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Improved versions of some Furstenberg type slicing Theorems for

self-affine carpets

Amir Algom and Meng Wu

Abstract

Let F be a Bedford-McMullen carpet defined by independent integer exponents. We prove
that for every line ℓ ⊆ R2 not parallel to the major axes,

dimH(ℓ ∩ F ) ≤ max

{

0,
dimH F

dim∗ F
· (dim∗ F − 1)

}

and

dimP (ℓ ∩ F ) ≤ max

{

0,
dimP F

dim∗ F
· (dim∗ F − 1)

}

where dim∗ is Furstenberg’s star dimension (maximal dimension of microsets). This improves
the state of art results on Furstenberg type slicing Theorems for affine invariant carpets.

1 Introduction

1.1 Background and main results

Let n ≥ 2 be an integer and consider the n-fold map of the unit interval Tn : [0, 1] → [0, 1)

Tn(x) = n · x mod 1. (1)

We say that integers m,n ≥ 2 are independent, and write m 6∼ n, if logm
logn

/∈ Q. In the 1960’s
Furstenberg formulated several Conjectures aiming to capture the idea that if m 6∼ n then
expansions in base n and in base m should have no common structure. In 1967, Furstenberg
[11] proved a landmark result of this form: If a closed subset of the torus T := R/Z is invariant
under both Tm and Tn then, assuming m 6∼ n, it is either finite or the entire torus. The measure
theoretic analogue of this result, known as the ×2,×3 Conjecture, remains open to this day: if µ
is a Borel probability measure on T, invariant under Tm and Tn, then it is a convex combination
of the Lebesgue measure and a purely atomic measure.

Some of the aforementioned conjectures that Furstenberg proposed are more geometric in
nature. One of them is known as the Slicing Conjecture: For (u, t) ∈ R× R let ℓu,t denote the
planar line with slope u that intersects the y-axis at t (notice that we exclude from notation
lines that are parallel to the y-axis). For a set A ⊆ Rd we denote its Hausdorff dimension by
dimH A.

Conjecture 1.1. [12] Let ∅ 6= X1, X2 ⊆ [0, 1] be closed sets that are invariant under Tm and
Tn, respectively. If m 6∼ n then for all u 6= 0 and t ∈ R,

dimH (X1 ×X2) ∩ ℓu,t ≤ max{0, dimH X1 + dimH X2 − 1}. (2)

∗M.W. is supported by the Academy of Finland, project grant No. 318217.
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This Conjecture is a geometric manifestation of the idea “if m 6∼ n then expansions in base
n and in base m have no common structure” in the sense that a slice of dimension larger than
expected can be seen as some shared structure between X1 and X2. To explain why the term
on the right hand side of (2) is the expected bound, we recall the classical Marstrand slicing
Theorem: For any set X ⊆ R2 and any fixed slope u,

dimH X ∩ ℓu,t ≤ max{0, dimH X − 1} for Lebesgue almost every t, (3)

and this fails for any smaller value on the right hand side of (3). It is well known that for sets
X1 and X2 as in Conjecture 1.1

dimH X1 ×X2 = dimH X1 + dimH X2.

So, what Furstenberg conjectured is that for X = X1 × X2 as in Conjecture 1.1, Marstrand’s
Theorem holds for all lines ℓu,t such that u 6= 0, that is, lines not parallel to the major axes.

Some progress towards Conjecture 1.1 was made by Furstenberg himself in [12], Wolff [21],
and later by Feng, Huang and Rao [8]. In 2016 the Conjecture was proved simultaneously and
independently by Shmerkin [19] and Wu [22]. In the case when dimH X1 + dimH X2 ≤ 1, Yu
[23] has simplified Wu’s arguments and obtained some quantitative improvement to (2). Austin
[3] recently gave a new short proof of Conjecture 1.1.

The phenomenon predicted by Furstenberg was later shown to hold, in an appropriate sense,
in a class of sets that strictly includes certain product sets as in Conjecture 1.1, called Bedford-
McMullen carpets. These carpets are defined as follows: let m,n be integers greater than one.
Let

∅ 6= D ⊆ {0, ...,m− 1} × {0, ..., n− 1}

and define

F =

{

(
∞
∑

k=1

xk

mk
,

∞
∑

k=1

yk
nk

) : (xk, yk) ∈ D

}

.

The set F is then called a Bedford-McMullen carpet with defining exponents m,n, and al-
lowed digit set D. They are named after Bedford [5] and McMullen [18] who calculated their
dimensions.

To recall the latest results about slicing Theorems for Bedford-McMullen carpets we need
the notion1 of star-dimension: For a set A ⊆ [0, 1]d we define

dim∗ A := sup{dimH M : M is a microset of A}

where microsets of A are limits in the Hausdorff metric on subsets of [−1, 1]2 of “blow-up” of
increasingly small balls about points in A (see e.g. [1, Section 2.2] for more details). This notion
was introduced and studied by Furstenberg in [13]. Mackay [16] gave a closed combinatorial
formula for dim∗ F for any Bedford-McMullen carpet F in terms of m,n and D.

Returning to slicing theorems, Algom [1, Theorem 1.2] proved that for any Bedford-McMullen
carpet F with independent exponents m 6∼ n

dim∗ F ∩ ℓu,t ≤ max{dim∗ F − 1, 0}, for all (u, t) ∈ R2 such that u 6= 0. (4)

We remark that very recently Bárány, Käenmäki, and Yu [4], obtained similar results about
slices through some non-carpet planar self-affine sets. Now, it is known [6, Chapter 4] that
for any Bedford-McMullen carpet F , writing dimB F for its box dimension and dimP F for its
packing dimension,

dimH F ≤ dimP F = dimB F ≤ dim∗ F (5)

and that these inequalities are strict unless F is Ahlfors regular. So, for Ahlfors regular carpets
the results of [1] are optimal for all notions of dimension previously discussed. However, in some

1This is the same notion as Assouad dimension (see e.g. [9]), but for consistency with previous papers on the
subject we work here with ∗-dimension.
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sense “most” Bedford-McMullen carpets are not Ahlfors regular [6, Chapter 4]. It is thus the
main purpose of this paper to improve (4) for both the Hausdorff and the packing dimension of
slices in the non-Ahlfors regular setting, and to relate them to the corresponding dimensions of
the underlying carpet. Here is our main result:

Theorem 1.2. Let F be a Bedford-McMullen carpet with exponents (m,n). If m 6∼ n then for
all u 6= 0 and t ∈ R,

1. dimH(ℓ ∩ F ) ≤ max
{

0, dimH F
dim∗ F

· (dim∗ F − 1)
}

.

2. dimP (ℓ ∩ F ) ≤ max
{

0, dimP F
dim∗ F

· (dim∗ F − 1)
}

.

Some remarks are in order: First, since for non Ahlfors regular carpets the inequalities in
(5) become strict, Theorem 1.2 does indeed improve (4). Secondly, it is a natural question (see
e.g. [10, Question 8.3]) if Theorem 1.2 may be upgraded to a Marstrand-like result of the form

dimH(ℓu,t ∩ F ) ≤ max{0, dimH F − 1}, for all (u, t) ∈ R2 such that u 6= 0.

Our methods currently fall short of proving such a strong statement. This will be explained in
the next Section, where we outline the proof of Theorem 1.2.

1.2 Sketch of the proof of Theorem 1.2

Fix a Bedford-McMullen carpet F with digit set D and exponents m 6∼ n. We always assume,
without loss of generality, that m > n. This implies that θ := logn

logm
6∈ Q is in (0, 1). Let ℓ0 ⊆ R2

be an affine line with slope mu0 where u0 ∈ [0, 1), which may be assumed without any loss of
generality. We want to bound dimH F ∩ ℓ0 - the bound for dimP F ∩ ℓ0 is obtained in a similar
manner.

For every u ∈ T := R/Z, we define a map Φu : [0, 1]2 → [0, 1]2 via

Φu(x, y) =

{

(Tm(x), Tn(y)) if u ∈ [1− θ, 1)

(x, Tn(y)) if u ∈ [0, 1− θ).

Let Rθ : T → T denote the translation by θ map

Rθ(t) = t+ θ mod 1.

For a measure µ on [0, 1]2, a point z = (x, y) ∈ supp(µ), and u ∈ T we define a “magnifying”
map via

M(µ, (x, y), u) =

{

(µDm(x)×Dn(y),Φu(z), Rθ(u)) if u ∈ [1− θ, 1)

(µ[0,1]×Dn(y),Φu(z), Rθ(u)) if u ∈ [0, 1− θ)

where Dp(w) is the unique cell of the partition of R

Dp =

{[

i

p
,
i+ 1

p

)

, i ∈ Z

}

that contains w, and the measure µDm(x)×Dn(y) is the push-forward via Tm×Tn of the conditional
measure of µ on Dm(x) ×Dn(y). The measure µ[0,1]×Dn(y) is defined similarly.

By Frostman’s Lemma we may find a Borel probability measure µ0 supported on ℓ0 ∩ F
such that dimµ0 = dimH ℓ0 ∩F − o(1) (see Section 2.1 for a discussion on dimension theory for
measures). Roughly speaking, we pick a µ0 typical point (x0, y0) and find a sequence Nj such
that:

1

Nj

Nj−1
∑

k=0

δMk(µ0,(x0,y0),u0)

converges to an M -invariant distribution Q, such that for Q a.e.-ω the measure µω is supported
on a product set Xω (which is a microset of F ), and:

3



(i) For every ω we have dimH Xω ≤ dim∗ F .

(ii) dimµ0 ≤
∫

dimµω dQ(ω).

(iii)
∫

dimH Xω dQ(ω) ≤ dimH F .

(iv) Let Q =
∫

Qξdτ(ξ) denote the ergodic decomposition of Q. For τ -a.e. ξ, if Qξ is supported
on measures with strictly positive dimension, then for Qξ a.e. ω we have

dimµω ≤ dimH Xω − 1

Property (i) is an easy consequence of the fact that Xω is a microset of F . Property (ii) is a
general feature of CP distributions (see Section 2.5) - and Q is such a distribution. Properties
(iii)-(iv) are the main innovations of this paper: For Property (iii), we first note that it is not
a trivial consequence of our construction, since in general Xω is not a subset of F . Thus, for
property (iii) we rely, among other things, on a concise choice of the sequence Nj and general
properties of entropy. Part (iv) relies on a geometric consequence of Sinai’s factor Theorem
proved by Wu [22, Theorem 6.1]. However, new ideas are required since Wu’s original argument
for deducing (iv) from this result as in [22] does not apply in our setting, as the measures arising
from M -orbits are not all supported on the same set Xω. We also remark that in practice
we will prove our required bounds by studying the entropy of certain measures on Xω rather
than considering Xω itself. This can be seen as another reason why our approach gives more
refined results than (4): In [1] Algom worked directly with the microset Xω that usually satisfies
Π2(Xω) = Π2(F ) where Π2(x, y) = y, which resulted with the loss of some information.

Once a distribution Q satisfying the properties above has been produced, an elementary
optimization argument yields the inequality as in Theorem 1.2 part (1).

Finally, we remark that if for Q a.e.-ω the measure µω has strictly positive dimension, then
(i)-(iv) above would yield the strong Marstrand-type inequality

dimH F ∩ ℓ0 ≤ max{0, dimH F − 1}

We do not know, however, if it is possible to construct such a distribution.
Organization In Section 2 we survey some tools we shall use from dimension theory, entropy,
and the theory of CP distributions. We proceed to prove Theorem 1.2 part (2) in Section 3 and
then, using a similar scheme, Theorem 1.2 part (1) in Section 4.
Notation We use the notation oǫ(1) to indicate a quantity going to 0 as the positive ǫ → 0,
and similarly ol(1) stands for a quantity going to 0 as the integer l → ∞.
Acknowledgements The authors are grateful to Mike Hochman and Jonathan Fraser for their
remarks on previous versions of this manuscript.

2 Preliminaries

2.1 Hausdorff and packing dimensions of sets and measures

Recall that for a set A in a compact metric space X , we denote its Hausdorff dimension by
dimH A and its packing dimension by dimP A. For an exposition on these notions see Mattila’s
book [17]. Also, let P(X) denote the collection of all Borel probability measures on X .

Next, let µ ∈ P(X). For every x ∈ supp(µ) we define the lower pointwise dimension of µ at
x as

dim(µ, x) = lim inf
r→0

logµ(B(x, r))

log r

where B(x, r) denotes the closed ball of radius r about x. We also define the upper pointwise
dimension of µ at x as

Dim(µ, x) = lim sup
r→0

logµ(B(x, r))

log r
.

The measure µ is called exact dimensional if the lower and upper pointwise dimensions of µ
coincide and it is constant almost surely. In this case we denote this quantity by dimµ.
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Frostman’s Lemma [7, Chapter 10] allows one to find measures on a set A that approximate
its dimension:

dimH A = sup{s : ∃µ ∈ P(A) such that dim(µ, x) ≥ s almost surely };

dimP A = sup{s : ∃µ ∈ P(A) such that Dim(µ, x) ≥ s almost surely }.

Finally, let A be a bounded set. For every r > 0 let Nr(A) denote the minimal number of
sets of diameter less that r required to cover the set A. Then

dimB(A) = lim
r→0

Nr(A)

− log r

provided the limit exists. Otherwise, the upper box dimension dimB(A) is defined as the corre-
sponding lim sup.

2.2 Entropy, partitions, and approximate squares

Let X be a compact metric space, µ ∈ P(X), and let A denote a finite measurable partition of
X . Recall that the Shannon entropy of µ with respect to A is defined as

H(µ,A) = −
∑

A∈A

µ(A) · logµ(A)

with the convention 0 log 0 = 0. The following facts about Shannon entropy are standard:

Proposition 2.1. Let µ ∈ P(X) and let A be a finite measurable partition.

1. General upper bound: H(µ,A) ≤ log |{A ∈ A : A ∩ supp(µ) 6= ∅}|.

2. Entropy is concave: Suppose we have a disintegration of µ, given by µ =
∫

µωdQ(ω). Then

H(µ,A) ≥

∫

H(µω,A)dQ(ω).

3. The Gibbs inequality: Let n ∈ N and let (p1, ..., pn) and (q1, ..., qn) be two probability
vectors. Then

−
n
∑

i=1

pi log pi ≤ −
n
∑

i=1

pi log qi

with equality if and only if pi = qi.

Next, let m ≥ 2. For every integer p ≥ 0 let Dd
p denote the mp-adic partition of Rd, that is,

Dd
p =

{

d
∏

i=1

[

zi
mp

,
zi + 1

mp

)

: (z1, ..., zd) ∈ Zd

}

.

We shall omit the superscript d from our notation when its value is clear from context.
Also, given integers m > n, let θ := log n

logm
. Recall that Rθ : T → T is the group rotation

Rθ(u) = u+ θ mod 1. (6)

For every k ∈ N and u ∈ T we define the integer

R(k, u) := |{0 ≤ i ≤ k : Ri
θ(u) ∈ [1− θ, 1)}|. (7)

Now, for every u ∈ T we define a sequence of partitions of [0, 1]2, called approximate squares,
as follows: for every k ∈ N we let

Au
k := DmR(k,u) ×Dnk .

The following Lemma is standard:

5



Lemma 2.2. [1, Claim 4.2] There exists some C > 1 such that for every u ∈ T and every
z ∈ [0, 1]2:

1. [θ · k]− C ≤ R(k, u) ≤ [θ · k] + C.

2. For every z

C−1 1

nk
≤ diam (Au

k(x)) ≤ C
1

nk

where Au
k(z) is the atom of the partition Au

k that contains z.

2.3 Bedford-McMullen carpets

Recall the definition of a Bedford-McMullen carpet F with defining exponents m,n and allowed
digit set D from Section 1.1. We will always assume, without loss of generality, that m > n.
We remark that F is a self-affine set generated by an IFS consisting of maps whose linear parts
are diagonal matrices. Let Π2 : R2 → R denote the projection to the second coordinate, that is,
Π2(x, y) = y. For every j ∈ Π2(F ), let

Dj = {0 ≤ i ≤ m− 1 : (i, j) ∈ D}

and
a(j) := |Dj |. (8)

Recall that we have denoted

θ =
logn

logm
∈ (0, 1).

The following Theorem, due to Bedford and McMullen independently, describes the various
dimensions of F .

Theorem 2.3. [5, 18] Let F be a Bedford-McMullen carpet. Then:

1. dimH F =
log(

∑
j∈Π2(D) a(j)

θ)
logn

.

2. dimB F = dimP F = log |Π2(D)|
logn

+
log

|D|
|Π2(D)|

logm
. In particular, dimB F exists as a limit.

The following Lemma describes what happens as we zoom into F via the approximate squares
Au

k defined in Section 2.2. For (x, y) ∈ F , write

(x, y) =

(

∞
∑

k=1

xk

mk
,

∞
∑

k=1

yk
mk

)

, where (xk, yk) ∈ D

for the corresponding base m and base n expansions of x and y, respectively, that bare witness
to (x, y) ∈ F . Notice that these expansions may not be unique in general. In this case, if say
x has two such base m expansions, we choose the one that ends with 0’s (the lexicographically
larger one). Let Π1(x, y) = x denote the projection to the first coordinate.

Lemma 2.4. [2, Section 7] Let F be a Bedford-McMullen carpet and let (x, y) ∈ F . Writing

(x, y) =

(

∞
∑

k=1

xk

mk
,

∞
∑

k=1

yk
mk

)

, where (xk, yk) ∈ D,

we have, for every k ∈ N and u ∈ T, that the set

TR(k,u)
m ◦Π1 (A

u
k(x, y) ∩ F )

is contained in
{

∞
∑

i=1

bi
mi

: bi ∈ {0, ...,m− 1} and for 1 ≤ i ≤
(1 − θ)k

θ
− ok(C), bi ∈ Dyi+R(k,u)

}

where C and R(k, u) are as in Lemma 2.2.

Lemma 2.4 can also be recovered from the analysis of Käenmäki, Ojala, and Rossi [15].
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2.4 Dynamical systems

In this paper a measure preserving system is a quadruple (X,B, T, µ), where X is a compact
metric space, B is the Borel sigma algebra, and T : X → X is a measure preserving map: T
is Borel measurable and Tµ = µ. Since we always work with the Borel sigma-algebra, we shall
usually just write (X,T, µ). When the space X is clear from context we shall sometimes just
write (T, µ). We also recall that a dynamical system is ergodic if and only if the only invariant
sets are trivial. That is, if B ∈ B satisfies T−1(B) = B then µ(B) = 0 or µ(B) = 1.

A class of examples is given by symbolic dynamical systems: For n ∈ N at least 2, let
X = {0, ..., n − 1}N and T = σ be the shift map σ : [n]N → [n]N defined by σ(ω) = ξ where
ξ(k) = ω(k+1) for every k. We equip this space with the compatible compact metric d defined
by

d(ω, ξ) =

(

1

n

)min{k:ωk 6=ξk}

. (9)

We will have occasion to use the ergodic decomposition Theorem: Let (X,T, µ) be a dynam-
ical system. Then there is a map X → P(X), denoted by µ 7→ µx, such that:

1. The map x 7→ µx is measurable with respect to the sub σ-algebra I of T invariant sets.

2. µ =
∫

µxdµ(x).

3. For µ almost every x, µx is T invariant and ergodic. The measure µx is called the ergodic
component of x.

Recall that if µ ∈ P(X) is a T invariant measure we may define its metric entropy with
respect to T , a quantity that we shall denote by h(µ, T ). As there is an abundance of excellent
texts on entropy theory (e.g. [20]), we omit a discussion on entropy here. We do recall that
entropy is affine in the sense that if µ, ν, η are T invariant measures such that for some p ∈ (0, 1)
we have p · ν + (1 − p) · η = µ then

h(µ, T ) = p · h(ν, T ) + (1− p)h(η, T ).

Finally, we will consider dynamical systems of the form ([0, 1], µ, Tn) (recall (1)). In this
case we have the following useful result, which is an immediate consequence of the Shannon-
McMillan-Breiman theorem and Billingsley’s lemma:

Theorem 2.5. Let µ ∈ P([0, 1]) be a Tn invariant and ergodic measure. Then µ is exact
dimensional and

dimµ =
h(µ, Tn)

log n
.

2.5 CP distributions with respect to approximate squares

The theory of CP distributions that we discuss in this section originated implicitly with Fursten-
berg in [12]. It was then reintroduced by Furstenberg in [13], and has since been used by many
authors, notably by Hochman and Shmerkin in [14]. In particular, CP distributions played a
crucial role in both author’s works [1, 22] about slicing Theorems. Here we will only discuss
a special case of this machinery, using the approximate squares Au

k(x) from Section 2.2 as our
partitions.

As is standard in this context, for a compact metric space X the elements of P(X) are
called measures, and the elements of P(P(X)), measures on the space of measures, are called
distributions.

Fix integers m > n > 1 and recall that θ := logn
logm

. Recall the definition of the approximate

squares Au
k from Section 2.2. For µ ∈ P([0, 1]2), u ∈ T, k ∈ N, and x ∈ supp(µ), recalling (7),

let

µAu
k (x) =

(

TR(k,u)
m × T k

n

)(

µAu
k
(x)

)

, where µAu
k
(x)(B) =

µ(Au
k(x) ∩B)

µ(Au
k(x))

.

7



That is, µAu
k (x) is the push-forward of the conditional measure of µ on Au

k(x) via the map

TR(k,u)
m × T k

n .

Now, for every u ∈ T := R/Z, we define a map Φu : [0, 1]2 → [0, 1]2, by

Φu(x, y) =

{

(Tm(x), Tn(y)) if u ∈ [1− θ, 1)

(x, Tn(y)) if u ∈ [0, 1− θ).
(10)

We also define
Ω = {(µ, z) : µ ∈ P([0, 1]2), z ∈ supp(µ)}. (11)

Finally, we define a “magnification” map M : Ω× T → Ω× T via

M(µ, (x, y), u) =

{

(µDm(x)×Dn(y), Φu(x, y), Rθ(u)) if u ∈ [1 − θ, 1)

(µ[0,1]×Dn(y), Φu(x, y), Rθ(u)) if u ∈ [0, 1− θ).

Recall that Rθ is the rotation by θ map (see (6)). Notice that for every k ∈ N and every
(µ, z, u) ∈ Ω× T, the first coordinate of Mk(µ, z, u) is exactly µAu

k (z).

Definition 2.6. A CP distribution Q with respect to the partition into approximate squares is
a distribution Q ∈ P(Ω× T) such that:

1. Q is M invariant.

2. The marginal distribution Q1,2 of Q on the first two coordinates (µ, x) of Ω is given by
choosing first µ according to Q1 (the marginal of Q on P([0, 1]2)) and then choosing x
according to µ.

An ergodic CP distribution is a CP distribution Q that is M -ergodic.

Note that a distribution Q ∈ P(Ω × T) is a CP-distribution in the sense of the above
definition if and only if its marginal Q1,2 is a CP-distribution in the sense of [13, 14]. We shall
sometimes abuse notation by referring to Q1, the marginal of Q on P([0, 1]2), as Q. In the
following Theorem we group a few facts about CP distributions. The first three were proved
by Furstenberg [13]. The last one can be found in [22, Proposition 3.7, Lemma 7.3]. For a CP
distribution Q we define its dimension by

dimQ :=

∫

dimµ dQ(µ, x, u).

Theorem 2.7. [13, 22] The following statements hold true:

1. The ergodic components of a CP distribution are, almost surely, themselves ergodic CP
distributions.

2. Let Q be an ergodic CP distribution. Then Q almost every measure µ is exact dimensional,
and dimµ = dimQ.

3. Let Q be a CP distribution. Then Q2 =
∫

µ dQ(µ, x, u), where Q2 is the marginal of Q on
[0, 1]2 (its second coordinate).

4. Let Q be an ergodic CP distribution. For every ǫ > 0 there exists some r0 = r0(ǫ) > 0
such that:

For every r < r0, u ∈ T, k ∈ N, and l ∈ N large enough, we have for Q almost every
(µ, z, u)

inf
y∈R2

H(µAu
k (z)|R2\B(y,r),Dnl) ≥ H(µAu

k(z),Dnl)− oǫ(1)·l · logn = l · logn · (dimµ− oǫ(1)).

Finally, we shall require a Theorem of Hochman and Shmerkin from [14]. Though it is not
stated this way in [14], it nonetheless follows directly from their local entropy averages machinery
[14, Section 4.2], and their discussion in [14, Section 7.5]:
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Theorem 2.8. [14] Let µ ∈ P([0, 1]2) be a measure such that for all k ∈ N and u ∈ T,

µ(∂A) = 0 for every A ∈ Au
k .

(1) Suppose that Dim(µ, x) ≥ s for µ-a.e. x. Then for µ-a.e. x and every u ∈ T there exists
a subsequence Nj such that

1

Nj

Nj−1
∑

k=0

δMk(µ,x,u) → Q

where Q is a CP distribution with dimQ ≥ s.

(2) Suppose that dim(µ, x) ≥ s for µ-a.e. x. Then for µ-a.e. x, for every u ∈ T and every
subsequence Nj, there is a further subsequence Nj′ such that

1

Nj′

Nj′−1
∑

k=0

δMk(µ,x,u) → Q

where Q is a CP distribution with dimQ ≥ s.

Remark 2.9. (1) Notice that the difference between (1) and (2) in Theorem 2.8 is that in part
(1) we have to follow a specific subsequence to get Q, whereas in part (2) every subsequence
will have a further subsequence that will yield such a distribution Q.

(2) To see that the distributions Q as in Theorem 2.8 are M -invariant, note that their marginal
on the u coordinate must be the Lebesgue measure on [0, 1], so M acts continuously on their
support.

3 On the proof of Theorem 1.2 part (2)

Let F be a Bedford-McMullen carpet with exponents m > n and digits D such that m 6∼ n.
Write θ := log n

logm
. Let ℓ0 be a line not parallel to the major axes. Then the slope of ℓ0 can

be written as C ·mu0 6= 0 for certain u0 ∈ [0, 1) and some C 6= 0. We assume without loss of
generality that C = 1.

From this point forward We work in T and T2, so that the maps Tm, Tn from (10) become
continuous. This means that we think of F and ℓ0∩F as subsets of T2 rather than [0, 1]2. Note
that since T2 and [0, 1]2 are locally bi-Lipschitz equivalent, the dimension of ℓ0 ∩ F as a subset
of T2 is equal to its dimension as a subset of [0, 1]2.

Let
γ0 := dimP ℓ0 ∩ F

and let γ < γ0. We will show that

γ ≤ max

{

0,
dimP F

dim∗ F
· (dim∗ F − 1)

}

.

It is clear that we may assume γ > 0.
By Frostman’s Lemma we may find a probability measure µ0 ∈ P(ℓ0 ∩ F ) such that

Dim(µ0, z) ≥ γ, for µ0 almost every z.

In particular, µ0 is continuous (has no atoms). By Theorem 2.8 part (1) there is a point
z0 ∈ ℓ0 ∩ F and a subsequence Nj such that

1

Nj

Nj−1
∑

k=0

δMk(µ0,z0,u0) → Q (12)

9



where Q is a CP distribution with
dimQ ≥ γ. (13)

Next, write

z0 = (x0, y0) =

(

∞
∑

k=1

xk

mk
,

∞
∑

k=1

yk
nk

)

, (xk, yk) ∈ D.

Notice that since µ0 is continuous, we may assume both x0, y0 /∈ Q, so that this representation
is unique. Now, let

ω0 = (y1, y2, ...) ∈ (Π2D)
N ⊆ {0, ...n− 1}N.

Then, by perhaps moving to a further subsequence, we assume that there are σ invariant mea-
sures ν, η, ρ ∈ P((Π2D)N) ⊆ P({0, ...n− 1}N) such that:

1

[Nj · θ]

[Nj ·θ]
∑

k=1

δσk(ω0) → ν, (14)

1

Nj − [Nj · θ]

Nj
∑

k=[Nj ·θ]+1

δσk(ω0) → η, (15)

1

Nj

Nj
∑

k=1

δσk(ω0) → ρ. (16)

Using (14), (15) and (16), it is readily checked that ρ = θ · ν + (1 − θ) · η.
The following Theorem is the key to the proof of Theorem 1.2 part (2). Recall the definition

of a(j) for j ∈ Π2(D) from (8).

Theorem 3.1. Let λ = Q({µ : dimµ > 0}). Then:

(1) γ ≤ λ · (dim∗ F − 1);

(2)

γ + λ ≤

∑

j∈Π2(D) ν([j]) log a(j)

logm
+

h(ρ, σ)

logn
,

where for j ∈ {0, ..., n− 1} we write [j] = {ω ∈ {0, ..., n− 1}N : ω1 = j};

(3) γ ≤ dimP F − λ.

Theorem 3.1 implies Theorem 1.2 part (2): Indeed, combining parts (1) and (3) we get

γ ≤ min{λ · (dim∗ F − 1), dimP F − λ}.

An elementary optimization argument shows that for each 0 ≤ λ ≤ 1, the right hand term of
the above inequality is always bounded by the following quantity

max

{

0,
dimP F

dim∗ F
· (dim∗ F − 1)

}

.

Hence we obtain the desired conclusion of Theorem 1.2 part (2).
We thus proceed to prove Theorem 3.1: First, we will establish parts (1) and (2). We will

then show that part (3) follows from part (2).
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3.1 On the proof of Theorem 3.1

3.1.1 Preliminaries

First, we extend the definition of the map M from Definition 2.6: For every u ∈ T define a map
σu : {0, ..., n− 1}N → {0, ..., n− 1}N via

σu(ω) =

{

σ(ω) if u ∈ [1− θ, 1)

ω if u ∈ [0, 1− θ).

Recall (11) for the definition of the space Ω. We define a new map

T : Ω× T× {0, ..., n− 1}N → Ω× T× {0, ..., n− 1}N

via
T (µ, z, u, ω) = (M(µ, z, u), σu(ω)) .

Recall that the sequence {Nj} was chosen such that (14), (15) and (16) hold. By perhaps
moving to a further subsequence of {Nj} and using the irrationality of θ, we may assume that

1

Nj

Nj−1
∑

k=0

δTk(µ0,z0,u0,ω0) → R, and R is T invariant. (17)

To see why we may assume R is T invariant, we recall Remark 2.9 part (2). Notice that by
(12), we have R1,2,3 = Q, where we recall that R1,2,3 denotes the marginal of R on the first 3
coordinates. Also, recall that for every k ∈ N and u ∈ T we write

R(k, u) := |{0 ≤ i ≤ k : Ri
θ(u) ∈ [1− θ, 1)}|

and by Lemma 2.2 there is some uniform constant C > 0 such that

[θ · k]− C ≤ R(k, u0) ≤ [θ · k] + C, ∀k ∈ N, u ∈ T. (18)

Next, recall that for j ∈ Π2(D) we defined

Dj = {i : (i, j) ∈ D}.

For ω ∈ (Π2D)N we denote

A(ω) =

{

∞
∑

k=1

bk
mk

: bk ∈ Dωk

}

. (19)

The following Lemma gives a description of R typical points.

Lemma 3.2. For R almost every (µ, z, u, ω) we have:

1. The measure µ is supported on a line with slope mu.

2. Π1 (supp(µ)) ⊆ A(ω).

Proof. Fix (µ, z, u, ω) ∈ supp(R). By (17), there exists a sequence kp such that

T kp(µ0, z0, u0, ω0) → (µ, z, u, ω)

By the definition of T the first coordinate of T kp(µ0, z0, u0, ω0) is µ
A

u0
kp

(z0)

0 , and the fourth
coordinate is σR(u0,kp)(ω0). So, applying Lemma 2.4 we have that

Π1

(

supp

(

µ
A

u0
kp

(z0)

0

))

11



is contained in
{

∞
∑

i=1

bi
mi

: bi ∈ Π2D, and for 1 ≤ i ≤
(1− θ)kp

θ
− okp

(C), bi ∈ DσR(k,u0)(ω0)(i)

}

where by σR(k,u0)(ω0)(i) we mean the i-th coordinate of σR(k,u0)(ω0), and C is the constant
from Lemma 2.2. Since σR(kp,u0)(ω0) → ω, taking p → ∞ yields part (2) of the Lemma.

Part (1) is a consequence of the fact that for every p ∈ N the measure µ
A

u0
kp

(z0)

0 is supported

on a line with slope mR
kp

θ
(u0), and since R

kp

θ (u0) → u.

We also have the following estimate. Recall that for r > 0, Nr(A) denotes the minimal
number of sets of diameter ≤ r required to cover the bounded set A.

Lemma 3.3. Let q ∈ N be large. Then

∫

logNm−q (A(ω))

q logm
dR(µ, z, u, ω) =

∑

j∈Π2(D) ν([j]) log a(j)

logm
+ oq(1).

Proof. First, notice that by definition of Aω (recall (19)), and since a(j) = |Dj | for all j ∈ Π2(D),

q
∏

k=1

a(ωk) ≤ Nm−q (A(ω)) ≤

q
∏

k=1

a(ωk) · 5

where the 5 factor arises from the possible presence of elements with multiple base m represen-
tation in A(ω). Therefore,

logNm−q (A(ω))

q logm
=

∑q
k=1 log a(ωk)

q logm
+ oq(1).

Then by (17) and the previous equation it suffices to show that

lim
j→∞

1

Nj

Nj
∑

k=1

∑q
i=1 log a(ωR(k,u0)+i)

q logm
=

∑

j∈Π2(D) ν([j]) log a(j)

logm
+ oq(1). (20)

To this end, we first notice that by the definition (14) of ν, we have

lim
j→∞

1

[θ ·Nj ]

[Nj·θ]
∑

k=1

log a(ωk)

logm
=

∑

j∈Π2(D) ν([j]) log a(j)

logm
. (21)

Also, assuming q ∈ N is large and p > q we have, by (18),

|{k ∈ N : R(k, u0) + 1 ≤ p ≤ R(k, u0) + q}| =
q

θ
(1 + oq(C))

and consequently,

Nj
∑

k=1

q
∑

i=1

log a(ωR(k,u0)+i) =
q

θ
(1 + oq(C))

[Nj ·θ]
∑

k=1

log a(ωk) + oNj
(1).

Dividing the latter equation by Nj · q · logm and taking j → ∞, we see via (21) that (20) holds
true. This implies the Lemma.

Finally, let Ξ : {0, ..., n− 1}N → T be the base n coding map

Ξ(ω) =

∞
∑

k=1

ωk

nk
.

Recall the definition of the measure ρ from (16).

12



Lemma 3.4. The measure Ξ(ρ) is Tn invariant and satisfies

Ξ(ρ) =

∫

Π2(µ) dR(µ, z, t, ω),

here Π2(x, y) = y is the coordinate projection in T2.

Proof. Recall from (16) that

1

Nj

Nj
∑

k=1

δσk(ω0) → ρ.

Also, Ξ is a factor map in the sense that Ξ ◦ σ = Tn ◦Ξ. So, since Ξ is a continuous factor map,
applying it to both sides of this equation yields

1

Nj

Nj
∑

k=1

δTk
n (y0) → Ξ(ρ).

We also have

1

Nj

Nj−1
∑

k=0

δTk(µ0,z0,u0,ω0) → R.

Combining the two last displayed equations, we see that Ξ(ρ) equals the marginal of R on the
second coordinate y of its projection to T2 with coordinates (x, y). Now, by Theorem 2.7, (x, y)
is distributed according to

∫

µ dR(µ, z, t, ω).

So, the marginal of R on the y coordinate is given by
∫

Π2(µ)dR(µ, z, t, ω).

This proves the Lemma.

3.1.2 The skew product S

For any T invariant distribution R′ we denote

dimR′ =

∫

dimµ dR′(µ, z, u, ω)

which is equal to dimQ for our distribution R. Now, consider the ergodic decomposition of R,

R =

∫

Rξ dτ(ξ).

By Theorem 2.7, almost every Rξ satisfies that its marginal on the first three coordinates
(Rξ)1,2,3 is a CP distribution in the sense of Definition 2.6.

From this point forward

Fix an ergodic component Rξ such that dimRξ > 0. (22)

Then for an Rξ typical (µ, z, u, ω) we have by ergodicity

1

N

N
∑

k=1

µAu
k(z) →

∫

ν dRξ(ν, z, u, ω). (23)
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Also, by Lemma 3.2 for every k we have

Π1(supp
(

µAu
k(z)
)

) ⊆ A(σRk
θ
(u) ◦ ... ◦ σRθ(u) ◦ σu(ω)). (24)

Now, consider the measure κ ∈ P(T2 × T× (Π2D)N) defined by

κ =

∫

µ× δ{(u,ω)}dRξ(µ, z, u, ω)

and let S : T2 × T× (Π2D)N → T2 × T× (Π2D)N be the map

S(z, u, ω) = (Φu(z), Rθ(u), σu(ω))

where we recall that Φu was defined in (10).

Lemma 3.5. The measure κ is S invariant and ergodic. Moreover, for κ almost every (z, u, ω)
there is an Rξ typical measure µ such that (23) and (24) hold true.

Proof. Recall that Π2,3,4 : P(T2) × T2 × T × {0, ..., n − 1}N → T2 × T × {0, ..., n − 1}N is the
projection

(µ, z, u, ω) 7→ (z, u, ω).

Then Π2,3,4 ◦T = S ◦Π2,3,4. By Theorem 2.7 part (3) we have that κ = Π2,3,4Rξ. In particular,
κ is S invariant. Moreover, (S, κ) is a factor of the ergodic system (T,Rξ), and therefore it is
ergodic.

The last assertion is an immediate consequence of the definition of κ, and since (23) and
(24) are Rξ generic properties.

Let us now introduce a generator for the system (S, κ). We first recall the definition of
generators: Let (X,U) be a dynamical system, and let D be a finite partition of X . Let Dk =
∨k−1

i=0 U−iD denote the coarsest common refinement of D, U−1D, ..., U−k+1D. The sequence Dk

is called the filtration generated by D with respect to U . Now, if the smallest sigma algebra
that contains Dk for all k is the Borel sigma algebra, we say that D is an S-generating partition
for (X,U).

Back to our system (S, κ), let

C = (Dm ×Dn)× {[0, 1− θ), [1− θ, 1)} × {[j] : j ∈ Π2D}

be a partition of the space
T2 × T× (Π2D)N.

Write W = {[0, 1− θ), [1− θ, 1)}.

Lemma 3.6. The partition C is an S-generating partition. Moreover, κ(∂C) = 0 for every
k ∈ N and every C ∈ Ck.

Proof. The first assertion is an easy consequence of the fact that, as k grows to infinity, the
maximal diameter (working, say, with the sup metric) of an element in the partition Ck converges
to 0. For the second part, let k ∈ N and fix and element in Ck. This element is of the form
A × W × I where W ∈ Wk, and for some u ∈ W we have that I is a cylinder set in (Π2D)N

of length R(k, u) ≈ [k · θ], and A ∈ Au
k (note that the latter sets are independent of the choice

of u ∈ W ). Notice that ∂(I) = ∅. Therefore, by two application of the ”product rule” for the
boundary of product sets

∂(A×W × I) ⊆ ∂(A×W )× (Π2D)N ⊆ (∂A×W × (Π2D)N)
⋃

(A× ∂W × (Π2D)N).

Thus,
κ(∂(A×W × I)) ≤ κ(∂A×W × (Π2D)N) + κ(A× ∂W × (Π2D)N). (25)
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Now, the first summoned on the right hand side of equation (25) is 0. This is because Rξ

typical µ has positive dimension by our choice of Rξ and Theorem 2.7. In particular, they are
not atomic. Also, Rξ almost every (µ, z, u, ω) satisfies that µ is supported on a line with slope
mu by Lemma 3.2. On the other hand, ∂A is a union of four lines that are parallel to the major
axes. To sum up, Rξ almost every µ is continuous and supp(µ) intersects ∂A in at most 2 points,
so µ(∂A) = 0. Thus, the result follows from the definition of κ.

The second summoned is trivially 0 since the marginal on the second coordinate of κ is
the Lebesgue measure L, as this is the unique Rθ invariant measure, and ∂W consists of two
points.

3.1.3 A geometric consequence of Sinai’s factor Theorem

We say that a sequence {xk}k∈N ⊂ T is uniformly distributed (UD) if for every sub-interval
J ⊆ T we have

1

N
|{0 ≤ k ≤ N − 1 : xk ∈ J}| → L(J), where L is the Lebesgue measure on T.

In [22], Wu proved following result by appealing to the Sinai factor Theorem:

Theorem 3.7. [22, Theorem 6.1] Let (X,T, µ) be an ergodic measure preserving system. Let
A be a generator with finite cardinality, and let {Ak}k denote the filtration generated by A and
T . Suppose that µ(∂A) = 0 for every k ∈ N and every A ∈ Ak. Let β /∈ Q.

Then for any ǫ > 0 and for all l ≥ l(ǫ) large enough there exists a disjoint family of measur-

able sets {Ci}
N(l,ǫ)
i=1 , Ci ⊂ X, such that:

1. µ(
⋃

Ci) > 1− ǫ.

2. For every 1 ≤ i ≤ N(l, ǫ), |{A ∈ Al : Ci ∩A}| ≤ el·ǫ.

3. There exists another disjoint family of measurable sets {C̃i}
N(l,ǫ)
i=1 , C̃i ⊂ X, such that for

every 1 ≤ i ≤ N(l, ǫ) we have:

• Ci ⊆ C̃i,

• µ(Ci) ≥ (1− ǫ)µ(C̃i),

• for µ a.e. x we have that the sequence

{Rk
β(0) ∈ T : k ∈ N and T k(x) ∈ C̃i}

is UD.

3.1.4 Three key estimates

We begin by establishing two bounds via Theorem 3.7. Recall the definition of the sets A(ω)
as in (19). Fix ǫ > 0, and note that in the construction below we use the same ǫ for all ergodic
components Rξ with positive dimension. The parameter l below will depend on both ξ and ǫ,
with the dependence on ξ being measurable.

Proposition 3.8. Fix a κ typical (z, u, ω) and a corresponding Rξ typical measure µ satisfying
(23) and (24). Then, for our small ǫ > 0 and all large l ≥ l(ǫ, ξ), there exists a set N = Nξ ⊆ N

such that

Nn−l

(

⋃

k∈N

supp(µAu
k (z))

)

≥ nl·(dimµ+1−oǫ(1)) (26)

and for some uniform constant C1, for any k′ ∈ N

Nn−l

(

Π1

(

⋃

k∈N

supp(µAu
k (z))

))

≤ C1 · Nn−l

(

A
(

Π3 ◦ S
k′

(z, u, ω)
))

. (27)
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We remark that Π3 ◦ Sk′

(z, u, ω) means the third coordinate of Sk′

(z, u, ω).

Proof. By Lemmas 3.5 and 3.6 we may apply Theorem 3.7 to

(T2 × T× (Π2D)N, S, κ) with the generator C. (28)

Thus, for our small ǫ > 0 there exists l(ǫ) such that for all l ≥ l(ǫ), we have a disjoint family

{Ci}
N(l,ǫ)
i=1 such that

κ(

N(l,ǫ)
⋃

i=1

Ci) > 1− ǫ

and for every 1 ≤ i ≤ N(l, ǫ),
Ci ⊆ T2 × T× (Π2D)N

and
Nn−l(Π1,3Ci) < elǫ. (29)

Furthermore, for κ almost every (z, u, ω),

L({Rk
θ (u) : k ∈ N, Sk(z, u, ω) ∈ Ci}) ≥ 1− ǫ. (30)

To indicate the dependence of l(ǫ) on Rξ, in the following we will write l(ǫ, ξ) for l(ǫ). Notice that
the measurable dependence of l(ǫ, ξ) on ξ arises from the fact that our system (28), specifically
the measure κ, depends measurably on Rξ.

Now, fix a κ typical (z, u, ω) and a measure µ satisfying (23) and (24) (such a measure exists
by Lemma 3.5). We have the following estimate, which is a consequence of Theorem 2.7 part
(4):

Lemma 3.9. There exists some r0 = r0(ǫ) > 0 such that for every r < r0, y ∈ T2, k ∈ N, and
l ∈ N large enough, we have

Nn−l

(

supp(µAu
k (z)) \B(y, r)

)

≥ nl·(dimµ−oǫ(1)).

We also have the following estimate:

Claim 3.10. For every 1 ≤ i ≤ N(l, ǫ) there is a set C′
i ⊆ Ci such that:

1. diam (Π1,3(C
′
i)) ≤ n−l,

2. Nn−l

(

{Rk
θ(u) : k ∈ N, Sk(z, u, ω) ∈ C′

i}
)

≥ n(1−oǫ(1))·l.

Proof. This is a consequence of the properties (29) and (30) of {Ci}
N(l,ǫ)
i=1 , and the pigeon hole

principle applied to the family of sets {Ci ∩D : D ∈ Cl}.

Fix some i and C′
i as in Claim 3.10. Define

N := {k ∈ N : Sk(z, u, ω) ∈ C′
i}.

Then, by combining Lemma 3.9, (29), and Claim 3.10, we can prove the inequality (26): Indeed,
let X = Π1(C

′
i). Since C′

i ⊆ Ci, we have by (29) that

Nn−l(X) ≤ el·ǫ.

Also, writing F = {Rk
θ(u) : k ∈ N}, for every t ∈ F there there exists a line with slope mt

intersecting X that supports a measure that satisfies Lemma 3.9. This follows by our choice of
N and since Π1 ◦ Sk(z, u, ω) ∈ supp

(

µAu
k (z)
)

. Finally, consider the set

K =

(

⋃

k∈N

supp(µAu
k (z))

)

−X.
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Then for any t ∈ F , we can find some line ℓ with slope mt that supports a measure on K that
satisfies Lemma 3.9, and passes through an l-th level n-adic cube containing the origin. From
this and Claim 3.10 part (2), one sees that

Nn−l(K) ≥ nl·(1+dimµ−oǫ,l(1)).

It is well known that for every bounded sets A,B ⊆ R2 there is a constant C1 such that

Nn−l(A+B) ≤ C1 · Nn−l(A) · Nn−l(B).

Thus, since Nn−l(X) ≤ el·ǫ, by the definition of K and the last two displayed equations, the
inequality (26) is proved.

As for the inequality (27), by Claim 3.10 we have

diam (Π3(C
′
i)) ≤ n−l.

Therefore, for any k, k′ ∈ N we have that (recalling our metric on the symbolic space (9))

d(Π3 ◦ S
k(z, u, ω), Π3 ◦ S

k′

(z, u, ω)) ≤ n−l.

So, since we have (24) at our disposal, for every k′ ∈ N we have

Π1

(

⋃

k∈N

supp(µAu
k (z))

)

⊆ A(Π3 ◦ S
k′

(z, u, ω))(m
−l) ⊆ A(Π3 ◦ S

k′

(z, u, ω))(n
−l)

where B(n−l) is the n−l-neighbourhood of a set B. Notice that we have used that n < m. From
this, the inequality (27) readily follows.

Remark 3.11. In the proof above it was also established that since the mapping ξ → Rξ is
measurable, l(ǫ, ξ) is also a measurable function of ξ.

Next, we estimate the covering number of the Π2 projection of the set
⋃

k∈N supp(µAu
k (z))

from Proposition 3.8. Recall that the measure ρ was defined in (16), and that by Lemma 3.4
its image under the base n coding map Ξ(ρ) ∈ P(T) is Tn invariant and

Ξ(ρ) =

∫

Π2(ν) dR(ν, z, t, ω).

From now on, we denote ρ̃ := Ξ(ρ). Recall that the ergodic decomposition of R is given by

R =

∫

Rξ′ dτ(ξ
′).

It follows that for τ almost every ξ′, the measure

ρ̃ξ′ =

∫

Π2(ν)dRξ′(ν, z, t, ω)

is Tn invariant and ergodic. Thus,

ρ̃ =

∫

ρ̃ξ′ dτ(ξ
′)

is the ergodic decomposition of ρ̃.
Fix ρ̃ξ for the ergodic component Rξ (recall (22)) we have been working with so far. Recall

that X(n−l) denotes the n−l neighbourhood of a set X .
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Proposition 3.12. Let (z, u, ω), µ, and N be as in Proposition 3.8. Then, for our small ǫ > 0
and all large l ≥ l(ǫ, ξ), there exists a subset N ′ = N ′

ξ ⊆ N and a set A = Aξ,ǫ ⊆ T such that
for every k ∈ N ′,

Π2µ
Au

k(z)
(

A(n−l)
)

≥ 1− oǫ(1)

such that a modified version of inequality (26) holds with

Nn−l

(

⋃

k∈N ′

supp(µAu
k(z)|

[0,1]×A(n−l))

)

≥ nl·(dimµ+1−oǫ(1)) (31)

and we also have for some global constant C2,

Nn−l

(

Π2

(

⋃

k∈N ′

supp(µAu
k (z)|[0,1]×A(n−l))

))

≤ C2 · n
l·(dim ρ̃ξ+oǫ(1)). (32)

Proof. By Theorem 2.5, since ρ̃ξ is Tn invariant and ergodic, it is exact dimensional. By Egorov’s
Theorem there exists a compact set A = Aξ,ǫ, with dimB A = dimH A, that varies measurably
in ξ, such that

dimB A = dim ρ̃ξ, and ρ̃ξ(A) = 1− oǫ(1).

Also, since we have (23) at our disposal,

1

N

N
∑

k=1

Π2µ
Au

k(z) →

∫

Π2ν dRξ(ν, z, t, ω) = ρ̃ξ.

Therefore, since for every l the set A(n−l) is open, there is a set N ′′ ⊂ N such that the density
of N ′′ in N is at least 1− oǫ(1), and for every k ∈ N ′′ we have

Π2µ
Au

k(z)
(

A(n−l)
)

≥ 1− oǫ(1).

Now, define
N ′ = N ∩N ′′.

Since the density of N ′′ in N is at least 1−oǫ(1), the density of N ′ in N is also at least 1−oǫ(1).
Then we arrive at the inequality (32) since

Nn−l

(

Π2

(

⋃

k∈N ′

supp(µAu
k (z)|[0,1]×A(n−l))

))

≤ Nn−l

(

A(n−l)
)

≤ C2 · n
l·(dim ρ̃ξ+oǫ(1)).

Notice that the large l we choose here depends on our set A = Aξ,ǫ, so l = l(ǫ, ξ).
Finally, we need to justify the modified version of (26) given by (31). To see this, notice

that the outcome of Claim 3.10 is unchanged when we move to N ′, since the density of N ′ in
N is at least 1 − oǫ(1). Thus, in order to run the same argument as at the end of Proposition
3.8, we need to study what happens in the setting of Lemma 3.9 with our extra conditioning on

[0, 1]× (A)n
−l

.
To this end, for every k ∈ N, by Proposition 2.1

logNn−l

(

supp(µAu
k (z)|

[0,1]×A(n−l)

)

≥ H(µAu
k (z)|

[0,1]×A(n−l) ,Dnl)

and since
µAu

k(z)
(

[0, 1]×A(n−l)
)

≥ 1− oǫ(1),

we have (by [22, Lemma 7.3])

H(µAu
k(z)|[0,1]×A(n−l) ,Dnl) ≥ H(µAu

k (z),Dnl)− l · logn · oǫ(1).
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Finally, by another application of Theorem 2.7 part (4) we have

H(µAu
k(z),Dnl) ≥ l · logn · (dimµ− oǫ(1)).

Combining the last four equations shows that indeed an analogue of Lemma 3.9 holds in this
modified situation as well, and we complete the proof of (31) in the same manner as in Propo-
sition 3.8.

Remark 3.13. Recall that we use the same ǫ > 0 for every component Rξ with positive di-
mension. As we already noted in Remark 3.11, the number l(ǫ, ξ) in Proposition 3.8 depends
measurably on ξ. Similarly, the dependence of l(ǫ, ξ) in Proposition 3.12 is also measurable in
ξ. Note that the error terms oǫ(1) appearing in the inequalities (26) and (27) of Proposition
3.8, and (31) and (32) of Proposition 3.12 go to zero as ǫ → 0 in a manner dependent on both
ǫ and ξ.

Recall that R =
∫

Rξ dτ(ξ) is the ergodic decomposition of R. Now, let Θ be the set of
all ergodic components of R that have positive dimension. Since R has positive dimension,
τ(Θ) > 0. By an application of Egorov’s Theorem, we may produce a subset Ψ = Ψ(ǫ) ⊆ Θ of
ergodic components of R such that:

• τ(Ψ) > (1− ǫ)τ(Θ).

• l can be chosen uniformly in both Proposition 3.8 and Proposition 3.12 for all Rξ when
ξ ∈ Ψ.

Thus, for ergodic components Rξ with ξ ∈ Ψ, the error terms oǫ(1) appearing in the inequalities
(26) and (27) of Proposition 3.8, and (31) and (32) of Proposition 3.12 go to zero as ǫ → 0 in
a manner dependent only on ǫ (and not on ξ).

3.1.5 Proof of Theorem 3.1

Proof of Part (1) Let Rξ be an ergodic component such that ξ ∈ Ψ (recall Remark 3.13),
and (z, u, ω), µ, ρ̃ξ, N , N ′ and A be as in Proposition 3.8 and Proposition 3.12. By these
Propositions, for an error term oǫ(1) that is independent of ξ, for k

′ = minN :

nl(dimµ+1−oǫ(1)) ≤ Nn−l

(

⋃

k∈N ′

supp(µAu
k (z)|

[0,1]×A(n−l))

)

≤ Nn−l

(

Π1

⋃

k∈N ′

supp(µAu
k (z)|[0,1]×A(n−l))

)

× Nn−l

(

Π2

⋃

k∈N ′

supp(µAu
k (z)|[0,1]×A(n−l))

)

≤ Nn−l

(

Π1

(

⋃

k∈N

supp(µAu
k (z))

))

· C2 · n
l·(dim ρ̃ξ+oǫ(1))

≤ C1 · Nn−l

(

A(Π3 ◦ S
k′

(z, u, ω))
)

· C2 · n
l·(dim ρ̃ξ+oǫ(1)).

Taking log and dividing by l log n we arrive at

dimµ+ 1− oǫ(1) ≤
logNn−l

(

A(Π3 ◦ Sk′

(z, u, ω))
)

l logn
+ dim ρ̃ξ. (33)

We remark that in equation (33) and the following calculations, we can absorb the oǫ(1) factors
that we encounter into each other, which is possible since they are all uniform as ǫ goes to 0, in
a manner dependent only on ǫ. Also, notice that k′ is a measurable function of ξ.
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Next, applying Theorem 2.5 we obtain

dimµ+ 1− oǫ(1) ≤
logNn−l

(

A(Π3 ◦ Sk′

(z, u, ω))
)

l logn
+

h(ρ̃ξ, Tn)

logn
. (34)

Now, equation (34) holds as long as we are working with an ergodic component such that
ξ ∈ Ψ. Recall that Θ denotes the set of ergodic components of R that have positive dimension.
So, by the definition of dimR, since τ(Ψ) > τ(Θ) − ǫ and for ξ 6∈ Θ we have dimµ = 0 for Rξ

almost every µ, via (34) we see that

dimR =

∫

Θ

∫

dimµ dRξ(µ, z, u, ω)dτ(ξ)

≤

∫

Ψ

∫

dimµ dRξ(µ, z, u, ω)dτ(ξ) + ǫ

≤

∫

Ψ

∫





logNn−l

(

A(Π3 ◦ Sk′

(z, u, ω))
)

l logn
+

h(ρ̃ξ, Tn)

logn
− 1



 dRξ(µ, z, u, ω)dτ(ξ)

+ oǫ(1)

≤

∫

Θ

∫





logNn−l

(

A(Π3 ◦ Sk′

(z, u, ω))
)

l logn
+

h(ρ̃ξ, Tn)

logn



 dRξ(µ, z, u, ω)dτ(ξ)

− τ(Θ) + oǫ(1)

≤

∫

Θ

∫ logNn−l

(

A(Π3 ◦ Sk′

(z, u, ω))
)

l logn
dRξ(µ, z, u, ω)dτ(ξ) +

∫

Θ

h(ρ̃ξ, Tn)

logn
dτ(ξ)

− τ(Θ) + oǫ(1).

where we have used that ρ̃ξ is constant when integrated against Rξ. Next, applying (13),

dimR = dimQ ≥ γ

We thus arrive at the inequality

γ ≤

∫

Θ

∫ logNn−l

(

A(Π3 ◦ Sk′

(z, u, ω))
)

l logn
dRξ(µ, z, u, ω)dτ(ξ) +

∫

Θ

h(ρ̃ξ, Tn)

logn
dτ(ξ) (35)

− τ(Θ) + oǫ(1) (36)

This implies Part (1) of Theorem 3.1: Indeed, taking ǫ → 0, using that for every ξ the measure

ρ̃ξ is supported on Π2(F ) and that
h(ρ̃ξ,Tn)

logn
= dim ρ̃, we obtain

γ ≤ τ(Θ) ·

(

sup
ω∈(Π2D)N

dimBA(ω) + dimH Π2(F )− 1

)

= τ(Θ) · (dim∗ F − 1)

where in the last inequality we made use of Mackay’s formula [16] for dim∗ F .
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Proof of Part (2) By the T invariance of Rξ, writing k′ = k′(ξ) as before and recalling (18)

∫

Θ

∫ (

logNn−l (A(ω))

l logn

)

dRξ(µ, z, u, ω)dτ(ξ) =

∫

Θ

∫ (

logNn−l (A(ω))

l logn

)

dRξT
k′

(µ, z, u, ω)dτ(ξ) =

∫

Θ

∫





logNn−l

(

A(σR(k′,u)ω)
)

l logn



 dRξ(µ, z, u, ω)dτ(ξ) =

∫

Θ

∫





logNn−l

(

A(Π3 ◦ Sk′

(z, u, ω))
)

l logn



 dRξ(µ, z, u, ω)dτ(ξ).

Combining this with (35) we obtain

γ ≤

∫ ∫ (

logNn−l (A(ω))

l logn

)

dRξ(µ, z, u, ω)dτ(ξ) +

∫

h(ρ̃ξ, Tn)

logn
dτ(ξ) − τ(Θ) + oǫ(1).

Notice that we have also removed the conditioning on the set Θ on the right hand side. Since
Rξ is a disintegration of R, we obtain

γ ≤

∫
(

logNn−l (A(ω))

l log n

)

dR(µ, z, u, ω) +

∫

h(ρ̃ξ, Tn)

logn
dτ(ξ) − τ(Θ) + oǫ(1).

Notice that up to an ol(1) factor,

logNn−l (A(ω))

l logn
=

logNm−[l·θ] (A(ω))

[l · θ] logm
+ ol(1).

So, combining this with Lemma 3.3, using the affinity of entropy and letting l → ∞, we get

γ ≤

∑

j∈Π2(D) ν([j]) log a(j)

logm
+

h(
∫

ρ̃ξdτ(ξ), Tn)

logn
− τ(Θ) + oǫ(1).

Finally,
∫

ρ̃ξdτ(ξ) = ρ̃, and (ρ̃, Tn) is a factor of (ρ, σ), so we arrive at

γ ≤

∑

j∈Π2(D) ν([j]) log a(j)

logm
+

h(ρ, σ)

logn
− τ(Θ) + oǫ(1).

Taking ǫ → 0, this is Part (2) of Theorem 3.1.
Proof of Part (3) By Part (2) we have the following inequality:

γ + τ(Θ) ≤

∑

j∈Π2(D) ν([j]) log a(j)

logm
+

h(ρ, σ)

logn
. (37)

Recall that by (14), (15) and (16), the measures ν, ρ, η ∈ P((Π2D)N) are σ invariant and we
have

ρ = θ · ν + (1 − θ) · η.

We now show, via the equation above, that the right hand side of (37) is bounded above by

dimP F = dimB F =
log |Π2(D)|

log n
+

log |D|
|Π2(D)|

logm
.

To this end, by affinity of entropy, we have

h(ρ, σ) = h(θ · ν + (1− θ) · η, σ) = θ · h(ν, σ) + (1− θ) · h(η, σ).
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Now, by the Kolmogorov-Sinai Theorem and Proposition 2.1,

h(η, σ) ≤ H(η,D) ≤ log |Π2(D)|,

where D is the first generation cylinder partition of (Π2D)N. By another application of the
Kolmogorov-Sinai Theorem,

h(ν, σ) ≤ H(ν,D) =
∑

j∈Π2(D)

ν([j]) · log
1

ν([j])
.

So, by the last two displayed inequalities and recalling that θ = log n
logm

, we can bound

∑

j∈Π2(D) ν([j]) log a(j)

logm
+

h(ρ, σ)

logn

=

∑

j∈Π2(D) ν([j]) log a(j)

logm
+ θ ·

h(ν, σ)

logn
+ (1− θ) ·

h(η, σ)

logn

≤

∑

j∈Π2(D) ν([j]) log a(j)

logm
+ θ ·

∑

j∈Π2(D) ν([j]) · log
1

ν([j])

logn
+ (1 − θ) ·

log |Π2(D)|

logn

=

∑

j∈Π2(D) ν([j]) ·
(

log
(

a(j)∑
j
a(j)

)

+ log 1
ν([j])

)

+ log
(

∑

j a(j)
)

logm
+ (1−

logn

logm
)
log |Π2(D)|

logn

≤
log
(

∑

j a(j)
)

logm
+ (1−

logn

logm
)
log |Π2(D)|

logn

=
log |Π2(D)|

logn
+

log |D|
|Π2(D)|

logm
= dimP F,

where in the fourth inequality we used the Gibbs inequality (see Proposition 2.1). Combining
this with (37) we see that

γ + τ(Θ) ≤ dimP F,

thus Part (3) of Theorem 3.1 is proved. �

4 On the proof of Theorem 1.2 part (1)

4.1 A Hausdorff dimension version of Theorem 3.1

The idea for the proof of Theorem 1.2 part (1) is similar to that of Theorem part (2), with some
modifications. Let F be a Bedford-McMullen carpet with exponents m > n and digits D, such
that m 6∼ n. Write θ := logn

logm
. Let ℓ0 be a line. We may assume, as in the proof of Theorem 1.2

part (2), that the slope of ℓ0 is mu0 6= 0 for u0 ∈ [0, 1), and that our ambient space is T2 rather
than [0, 1]2.

Let
γ1 := dimH ℓ0 ∩ F

and fix some γ < γ1. We will show that

γ ≤ max

{

0,
dimH F

dim∗ F
· (dim∗ F − 1)

}

.

It is clear that we may assume γ > 0.
By Frostman’s Lemma we may find a probability measure µ0 ∈ P(ℓ0 ∩ F ) such that

dim(µ0, z) ≥ γ, for µ0 almost every z.
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In particular, µ0 is continuous (has no atoms). Fix a point z0 ∈ ℓ0∩F in the support of µ0 that
satisfies the conclusion of Theorem 2.8 part (2).

Write

z0 = (x0, y0) =

(

∞
∑

k=1

xk

mk
,

∞
∑

k=1

yk
nk

)

, (xk, yk) ∈ D.

Notice that since µ0 is continuous, we may assume both x0, y0 /∈ Q, so that this representation
is unique. Now, consider the sequence

ω0 = (y1, y2, ...) ∈ (Π2D)N ⊆ {0, ...n− 1}N.

For every k ∈ N, we define a sequence of measures on (Π2D)N:

νk =
1

[θ−k+1]

[θ−k+1]
∑

k=1

δσk(ω0), (38)

ηk =
1

[θ−k]− [θ−k+1]

[θ−k]
∑

k=[θ−k+1]+1

δσk(ω0). (39)

We shall require the following Claim to choose a subsequence of the scenery. Let D be the first
generation partition of (Π2D)N.

Claim 4.1. There exists a subseqeunce Nj such that

lim sup
j→∞

(

H(ηNj
,D)−H(νNj

,D)
)

≤ 0.

Proof. Suppose towards a contradiction that the Claim is not true. This means that for some
c > 0

lim inf
k→∞

(H(νk,D)−H(ηk,D)) ≤ −c < 0.

So, for all large enough k we have

H(ηk,D)−H(νk,D) >
c

2
. (40)

The crucial observation here is that

νk+1 =
[θ−k+1]

[θ−k]
νk +

[θ−k]− [θ−k+1]

[θ−k]
· ηk.

So by concavity of entropy (Proposition 2.1) we have

H(νk+1,D) ≥
[θ−k+1]

[θ−k]
·H(νk,D) +

[θ−k]− [θ−k+1]

[θ−k]
·H(ηk,D).

Combining this with (40) we find that for all large enough k

H(νk+1,D) ≥ H(νk,D) +
[θ−k]− [θ−k+1]

[θ−k]
·
c

2
.

The latter equation implies that limk→∞ H(νk,D) = ∞, which is a contradiction since for all k,

H(νk,D) ≤ log |Π2(D)|.

23



From now on we work with the sequence Nj from Claim 4.1. By Theorem 2.8 part (2), by
perhaps passing to a further subsequence, there exists a distribution Q such that

1

Nj

Nj−1
∑

k=0

δMk(µ0,z0,u0) → Q

where Q is a CP distribution with
dimQ ≥ γ.

Next, recalling (38) and (39), by perhaps moving to yet a further subsequence, we assume that
there are σ invariant measures ν, η, ρ ∈ P((Π2D)N) ⊆ P({0, ...n− 1}N) such that:

νNj
→ ν, (41)

ηNj
→ η, (42)

1

Nj

Nj
∑

k=1

δσk(ω0) → ρ. (43)

It follows from (39) and (38) that ρ = θ ·ν+(1−θ)·η. We also have, by Claim 4.1, the important
inequality

H(η,D) ≤ H(ν,D). (44)

We can now formulate our required analogue of Theorem 3.1:

Theorem 4.2. Let λ = Q({µ : dimµ > 0}). Then:

1. γ ≤ λ · (dim∗ F − 1).

2.

γ + λ ≤

∑

j∈Π2(D) ν([j]) log a(j)

logm
+

h(ρ, σ)

logn
.

3. γ ≤ dimH F − λ.

Theorem 4.2 implies Theorem 1.2 part (1), and this is completely analogues to the implication
Theorem 3.1 ⇒ Theorem 1.2 part (2). The proof of parts (1) and (2) of Theorem 4.2 are the
same as the proof of the corresponding parts of Theorem 3.1 detailed in Section 3.1. We thus
omit the details. It remains to show that Part (2) implies Part (3), and this is the content of
the next Section.

4.2 Proof that part (2) implies part (3) in Theorem 4.2

Recall that γ1 = dimH F ∩ ℓ0. By Theorem 4.2 part (2) we have the following inequality:

γ + λ ≤

∑

j∈Π2(D) ν([j]) log a(j)

logm
+

h(ρ, σ)

logn
(45)

where ν, ρ, η ∈ P(Π2(D)N) are σ invariant and we have

ρ = θ · ν + (1 − θ) · η.

We now show, via the equation above and (44), that the right hand side of (45) is bounded
above by

dimH F =
log
(

∑

j∈Π2(D) a(j)
θ
)

logn
,

where we recall that θ = logn
logm

.
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To this end, by affinity of entropy, the Kolmogorov-Sinai Theorem, and (44)

h(ρ, σ) = h(θ · ν + (1 − θ) · η, σ)

= θ · h(ν, σ) + (1 − θ) · h(η, σ)

≤ θ ·H(ν,D) + (1 − θ) ·H(η,D)

≤ θ ·H(ν,D) + (1 − θ) ·H(ν,D)

= H(ν,D).

So, we can bound
∑

j∈Π2(D) ν([j]) log a(j)

logm
+

h(ρ, σ)

logn

≤

∑

j∈Π2(D) ν([j]) log a(j)

logm
+

H(ν,D)

logn

=

∑

j∈Π2(D) ν([j]) log a(j)

logm
+

∑

j∈Π2(D) ν([j]) · log
1

ν([j])

logn

=
1

logn





∑

j∈Π2(D)

ν([j])

(

log
1

ν([j])
+ log

(

a(j)θ
∑

j∈Π2(D) a(j)
θ

))

+ log





∑

j∈Π2(D)

a(j)θ









≤
log
(

∑

j∈Π2(D) a(j)
θ
)

logn
= dimH F

where in the last inequality we used the Gibbs inequality (see Proposition 2.1). Combining this
with (37) we see that

γ1 + λ ≤ dimH F.

�
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