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A ‘simple metal’ description of liquid carbon, its warm-dense matter states, and the
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Liquid carbon is a complex fluid whose theory is claimed to require explicit covalent interactions
and many-center potentials. Thus very expensive N-atom quantum simulations for N ∼ 100− 500
using density-functional theory (DFT), and molecular-dynamics (MD) are usually deployed. They
show intriguing structure factors with a split first peak and features not found in simple metallic
liquids. We show that a simple-metal model using only one-body electron densities, one-body
ion densities, and appropriate exchange-correlation functionals implemented in the one-atom DFT
approach of the neutral pseudo-atom (NPA) model, quantitatively and inexpensively recovers the
results of N-atom DFT simulations. We show that structural changes are dominated by strong
electron-ion interactions at the Fermi energy. Evidence is presented for three liquid-liquid phase
transitions in the 3 to 4 g/cm3 range using NPA calculations supported by DFT-MD simulations.

PACS numbers: 62.50.-p, 52.25.Fi, 81.05U-, 78.70.Ck

Introduction - Many light elements such as H, B, C,
N, Si, P, and their mixtures form strong covalency in
the solid. They seem to retain some of this bonding on
melting [1–4] and even in warm-dense-matter (WDM)
regimes [5–9]. A theory for reliably and inexpensively
predicting the properties of these materials is needed in
technological applications. Their properties under high
densities ρ̄ and temperatures T are needed in high-energy
density physics [10, 11] and astrophysics [12–14]. Besides
technological interests, the quantum theory of its liquid
state has provoked great interest since the 1980s [1, 9].
We focus on basic issues of wider interest and the in-

triguing interactions in “tetrahedral fluids”, typified by
liquid carbon (l-C) where such effects are strongest. A
large effort, using chemical bonding models treat these
electron-ion systems via multi-center ion-ion potentials,
with the electron subsystem integrated out. Within such
models, pair-potentials cannot stabilize diamond struc-
tures without at least “three body forces”, as in, say, the
Stillinger-Weber model [16].
This paradigm uses potentials with hundreds of pa-

rameters fitted to data covering wide ranging densities
ρ̄, temperatures T and structures. Yet, even a model for
liquid aluminum at finite T , a trivial problem in standard
liquid-metal theory, requires over forty parameters in cur-
rent effective medium theories [17]. Nevertheless, these
multi-center potentials give disappointing results for liq-
uid carbon [7]. Glossli et al. [3] using the Brenner poten-
tial found a liquid-liquid phase transition (LPT) between
a sp3 bonded high density liquid and an sp, sp2 bonded
low density liquid. However, a DFT-MD study using
the Perdew-Burke-Ernzerhof (PBE) exchange-correlation
(xc) functional [22] found no such LPT [3, 23]. Here we
report LPTs revealed by one-center DFT methods and
confirmed by standard N -center DFT-MD simulations.

∗ Email address: chandre.dharma-wardana@nrc-cnrc.gc.ca

The DFT-MD method implemented in codes, e.g.,
VASP [25] or ABINIT [24] will be denoted ‘Quantum
MD’ (QMD) for brevity. It treats the liquid as an av-
erage over many realizations of a periodic cluster of N -
atoms in the simulation cell. It is anN -center DFT for an
N -center electron density n(~r, ~R1, · · · , ~RN ). Such com-
plex densities are sensitive to the electron xc-functional
used. Remsing et al. [26] showed that the VASP re-
sults for l-Si from the PBE functional differed signifi-
cantly from those of the ‘strongly constrained and ap-
propriately normed’ (SCAN) functional [27]. Expensive
force-matching methods [17, 28] and decompositions of
N -body properties [18, 19] are needed to extract individ-
ual atomic or pair properties from QMD calculations.
According to Hohenberg and Kohn, one-body densities

of electrons and ions are sufficient for a complete thermo-
dynamics of any electron-ion system. A one-atom DFT is
utilized in the neutral-pseudo-atom (NPA) method used
here. It is an ‘average-atom’ model [20, 21], but not
restricted to high T . It was recently used for super-
cooled l-Si, a complex ‘tetrahedral’ liquid [30, 31, 33].
The many-ion and many-electron effects are included
in the NPA via suitable ion-ion, electron-electron and
electron-ion exchange-correlation (xc) functionals of the
one-body electron density n(~r) and the one-body ion den-
sity ρ(~r) [32, 34].
Unlike the Si4+ ion with a robust core, the point-

like C4+ ion produces strong interactions, especially in
the low-ρ̄, low-T region. Stanek et al. [28] showed that
the use of linear-response (LR) potentials generated from
NPA for l-C at the “graphite density” ρG ≃ 2.267g/cm3

at low T strongly over-estimated the first peak in the
NPA pair distribution function (PDF). Linear respons is
known to fail for expanded metals at low T .
In the NPA a carbon nucleus is at the origin of l-

carbon, a uniform system with a free electron density
n̄. It acquires a bound electron density nb(r) within its
Wigner-Seitz sphere of radius rws, a free electron distri-
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bution nf (r) and an ion distribution ρ(r) covering the
whole volume, with a mean density ρ̄.
QMD and NPA calculations show that the average ion-

ization Z̄ = 4 for the ρ̄, T studied here [1, 5]. The C-C
bonds (single, double etc.,) have a bond energy Eb of the
order of ∼ 4-8 eV [35]. However, a WDM medium con-
taining free electrons produces screening effects causing
the band gap to close on melting, with the conductivity
and reflectivity sharply increasing. However, a peak at
the C-C distance of 1.4 Å is found in the gcc(r) QMD
simulations [1] and even in early NPA calculations [9].
The NPA calculation provides the free electron den-

sity nf(r) and the excess free electron density ∆nf (r) =
nf (r) − n̄ at a carbon ion carrying its bound shell of
electrons, as discussed in more detail in SM[29] which
is given here as an Appendix. The Fourier transform
∆nf (k) serves to construct pair potentials.
Pseudopotentials and pair potentials in l-C – The N -

center QMD calculations provide an N -center poten-
tial energy surface used to construct force-matched pair-
potentials. The electrons have been eliminated from
such potentials [17]. In contrast, the NPA treats a two-
component system of electrons and ions, and forms a
pseudopotential Uei(k) for the specified n̄, T (see Fig. 1).
The simplest local linear-response (LR) potential is:

Uei(k) =
∆nf (k)

χ(k, n̄, T )
, Uei(k) = −ZVkMk, (1)

Here χ(k) is the linear response of the interacting elec-
tron fluid at n̄, T , discussed further in the Appendix given
as Supplemental Material [29]. The Coulomb potential
Vk and the form factor are 4π/k2, Mk respectively. The
pseudopotential is in LR, but ∆nf (k) has all the non-
linear effects of the Kohn-Sham calculation. The nonlin-
earities in the fluid response are not treated as the re-
sponse function χ(k) is based on plane waves. The limits
of validity of the LR Uei(k) are discussed in Ref. [36]. It
fails for low ρ̄, T when non-linear effects prevail.
In Fig. 1(a) we display the pseudopotential for a range

of densities, for T = 1 eV. With Z = 4, l-C is a dense
electronically degenerate metal even at 1 eV, even for
2.5g/cm3 when rs ≃ 1.48 and EF ≃ 23 eV. Essentially
all electron-ion scattering occurs at the Fermi energy EF ,
with a momentum transfer q = 2kF , where KF is the
Fermi momentum.
A sharp change in Mk occurs just below 5g/cm3 as

seen from Fig. 1(a). Then, near the ‘diamond density’
ρD, viz., ≃ 3.52g/cm3 Mk at k = 2kF passes through
zero and changes sign (curve with circles). This suggests
that the LR Uei(k), Eq. 1, begins to fail for ρ̄ ≤ ρD even
though the electron density is high. However, we display
the linear-response Uei(k) and the calculated S(k) even
for densities below ρD in Fig. 1, as they indicate when
non-linear effects become important in the range ρD >
ρ̄ ≥ ρG. Figure 1 shows that LR is unacceptable below
ρ̄ ∼ 3 g/cm3 and T = 1 eV.
The LR pseudopotential defines a pair potential in
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FIG. 1. (Color online) (a) The LR-NPA pseudopotential
Uei(k) from Eq. 1 for l-carbon at 1 eV for 2.5g/cm3

≤ ρ̄ ≤

10g/cm3. The Uei is invariant betwenn 5-10g/cm3 and a sharp
change occurs below 5g/cm3. The Uei(k = 2kF ) → 0 at
ρD ≃ 3.5g/cm3 (line with circles). Panel (b) shows typical
S(k) using the LR-Uei(k) and the electron fluid response func-
tion χee(k, T, n̄). The unconnected symbols for ρ̄ ≥ 5g/cm3

are the QMD S(k) of Ref. [5] using the PBE functional. The
smooth curves are NPA calculations. The high-K subpeak
(marked Hk) falls on 2kF for ρ̄ ≥ 3g/cm3. We compare the
LR-NPA S(k) and QMD-SCAN S(k) at 3 g/cm3, and 2.5
g/cm3 showing that LR-NPA is unacceptable below 3 g/cm3.

second-order perturbation theory:

Vii(k) = Z2Vk + |Uei(k)|
2χ(k, rs, T ) (2)

This implies that at ρD the pair potential at 2kF becomes
just Z2VkF

since M2kF
= 0. The pair potential is that

of two unscreened carbon ions if non-linear effects are
neglected. Our NPA and QMD calculations detect an
LPT very near this density.
The ion distribution ρ(r) = ρ̄g(r) is given by the ion-

DFT equation using the pair-potential Vii(r) and the
ion-ion xc-functional. This amounts to solving a hyper-
netted-chain (HNC) equation containing a bridge func-
tion [32], to yield the g(r) and the S(k) of the ion subsys-
tem. In Fig. 1(b) we compare the NPA and QMD results
of Ref. [5] where the PBE xc-functional has been used.
The first peak of S(k) displays lower-k (Lk) and higher-

k (Hk) subpeaks. The interactions occur via strong elec-
tron scattering at the Fermi surface, with a momentum
transfer of q = 2kF . The fluid responds by creating
the high-k peak Hk as close to 2kF as possible for flu-
ids with ρ̄ >∼ 3 g/cm3 as shown in panel (b). This
occurs if enough atoms occupy the first turning point of
the Friedel oscillations of the pair-potential, while excess
atoms move to the lower-k (i.e., more distant) weaker
minima, and vice versa depending on the fluid density.
The electron xc-energy favours a high-density electron

fluid, i.e., a shell of atoms even in a positive energy ledge
of the pair-potential (Fig. 2). This is less advantageous
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FIG. 2. Color online (a) A comparison of the C-C pair
potentials from a force-matched DFT-MD calculations at
ρ3=3.27g/cm3 [6] with the NPA pair potential in LR. The
force-matched DFT-MD potentials fail to recover the higher
Friedel oscillations (for r > 5 a.u.) seen in the NPA poten-
tials. (b)The same data are shown on a log-scale (y-axis).
The maximum of the g(r) at this density corresponds to the
positive energy ledge for this range of densities. The extent
of the agreement of the the g(r), S(k) from the NPA and the
QMD simulation [6] for this case was discussed in Ref. [37]

at lower density and the peak Hk at 2kF grows at the ex-
pense of Lk, as seen in Fig. 1. The LR-pseudopotential
at 2kF , i.e., Uei(2kF ) becomes zero at about the diamond
density, ρD ∼ 3.5g/cm3, and changes sign for lower den-
sities. Coherent scattering from atoms positioned in the
Friedel minima contribute coherently to the subpeak Hk
in S(k) at 2kF . This coherence links the coordination
number with the liquid phases of a homogeneous fluid.
The ion distribution modifies itself to minimize the en-

ergy of the system in two ways: (i) its Hk peak locates
itself as closely as possible to 2kF . (ii) At densities below
ρD, the first atomic shell attempts to still retain a high
coordination number Nc at the expense of outer shells.
Even when ρ̄ is low, the local density of the fluid adjusts
to bring Hk to 2kF , lowering the free energy via strong
scattering at EF . That is, atoms may be drawn towards
the central ion by decreasing the depths of secondary
Friedel minima. This is favourable for Nc ≥ 6.
Evidence for LPTs in liquid carbon. Here we limit our-

selves to the ρ̄ ≥ 2.9 g/cm3 range where the LR forms
for Uei(k), Vii(k), S(k) etc., adequately agree with QMD
results without non-LR modifications. We examine the
pressure and the compressibility for signs of LPTs using
the NPA for ρ̄ > 2.9g/cm3, thus excluding the low ρ̄ ex-
plored in Ref. [38]. We find three LPTs labeled LPT3,
LPT3.5, and LPT3.75, as they occur at ρ̄ ≃ 3.15, 3.5,
and 3.75 g/cm3 in the NPA calculations. The QMD re-
sults confirm them, at slightly shifted ρ̄ values. Thus the
LPT3.5 occurs at 3.42g/cm3 in the QMD-SCAN data.
Figure 3(a) displays the pressure from the N -atom

QMD calculation of Ref. [5], using N = 196 to 256 atoms
and the PBE xc-functional. Our QMD calculation for
ρ̄ < 4g/cm3 using the SCAN functional with N = 108
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FIG. 3. (Color online) (a) The pressure at 1 eV from
QMD-PBE [5], QMD-SCAN and NPA calculations. The
k → 0 of S(k), viz., S(0) = κ/κ0 where κ is the isother-
mal compressibility displays discontinuities (arrows) at the
P -discontinuities. The pressure at 10 eV shows no discon-
tinuities. (b) The discontinuities in the NPA pressure at
1 eV support three LPTs at ρ̄ ∼ 3.15, ∼ 3.52, and 3.75
g/cm3. The data points above and below ρ̄ ≃ 3.42g/cm3

from QMD-SCAN accurately fall on straight lines intersect-
ing at ρ̄ ≃ 3.42g/cm3 if a single Gaussian is fitted to the QMD
P -distributions. However, the spread of the SCAN-QMD P
distributions (labeled SCAN-∆P , ×3.3) increase (arrows) at
LPT3 and LPT3.75 and use a two-Gaussian fit (see Fig. 4).

atoms is also shown. The NPA, PBE and SCAN cal-
culations of P differ by about the same magnitude in
this region. It also displays the NPA pressure and the
isothermal compressibility via the limit S(k → 0), i.e.,
S(0) = κ/κ0. Here κ0 = 1/ρ̄T is the ideal fluid com-
pressibility. The S(0) calculation is independent of the
pressure calculation. Hence discontinuities in the pres-
sure, and in S(0) independently support one another.
The P data at 10 eV show no discontinuities.
Fig 3(b) displays the 2.9 ≤ ρ̄ ≤ 4 g/cm3 range. The

QMD-SCAN pressure confirms the LPT3.5 seen in the
NPA, while the other two LPTs seen in the NPA require
a deeper examination of the QMD-SCAN pressure data.
The fluctuations in the pressure within an equilibri-

ated MD run fall on a Gaussian distribution (see SM[29],
i.e., the Appendix) for a uniform fluid. The width of
P fluctuations in the QMD-SCAN (labeled SCAN-∆P )
change significantly near the discontinuities (vertical ar-
rows, Fig. 3) at LPT3 and LPT3.75. It is found that
the P distributions at LPT3 and LPT3.75 are best fitted
with two Gaussians instead of one, giving two pressure
peaks (Fig.4). At LPT3.5 the distribition is not bimodal
(see SM, or Appendix). Thus at 3.1g/cm3, two contribu-
tions at 70% and 30% give the average QMD-SCAN P
shown in Fig. 3. The need for two-Gaussians at LPT3 and
LPT3.75 to describe the QMD P confirms the NPA pres-
sure discontinuities for a uniform fluid. QMD averages
over clusters, does not demand microscopic uniformity,
and fails to reveal these LPTs explicitly.
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FIG. 4. The P -distribution from QMD-SCAN calculations.
(a) 2.9g/cm3 and (b) 3.1g/cm3, at LPT3. While the 2.9g/cm3

case fits to one Gaussian, that at 3.1g/cm3 is best fitted with
two Gaussians, implying an inhomogeneous plasma at the
LPT. This is also the case for LPT3.75, but the LPT3.5 is
not considered bimodal (for more details, see Appendix).

1 2 3 4

r/r
ws

0

0.4

0.8

1.2

1.6

V
(r

)/
T

2 3 4
r/r

ws

0

0.1

V
(r

)/
T

4.0
3.6
3.3
2.9

FIG. 5. C-C pair potentials at densities in regions separated
by the discontinuities in the NPA pressure. The densities
shown (4, 3.6, 3.3, 2.9 g/cm3) are for regions where the co-
ordination numbers Nc ∼ 10, 8, 6, and NC < 6 prevail. The
discontinuities imply LPTs in the NPA calculation. The QMD
data imply an LPT separating the Nc = 6 and 8 regions.

There are corresponding discontinuities in S(0) since
the fluid compressibility changes sharply at the LPTs,
while Z̄ remains constant. Astrophysics studies [13] of
carbon even at 100 eV have shown discontinuities near
ρ̄ ∼ 3g/cm3 in several physical properties.

Discussion – The S(k) data have shown that the ionic
structure of the fluid is determined by strong electron
scattering across the Fermi surface, and by the Friedel
oscillations of the pair-potentials. This ‘Coulomb fluid’
model of l-carbon provides a complete account of the
structural and thermodynamic properties of l-carbon
without invoking covalent bonds, using only simple LR
pair-potentials. The covalent bonds are mere transient

bonds, lasting the life-time of longitudinal phonons, while
DFT deals with thermodynamic (ω → 0) averages.
The LPTs implied by the discontinuities in P and

in κ seen in Fig. 3 in NPA occur near densities ∼
3.15, 3.54, 3.75 g/cm3 at 1 eV, with the coordination
number Nc changing to 6, 8, and 10 respectively (see
SM, i.e., Appendix). The LPT3.5 near ρ̄D, Nc = 8 → 6 is
clearly seen in the QMD-SCAN P data that accurately
fall on two straight lines crossing at 3.42 g/cm3. The
change in Nc follows a change in the sign of the NPA
pseudopotential at the diamond density, when Uei(2kF )
becomes zero.
The three LPTs occur while the fluid conserves the

structure of S(k) near 2KF at each change of Nc, while
Z̄ also remains constant. Hence the conductivity may be
continuous across these LPTs. However, a slight discon-
tinuity is seen at the LPT3.5 as discussed in the SM (i.e.,
Appendix) [29].
The minima in the pair potential V (r) (Fig. 5) are all

positive in the high density region (e.g., ρ̄ = 4 g/cm3),
with Nc ∼ 10 or more. The next lower density region
develops a deeper first minimum and negative secondary
minima. The third region (e.g. ρ̄ = 3.3g/cm3) pulls in
ions to the center by making the secondary minima less
attractive. In the lowest density region the first mini-
mum becomes very deep, and eventually becomes nega-
tive enough to form persistent covalent bonding.
The NPA calculation is for a uniform fluid where the

2kF scattering is tightly linked to the liquid structure and
the coordination number through the Friedel minima in
the pair potential that correlate the whole fluid. Density
fluctuations near a phase transition become very long
ranged. Large-N QMD simulations may be necessary
to recover such effects. If not, the sharp transition gets
‘rounded off’, unless at least one phase is a crystalline
solid. It is hypothesized that l-carbon passes from a uni-
form fluid to a higher-density uniform fluid at 3.5g/cm3

LPT which is a first-order transition. The LPTs at 3.15
and 3.75 g/cm3 show discontinuities only in the com-
pressibility. They may involve narrow amorphous inter-
mediates bridging uniform phases, since the QMD pres-
sure distributions at these LPTs fit to two Gaussians.
In conclusion, the ionic and electronic structure of

l-carbon can be accurately modeled as that of a uni-
form liquid metal whose structure is dominated by strong
electron-ion interactions at the Fermi surface. We find
three liquid-liquid phase transition at 1 eV in the range
2.9-4.0 g/cm3 studied in detail here, as confirmed by both
NPA and QMD calculations.

Appendix

Supplemental Material in support of the main text
titled: A ‘simple metal’ description of liquid carbon,
its warm-dense matter states, and the identification of
liquid-liquid phase transitions.
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Here we use the same abbreviations, acronyms and
units (Hartree atomic units) as defined in the main text.
This supplemental material (SM) deals with the follow-
ing topics.
(i) Details of the QMD-SCAN calculations used in this
study
(ii) The Gaussian distributions for QMD-SCAN esti-
mates of the equilibriated pressure.
(iii)One-atom density functional theory used in the NPA
(iv) The linear-response (LR) potentials and the electron
response function used in the NPA method.
(v)Examination of the origin of discontinuities in the
pressure.
(vi)The electrical conductive of liquid carbon.

Details of the QMD-SCAN calculations used here.
We have used finite-T DFT-MD (QMD) calculations
where classical molecular dynamics is used to evolve 108
ions in a cubic simulation cell, while the electrons, with
four ionized electrons per carbon atom are treated quan-
tum mechanically using density functional theory. The
numerical code implemented in the Vienna ab initio sim-
ulation package VASP 5.4.4 [25], and the projector aug-
mented wave pseudopotential for the interaction between
the nuclei and the electrons provided in VASP were used.
The exchange and correlation potential is approximated
by the SCAN functional which has been found to per-
form better for systems with covalent interactions [26].
The simulations used an energy cutoff of 414 eV and a
simulation time of 4 ps. The ion temperature was con-
trolled with a Nosé thermostat, and enough empty bands
were included to ensure that the highest energy bands
had negligible occupations. Evaluations of the Brillouin
zone were performed at the Baldereschi k-point [39].

The Gaussian distributions for QMD-SCAN estimates
of the equilibrium pressure.
Since the evidence for the LPTs are to be based on breaks
in the predicted pressure, particular care was used to de-
termine the equilibrium pressure from the simulation in a
consistent, non-subjective manner. The QMD simulation
records a distribution of pressures around the thermody-
namic mean value, and they form a Gaussian distribution
for a uniform fluid at equilibrium. Hence the simulation
data were fitted to a Gaussian and the most probable
pressure was determined from the peak of the Gaussian.
In two cases, viz., near the LPT3 and LPT3.75, an aver-
age over two Gaussians seemed more appropriate. This
is illustrated in Figs. 6 and 7.

The pressure evaluated in this manner, using the
SCAN XC-functional is plotted as SCAN-P in Fig. 3(b)
of the main text. The width of the unnormalized
Gaussian distribution, ∆P is used to characterize the
density fluctuations in the system and displayed in panel
(b) of Fig. 3 of the main text, and labeled SCAN-∆P .
Using the fit form f(p) = a exp{−w2(p − pm)2} for the
frequency of occurrence of the pressure, pm is the mean
pressure, while w was taken as a measure of the width
of the distribution. The width has been multiplied by a
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FIG. 6. (Color online) (a) Pressure ‘readings’ at 1 eV from a
DFT-MD simulation using 108 atoms at 3.1 g/cm3 very close
to the LPT3. The ‘run number’ is an arbitrary index. (b) The
pressure ‘readings’ are fitted to a Gaussian (unnormalized),
and the equilibrium pressure is taken to be that correspond-
ing to the maximum of the Gaussian. In the present case a
bimodal character is clear and a sum of two Gaussians with
weights of 0.699 and 0.301 is appropriate, as in Fig. 4 of the
main text.

factor of 3.3 in order to plot it in the same range as the
other curves.

The one-atom density functional theory used in the
NPA. Detailed discussions of the NPA may be found in
several recent publications [28, 33], besides some of the
earlier publications [30–32]. In this study, the density
ρ̄, and temperature T (in energy units) are such that
the carbon atom is found to carry only the 1s shell of
bound electrons, providing a very simple model of an
atom in a plasma. Hence, for simplicity of discussion we
develop the two coupled DFT equations, i.e., for elec-
trons and for the ions that are solved in the NPA, in
the following simplified form where Hartree atomic units
(|e| = ~ = me = 1) are employed.
In our ‘one-atom’ DFT model, coupled equations re-

sulting from the stationary condition of the grand poten-
tial Ω(n, ρ) considered as a functional of the one body
electron and ion densities n(r), ρ(r) are solved. A single
carbon nucleus is taken as the origin, and immersed in
the electron and ion distributions of the fluid, forming
the system to be considered. Initially, suitable trial val-
ues of n(r) and ρ(r) are assumed. The coupled equations
are:

δΩ [n, ρ] /δn = 0 (A.1)

δΩ [n, ρ] /δρ = 0 (A.2)

where the functional derivatives are implied. The first
of these reduces to the familiar Kohn-Sham equation for
the electron density around the nucleus, while the second
reduces to a classical DFT equation for the ion distribu-
tion.
A bare carbon nucleus of charge Zn is the origin
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FIG. 7. (Color online) (a) Pressure ‘distributions’ at 1 eV fitted to Gaussians. The distributions at LPT3 and LPT3.75 use a
two-Gaussian fit. Although there is a discontinuity in the QMD-SCAN pressure at 3.42g/cm3 , the P distribution at 3.4g/cm3

shows no clear tendency to a bimodal distribution

of coordinates of the uniform system of electrons and
ions. Spherical symmetry is applicable, as we consider
a uniform fluid. The inhomogeneous densities n(r), ρ(r)
around the carbon nucleus become the ‘bulk’ densities
n̄, ρ̄ at large distances r → Rc, where Rc is the about
ten Wigner Seitz (WS) radii. A shorter Rc ∼ 5rws can
be used at higher temperatures. Here rws is given by
rws = {3/(4πρ̄)}1/3. Thus, unlike in average-atom (AA)
models where the electrons of an ion are confined to
the WS-sphere within which the Kohn-Sham equation
is solved, the NPA uses the large ‘correlation sphere’
of radius Rc in solving the DFT equations. The pair-
distribution functions (PDFs) gab(r), a = e, i refer to
electrons or ions and describe the structure of the en-
vironment where the carbon atom is placed. Then

ρ(r) = ρ̄gii(r), n(r) = n̄gei(r) (A.3)

The PDF gii(r) will be referred to as g(r) for brevity.
The grand potential can be written as

Ω = T [N, ρ] + Ωe +Ωei +Ωi. (A.4)

Here T [n, ρ] is the kinetic energy functional of a nonin-
teracting system having the exact interacting densities.
A simplified form for Ωe is given below merely for ease of
presentation, assuming a point ion-model Uei(r) = −Z̄/r
for the electron-ion interaction. The ion contribution Ωi

is also discussed below. The more complete model, ap-
plicable even to ion mixtures is found in Refs. [30, 31]
and used in the computations .

Ωe = −

∫
dr

Zn

r
n(r) +

1

2

∫
drdr′

n(r)n(r′)

|r− r
′|

+

∫
drF xc

ee [n]− µe

∫
drn(r), (A.5)

Ωei = −

∫
drdr′

Z̄ρ(r)n(r′)

|r− r
′|

+

∫
drF xc

ei [n, ρ] (A.6)

Note that three-body and higher contributions beyond
pair interactions are all contained in the XC-functionals,
and are not neglected in the theory. The one-atom DFT
approach (viz., the NPA) does not use an N -center po-
tential energy surface due to the ions for the Kohn-Sham
electrons, as is the case with the N -atom DFT deployed
in VASP [25] and similar codes. What we have is the
appropriate one-atom mapping of the N -atom DFT cal-
culation.
We have used in Eq. A.5 a point-ion model −Z̄/r for

the electron-ion interaction of the field ions only for sim-
plicity of presentation. In actual calculations a local
pseudopotential Uei(q) = −Z̄VqMq, where Vq = 4π/q2

and a form factor Mq are used. The form factor, and
the corresponding ion-ion pair potential are also deter-
mined self-consistently from the NPA, as discussed else-
where [28, 30, 31]. Non-local forms of the pseudopotential
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TABLE I. . The pressure at 1 eV without (labeled no B) and
with (labeled with B) bridge corrections, and the correspond-
ing hard-sphere packing fraction η for selected densities.

ρ g/cm3 3.0 4.0 8.0

P TPa, no B 0.03413 0.1705 1.540

P TPa, with B 0.03359 0.1700 1.538

η 0.1080 0.2030 0.3515

have not been found necessary for NPA calculations for
uniform-density warm dense fluids or for cubic solids.

The ion contribution Ωi, though not displayed with
the equations, can be obtained from the above equa-
tions by appropriately replacing n(r) by Z̄ρ(r) if the ion-
electron interaction is modeled by point ions, while also
replacing F xc contributions appropriately. The electron-
ion xc-functional F xc

ei is usually neglected in most NPA
calculations, being largely equivalent to making the
Born-Oppenheimer approximation, and neglecting cer-
tain correlation corrections of the from 〈n(r)ρ(r′)〉 −
〈n(r)〉〈ρ(r′)〉. This is equivalent to using a ‘random-
phase’ approximation for the electron-ion response func-
tion. This is appropriate for dense uniform fluids of car-
bon studied here. However, such correlations may be
important at low densities, and with composite carbon
grains and amorphous systems.

The stationary condition on Ω under functional varia-
tion δn leads to the usual Kohn-Sham (KS) equation for
electrons moving in an effective potential Ue(r). Func-
tional differentiation with respect to δρ leads to an equa-
tion identifiable with the modified hyper-netted-chain
(MHNC) equation if the ion-ion XC-functional is iden-
tified with the hyper-netted-chain (HNC) diagrams and
bridge diagrams used for classical systems. The ions are
classical in the regime of study, and there is no exchange
contribution. Then the effective classical KS potential
for the ions can be identified with the ‘potential of mean
force’, Uii(r) (see Sec. III of Ref. [32]) of classical statis-
tical mechanics.

The bridge contributions can be included using the
hard-sphere model, with the hard sphere packing frac-
tion parameter η selected using the Lado-Foils-Ashcroft
criterion [40]. We find that the inclusion of bridge correc-
tions has only a negligible effect for l-carbon in the range
of ρ̄, T studied here. Typical values are given below

In solving the Kohn-Sham equation, the field ion dis-
tribution ρ(r) = ρ̄g(r) occurring in Ωe(r),Ωei(r) as well
as in the corresponding KS equation δΩ/δn is replaced
by ρ̄gcav(r), where gcav(r) is a model ion-ion PDF which
is just a spherical cavity of radius rws. Hence solving
the electron KS equation coupled to the ion KS equa-
tion is much simplified, and the only parameter associ-
ated with the ion distribution that has to be varied self-
consistently is the ion Wigner-Seitz radius rws appropri-
ate to a given free electron density n̄ given as the input.

Thus the primary input variable is the free electron den-
sity, for a given temperature and nuclear charge. The
equilibrium ion density ρ̄ is determined for each given n̄
in this manner, while solving the electron KS equation
self-consistently, starting from a trial n(r) and Z̄. At the
end of the calculation, the effect of the cavity distribu-
tion is subtracted off using linear response theory. This
provides us the nonlinear response (Kohn sham electron
density) of an interacting uniform electron fluid to the
carbon ion with its set of bound electrons.

The self-consistent solution for the continuum and
bound state solutions is constrained to satisfy the Friedel
sum rule and verified for satisfying the f -sum rule. The
xc-functional used for the electron KS equation is the
finite-T xc-functional of Perrot and Dharma-wardana [41]
within the local density approximation (LDA). The xc-
functional depends on T/EF , where EF is the Fermi
energy of the free electrons. The electron system is a
strongly degenerate quantum gas in the system under
study. A comparison of the finite-T xc-functional used
here with the parametrization due to Dornheim et al. [42]
fitted to quantum Monte Carlo data showed good agree-
ment [43].

This partial decoupling of the electron Kohn-Sham
equation and the ion Kohn-Sham equation used in the
NPA implementation is possible because the electron
Kohn-Sham equation is found to be only weakly de-
pendent on the details of gii(r) for r > rws. As al-
ready noted, we use the free electron part of n(r), viz.,
nf (r) = n̄ + ∆nf (r) obtained from the KS equation to
construct the ∆nf (r) that would be obtained if there
were no gcav(r), using linear response (LR) theory. The
corrected ∆fn(r) is the response of a uniform electron
fluid (in the presence of a non-responding neutralizing
uniform ion background) to the carbon ion of charge Z̄.
Hence this corrected ∆nf (r) may be regarded as being
independent of the assumed form of g(r) in solving the
electron KS equation, as long as it satisfied basic criteria
in regard to charge neutrality and the perfect screening
sum rule.

Once the electron Kohn-Sham equation is solved using
gcav(r), we already have the three quantities n̄, Z̄ and
hence ρ̄. We also have the KS eigenfunctions φν(r)
and eigenvalues ǫν , with ν = n, l for bound states, and
ν = k, l for continuum states, with ǫk = k2/2, together
with the phase shifts δkl. These satisfy the Friedel sum
rule and the simple charge neutrality condition n̄ = Z̄ρ̄.

The linear response (LR) function of the electron fluid
and its use in calculating the pseudopotential. The KS
calculation for the electron states for the NPA in a fluid
involves solving a simple radial equation. The contin-
uum states φk,l(r), ǫk = k2/2, with occupation numbers
fkl, are evaluated to a sufficiently large energy cutoff
and for an appropriate number of l-states (typically 9
to 39 were found sufficient for the calculations presented
here). The very high-k contributions are included by a
Thomas-Fermi correction. This leads to an evaluation
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of the free-electron density nf (r), and the free-electron
density pileup ∆n′(r) = nf(r)− n̄. A part of this pileup
is due to the presence of the cavity potential. This con-
tribution m(r) is evaluated using its linear response to
the electron gas of density n̄ using the interacting elec-
tron response χ(q, Te). The cavity corrected free-electron
pileup ∆nf (r) = ∆n′(r) − m(r) is used in constructing
the electron-ion pseudopotential as well as the ion-ion
pair potential Vii(r) according to the following equations
(in Hartree atomic units), given for Fourier-transformed
quantities:

Uei(k) = ∆nf (k)/χ(k, Te), (A.7)

χ(k, Te) =
χ0(k, Te)

1− Vk(1−Gk)χ0(k, Te)
, (A.8)

Gk = (1− κ0/κ)(k/kTF); Vk = 4π/k2, (A.9)

kTF = {4/(παrs)}
1/2; α = (4/9π)1/3, (A.10)

Vii(k) = Z2Vk + |Uei(k)|
2χee(k, Te). (A.11)

Here χ0 is the finite-T Lindhard function, Vk is the bare
Coulomb potential, and Gk is a local-field correction
(LFC). The finite-T compressibility sum rule for elec-
trons is satisfied since κ0 and κ are the non-interacting
and interacting electron compressibilities respectively,
with κ matched to the Fxc(T ) used in the KS calcu-
lation. In Eq. A.10, kTF appearing in the LFC is the
Thomas-Fermi wavevector. We use a Gk evaluated at
k → 0 for all k instead of the more general k-dependent
form (e.g., Eq. 50 in Ref. [41]) since the k-dispersion in
Gk has negligible effect for the WDMs of this study. The
xc-functional is used in the LDA which is efficient and
accurate because the one-center electron density n(r)
is smooth compared to the complex N -center electron
density used in VASP-type N -center DFT calculations.

Examination of the origin of discontinuities in the
pressure.
It is known that average-atom (AA) models [21] that
confine all the bound and free electrons associated with
an ion in the Wigner Seitz sphere can produce spurious
discontinuities in the pressure and in the mean ioniza-
tion Z̄. In the NPA the elctrons are not confined to
the WS-sphere, but to the correlation sphere of radius
Rc ∼ 10rws-5rws. Average atom models have to deal with
electrons that “leak out” of the WS-sphere, and model
dependent effects arising from the choice of boundary
conditons at the surface of the WS-sphere; these do not
arise in the NPA.
However, NPA models as well as AA models have to

deal with discontinuities that arise when a well-confined
bound state moves upwards in energy and into the contin-
uum due to changes in density or temperature. In some
cases, such ionization is accompanied by phase transitons
and discontinuities in physical properties. In other cases,
when unphysical discontinuities occur, they can be cor-
rected by ensuring that appropriate discontinuties that
cancel them are properly included in the xc-functionals.
However, we have no changes in the degree of ionization

(Z̄) or any other crtical parameters in the range of den-
sities studied here, and hence no spurious discontinuities
are expected in this range of ρ̄, T .
The NPA pressure is obtained from an evaluation of

the Helmholtz free F of the system. This consists of
contributions of the form [30, 31]:

F = F 0
e + F xc

e + F a
em + F b

em + F12 + F 0
I . (A.12)

The first two terms deal with the free energy of the
non-interacting uniform electron fluid and its finite-T
exchange-correlation energy at the given density and
temperature T . The last term, F 0

I is the ideal (classical)
free energy of the ion subsystem. The third and fourth
terms together form the embedding energy of the nucleus
and the inhomogeneous electron density that form neu-
tral pseudo-atom in the uniform electron fluid. The fifth
term, F12 contains the interactions between pseudoatoms
brought in via the pair-potential, pair-distribution func-
tions and the ion-ion correlation effects. The contribution
to the pressure from all the terms except F12 can be ex-
pressed analytically. The density derivative of the term
F12 has to be evaluated numerically. Then the pressure
can be written as:

P = P 0
e + P ex

e + P a
em + P b

em + P12 + P 0
I . (A.13)

No discontinuities are expected in P 0
e , P

ex or P 0
I when

treated as a function of ρ̄ as the number of free electrons
per ion, Z̄ remains constant at a value of four in this den-
sity range. Hence, in Fig. 8, panel (a) we display only the
two components of the embedding energy and the pair-
interaction free energy F12 as a function of the density,
at 1 eV. In order to understand the physical content of
the embedding pressure ([31]) we write down the poten-
tial that produces a single neutral pseudo atom in the
uniform fluid of mean electron density n̄ and mean ion
density ρ̄, viz.,

V npa =
1

r
⋆ (−Z̄δ0 + ν +∆n). (A.14)

Here Z̄δ0 defines the nuclear term at the origin, while
ν(r) is the density of the spherical cavity which mimics
the ion distribution ρ(r) by Z̄gcav(r).

ν(r) = n̄, r > rws, else ν(r) = 0. (A.15)

Also, ∆n is the displaced electron density with reference
to the mean electron density n̄. The symbol ⋆ defines a
convolution product. We also define the integration over
all space via the symbol ◦.

f ⋆ g =

∫
f(~r)g(~r − ~s)d~s (A.16)

f ◦ g =

∫
f(r)g(r)d~r. (A.17)

The volume are over a sphere of radius Rc ∼ 10rws.
Then, denoting the volume of the Wigner-Seitz sphere
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FIG. 8. (Color online) (a) We display the two components of
the embedding pressure obtained without numerical differen-
tiation from the embedding free energy of the neutral pseudo
atom. The pair-interaction free energy F12 which contains
bonding effects and many-ion correlation effects is also dis-
played. The embedding pressure component P b

em displays
three discontinuities, while F12 shows a slight discontinuity
near ρ̄ = 3.52. (b) We display the k → 0 limit of the structure
factor which is S(0) = κ/κ0, where κ0, κ are the ideal fluid
compressibility of the ions, and the interacting compressibil-
ity respectively. The value of S(0) at 10 eV is shifted by 0.15
for ease of comparison, and shows no discontinuities. Simi-
larly, the pressure at 10 eV, displayed in the Fig.3(a) of the
main text, shows no discontinuities.

by Ωws, the two embedding pressure terms can be writ-
ten as [31]:

P a
em = (ν − n̄) ◦ V npa/Ωws (A.18)

P b
em = −Z̄V npa(rws). (A.19)

Since Z̄ = 4, and remains at that value through out the
range of densities studied, the discontinuities in the em-
bedding pressure are caused solely by the ‘external po-
tential’ associated with the creation of the carbon pseu-
doatom, and not associated with bonding with other car-
bon ions (such contributions are in F12).
This re-enforces our conclusion that the observed

LPTs are associated with changes in coordination num-
ber Nc and the effect on the electron-ion interactions
at the Fermi energy via q = 2kF scattering. The coor-
dination number Nc can be approximately determined
from the area under the first peak of g(r), and has been
reported in detail by Vorberger et al [5]. They do not
cause discontinuities is P but clearly cause discontinuites
in the compressibility (as seen in S90), i.e., a derivative
of the pressure.

The electrical conductivity of liquid carbon.
The static electrical conductivity σ usually changes at
phase transitions because at least one of several physi-
cal parameters change abruptly. These are the number
of free carriers, the distribution of the ions that cause
the scattering of electrons, and the scattering potential.
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FIG. 9. (Color online) The conductivity calculated using the
NPA pseudopotential Uei(k) and the structure factor S(k)
in the Ziman formula is displayed. The conductivity results
reported by Vorberger et al. is also displayed. The slight
discontinuity in σ at ≃ 3.53g/cm3 is shown in more detail in
the inset. The discontinuity coincides with the LPT3.5. The
conductivity shows no discernible discontinuities at the other
two LPTs.

These properties are contained in the pseudopotential
Uei(k), the structure factor S(k) and the screening func-
tion of the system, when considering the static conduc-
tivity.

In trhe present case Z̄ remains unchanged at four. The
high value of the Fermi energy EF of liquid carbon, e.g.,
28.8 eV near the diamond density of 3.5 g/cm3, implies
that at 1 eV the electrons are nearly completely degen-
erate, and hence electron scattering can occur only from
one edge of the Fermi surface to the other, with a mo-
mentum transfer q = 2kF , where kF is the Fermi mo-
mentum. Thus the quantities Uei(2kF ), S(2kF ) and the
inverse dielectric function at 2kF which screens the pseu-
dopotential determine the electrical conductivity. We
noted that, due to the strong electron-ion scattering at
2kF , the structure factor remains tied to a peak at 2kF .
Thus sharp changes are not expected in the electrical
conductivity of this system under the liquid-liquid phase
transitions. However, an extremely weak discontinuity
can be seen (Fig. 9) at the LPT3.5, i.e., at the nomi-
nal diamond density where we also noted a discontinuity
in the pressure calculated via QMD-SCAN, and via the
NPA model. Given the very small magnitude of the dis-
continuity in σ, it is not surprising that no discontinuities
in σ are seen at LPT3 and LPT3.75 where the pressure
isotherm also did not show any discontinuities.

The QMD estimate of the conductivity of liquid car-
bon is approximately half that of the NPA-Ziman esti-
mate. This difference becomes even larger at higher den-
sities, and may be associated with the fact that the NPA
model assumes a strictly homogeneous fluid, while the
QMD simulation considers the fluid to be an average over
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many realizations of a large variety of inhomogeneous
atomic clusters. While such averaging is effective when
the ions themselves actually easily form a uniform sys-
tem, it is not evidently so in systems where there is tran-
sient bonding as well as incipient formation of preferred
clusters dictated by the tetrahedral character of the fluid.
Hence, when such systems form homogeneous fluids, the

QMD simulation may need a large number of atoms. On
the other hand, if the fluid is truly a dispersed phased
of atomic clusters, the NPA approach that assumes a
uniform-density fluid cannot accurately describe such a
system using the simple ion-ion xc-functionals based on
the Ornstein-Zernike and the modified HNC approach
(i.e., HNC+bridge) used here.
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