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Abstract

We propose a probabilistic model discovery method for identifying ordinary differential equations
(ODEs) governing the dynamics of observed multivariate data. Our method is based on the sparse
identification of nonlinear dynamics (SINDy) framework, in which target ODE models are expressed as
a sparse linear combinations of pre-specified candidate functions. Promoting parsimony through sparsity
in SINDy leads to interpretable models that generalize to unknown data. Instead of targeting point
estimates of the SINDy (linear combination) coefficients, in this work we estimate these coefficients
via sparse Bayesian inference. The resulting method, uncertainty quantification SINDy (UQ-SINDy),
quantifies not only the uncertainty in the values of the SINDy coefficients due to observation errors and
limited data, but also the probability of inclusion of each candidate function in the linear combination.
UQ-SINDy promotes robustness against observation noise and limited data, interpretability (in terms
of model selection and inclusion probabilities), and generalization capacity for out-of-sample forecast.
Sparse inference for UQ-SINDy employs Markov Chain Monte Carlo, and we explore two sparsifying
priors: the spike-and-slab prior, and the regularized horseshoe prior. We apply UQ-SINDy to synthetic
nonlinear data sets from a Lotka-Volterra model and a nonlinear oscillator, and to a real-world data
set of lynx and hare populations. We find that UQ-SINDy is able to discover accurate and meaningful
models even in the presence of noise and limited data samples.

1 Introduction

In recent years there has been a rapid increase in measurements gathered from complex nonlinear dynamics
for which their governing equations are unknown. A key challenge is to discover explicit representations of
these equations, which can then be used for system identification, forecasting and control. Measurements
are often compromised by noise or may exhibit chaotic behavior, in which case it is critical to quantify how
uncertainty affects the model discovery process. To address this challenge, we introduce the uncertainty
quantification sparse identification of nonlinear dynamics (UQ-SINDy) framework, which leverages sparsity
promotion in a Bayesian probabilistic setting to extract a parsimonious set of governing equations. Our
method provides uncertainty estimates of both the parameter values and the inclusion probabilities for
different terms in the models.

Discovery of governing equations plays a fundamental role in the development of physical theories. With
increasing computing power and data availability in recent years, there have been substantial efforts to
identify the governing equations directly from data [7, 51, 66]. There has been particular emphasis on
parsimonious representations because they have the benefits of promoting interpretibility and generalizing
well to unknown data [2, 9, 8, 38, 43, 46, 60, 63]. The SINDy method was propoosed in [8], which leverages
dictionary learning and sparse regression to model dynamical systems. This approach has been successful
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in modeling a diversity of applications, including in chemistry [29], optics [54], engineered systems [36],
epidemiology [30], and plasma physics [18]. Furthermore, there has been a variety of modifications, including
improved robustness to noise [15, 16, 32], generalizations to partial differential equations [47, 49, 48], multi-
scale physics [17], and libraries of rational functions [40, 33].

Although these methods identify the equations, measurements often contain observation errors, which
may imperil the predictive capacity of learned models. A common approach to remedy this is to use the
Bayesian probability framework where uncertainty is quantified in terms of probability and where priors
are employed to encode assumptions and knowledge about model parameters [22, 64]. Bayesian methods
have been widely used for uncertainty quantification in time series models, with applications to weather
forecasting [1, 20, 67], disease modeling [3, 35, 68], traffic flow [13, 55, 70], and finance [24, 58, 65], among
many others. More recently, these methods have been incorporated into model discovery frameworks, ex-
hibiting state-of-the-art performance for system identification in the presence of noise [21, 42, 66]. Although
these methods provide a range of possible values, realizations of these models are in general not sparse and
consequently lack the capability to identify relevant terms in the model.

Sparse regression is a popular tool to identify a small subset of variables that explain the data. However,
finding the true minimum is computationally intractable in practice. In the frequentist setting, a popular
solution is to use the Lasso, which corresponds to an l1 penalty term [57]. In the Bayesian setting, sparsity
is generated by fundamentally different mechanisms. Most notably, although the corresponding prior (the
Laplace prior) shares the same maximum likelihood estimator as the Lasso [44], the distribution has fat tails
and thus does not produce sparse realizations [14]. The spike and slab model remedies this by explicitly using
Bernoulli variables to determine whether a term is present in the model, and has become the leading method
for incorporating sparsity in the Bayesian framework [41, 31, 39]. One disadvantage to this prior however
is its dependence on discrete variables, which makes inference prohibitively expensive for high-dimensional
systems. Smooth approximations, such as the horseshoe [11, 12], Horseshoe+ [4], regularized horseshoe [45],
Dirichlet-Laplace [6], and R2-D2 priors [69], have been shown to yield performance comparable to the spike
and slab model. For this work we will primarily focus on the regularized horseshoe prior, also known as the
Finnish horseshoe.

In this work, we propose the UQ-SINDy framework, which provides uncertainty estimates of both the
parameter value and inclusion probabilities and promotes sparsity in realizations of the model. This model
leverages advances sparsity and Bayesian approaches for solving ODEs to achieve this goal. In Sections 2.1
and 2.2 we review the SINDy method and Bayesian inference for ordinary differential equations, respectively.
In Section 2.3 we review sparsity promoting priors, namely the spike and slab and regularized horseshoe
priors, and compare their performance to the Laplace prior. In Section 3.1, we introduce two sparsity
promoting Bayesian methods, spike and slab SINDy and regularized horseshoe SINDy. In Sections 3.2
and 3.2.3, we illustrate these methods on two synthetic nonlinear data sets, a Lotka Volterra model and
nonlinear oscillator, and one real-world example of lynx and hare population data. We find that these
methods are able to extract accurate and meaningful Bayesian models even in the presence of significant
noise and sparse samples. These results are summarized and future improvements are discussed in Section 4.

2 Background

The UQ-SINDy framework is based on several recent developments in the fields of sparse regression, ordinary
differential equations, and Bayesian inference, and we review these contributions here. In Section 2.1 we
introduce the SINDy algorithm, which employs sparse regression to identify governing equations in the
frequentist setting. In Section 2.2, we review Bayesian inference for ordinary differential equations. In
Section 2.3, we review three different priors for sparse inference—the Laplace, spike and slab, and regularized
horseshoe priors—and compare their benefits and drawbacks.
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Figure 1: Comparison of SINDy algorithm and UQ-SINDy. (Top) Schematic of SINDy algorithm. A
dynamical system governed by unknown governing equations is measured. Next, we computed the derivative
of the time series Ẋ and construct a library Θ(X) of candidate terms. Last, we perform sparse regression
to identify the terms in the library that best explain the time series. (Bottom) Schematic of UQ-SINDy
algorithm. A dynamical system governed by unknown governing equations is measured. Next, we posit
a SINDy library Θ(X) of candidate terms. Last, we perform sparsity promoting Bayesian inference to
compute the inclusion probability and the posterior distribution of each term in the SINDy library. An
ensemble of reconstructions can then be computed, which quantify the credibility of predictions.
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2.1 Sparse identification of nonlinear dynamics (SINDy)

The SINDy method is a recently developed technique that leverages sparse regression to identify the governing
equations from a given time series (Figure 1). We consider a system with state x(t) = [x1(t), x2(t), . . . xd(t)]> ∈
Rd governed by the differential equation

ẋ = f(x),

for some unknown function f : Rd → Rd. The system’s state is observed at the discrete times t = t1, . . . , tn.
The goal of SINDy is to discover f from these observations.

To do so, we postulate that f can be written as a linear combination of a library of l candidate functions
θi : Rd → R, i ∈ [1, l]. For example, a commonly used library is the polynomial library

Θ(x) =
[
x1(t) x2(t) x21(t) x1(t)x2(t) · · ·

]
∈ Rl.

Next, we define X = [x(t1),x(t2), . . . ,x(tn)]> ∈ Rn×d as the collection of observed state snapshots, and
also define the matrix of library terms evaluated at the observation times,

Θ(X) =
[
Θ(x(t1))> Θ(x(t2))> · · · Θ(x(tn))>

]> ∈ Rn×l.

We then measure or compute the time derivative of the dataX and solve the following equation for Ξ ∈ Rl×d,

Ẋ = Θ(X)Ξ, (1)

where Ξ denotes the matrix of linear combination coefficients, or SINDy coefficients. A key assumption of
SINDy is that f may be represented by a small number of library terms, so that the matrix Ξ is sparse.
Thus, (1) is typically solved through sparse regression, using minimization techniques such as sequential least
squares thresholding (STLSQ) [8], Lasso [57], or a relaxed formulation [16]. The SINDy procedure yields the
set of identified nonlinear differential equations

ẋ> = Θ(x)Ξ. (2)

Once identified, this system of differential equations may be used for system identification, prediction, and
control.

2.2 Bayesian inference for data-driven discovery

Suppose we have the data set (X,y) for which we would like to fit the linear regression model

y = β>X + ε (3)

where ε ∼ N (0, σ2I) is a vector of independent, identically distributed Gaussian measurement noise with
unknown standard deviation σ. In the Bayesian setting, our goal is to determine the posterior distribution
of β and σ conditioned on the data, i.e. p(β, σ|X,y). To compute this distribution, we leverage Bayes’ rule,

p(β, σ|X,y) ∝ p(y|β,X) p(σ) p(β),

where p(y|β,X) denotes the data likelihood, and p(σ) and p(β) denote the prior distribution of the noise
standard deviation and the regression coefficients. These prior distributions incorporate any available domain
knowledge about the distribution of the noise standard deviation and the βjs.

In this work we are interested in identifying ODE models from noisy data. In particular, given noisy time
series and a SINDy model of the form ẋ> = Θ(x)Ξ, our goal is to compute the posterior distribution of the
initial conditions x0 and SINDy coefficients Ξ. We assume that the data set X consists of n noisy snapshots
of the observed dynamics, that is X = [y1,y2, . . . ,yn]> ∈ Rn×d, where yi ∈ Rd is the noisy snapshot of the
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Figure 2: Comparison of posterior distributions for Laplace, spike and slab, and regularized horseshoe priors
for a linear regression problem. Both the spike and slab and regularized horeshoe priors promote sparsity in
the posterior distributions, while the Laplace prior does not.

system state at time t = ti. For a given probabilistic model of the observation noise, the data is modeled as
deviations from the SINDy predictions; for example, for additive noise models,

y>i = x>0 +

∫ ti

0

Θ(x(t′))Ξ dt′ + εi, (4)

where εi denotes the additive noise for the ith snapshot. Bayes’ rule then takes the form

p(Ξ,x0,φ|X) ∝ p(X|Ξ,x0,φ) p(φ) p(Ξ) p(x0), (5)

where φ denotes auxiliary variables of the probabilistic model such as the noise standard deviation. The
data likelihood p(X|Ξ,x0,φ) is given by the chosen observation model (e.g., by (4) and the distribution of
the noise for additive observation noise).

Computing the posterior distribution (5) is in general not analytically tractable, in which case sampling-
based methods such as Markov Chain Monte Carlo (MCMC) may be used. Once the posterior distribution
has been approximated, we may then compute state reconstructions and forecasts conditioned on the observed
data [23, 59]. Specifically, to estimate the distribution of predicted values of x at an arbitrary time t, we
marginalize the data likelihood times the posterior distribution over Ξ, x0, and φ, that is,

p(x(t)|X) =

∫
p(x(t)|Ξ,x0,φ) p(Ξ,x0,φ|X) dΞ dx0 dφ, (6)

The distribution p(x(t)|X) is referred to as the posterior predictive distribution (PPD). The integral in (6)
can be approximated via sampling by taking the expectation of the data likelihood over posterior samples
drawn via MCMC.

2.3 Sparsity promoting priors

Consider the regression problem in (3). In many cases, we assume only a few components of xi are relevant
for predicting yi, in which case we expect β to be sparse. In the Bayesian setting, multiple sparsity-inducing
priors have been proposed. We describe a few of these approaches below, namely the Laplace, spike and slab
and regularized horseshoe priors.
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2.3.1 Laplace prior

Originally proposed by Laplace [19], the Laplace distribution, also known as the double exponential distri-
bution [22], corresponds to the probability distribution function (PDF) f(x|µ, b) given by

f(x|µ, b) =
1

2b
exp

{
−
∣∣∣∣x− µb

∣∣∣∣} .
Most notably, maximum a posterior (MAP) estimation for this prior corresponds to regression with `1
regularization, that is, [44],

β̂Laplace = arg maxβ p(y|β,X) p(β) = arg minβ ||y − β>X|22 + λ ‖β‖1 .

In the frequentist setting, solving this regression problem, known as the LASSO problem, has been shown
to yield sparse solutions for β [57]. This sparsifying behavior of the Laplace distribution is attributed to
the fact that for values of x smaller than b, the distribution is sharply peaked, thus pushing many terms
toward 0. Additionally, for values of x greater than b, the distribution has longer tails than the Gaussian
distribution, allowing elements to escape significant shrinkage.

Although l1 regularization induces sparsity in the frequentist case, in the Bayesian setting realizations
of the corresponding posterior distributions are not sparse [14]. In particular, in the Bayesian setting we
must consider the whole distribution simultaneously. With the Laplace prior, every βj has probability mass
simultaneously pushed toward and away from the origin, forcing relevant βjs to shrink toward the origin and
irrelevant terms to have significant probability mass far away from the origin.

To illustrate this we generate 400 data samples (xi, yi) that satisfy (3), where xi ∼ N (0, 1) ∈ R10,
εi ∼ N (0, 0.52), and β ∈ R10 chosen to be the sparse vector

β = [0.3, 0.2,−0.3, 0, 0, 0, 0, 0, 0, 0]>.

We perform Bayesian inference to estimate β using a Laplace prior, and we plot the resulting posterior
distribution in Figure 2. We note that when using the Laplace prior, the posterior distributions are centered
about the true value β. However, many distributions are peaked at nonzero values, making it difficult
to differentiate between relevant and irrelevant variables. Further, due to the wide widths of of all the
distributions, samples from this posterior distribution will not be sparse. To better enforce sparsity in a
Bayesian setting and induce sparse realizations, the distribution of each βj must either be fully shrunk
towards the origin or pushed away from the origin. In Sections 2.3.2 and 2.3.3 we discuss two priors that
satisfy these properties.

2.3.2 Spike and slab prior

The spike and slab prior is one of the most popular sparsifying priors and is typically referred to as the “gold
standard” [41, 31, 39] sparsity-inducing prior in the Bayesian setting. For this prior, each βj is generated
using the hierarchical model

βj |λj ∼ N (0, c2)λj ,

λj = Ber(π),

where Ber(π) denotes the Bernoulli distribution with probability of success π. Here, π is the prior probability
that λj is 1. Otherwise λj is 0. From this it can be seen that if λj is 1, then the jth term belongs to the
model and βj follows the “slab” distribution, a normal distribution with variance c2. If λj is 0, then the jth
term is not in the model and βj follows the “spike” distribution, a Dirac delta distribution centered at zero.

The distribution may be relaxed to

βj |λj ∼ λjN (0, c2) + (1− λj)N (0, ε2),

λj = Ber(π),

6



where ε � c. This is similar to before, except when λj = 0, βj follows a narrow normal distribution with
variance ε2.

The spike and slab prior for β is very intuitive and has shown robust performance in practical applications.
In Figure 2, we plot the resulting posterior distribution for the example in Section 2.3.2. Most notably we
see that similar to the Laplace prior, the spike and slab prior extracts out wide distributions for the three
nonzero coefficients. For the seven zero coefficients, on the other hand, the distribution is sharply spiked at
the origin. Consequently, any samples drawn from this posterior distribution will be truly sparse. Compared
to the Laplace distribution, the nonzero terms are much more easily identifiable. Furthermore, the mean of
λj correspond to the estimate of the “inclusion probability”, that is the likelihood that a particular βj is
relevant to the model.

Although the spike and slab prior has many beneficial properties, one downside is that because of its
discrete nature, inference with this prior requires exploring the combinatorial space of possible models. To
address this challenge, many smooth approximations to the spike and slab prior distribution have been
proposed. We discuss one recent approach in Section 2.3.3.

2.3.3 Regularized horseshoe prior

The horseshoe prior and the recently developed regularized horseshoe prior are smooth priors that have
shown comparable performance to the spike and slab model. The horseshoe is defined as the hierarchical
prior

βi|λi, τ ∼ N (0, λ2i τ
2),

λi ∼ C+(0, 1),

τ ∼ C+(0, τ0),

where C+(·, ·) denotes the half-Cauchy distribution [5, 11, 12]. The key intuition behind this prior is that τ
promotes global sparsity, shrinking the posterior distributions of all βis. The λis, known as the local shrinkage
parameters, also have half-Cauchy priors, allowing some of the βis to escape significant shrinkage. Many
analyses have focused on choosing an optimal value for τ0, and in Piironen et al. values are recommended
for sparse linear regression [45]. In this work we employ τ0 = 0.1 unless specified otherwise. We note that
decreasing the value of τ0 increases the sparsity of β estimates.

One downside of the horseshoe is that relevant terms that “escape” shrinkage are not regularized, and
thus elements of the posterior distribution may become arbitrarily large. In [45] it was proposed to include
a small amount of regularization on each λi, resulting in the regularized horseshoe prior

βi|λ̃i, τ, c ∼ N (0, λ̃2i τ
2),

λ̃i =
cλi√

c2 + τ2λ2i

λi ∼ C+(0, 1)

c2 ∼ Inv-Gamma
(ν

2
,
ν

2
s2
)

τ ∼ C+(0, τ0).

where Inv-Gamma(·, ·) denotes the inverse Gamma distribution, and ν and s are parameters that control the
shape of the slab. For small values of λi, λiτ � c, and λ̃i → λi, thus approximating the original horseshoe
prior. However, for large values of λi, λiτ � c and λ̃i → c/τ , leading to βi being normally distributed with
variance c2. This regularizes βi, constraining it to be on the order of c. In this work we employ the values
ν = 4 and s = 2.

We illustrate the performance of this prior in Figure 2 for the example in Section 2.3.2. Similar to the
spike and slab model, the nonzero coefficients have wide distributions. The zero coefficients, on the other
hand are more spiked than those of the Laplace prior, thus resulting in sparser posterior realizations.
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Unlike for the spike and slab prior, there is no explicit estimate for the inclusion probabilities. A popular
alternative for identifying the relevant terms is to compute the shrinkage factor of the coefficients. Specifically,
we compute the MAP estimate β̂Flat

i with a flat prior (i.e., no prior) and compare it to the MAP estimate

with the regularized horseshoe prior, β̂RH
i . The ratio of these two values is called the shrinkage factor

κi = β̂RH
i /β̂Flat

i . (7)

The shrinkage factor of the coefficients has been used to define inclusion “pseudo-probabilities” for sparsity-
promoting models [5, 12, 45]. We employ this approach in this work. In general these ratios may not lie
between 0 and 1.

For our work, we have observed that computing β̂Flat
i with flat priors is challenging. To remedy this, we

use normal priors βi ∼ N (0, 1) instead of flat priors. Further, we note that (7) can be computed directly
from MAP estimates, without having to sample the full posterior distributions. Thus the shrinkage factors
can be estimated using optimization techniques instead of full Bayesian inference. However, in practice the
associated optimization problems may be nonconvex and highly sensitive to the initial guess. Consequently,
for this work we use full Bayesian inference to estimate shrinkage factors.

3 UQ-SINDY

In this section, we combine advances in model discovery for dynamical systems and sparsity promoting
Bayesian inference to propose the UQ-SINDy framework, which aims to quantify the uncertainty of estimated
SINDy coefficients due to measurement, and to estimate the inclusion probabilities for each term in the
SINDy library. In particular, within this framwork we introduce two methods: spike and slab SINDy
(ss-SINDy) and regularized horseshoe SINDy (rh-SINDy). The ss-SINDy method provides state-of-the art
performance for estimating uncertainty of coefficients and inclusion probability, while the rh-SINDy is a
smooth approximation that shows comparable performance. We outline this framework below.

3.1 Method

We start with a set of time series measurements X ∈ Rn×d contaminated by measurement noise. We assume
that our data is governed by the SINDy model

ẋ> = Θ(x)Ξ, x(0) = x0, (8)

for some sparse matrix of SINDy coefficients Ξ and initial condition x0. Our goal is to determine the
posterior distribution p(Ξ,x0,φ|X).

Step 1: Construct library: We posit a library Θ : Rd → Rl of candidate functions. We emphasize here
that Θ is a symbolic vector function of the system’s state x. This is in constrast to the original
SINDy algorithm, in which Θ(X) is a fixed matrix computed from the time series data.

Depending on the library, solving the ODE in (8) for certain values of initial conditions and parame-
ters may be unstable. Practically, this leads to exploding gradients with respect to SINDy coefficients
and initial conditions, and integration steps taken by the ODE solver becoming negligibly small. To
remedy this, we add a higher-order polynomial term with a small negative coefficient to the ODE
model. For example, for a library of terms up to quadratic order, we add a cubic term, leading to
the ODE model

ẋj =
∑
i

θi(x)ξi,j − εx3j , (9)

where ξi,j is the i, jth element of Ξ. The parameter ε is chosen to be sufficiently small so that
the ODE is not affected for values of the system’s state that lie within the range of the data, but
sufficiently large so that ẋ does not grow too large. In general, if the library Θ includes polynomial
terms up to order n, we add a term −εxn+1

i if n is even, or −εxn+2
i if n is odd. This guarantees

that the values ẋ remain finite for both positive and negative values of x.

8



Step 2: Construct model priors and model likelihood. Let x̂(t; Ξ,x0) denote the SINDy prediction
at time t for given values of Ξ and x0, given by

x̂>(t; Ξ,x0) = x>0 +

∫ t

t0

Θ(x(t′))Ξ dt′.

For normally distributed measurement noise, the data likelihood takes the form

p(X|Ξ,x0,φ) =

n∏
i=1

d∏
j=1

1

σ
√

2π
exp

[
1

2σ2
|yi,j − x̂j(ti; Ξ,x0)|2

]
. (10)

For some cases, the values of X takes nonnegative values, such as for populations, in which case we
may choose to use a lognormal likelihood instead:

p(X|Ξ,x0,φ) =

n∏
i=1

d∏
j=1

1

yi,jσ
√

2π
exp

[
1

2σ2
|log yi,j − log x̂j(ti; Ξ,x0)|2

]
. (11)

We must choose priors for the noise level parameter σ and the initial conditions x0. These priors
are chosen using knowledge about about the type of parameter (i.e., whether the parameter is
nonnegative) and the scales of the data.

Step 3: Choose a sparsity promoting prior for the SINDy coefficients. Following Section 2.3, for
spike and slab SINDy (ss-SINDy) we use the hierarchical prior

ξi,j |λj ∼ N (0, 1)λi,jαi,j

λi,j ∼ Ber(π),

For regularized horseshoe SINDy (rh-SINDy) we use the hierarchical prior

ξi,j |λ̃i,j , τ, c ∼ N (0, 1)λ̃i,jταi,j

λ̃i,j =
cλi,j√

c2 + τ2λ2i,j

λi,j ∼ C+(0, 1)

c2 ∼ Inv-Gamma
(ν

2
,
ν

2
s2
)

τ ∼ C+(0, τ0).

For ss-SINDy, we have that φ consists of the noise level parameter σ and the local shrinkage para-
maters λi,j . For rh-SINDy, φ consists of σ, the λi,js, c, and τ . The coefficients αi,j , which we choose
as constants for this analysis, allow us to incorporate any knowledge about the scales of different
parameters. For this work we choose αi = 1 unless stated otherwise.

Step 4: Bayesian Inference. Once the priors and the data likelihood are specified, we employ MCMC to
draw samples from the posterior distribution p(Ξ,x0,φ|X). Furthermore, we estimate the PPD (6)
for the reconstruction and forecasting tasks of interest. We employ MCMC algorithms as imple-
mented in the Python library PyMC3 [50]; specifically, for rh-SINDy we use the No-U-Turn Sampler
(NUTS) [28], and for ss-SINDy we use the compound step sampler implemented in PyMC3.

In the UQ-SINDy framework, NUTS leverages the gradients of the SINDy model prediction x̂(t; Ξ,x0)
with respect to Ξ and x0. These gradients are computed using Sunode [53], a Python wrapper for
the CVODES library [52] for solving forward and adjoint ODE problems.

9
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Coefficient Value Coefficient Value

PPDObserved 
Data Mean
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SINDy

Figure 3: UQ-SINDy applied to a synthetic Lotka-Volterra system with lognormal noise. (Above) Marginal
ss-SINDy and rh-SINDy posterior distributions. (Below) Observed (crosses) and predicted time series to-
gether with the corresponding PPD means (dashed lines) and 90% credibility intervals (shaded areas). SINDy
predictions presented as continuous lines.

3.2 Examples and applications

In this section, we apply the spike and slab and regularized horseshoe priors in the UQ-SINDy framework
and illustrate their performance on three examples: two synthetic data sets and one real-world data set of
lynx and hare populations. For each example, we quantify the likelihood of each term of the SINDy library
belonging to the underlying dynamical equations, providing both an estimate of the inclusion probability
and a distribution of likely values for each SINDy coefficient. We compare these results to the original SINDy
algorithm and show that UQ-SINDy significantly outperforms SINDy in identifying the underlying dynamics
for noisy observations.

3.2.1 Lotka-Volterra model

We first study data from the Lotka-Volterra model, also commonly refered to as the predator-prey model,
which is a popular system used to model the interaction between two competing groups [25, 62]. Origi-
nally developed by Lotka to model chemical reactions [37], the system has also been studied as a model in

10



economics [26] and for biological systems [34, 56, 61]. We explore one real-world example in Section 3.2.3.
The Lotka-Volterra model is given by the two nonlinear differential equations

u̇ = αu− βuv
v̇ = −γv + δuv.

(12)

For this example, we simulate the system with the initial condition [u0, v0] = [10, 5] and parameters α =
1, β = 0.1, γ = 1.5, and δ = 0.075, as in [10], which results in a periodic trajectory. We sample 50 snapshots
over a time interval of t ∈ [0, 24]. Additionally, we contaminate this trajectory with lognormal multiplicative
noise with distribution Lognormal(0, 0.1). The lognormal distribution is nonnegative and is commonly used
to model observation errors for state variables restricted to with nonnegative values. The resulting time
series is shown in Figure 3, from which we see that the trajectory covers approximately four periods of
oscillation.

For this example, we normalize the data as a preprocessing step by dividing each time series (of x and
y) by the standard deviation of the data. The normalized data is governed by a differential equation of
the same form as the unnormalized data, but with modified parameters α̃ = 1, β̃ = −0.68, γ̃ = −1.5, and
δ̃ = 0.82. This preprocessing step can be beneficial for systems in which the parameters are of different
orders of magnitude.

We apply UQ-SINDy for both the spike and slab prior (ss-SINDy) and regularized horseshoe prior (rh-
SINDy). We use a library of polynomial terms Θ(u, v) = [1, u, v, u2, v2, uv], resulting in a 6 × 2 matrix of
SINDy coefficients Ξ. The SINDy model then reads[

u̇ v̇
]

=
[
1 u v u2 v2 uv

]
Ξ, u(0) = u0, v(0) = v0.

For the noise level and initial condition we employ the priors σu, σv ∼ Lognormal(µ = −1, σ = 0.1) and
u0, v0 ∼ Lognormal(µ = 0, σ = 1), respectively.

In Table 1, we present the inclusion probability (for ss-SINDy) and pseudo-probability (for rh-SINDy) of
each term in the library. We see significantly higher probabilities for the four true nonzero terms compared to
all other terms, indicating that both ss-SINDy and rh-SINDy correctly identify the structure of the governing
equation. We note that although the inclusion pseudo-probabilities are not constrained between zero and
one, the relevant terms are easily identified with values near to or greater than 1.

In Figure 3, we present the marginal posterior distributions of the SINDy coefficient. From this we
immediately see that for both priors, the parameters that belong to the model have broad distributions
centered about the true means, while the other 8 terms have narrow peaks centered about 0. In Table 1, we
compare the posterior modes of the SINDy coefficients against the true values of the model parameters. We
additionally apply the original SINDy algorithm to the data. We see that SINDy is unable to identify the
correct dynamics due to the presence of observation noise. Furthermore, we note that due to their sparsifying
behaviors, the posterior mode of the SINDy coefficients for both the spike and slab and regularized horseshoe
priors are close to the true values.

In Figure 3, we present the mean and 90% credibility interval of the PPDs of the UQ-SINDy reconstruc-
tions of the system’s states. Furthermore, we also present the prediction using SINDy (solid lines) and the
observed values (crosses). The means of the PPDs for each of the model states are close in value to the
true data and provide an accurate continuous reconstruction of the data. In addition, both the regularized
horseshoe and spike and slab priors result in similar credibility intervals that bound the true samples. The
SINDy reconstruction on the other hand degrades for samples at later times.

Finally, we demonstrate how the UQ-SINDy framework can be used for forecasting. To do this, we first
simulate noisy data over the time interval (24, 48] (black crosses) and use this as our test set (see Figure 4).
We then compute the PPD over the entire time interval [0, 48] by sampling from (6), and plot the mean and
90% credibility interval of this distribution. We find that the mean of the PPD is very close in value to the
true values in the test set. Further, we note that some samples in the test set lie near the bounds of the
credibility intervals. This shows that our credibility bounds are tight and accurately capture the uncertainty
due to measurement noise.
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TRUE SINDy ss-SINDy rh-SINDy
u̇ : 1 0 0.62 0.00 0.02
v̇ : 1 0 0 0.00 -0.01
u̇ : u 1 0.54 1.06 0.98
v̇ : u 0 0 0.00 0.00
u̇ : v 0 -0.49 0.00 -0.01
v̇ : v -1.5 -1.32 -1.44 -1.39
u̇ : uv -0.68 -0.321 -0.73 -0.67
v̇ : uv 0.82 0.71 0.78 0.73
u̇ : u2 0 0 0.00 0.00
v̇ : u2 0 0 0.00 0.00
u̇ : v2 0 0 0.00 0.00
v̇ : v2 0 0 0.00 0.00

ss-SINDy rh-SINDy
u̇ : 1 0.36 0.02
v̇ : 1 0.17 -0.05
u̇ : u 1.00 3.38
v̇ : u 0.13 0.00
u̇ : v 0.27 0.03
v̇ : v 1.00 1.03
u̇ : uv 1.00 1.17
v̇ : uv 1.00 1.17
u̇ : u2 0.09 0.02
v̇ : u2 0.01 0.04
u̇ : v2 0.19 0.04
v̇ : v2 0.03 -0.02

Table 1: (Left) Posterior modes of SINDy coefficients for the Lotka-Volterra model. (Right) Corresponding
inclusion probabilities and pseudo-probabilities.

PPD
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Data Mean
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"

Test Data

Figure 4: Forecasting using ssh-SINDy (left) and rh-SINDy (right) for the Lotka-Volterra model. We train
using samples the time interval [0, 24] (red and blue crosses) and test on samples over the time interval
(24, 48] (black crosses). The mean (dashed lines) and 90% credibility intervals (dashed areas) of the PPDs
are plotted for the entire time interval.

3.2.2 Nonlinear oscillator and model indeterminacy

As a second example, we consider the damped nonlinear oscillator model of the form

u̇ = αu3 + βv3

v̇ = γv3 + δu3.

Following [47], we use the values α = −0.1, β = −2, γ = 2, δ = −0.1 and the initial conditions [u0, v0] = [2, 0].
Data is generated by sampling this model over the interval t ∈ [0, 20] with a sampling period of ∆t = 0.2,
and adding normally distributed observation noise with distribution N (0, 0.022). The observed trajectory
is shown in Figure 5. We use a library of polynomial terms Θ(u, v) = [1, u, v, u2, v2, uv, u3, v3, u

2v, v2u],
resulting in a 10 × 2 matrix of SINDy coefficients Ξ. Since the observation noise is normally distributed
noise we employ the data likelihood in (10). For the noise level and initial condition we employ the priors
σu, σv ∼ Gamma(α = 1, β = 0.1) and u0, v0 ∼ Laplace(µ = 0, b = 1), respectively.

First, we apply SINDy to the data, resulting in the estimated SINDy coefficients presented in Table 2. It
can be seen that SINDy does not identify the relevant terms in the model or correctly estimate the values of
the model parameters. In fact, none of the terms in the SINDy model are zero. This example is particularly
challenging for SINDy because of the sparse data sampling, the size of the library, and the large range of
magnitudes of the nonzero coefficients (specifically, note that |α| and |δ| are much smaller than |β| and |γ|).
Next, we apply ssh-SINDy and rh-SINDy to this data. The posterior modes are shown in Table 2.
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Figure 5: UQ-SINDy applied to a synthetic nonlinear oscillator system with normal noise. (Above) Marginal
ss-SINDy and rh-SINDy posterior distributions. (Below) Observed (crosses) and predicted time series to-
gether with the corresponding PPD means (dashed lines) and 90% credibility intervals (shaded areas).

We present the marginal posterior distributions of the SINDy coefficients in Figure 5. It can be seen
that rh-SINDy correctly identifies the governing equation; specifically, we see that the marginal posterior
distribution of the SINDy coefficients for the terms in the equation are centered away from zero, while the
distributions of all other terms are sharply centered at zero. On the other hand, ss-SINDy identifies the
four terms in the governing equation, while also identifying an additional mode corresponding to a model
without the u̇ : u3 term but with the u̇ : u2v and v̇ : v2 terms. These results are reflected in Table 2, for
which we show the posterior modes of the SINDy coefficients and the corresponding inclusion probabilities
and pseudo-probabilities. For rh-SINDy, the four nonzero terms are clearly identified with modes close to
the true values and inclusion pseudo-probabilities for the four terms close to one. For ss-SINDy, three of the
terms are clearly identified with an inclusion probability close to one, while the terms u̇ : u3, u̇ : u2v and
v̇ : v2 have inclusion probabilities of 0.5, 0.7, and 0.5, respectively.

In Figure 5, we present the mean and 90% credibility intervals of the PPDs of the reconstruction of the
system’s states, together with the training data. Similarly, in Figure 6 we present the 90% credibility intervals
of the PPDs of future state forecasting for testing data over the time interval (20, 40]. Both rh-SINDy and
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TRUE SINDy ss-SINDy rh-SINDy
u̇ : 1 0 0.46 0.00 0.00
v̇ : 1 0 0.06 0.00 0.00
u̇ : u 0 0.54 0.00 0.00
v̇ : u 0 -0.62 0.00 0.00
u̇ : v 0 0.81 0.00 0.00
v̇ : v 0 -0.09 0.00 0.00
u̇ : uv 0 -0.45 0.00 0.00
v̇ : uv 0 -0.14 0.00 0.00
u̇ : u2 0 -1.82 0.00 0.00
v̇ : u2 0 -0.38 0.00 0.00
u̇ : v2 0 0.43 0.00 0.00
v̇ : v2 0 0.34 0.00 0.00
u̇ : u2v 0 0.39 0.00 0.00
v̇ : u2v 0 0.15 0.00 0.00
u̇ : v2u 0 1.37 0.00 0.00
v̇ : v2u 0 -0.22 0.00 0.00
u̇ : u3 -0.1 -1.41 0.00 -0.08
v̇ : u3 2 -0.53 2.04 2.02
u̇ : v3 -2 0.02 -1.96 -1.96
v̇ : v3 -0.1 -0.15 -0.11 -0.12

ss-SINDy rh-SINDy
u̇ : 1 0.00 -0.04
v̇ : 1 0.01 -0.19
u̇ : u 0.10 -0.02
v̇ : u 0.00 -0.07
u̇ : v 0.05 0.03
v̇ : v 0.08 -0.03
u̇ : uv 0.08 -0.02
v̇ : uv 0.06 0.00
u̇ : u2 0.07 0.01
v̇ : u2 0.07 0.00
u̇ : v2 0.14 0.25
v̇ : v2 0.5 -0.01
u̇ : u2v 0.70 0.47
v̇ : u2v 0.17 0.01
u̇ : v2u 0.01 0.38
v̇ : v2u 0.02 0.14
u̇ : u3 0.50 1.24
v̇ : u3 1.00 1.05
u̇ : v3 1.00 0.99
v̇ : v3 1.00 0.82

Table 2: (Left) Posterior modes of SINDy coefficients for the nonlinear oscillator model. (Right) Corre-
sponding inclusion probabilities and pseudo-probabilities.

ss-SINDy lead to similar credibility intervals for both reconstruction and forecasting. We note that the range
of predicted model states is much narrower than for the Lotka-Volterra model, which is expected due to the
lower noise level present in these measurements. We also emphasize that these PPDs are much tighter than
those presented in [66] for this test case, even though we train rh-SINDy and ss-SINDy with substantially
less data than in that work. Furthermore, it can be seen that the test data lies within the 90% credibility
intervals of the PPDs of each state. Although some of the draws from the ss-SINDy PPD contain terms not
in the model, the credibility intervals for both ss-SINDy and rh-SINDy are similar. This suggests that the
ambiguity identified by the spike and slab prior is due to model indeterminacy inherent in this data set.

This indeterminacy can be attributed to the range of values spanned by the coefficients in the governing
equation. In particular, the coefficients of u̇ : u3 and v̇ : v3 are an order of magnitude smaller than the
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Figure 6: Forecasting using ssh-SINDy (left) and rh-SINDy (right) for the nonlinear oscillator model. We
train using samples from the Lotka-Volterra model over the time interval [0, 20] (red and blue crosses) and
test on samples over the time interval (20, 40] (black crosses). The mean (dashed lines) and 90% credibility
intervals (dashed areas) of the PPDs are plotted for the entire time interval.
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Figure 7: UQ-SINDy, with scaled priors for the terms u̇ : u3 and v̇ : v3, applied to a synthetic nonlinear
oscillator system with normal noise. (Above) Marginal ss-SINDy and rh-SINDy posterior distributions.
(Below) Observed (crosses) and predicted time series together with the corresponding PPD means (dashed
lines) and 90% credibility intervals (shaded areas).

coefficients of u̇ : v3 and u̇ : u3. To further investigate this indeterminacy, we re-applied ss-SINDy and rh-
SINDy with αi,j = 0.1 for the terms u̇ : u3 and v̇ : v3. This scaling of the prior incorporates the knowledge
that these two terms have coefficients of magnitude O(0.1). The resulting marginal posterior distributions,
presented in Figure 7, show that this scaling of the prior removes this ambiguity. The corresponding posterior
modes and inclusion probabilities and pseudo-probabilities are presented in Table 3.

3.2.3 Lynx-hare population model

As a final example, we apply ss-SINDy and rh-SINDy as described in Section 3.2.1 to model the population
dynamics of two species in Canada. In particular, we consider data consisting of measurements by the
Hudson Bay Company of lynx and hare pelts between 1900 and 1920 [10, 27] (see Figure 8). The number
of pelts for these two species is thought to be proportional to the true populations. Hares are a herbivorous
relative of the rabbit, while the lynx is a type of wildcat whose diet depends heavily on hares. This predator-
prey interdependence between the two species has been shown to be well characterized to first-order by the
Lotka-Volterra model (12), where u and v correspond to the populations of hares and lynx, respectively.

Figure 8 presents the number of pelts recorded yearly for these two species over 21 years. Modeling
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TRUE ss-SINDy rh-SINDy
u̇ : 1 0 0.00 0.00
v̇ : 1 0 0.00 0.00
u̇ : u} 0 0.00 0.00
v̇ : u 0 0.00 0.00
u̇ : v 0 0.00 0.00
v̇ : v 0 0.00 0.00
u̇ : uv 0 0.00 0.00
v̇ : uv 0 0.00 0.00
u̇ : u2 0 0.00 0.00
v̇ : u2 0 0.00 0.00
u̇ : v2 0 0.00 0.00
v̇ : v2 0 0.00 0.00
u̇ : u2v 0 0.00 0.00
v̇ : u2v 0 0.00 0.00
u̇ : v2u 0 0.00 0.00
v̇ : v2u 0 0.00 0.00
u̇ : u3 -0.1 -0.08 -0.07
v̇ : u3 2 2.03 2.01
u̇ : v3 -2 -1.97 -1.97
v̇ : v3 -0.1 -0.12 -0.12

ss-SINDy rh-SINDy
u̇ : 1 0.00 0.01
v̇ : 1 0.00 -0.01
u̇ : u 0.00 0.02
v̇ : u 0.00 0.03
u̇ : v 0.03 0.01
v̇ : v 0.11 -0.01
u̇ : uv 0.10 -0.03
v̇ : uv 0.10 0.01
u̇ : u2 0.08 0.08
v̇ : u2 0.05 0.00
u̇ : v2 0.17 0.11
v̇ : v2 0.00 0.014
u̇ : u2v 0.00 0.01
v̇ : u2v 0.00 0.03
u̇ : v2u 0.03 -0.56
v̇ : v2u 0.01 -2.53
u̇ : u3 1.00 1.23
v̇ : u3 1.00 1.05
u̇ : v3 1.00 1.00
v̇ : v3 1.00 0.93

Table 3: (Left) Posterior modes of SINDy coefficients, with scaled priors for the terms u̇ : u3 and v̇ : v3, for
the nonlinear oscillator model. (Right) Corresponding inclusion probabilities and pseudo-probabilities.

this data with SINDy is particularly challenging because we have relatively few samples that cover only
two cycles. In addition, factors such as the weather and the consistency of trapping between years adds
uncertainty to the measurements. Here we compare the performance of ss-SINDY, and rh-SINDY for model
discovery under uncertainty. The SINDy library, as in the Lotka-Volterra example, contains all constant,
linear and quadratic terms. In addition, as a preprocessing step we normalize the data as described in
Section 3.2.1

The marginal posterior distributions computed using ss-SINDy and rh-SINDy are presented in Figure 8.
The posterior modes and inclusion probabilities and pseudo-probabilities are presented in Table 4, together
with maximum likelihood estimates of the coefficients of the Lotka-Volterra model for the lynx-hare data [10],
and estimates computed using the original SINDy algorithm. It can be seen that for ss-SINDy the distinct
nonzero peaks corresponding to the terms in (12). The likelihood of these four terms belonging to the model
are very high. We additionally see a small peak near zero for u̇ : u. This term is highly correlated with a
nonzero constant term. We see a similar but more pronounced peak for rh-SINDy. Table 4 shows that ss-
SINDy correctly identifies the Lotka-Volterra model and assigns high inclusion probabilities to the four terms
in such a model. On the other hand, rh-SINDy identifies three of the four terms correctly. Furthermore, it
can be seen that SINDy fails to identify the Lotka-Volterra model, and that the posterior modes for ss-SINDy
and rh-SINDy are closer to the maximum likelihood estimates than the SINDy estimates.

Last, in Figure 8, we present the mean and 90% credibility intervals of the PPDs of the time series
reconstruction. We note that all data lie within these credibility bounds. The SINDy reconstructions, on
the other hand, appear to deviate from the time series for later times.

4 Conclusions and future work

In this work we proposed UQ-SINDy, a new uncertainty quantification framework for identifying governing
ODEs directly from noisy and sparse time series data. We leverage advances in model discovery for dynam-
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Figure 8: UQ-SINDy applied to the lynx-hare population data. (Above) Marginal ss-SINDy and rh-SINDy
posterior distributions. (Below) Observed (crosses) and predicted time series together with the corresponding
PPD means (dashed lines) and 90% credibility intervals (shaded areas). SINDy predictions presented as
continuous lines.

ical systems and sparsity promoting Bayesian inference to identify a sparse set of SINDy library functions
that best explain the observed data, and to quantifying the uncertainty in the SINDy coefficients due to
measurement noise and the probability of inclusion of each term in the SINDy library into the final model.
We have applied UQ-SINDy to two synthetic examples and one real-world example of lynx-hare population
data. By utilizing the spike-and-slab and regularized horseshoe priors, UQ-SINDy yields posterior distri-
butions of SINDy coefficients with truly sparse draws, and thus results in truly sparse probabilistic model
discovery; in contrast, the use of the Laplace prior does not lead to sparse model discovery. We observe that
the proposed approach is robust against observation noise and can accommodate sparse samples and small
data sets.

Going forward, one of the primary limitations of this method is its scalability to very large SINDy
libraries. This is primarily due to the computational cost of sampling high-dimensional posterior distributions
using MCMC. One remedy for this is to use variational inference, which matches classes of distributions
to the posterior distribution by maximizing a lower bound on the marginal likelihood of the data. This
method has been particuarly effective for high dimensional models, most notably neural networks, with
comparable accuracy to sampling-based methods. Furthermore, in this work we are primarily focused on
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Param. est. SINDy ss-SINDy rh-SINDy
u̇ : 1 0 0 0.00 0.01
v̇ : 1 0 0 0.00 0.00
u̇ : u 0.55 0.48 0.47 0.00
v̇ : u 0 0 0.00 -0.01
u̇ : v 0 -0.143 0.00 0.00
v̇ : v -0.84 -0.71 -0.76 -0.7
u̇ : uv -0.455 -0.36 -0.51 -0.42
v̇ : uv 0.5433 0.42 0.52 0.52
u̇ : u2 0 0 0.00 0.01
v̇ : u2 0 0 0.00 0.00
u̇ : v2 0 0 0.00 0.00
v̇ : v2 0 0 0.00 -0.01

ss-SINDy rh-SINDy
u̇ : 1 0.47 0.04
v̇ : 1 0.35 0.00
u̇ : u 0.85 0.01
v̇ : u 0.34 0.02
u̇ : v 0.54 0.00
v̇ : v 0.99 0.73
u̇ : uv 0.96 0.78
v̇ : uv 1 2.01
u̇ : u2 0.581 0.03
v̇ : u2 0.08 0.02
u̇ : v2 0.31 -0.50
v̇ : v2 0.35 -0.06

Table 4: (Left) Posterior modes of SINDy coefficients for the lynx-hare data. (Right) Corresponding inclusion
probabilities and pseudo-probabilities.

situations in which the coordinates that induce a sparse representation are known. However, in general this
“effective” set of coordinates may be unknown. Recent work merges SINDy together with neural network
architectures in order to simultaneously learn parsimonous governing equations and the associated sparsity-
inducing coordinate transformation [15]. Extending UQ-SINDy to this coordinate discovery framework could
greatly improve the robustness of the learning process under uncertainty and the quality of the resulting
forecasts.

Acknowledgements

This research was supported by Laboratory Directed Research and Development Program and Mathematics
for Artificial Reasoning for Scientific Discovery investment at the Pacific Northwest National Laboratory, a
multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract
DE-AC05- 76RLO1830.

References

[1] Bruce Abramson, John Brown, Ward Edwards, Allan Murphy, and Robert L Winkler. Hailfinder: A
bayesian system for forecasting severe weather. International Journal of Forecasting, 12(1):57–71, 1996.

[2] Zhe Bai, Thakshila Wimalajeewa, Zachary Berger, Guannan Wang, Mark Glauser, and Pramod K
Varshney. Low-dimensional approach for reconstruction of airfoil data via compressive sensing. AIAA
journal, 53(4):920–933, 2015.

[3] Nicky Best, Sylvia Richardson, and Andrew Thomson. A comparison of bayesian spatial models for
disease mapping. Statistical methods in medical research, 14(1):35–59, 2005.

[4] Anindya Bhadra, Jyotishka Datta, Nicholas G Polson, Brandon Willard, et al. The horseshoe+ estimator
of ultra-sparse signals. Bayesian Analysis, 12(4):1105–1131, 2017.

[5] Anindya Bhadra, Jyotishka Datta, Nicholas G Polson, Brandon Willard, et al. Lasso meets horseshoe:
A survey. Statistical Science, 34(3):405–427, 2019.

[6] Anirban Bhattacharya, Debdeep Pati, Natesh S Pillai, and David B Dunson. Dirichlet–laplace priors
for optimal shrinkage. Journal of the American Statistical Association, 110(512):1479–1490, 2015.

18



[7] Josh Bongard and Hod Lipson. Automated reverse engineering of nonlinear dynamical systems. Pro-
ceedings of the National Academy of Sciences, 104(24):9943–9948, 2007.

[8] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. Proceedings of the national academy of sciences,
113(15):3932–3937, 2016.

[9] Steven L Brunton, Jonathan H Tu, Ido Bright, and J Nathan Kutz. Compressive sensing and low-rank
libraries for classification of bifurcation regimes in nonlinear dynamical systems. SIAM Journal on
Applied Dynamical Systems, 13(4):1716–1732, 2014.

[10] Bob Carpenter. Predator-prey population dynamics: The lotka-volterra model in stan. Pridobljeno s
https://mc-stan. org/users/documentation/case-studies/lotka-volterra-predator-prey. html [28. 8. 2019],
62, 2018.

[11] Carlos M Carvalho, Nicholas G Polson, and James G Scott. Handling sparsity via the horseshoe. In
Artificial Intelligence and Statistics, pages 73–80, 2009.

[12] Carlos M Carvalho, Nicholas G Polson, and James G Scott. The horseshoe estimator for sparse signals.
Biometrika, 97(2):465–480, 2010.
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