

ℓ
̺∂

p
σT φ

∣

∣

∣

(ξ,̺,σ)=(0,0,0)
ξj̺ℓσp,

where in view of (3.27b) and (3.29) we have

∂jξ∂
ℓ
̺∂

p
σφ = 0 in (ξ, ̺, σ) = (0, 0, 0) if (j, ℓ, p) ∈ N

3
0 \ I , (3.30a)

∂jξ∂
ℓ
̺∂

p
σT φ = 0 in (ξ, ̺, σ) = (0, 0, 0) if (j, ℓ, p) ∈ N

3
0 \ J , (3.30b)

where I := N
3
0 \ {(0, 0, 0), (1, 0, 0), (0, 0, 1)} and J := N

3
0 \ {(0, 0, 0), (1, 0, 0), (0,m, 0)}. Inserted

into (3.28a), this yields for (j, ℓ, p) ∈ N
3
0 with ℓ < m,

(mj + ℓ+mp−m) ∂jξ∂
ℓ
̺∂

p
σT φ = ∂jξ∂

ℓ
̺∂

p
σφ at (ξ, ̺, σ) = (0, 0, 0), (3.31a)

while for ℓ ≥ m it holds

(mj + ℓ+mp−m) ∂jξ∂
ℓ
̺∂

p
σT φ+m

ℓ!

(ℓ−m)!
∂jξ∂

ℓ−m
̺ ∂p+1

σ T φ = ∂jξ∂
ℓ
̺∂

p
σφ at (ξ, ̺, σ) = (0, 0, 0).

(3.31b)

For (j, ℓ, p) ∈ {(0, 0, 0), (1, 0, 0), (0, 0, 1)} equation (3.31a) is fulfilled because of (3.30), while for
(j, ℓ, p) ∈ I with ℓ < m we get

∂jξ∂
ℓ
̺∂

p
σT φ

(3.31a)
=

∂jξ∂
ℓ
̺∂

p
σφ

mj + ℓ+mp−m
. (3.32a)

In the case (j, ℓ, p) = (0,m, 0) it holds

∂σT φ
(3.31b)
= ∂m̺ φ at (ξ, ̺, σ) = (0, 0, 0) (3.32b)

and for (j, ℓ, p) ∈ J with ℓ ≥ m we have

∂jξ∂
ℓ
̺∂

p
σT φ

(3.31b)
=

∂jξ∂
ℓ
̺∂

p
σφ

mj + ℓ+mp−m
−m

ℓ!

(ℓ−m)!

∂jξ∂
ℓ−m
̺ ∂p+1

σ T φ

mj + ℓ+mp−m
. (3.32c)

Note that equations (3.30b) and (3.32) uniquely determine T by complete induction. Further-
more, in the proof of [1, Proposition 4.10] it is shown how (3.32) imply that there exists C <∞
independent of φ and ε > 0 such that ‖T φ‖ε ≤ C ‖φ‖ε.

As in the proof of Proposition 3.5, we can then reformulate (3.27) as

G = 0 with G := w − T

[

m g|µ=w+ξ −
2m

3k3(3−n)
̺
]

. (3.33)

Constructing an in (ξ, ̺, σ) around (ξ, ̺, σ) = (0, 0, 0) analytic and in k > 0 smooth solution
to (3.33) follows by an application of the Banach-space valued implicit-function theorem. The
proof is the same as the one given in Proposition 3.5 as the necessary conditions, the sub-
multiplicativity of ‖·‖ε, the boundedness of the linear operator T , and the boundary conditions
(3.13a) on g in (̺, µ) = (0, 0), remain unchanged. �

4. Proof of the main result

In this section, we prove the main result, Theorem 2.1. This is split into the characterization
of two one-parametric solution manifolds ψb and ψB , where ψb meets (2.8a) and (2.8b), and
ψB fulfills (2.8a) and (2.8c) (cf. §4.1). These solution manifolds are then matched in three-

dimensional phase space
(

H,ψ, dψ
dH

)

using a transversality argument (cf. §4.2).
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4.1. Solution manifolds at the contact line and in the bulk. The following two propo-
sitions characterize the solution manifolds meeting (2.8a) and (2.8b), and (2.8a) and (2.8c),
respectively. The second one, Proposition 4.2, is the same as [28, Proposition 3.1] since the
boundary condition (2.8b) at H = 0 is immaterial.

Proposition 4.1 (solution manifold at the contact line). Suppose n ∈ (0, 3). For all b ∈ R and
k > 0 there exists a function µb of H > 0 such that

ψb = k2(1 + µb) for H > 0 sufficiently small, (4.1a)

where ψb is twice continuously differentiable for H > 0 sufficiently small and right-continuous
continuous at H = 0 solving (2.8a) for H > 0 sufficiently small and (2.8b), and µb is analytic
in b ∈ R and smooth in k > 0 for H > 0 small with

∂bµb = H (1 + o(1)) as H ↓ 0. (4.1b)

More precisely, in the non-resonant case n ∈ (0, 3) \
{

3− 1
m
: m ∈ N

}

there exists a function w
being analytic in (ξ, ̺) around (ξ, ̺) = (0, 0) and smooth in k > 0 such that w = 0 and ∂ξw = 0
at (ξ, ̺) = (0, 0), and such that

µb = bH + w|(ξ,̺)=(bH,H3−n) for H > 0 sufficiently small. (4.2a)

Likewise, in the resonant case n = 3 − 1
m

where m ∈ N, there exists a function w which is
analytic in (ξ, ̺, σ) around (ξ, ̺, σ) = (0, 0, 0) and smooth in k > 0 such that w = 0, ∂ξw = 0,
∂m̺ w = 0 at (ξ, ̺, σ) = (0, 0, 0), and such that

µb = bH + w|(ξ,̺,σ)=(bH,H3−n,H lnH) for H > 0 sufficiently small. (4.2b)

Furthermore, there exists b = bCG ∈ R such that ψbCG
= ψCG, where ψCG is the unique classical

solution to (2.8) constructed in [10] or Theorem A.1 in Appendix A.

Proof. We define w by Proposition 3.5 (non-resonant case) and Proposition 3.6 (resonant case),
respectively. Using that w solves (3.24) and (3.27), respectively, defining µ = µb through
(3.23) and (3.26), respectively, we obtain the asymptotics (4.2) and that µb is a solution to
problem (3.22). In view of (3.12), (3.22a) implies

H∂Hµb = H
3−n
3 p−

∣

∣

q=H−
3−n
3 µb

for H > 0,

so that with (r, q, p) defined as in (3.3) and employing (3.1a) we get p = p−. Hence, (r, q, p)
lies on the unstable manifold M− of the stationary point (r, q, p) = (0, 0, 0) of the dynamical
system (3.4). In particular, µ solves (3.2a), which in view of (3.1a) and defining ψ through
(3.1b) implies that ψ solves (2.8a) for H > 0 small enough and that (4.1a) holds true. The
representations (4.2b) as well as (3.24b) and (3.27b), respectively, imply that µb = 0 at H = 0,
which in view of (4.1a) shows that (2.8b) is satisfied. Additionally, equations (4.2b) imply

∂bµb =

{

H + ∂ξw|(ξ,̺)=(bH,H3−n)H for n ∈ (0, 3) \
{

1
m
: m ∈ N

}

,

H + ∂ξw|(ξ,̺,σ)=(bH,H3−n,H lnH)H for n = 1
m

with m ∈ N,

which by virtue of (3.24b) and (3.27b), respectively, yields (4.1b). �

We combine this with the following result, which is valid for complete as well as partial wetting:

Proposition 4.2 (solution manifold in the bulk, cf. [28]). Suppose n ∈ (0, 3). For all B > 0
there exists a function RB of H > 0 large enough such that ψ = ψB with

ψB = ψCV|H 7→BH (1 +RB) for H > 0 sufficiently large

defines a solution of (2.8a) and (2.8c), where ψCV is the unique twice for large H > 0 continu-
ously differentiable solution to (2.9). Furthermore, it holds

RB = O

(

B3−n(ln(H))−1H−(3−n)
)

as H ↓ 0.
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The correction RB depends, locally in H, continuously differentiably on B > 0. Additionally,
the boundary condition

∂H∂BψB = − 2
9B (ln(H))−

4
3H−1(1 + o(1)) as H → ∞ (4.3)

holds true. Furthermore, there exists a B = BCG > 0 such that the unique solution ψ = ψCG of
(2.8) constructed in [10] or Theorem A.1 in Appendix A is the same as ψB.

Proof. See [28, Proposition 3.1] for the statement and [28, §4-5] for its proof. �

4.2. Matching and transversality. This part mainly follows the reasoning in [28, §3.3] with
the difference of deriving continuous differentiability in k > 0. Our goal is to study the solution

manifolds constructed in Propositions 4.1 and 4.2 in three-dimensional phase space
(

H,ψ, dψ
dH

)

which intersect in the unique solution curve
(

H,ψCG,
dψCG
dH

)

.

Lemma 4.3. Take n ∈ (0, 3), k > 0, and let b = bCG ∈ R and B = BCG > 0 such that
ψb = ψB = ψCG. Then ψb and ψB are for every H > 0 continuously differentiable in b around

b = bCG and in B around B = BCG, respectively, and η ∈
{

∂bψb|b=bCG
, ∂BψB|B=BCG

}

is twice

continuously differentiable in H > 0 with

d2η
dH2 − 1

3(H
2 +Hn−1)−1ψ

− 3
2

CGη = 0 for H > 0. (4.4)

Proof. Because of (4.1a) and (4.2) of Proposition 4.1, the fact that ψbCG
= ψCG is a global

solution (i.e., a solution of (2.8a) for all H > 0), and continuously differentiable dependence
on the data for H taken from any compact subset of (0,∞) using standard ODE theory, it
follows that η = ∂bψb|b=bCG

is twice continuously differentiable in H > 0 and by differentiating

(2.8a) meets the ordinary differential equation (4.4). Likewise, using Proposition 4.2, the fact
that ψBCG

= ψCG is a global solution to (2.8a), and standard ODE theory to obtain continuous
differentiability on the parameter B > 0 for all H > 0, taking η = ∂BψB |B=BCG

, we recognize

that η is twice continuously differentiable and by differentiating (2.8a) that (4.4) is satisfied,
too. �

We use the following uniqueness result for solutions to (4.4).

Lemma 4.4 (uniqueness of the linearized problem, cf. [28]). Suppose that n ∈ (0, 3), k > 0,
and that η is twice continuously differentiable in H > 0 and right-continous at H = 0 such that
(4.4),

η = 0 at H = 0, (4.5a)

and

dη
dH → 0 as H → ∞ (4.5b)

are satisfied. Then η = 0 for all H ≥ 0.

Proof. The proof uses the convexity of η2 (which easily follows from (4.4)) and is contained
in [28, Lemma 3.3]. �

The following corollary implies that the solution manifolds
(

H,ψb,
dψb

dH

)

and
(

H,ψB ,
dψB

dH

)

(parametrized by (b,H) and (B,H), and constructed in Propositions 4.1 and 4.2, respectively)

intersect transversally in the solution curve
(

H,ψCG,
dψCG
dH

)

constructed in [10].

Corollary 4.5. Suppose n ∈ (0, 3), k > 0, and choose b = bCG ∈ R and B = BCG > 0 such
that ψb = ψB = ψCG. Then the vectors

(

∂bψb|b=bCG
, ∂H∂bψb|b=bCG

)

and
(

∂BψB |B=BCG
, ∂H∂BψB|B=BCG

)

are linearly independent for all H > 0.
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Proof. Because of Propositions 4.1 and 4.2, b = bCG ∈ R and B = BCG > 0 such that ψb =

ψB = ψCG exist. By Lemma 4.3, η ∈
{

∂bψb|b=bCG
, ∂BψB|B=BCG

}

is a solution to (4.4) for

which by standard theory of ODEs existence and uniqueness of classical solutions for given

data
(

η, dη
dH

)

at one H > 0 holds true. This implies that
(

∂bψb|b=bCG
, ∂H∂bψb|b=bCG

)

and
(

∂BψB |B=BCG
, ∂H∂BψB |B=BCG

)

are linearly independent for all H > 0 if they are linearly

independent for one H > 0, which in turn is equivalent to ∂bψb|b=bCG
and ∂BψB |B=BCG

being
linearly independent as functions of H > 0. The latter will now be proved in the following way:
Suppose that

α0 ∂bψb|b=bCG
+ α∞ ∂BψB |B=BCG

= 0 for all H > 0, (4.6)

where α0, α∞ ∈ R are constants. From (4.1b) of Proposition 4.1 we see that ∂bψb|b=bCG
= 0

at H = 0, ∂bψb|b=bCG
is non-trivial, and from Lemma 4.3 that ∂bψb|b=bCG

is a solution to the

linear ODE (4.4). By Lemma 4.4 it follows that ∂H∂bψb|b=bCG
→ 0 as H → ∞ cannot hold.

On the other hand, (4.3) of Proposition 4.1 implies ∂H∂BψB|B=BCG
→ 0 as H → ∞, so that

(4.6) yields α0 = 0. Since (4.3) of Proposition 4.2 also implies that ∂BψB |B=BCG
is nontrivial,

we must have α∞ = 0. �

We are now in position to prove our main result.

Proof of Theorem 2.1. By Propositions 4.1 and 4.2, there exist unique b = bCG ∈ R and B =
BCG > 0 such that ψb = ψB = ψCG. Writing R∞ := RBCG

and v := bζ + w|ξ=bζ , this implies
all statements of Theorem 2.1 except for the continuously differentiable dependence of B and
R∞ on k > 0. In order to prove the latter, define f := (ψb − ψB , ∂Hψb − ∂HψB). Then it holds
f = 0 for all H > 0 if b = bCG and B = BCG. Hence, in particular f = ∂Hf = 0 for all H > 0
if b = bCG and B = BCG. Corollary 4.5 implies

det

(

∂bf ∂Bf
∂b∂Hf ∂B∂Hf

)

= det

(

∂bψb −∂BψB
∂b∂Hψb −∂B∂HψB

)

6= 0 for all H > 0 (4.7)

if b = bCG and B = BCG. Fix a H > 0, then f and ∂Hf are functions of b ∈ R, B > 0, and k > 0
only and by Propositions 4.1 and 4.2 and standard theory of ODEs in the bulk, are smooth in
b ∈ R, continuously differentiable in B > 0, and smooth in k > 0. Because of (4.7) we infer
with help of the implicit-function theorem that BCG and bCG are continuously differentiable
functions of k > 0. Since RB is a continuously differentiable function of B > 0, by the chain
rule R∞ = RBCG

is a continuously differentiable function of k > 0. �

Appendix A. Existence and uniqueness of traveling waves

In this appendix, we adapt the existence and uniqueness proof of classical solutions to (2.3)
in [10, Theorem 1.1, §3] carried out for quadratic mobilities n = 2 to prove existence and
uniqueness of classical solutions to (2.8) for all n ∈ (0, 3). Though there are no significantly new
insights, we present the proof for the sake of providing a complete presentation and since in our
chosen set of coordinates the proof turns out to be simpler. The proof of uniqueness follows the
reasoning of [28, Lemma 3.3], which is Lemma 4.4 in this note.

Theorem A.1 (cf. [10] for n = 2). Suppose n ∈ (0, 3) and k > 0. Then there exists a unique
classical solution ψ = ψCG to (2.8), that is, ψ > 0 for H > 0, and ψ is twice continuously
differentiable in H > 0 and right-continuous at H = 0.

Proof. We first prove uniqueness. Suppose that ψ1 and ψ2 are two classical solutions to (2.8).
We set φ := ψ1 − ψ2 and have

d2

dH2φ
2 = 2

(

dφ
dH

)2
+ 2φ d2φ

dH2 for H > 0.
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With help of (2.8a) it follows

φ d2φ
dH2 = −2

3φ
(

H2 +Hn−1
)−1

(

ψ
− 1

2
1 − ψ

− 1
2

2

)

= 2
3

(

H2 +Hn−1
)−1

ψ
− 1

2
1 ψ

− 1
2

2

(

ψ
1
2
1 + ψ

1
2
2

)−1

φ2 ≥ 0 for H > 0.

Hence, d2

dH2φ
2 ≥ 0 for H > 0. Since φ = 0 at H = 0 by (2.8b) and φ2 ≥ 0, necessarily d

dHφ
2 ≥ 0

for H > 0 small enough. Because of d2

dH2φ
2 ≥ 0 for H > 0 we need to have d

dHφ
2 ≥ 0 for all

H > 0. This implies with help of (2.8a)

d
dH

(

dφ
dH

)2
= 2 dφ

dH
d2φ
dH2 = −4

3
dφ
dH

(

H2 +Hn−1
)−1

(

ψ
− 1

2
1 − ψ

− 1
2

2

)

= 2
3

(

H2 +Hn−1
)−1

ψ
− 1

2
1 ψ

− 1
2

2

(

ψ
1
2
1 + ψ

1
2
2

)−1
d
dHφ

2 ≥ 0 for H > 0.

Since
(

dφ
dH

)2
≥ 0 and

(

dφ
dH

)2
→ 0 as H → ∞ by (2.8c), we obtain dφ

dH = 0 for all H > 0, which

together with φ = 0 at H = 0 by (2.8b) implies φ = ψ1 − ψ2 = 0 for all H ≥ 0.

In order to prove existence, first consider the approximating problems

d2ψ
dH2 + 2

3

(

H2 +Hn−1
)−1

ψ− 1
2 = 0 for ε < H < ε−1, (A.1a)

ψ = k2 at H = ε, (A.1b)

dψ
dH = 0 at H = ε−1, (A.1c)

where 1 > ε > 0. Integrating (A.1a) twice using the boundary conditions (A.1b) and (A.1c), we
obtain the equivalent fixed-point problem

ψ = S [ψ] := k2 + 2
3

∫ H

ε

∫ ε−1

H1

(

H2
2 +Hn−1

2

)−1 (
ψ|H=H2

)− 1
2 dH2 dH1 for ε ≤ H ≤ ε−1. (A.2)

Suppose that ψ is continuous for ε ≤ H ≤ ε−1 with ψ ≥ k2. Then we obtain with help of (A.2)
that

0 ≤ d
dH S [ψ] ≤ 2

3k

(

χ

∫ 1

H

H̃1−n dH̃ +

∫ ε−1

1
H̃−2 dH̃

)

≤

{

2
3k

(

χ1−H2−n

2−n + 1
)

if n ∈ (0, 3) \ {2}

2
3k (−χ lnH + 1) if n = 2

≤











2
3k

3−n
2−n if 0 < n < 2

2
3k (− ln ε+ 1) if n = 2
2
3k

ε2−n

n−2 if 2 < n < 3

for ε ≤ H ≤ ε−1, (A.3)

where χ = 1 if 0 ≤ H ≤ 1 and χ = 0 else, and

k2 ≤ S [ψ] ≤







k2 + 2
3k

∫H

ε

(

χ|H=H̃
1−H̃2−n

2−n + 1
)

dH̃ if n ∈ (0, 3) \ {2}

k2 + 2
3k

∫H

ε

(

− χ|H=H̃ ln H̃ + 1
)

dH̃ if n = 2

≤

{

k2 + 2
3k

(

ϑ
2−n − ϑ3−n

(3−n)(2−n) +H
)

if n ∈ (0, 3) \ {2}

k2 + 2
3k (ϑ− ϑ lnϑ+H) if n = 2

≤ Kε :=















k2 + 2
3k

(

1
2−n + ε−1

)

for 0 < n < 2

k2 + 2
3k

(

1 + ε−1
)

for n = 2

k2 + 2
3k

(

1
(3−n)(n−2) + ε−1

)

for 2 < n < 3

(A.4)
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for ε ≤ H ≤ ε−1, where ϑ = H if 0 ≤ H ≤ 1 and ϑ = 1 if H > 1. Denote by Ψε the set of
all on ε ≤ H ≤ ε−1 continuous ψ such that k2 ≤ ψ ≤ Kε. Then (A.4) implies that S maps
Ψε into itself. By (A.3) the image {S [ψ] : ψ ∈ Ψε} is equi-continous and therefore compact due
to the Arzelà-Ascoli theorem. Hence, Schauder’s fixed-point theorem yields existence of an in
ε ≤ H ≤ ε−1 continuous solution ψ = ψε to (A.2) which is thus twice continuously differentiable
for ε ≤ H ≤ ε−1 and solves (A.1).

As a last step, we pass to the limit ε ↓ 0 for the approximating solutions (ψε)1>ε>0, where we
continuously extend according to

ψε :=

{

ψε|H=ε for 0 ≤ H < ε.

ψε|H=ε−1 for H > ε−1.
(A.5)

Since ψε = S [ψε], it holds by the first and second line of (A.4) for any R > 0

k2 ≤ ψε ≤

{

k2 + 2
3k

(

ϑ
2−n − ϑ3−n

(3−n)(2−n) +H
)

if n ∈ (0, 3) \ {2}

k2 + 2
3k (ϑ− ϑ lnϑ+H) if n = 2

≤















k2 + 2
3k

(

1
2−n +R

)

for 0 < n < 2

k2 + 2
3k (1 +R) for n = 2

k2 + 2
3k

(

1
(3−n)(n−2) +R

)

for 2 < n < 3

for ε−1 ≤ H ≤ R, (A.6)

which in view of (A.5) implies that (ψε)1>ε>0 is bounded on 0 ≤ H ≤ R for any R > 0.

Furthermore, (A.3) implies that also
(

dψε

dH

)

ε0>ε>0
is almost everywhere bounded on R0 ≤ H ≤

R1 with arbitrary 0 < R0 < R1 < ∞ if 0 < ε0 < min
{

R0, R
−1
1

}

, so that in particular
(ψε)ε0>ε>0 is equi-continuous on R0 ≤ H ≤ R1. Hence, additionally taking (A.1a) and (A.6) into

account, also
(

d2ψε

dH2

)

ε0>ε>0
is bounded and equi-continuous on R0 ≤ H ≤ R1 with arbitrary

0 < R0 < R1 < ∞ if 0 < ε0 < min
{

R0, R
−1
1

}

. The Arzelà-Ascoli theorem and a diagonal-
sequence argument imply that there exists a sub-sequence of (ψε)1>ε>0, which we do not re-label,

and a limiting function ψ depending on 0 < H <∞ such that
(

djψε

dHj

)

1>ε>0
converges uniformly

to djψ
dHj as ε ↓ 0 on R0 ≤ H ≤ R1 for all 0 < R0 < R1 < ∞ and j ∈ {0, 1, 2}. In view of (A.1a)

in particular (2.8a) is satisfied. Equation (A.5) and the first line of (A.6) imply that ψ can be
continuously extended to 0 ≤ H < ∞ with ψ = k2 at H = 0, thus verifying (2.8b). For H > 0
and ε ≥ H−1 we obtain from (A.2) that

0 ≤ dψε

dH ≤ 2
3k

∫ ε−1

H

H̃−2 dH̃ ≤ 2
3kH

−1,

which implies that dψ
dH → 0 as H → ∞, thus proving (2.8c). �
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