
Search of stochastically gated targets by diffusive particles
under resetting

Gabriel Mercado-Vásquez‡ and Denis Boyer§
Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510,
Mexico

Abstract. The effects of Poissonian resetting at a constant rate r on the reaction time between a
Brownian particle and a stochastically gated target are studied. The target switches between a reactive
state and a non-reactive one. We calculate the mean time at which the particle subject to resetting hits
the target for the first time, while the latter is in the reactive state. The search time is minimum at
a resetting rate that depends on the target transition rates. When the target relaxation rate is much
larger than both the resetting rate and the inverse diffusion time, the system becomes equivalent to
a partially absorbing boundary problem. In other cases, however, the optimal resetting rate can be a
non-monotonic function of the target rates, a feature not observed in partial absorption. We compute the
relative fluctuations of the first hitting time around its mean and compare our results with the ungated
case. The usual universal behavior of these fluctuations for resetting processes at their optimum breaks
down due to the target internal dynamics.

1. Introduction

A reactant in a physicochemical system is said to be gated when it switches to multiple conformational
states, which alter its capacity to react with other compounds. The gating process could be due to
both fluctuations in the environment and internal mechanisms of the reactants. The simplest gating
process is the two-state model in which a reactant transits back and forth between an open state, that
represents a reactive conformation, and a closed, non-reactive state.

There is a variety of examples in which reactions between the compounds of a system are controlled
by changes in their conformational states, ranging from natural processes such as protein binding [1–5],
gene expression [6–12] or cellular transport mediated by ion-channels [13–15], to artificial processes
such as the diffusion of particles in synthetic nanopores [16], or more general intermittent search
processes [17]. Whether we are interested in knowing the rate at which two proteins bind to each
other or in calculating the flux of ions across a gating channel in the cell membrane, the problem can
be often reduced to the generic one of computing the time at which a diffusive particle reaches for the
first time a target site in its reactive state.

A two-state model with diffusive particles was first studied in the pioneering work of McCammon
and Northrup [1]. In this work, the authors computed the association rate for the case where the non-
reactive periods were sufficiently long. Shortly after, more complex systems in which particles could
transit between several conformational states were analyzed [2–5]. Recently, the topic of gated reactions
has recovered interest and has been retaken not only for the problem of a Brownian particle on the
infinite line [18], but also in other contexts such as in random walks on networks [19], run-and-tumble
motion [20] and diffusion with stochastic resetting in an interval [21].
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Due to the interplay between the kinetics of the system compounds and the gating process, it
is clear that the motion of diffusing entities strongly affects the reaction time. In the context of
perfectly reactive targets, non-Brownian search processes have recently attracted attention as they
may significantly reduce reaction times. Among such processes, diffusion under stochastic resetting
have received a lot of attention recently. As shown in the seminal work of Evans and Majumdar [22],
stochastic resetting can expedite the mean time needed by a Brownian particle to be absorbed on a
fixed target site.

In this original model, the resetting process consists in randomly interrupting particle diffusion
on the infinite line at some constant rate and bringing it back to a fixed position, from which the
diffusion process starts anew. Resetting the particle motion has important consequences on the first
passage properties [23, 24]. The mean first passage time (MFPT) at the absorbing target becomes
finite and can be minimized with respect to the resetting rate [22, 25]. Research on resetting processes
has further unveiled that a similar optimization can be achieved in a variety of situations, such as
diffusion with time-dependent resetting rates [26,27], other non-Poissonian resetting protocols [28–30],
resetting with refractory periods [31], resetting in bounded domains [32] or involving anomalous diffusion
processes [33–36], to name a few (see [23] for a review). Moreover, the optimization by stochastic
resetting is not exclusive to the searches of simple targets, i.e., targets that are perfectly reactive, but
has also been studied in the case of partially absorbing targets [37, 38] and for stochastically gated
targets [21].

Among the distinctive features of stochastic resetting, such as the emergence of non-equilibrium
steady states [24,25,39] and their peculiar relaxation dynamics [40–42], one should mention the universal
behaviour of the relative standard deviation of the first passage time distribution, which becomes unity
at optimality (when there exists a finite optimal resetting rate) [43–45]. Notably, this result is valid
for all types of search dynamics, even if the search process in the absence of resetting has an infinite
MFPT. As we will illustrate further, this feature no longer holds when the target follows its own
dynamics independently of the resetting process.

In the present work, we study the first hitting statistics between a particle, which stochastically
resets to its initial position on the semi-infinite line, and a gated target that intermittently switches
between two states: a reactive state that absorbs the diffusive particle upon encounter, and a non-
reactive one which reflects the particle. We calculate the survival probabilities of the particle at time t,
and further deduce quantities of interest such as the first two moments of the hitting time distribution.
As is usual in resetting processes, the mean first hitting time (MFHT) can be optimized by a suitable
choice of the resetting rate. We study the behaviour of the optimal resetting rate as a function of the
target dynamical parameters. From this analysis emerges a strong connection between our model and
the problem of diffusion with stochastic resetting in the presence of a partially absorbing target. We
show how the two problems actually become equivalent in the limit of high transition rates, or when
the target is in the non-reactive state most of the time. We also analyse the relative variance of the
first hitting time around the mean and study its dependence with respect to the target rates and the
resetting rate. The relative fluctuations are no longer unity at the optimal resetting rate, and can take
much larger values instead. This is due to the fact that the dynamics of the target state is independent
of the resetting process itself. The problem therefore differs from the one considered in [21], where
the search of a gated target by diffusion under resetting was studied through a renewal approach, that
assumed that the resetting process also acted on the target state.

The paper is organized as follows: we begin in Section 2 by introducing the model and deduce the
equations of motion that govern the survival probabilities, which are solved in the Laplace space. With
these solutions, in Section 3 we find an exact expression for the MFHT and analyze its behaviour as a
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function of the target transition rates and of the resetting rate. In Section 4 we discuss the connection
between our model and the partial absorption problem. Section 5 is devoted to the analysis of the
relative variance of the first hitting times, and we conclude in Section 6. A comparison between our
findings and those of [21] is discussed in more details in Appendix B.

2. The problem and its solution

Let us consider on the semi-infinite line a Brownian particle with diffusion coefficient D, starting at
t = 0 from a position x > 0, and which is subject to a stochastic Poissonian resetting process of rate r.
The resetting position is denoted as x0 > 0. At the origin, a stochastically gated target is placed. The
dynamics of the target will be characterized by the time-dependent binary variable σ(t), which takes
the value σ = 0 when the target is non-reactive, and σ = 1 when it is reactive. The target stochastically
switches from the state 0 to 1 with rate α, whereas it switches from the state 1 to 0 with rate β (see
Fig. 1). The diffusing particle is absorbed upon its first encounter with the target in the reactive state.

Reactive

Non-reactive
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Figure 1. Trajectory of a diffusive particle (blue line) in 1D, in the presence of an intermittent target
placed at the origin. The periods of time during which the target is reactive (or absorbing) are represented
by red segments, whereas the gray intervals represent the target in the non-reactive (or reflective) state.
At exponentially distributed time intervals with mean 1/r, the particle is reset to the position x0 (orange
line), which coincides in this example with the initial position x.

We define Q0(x, t) as the probability that the particle has not hit the target up to time t, given
the initial position x and initial target state σ(t = 0) = 0 [the variable x0 is implicit]. Similarly, we
define Q1(x, t) for the initial target state σ(t = 0) = 1. In Appendix A we show that these probabilities
satisfy the coupled backward Fokker-Planck equations

∂Q0(x, t)
∂t

= D
∂2Q0(x, t)

∂x2 + α(Q1(x, t)−Q0(x, t)) + r(Q0(x0, t)−Q0(x, t)), (1)

∂Q1(x, t)
∂t

= D
∂2Q1(x, t)

∂x2 + β(Q0(x, t)−Q1(x, t)) + r(Q1(x0, t)−Q1(x, t)). (2)

The system of equations (1) and (2) will satisfy the following boundary conditions:
Q1(x = 0, t) = 0, (3)
∂Q0(x, t)

∂x

∣∣∣
x=0

= 0. (4)

Eq. (3) enforces the absorbing condition of the target in the reactive state, whereas Eq. (4) asserts
that the target in the non-reactive state will reflect the diffusive particle upon encounter (see [18] for a
detailed derivation of the latter condition).
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We also define the average survival probability Qav(x, t) that results from averaging over the initial
target states for the particle stating at x:

Qav(x, t) = β

α + β
Q0(x, t) + α

α + β
Q1(x, t). (5)

The probability distributions of the first hitting time t are denoted as P0(x, t) and P1(x, t), with
the same notations as before for the initial conditions. These first hitting time densities (FHTDs) are
deduced from the survival probabilities through the usual relation [46]:

P0,1(x, t) = −∂Q0,1(x, t)
∂t

. (6)

Introducing the Laplace transforms Q̃0,1(x, s) =
∫∞

0 e−stQ0,1(x, t)dt and using the initial condition
Q0,1(x, t = 0) = 1 for x > 0, Eqs. (1) and (2) become

D
∂2Q̃0(x, s)

∂x2 + αQ̃1(x, s)− (s+ α + r)Q̃0(x, s) = −1− rQ̃0(x0, s), (7)

D
∂2Q̃1(x, s)

∂x2 + βQ̃0(x, s)− (s+ β + r)Q̃1(x, s) = −1− rQ̃1(x0, s), (8)

and the boundary conditions (3) and (4) read

Q̃1(x = 0, s) = 0, (9)
∂Q̃0(x, s)

∂x

∣∣∣
x=0

= 0. (10)

By using Eq. (6) and integrating by parts, the Laplace transform of the FHTD will be simply given by

P̃0(x, s) = 1− sQ̃0(x, s) and P̃1(x, s) = 1− sQ̃1(x, s). (11)

We consider Q0(x0, s) and Q1(x0, s) as unknown inhomogeneous terms in the differential equations (7)
and (8). The homogeneous part of this system is solved with the ansatz ξeλx, where the vector ξ and
λ are determined from solving(

Dλ2 − (α + r + s) α

β Dλ2 − (β + r + s)

)
ξ = 0. (12)

After straightforward algebra, the general solution Q̃ =
(
Q̃0 Q̃1

)T
is given by the following linear

combination

Q̃ = A1ξ1e
−λ1x + A2ξ1e

λ1x + A3ξ2e
−λ2x + A4ξ2e

λ2x + Q̃inh, (13)

where Q̃inh =
(
Q̃inh

0 Q̃inh
1

)T
is the constant solution given by

Q̃inh
0 = 1 + rQ̃0(x0, s)

Dλ2
1

+
rα
[
Q̃1(x0, s)− Q̃0(x0, s)

]
Dλ2

1λ
2
2

, (14)

Q̃inh
1 = 1 + rQ̃1(x0, s)

Dλ2
1

+
rβ
[
Q̃0(x0, s)− Q̃1(x0, s)

]
D2λ2

1λ
2
2

. (15)

The factors Ak are determined from the boundary conditions and the no-divergence of the probabilities
Q0,1 as x→∞. The roots λ1 and λ2 in Eqs. (13)–(15) are given from (12) by

λ1 =
√
s+ r

D
, λ2 =

√
s+ α + β + r

D
, (16)

whereas the vectors ξ1 and ξ2 are

ξ1 =
(

1
1

)
, ξ2 =

(
−α
β

1

)
.



Search of stochastically gated targets by diffusive particles under resetting 5

To avoid infinite solutions at x → ∞, we must set A2 = A4 = 0 in Eq. (13). From the boundary
conditions (9)-(10) we obtain the remaining constants,

A1 = − αλ2Q̃
inh
1

αλ2 + βλ1
, (17)

and A3 = βλ1
αλ2

A1. Substituting these factors into Eq. (13),

Q̃0(x, s) = − αλ2

αλ2 + βλ1

(
e−λ1x − λ1

λ2
e−λ2x

)
Q̃inh

1 + Q̃inh
0 , (18)

Q̃1(x, s) = − αλ2

αλ2 + βλ1

(
e−λ1x + βλ1

αλ2
e−λ2x

)
Q̃inh

1 + Q̃inh
1 . (19)

The average survival probability takes a slightly simpler form:

Q̃av(x, s) = − αλ2Q̃
inh
1

αλ2 + βλ1
e−λ1x + 1 + rQ̃av(x0, s)

Dλ2
1

. (20)

Substituting Eqs. (14)-(15) into Eqs. (18)-(19), and then setting x = x0, one obtains in a self-
consistent way the survival probabilities Q0(x0, s) and Q1(x0, s), i.e., when the initial position is the
resetting position:

Q̃0(x0, s) =
αλ2

(
eλ1x0 − 1

)
+ λ1

(
β + (α + r)e−λ2x0

)
eλ1x0 − sλ1r

α+β+se
(λ1−λ2)x0

αλ2r + seλ1x0
[
(βλ1 + αλ2) + βλ1r

α+β+se
−λ2x0

] , (21)

Q̃1(x0, s) =
αλ2

(
eλ1x0 − 1

)
+ βλ1

(
1− e−λ2x0

)
eλ1x0

αλ2r + seλ1x0
[
(βλ1 + αλ2) + βλ1r

α+β+se
−λ2x0

] . (22)

whereas the average survival probability is

Q̃av(x0, s) =
αλ2

(
1− e−λ1x0

)
(s+ α + β) + βλ1

(
re−λ2x0 + s+ α + β

)
αλ2 (re−λ1x0 + s) (s+ α + β) + sβλ1 (re−λ2x0 + s+ α + β) . (23)

3. Mean first hitting time

In the following we keep considering x = x0 (resetting to the starting position) and define the mean first
hitting time given the initial target condition σ = 0 (σ = 1, respectively) as T0(x) (T1(x), respectively).
These quantities are obtained from the usual relation T0,1(x) =

∫∞
0 Q0,1(x, t)dt = Q̃0,1(x0, s = 0).

Setting s = 0 in Eqs. (21) and (22), one deduces

T0(x0) = e
√

r
D
x0 − 1
r

+ β + (r + α)e−
√

r+α+β
D

x0

α
√
r(r + α + β)

e
√

r
D
x0 , (24)

T1(x0) = e
√

r
D
x0 − 1
r

+ β

α

1− e−
√

r+α+β
D

x0√
r(r + α + β)

 e√ r
D
x0 . (25)

From Eq. (23), the average mean first hitting time reads

Tav(x0) = e
√

r
D
x0 − 1
r

+ βe
√

r
D
x0(α + β + re−

√
r+α+β
D

x0)
α(α + β)

√
r(r + α + β)

. (26)

As well-known for the case of perfectly absorbing targets [22, 25], one of the main consequence of
introducing resetting in the dynamics of the diffusive particle is to make the mean of the FHTD finite,
unlike in free diffusion, where it diverges. Furthermore, the different MFHTs here can be minimized by
a suitable choice of the resetting rate.
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The solution of the mean first hitting time of the gated problem calls for several comments. As
expected, if we set β = 0 in Eq. (24) or (25), we recover the expression of the MFHT for the ungated
case, denoted as Tr(x0) here:

Tav(x0, β = 0) = Tr(x0) = e
√

r
D
x0 − 1
r

. (27)

Tr is a non-monotonic function of r that is minimum at the optimal resetting rate r∗(β = 0) =
2.53963...D/x2

0, a result first deduced in [22].
The solution for the average MFHT in Eq. (26) also exhibits a non-monotonic behaviour with a

single minimum (Fig. 2a), for all parameter values α, β > 0 of the intermittent target. The optimal
resetting rate r∗ that minimizes the MFHT varies with the switching parameters α and β. Increasing
the parameter β makes the target less reactive, which causes an increase of the MFHT. As shown by
Fig. 2b, at a fixed resetting rate, the MFHT increases monotonically with β. A very good agreement
with numerical simulations is obtained.
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Figure 2. (a) Mean first hitting time Tav as a function of r for several values of β (x0 = 1, D = 1 and
α = 1). (b) Same quantity as a function of β for several values of r. Symbols represent simulation results
obtained with the Gillespie algorithm [47].

In Eq. (26), the dependence of the MFHT with respect to the target rates is not as simple as
one would wish and obtaining an analytical expression for r∗ seems beyond reach. Below, we derive
a simplified expression in the limiting case when the target rapidly switches between the reactive and
non-reactive states, and compare the results with the numerical minimization of the exact solution (26).

In the limit of large α and β compared to r, we approximate
√
r + α + β ≈

√
α + β in Eq. (26)

and can always neglect the term proportional to e−x0
√

r+α+β
D to obtain

Tav(x0) ≈ e
√

r
D
x0 − 1
r

+ βe
√

r
D
x0

α
√
r(α + β)

. (28)

Defining the dimensionless parameters

z = x0

√
r

D
, (29)

w = β
√
r

2α
√
α + β

, (30)
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the approximate optimal resetting rate obeys the transcendental equation
z

2 − 1 + e−z + w(z − 1) = 0. (31)

The solution of Eq. (31) as a function of β is shown in Fig. 3 (dashed lines), together with the exact
optimal parameter obtained from numerical minimization of Eq. (26). Clearly, the two solutions show
a good agreement for all β only if α� r∗. Otherwise, the differences are significant in the intermediate
regime of β.

α=10
α=1

α=10-1

α=10-3

α=10-4

10-11
10-8 10-5 0.01 10.00 104

1.0

1.5

2.0

2.5

β

r*
(x
0
=
1
)

Figure 3. Optimal resetting rate r∗ as a function of β and several values of α (fixing x0 = 1 and
D = 1). The continuous lines are obtained from numerical minimization of Eq. (26) whereas the dashed
lines represent the solution of Eq. (31).

In the high transition rates regime, if the target is mostly non-reactive (r � α � β, such that
w � 1), the first three terms of the left hand side of Eq. (31) can be neglected and we arrive at the
simple solution z = 1. From Eq. (29), the optimal resetting rate in the limit β =∞ is therefore given
by

r∗(β =∞) = D/x2
0, (32)

which is substantially lower than the optimal rate r∗(β = 0) = 2.53963...D/x2
0 for the ungated target

(see Fig. 3). Therefore, to optimize the search process of a poorly reactive target, one must opt
for less frequent resetting compared with the perfectly reactive case, at a rate exactly given by the
inverse diffusion time D/x2

0. It is also worth noting that, even though the expression (31) is obtained
in the high transition rates limit, we can recover the solution for the ungated case: setting β = 0,
it reduces to the transcendental equation z∗

2 − 1 + e−z
∗ = 0, whose solution is z∗ = 1.59362... or

r∗(β = 0) = 2.53963...D/x2
0.

As shown by Fig. 3, r∗ always remains of the order of the inverse diffusion time D/x2
0. Nevertheless,

the (exact) optimal resetting rate does not always decrease as the target becomes less reactive. Somehow
unexpectedly, and at odds with the solution given by Eq. (31), r∗ can exhibit a clear non-monotonic
shape with respect to β, with a maximum at a value above 2.53963...D/x2

0. This occurs when the
parameter α is fixed to a small value (compared to the inverse diffusion time), a regime where the
approximation (28) is no longer valid. In this case, r∗ is maximum for a value of β which is larger than
α, namely, in a situation where the target is most of the time inactive.

We comment that the same expression (31) was deduced in reference [37] for diffusion under
resetting with partial absorption: in that case, the dimensionless parameter w was given by w =√
rD/2κ, where κ is the absorption velocity of the target. In the next section, we discuss how our

results compare with this problem.
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4. The regime α, β � r and the partial absorption problem

The physical meaning of the approximation (28) can be traced to the problem of diffusion under resetting
in the presence of a partially absorbing target [37]. In that problem, a searcher performs diffusion with
stochastic resetting to the initial position whereas a partially absorbing target is placed at the origin.
Upon target encounters, the searcher will not be necessarily absorbed, and the probability density p(y, t)
of the position y will satisfy the so-called radiation boundary condition

∂p(y, t)
∂y

∣∣∣
y=0

= κp(y = 0, t), (33)

where κ is the absorption velocity. It is found that the mean time at which the searcher reacts with the
target is given by [37]

Tp(x0) = e
√

r
D
x0 − 1
r

+ e
√

r
D
x0

κ
√
r/D

, (34)

where the other parameters r, x0 and D are the same as in our model.
By simple inspection, one can notice that Eq. (34) has the same form as the approximation (28)

of Tav in the limit of high transition rates (α, β). Although the radiation boundary condition does not
assume any internal target dynamics, we can make a mapping between the parameters α and β and an
absorption velocity κ through the equation

κ = α

β

√
α + β

√
D. (35)

In other words, the optimal resetting rate in the problem of partial absorption is given by solving Eq.
(31) with w =

√
rD/2κ [37]. Therefore, the solution r∗(β =∞) = D/x2

0 of Eq. (32) coincides with the
optimal rate in the case of weak absorption, κ �

√
Dr [37, 38]. However, this mapping between the

two models is not valid for intermediate values of the transition rates. With the radiation boundary
condition (33), the behaviour of the optimal resetting rate r∗ is monotonic with respect to the absorption
velocity κ, whereas the gating dynamics on time-scales comparable or longer than the diffusion time
give rise to a new non-monotonic behaviour with respect to the target reactivity (Fig. 3).

These findings point out a close connection between partially absorbing and intermittent
boundaries, a connection that has been revealed before in the context of simple diffusion [18] or run-
and-tumble motion [20]. Eq. (35) is independent of the resetting rate and actually coincides with the
expression found in [18] for a free Brownian particle.

5. Coefficient of variation

In this section we analyze the coefficient of variation defined as Cav = 〈(t − Tav)2〉/T 2
av. This quantity

represents the relative fluctuations of the first hitting time t, distributed according to the density
Pav(x, t), around its mean Tav. With the help of the relation (6), the coefficient of variation can be
easily calculated:

Cav = − 2
T 2
av

∂Q̃av(x0, s)
∂s

∣∣∣
s=0
− 1. (36)

Given the expression of the survival probability Q̃av(x0, s) in Eq. (23), we can obtain the coefficient
of variation in a straightforward manner after some algebraic manipulations. However, it is convenient
here to rewrite Eq. (23) in terms of the survival probability Q̃r(x0, s) for the ungated case, given by [22]

Q̃r(x0, s) = 1− e−x0
√

s+r
D

re−x0
√

s+r
D + s

. (37)
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Let us introduce the function

F̃r(x0, s) = re−
√

s+r
D
x0 + s√

s+ r
. (38)

With these definitions, the average survival probability is

Q̃av(x0, s) = αF̃r(x0, s)Q̃r(x0, s) + βF̃r(x0, s+ α + β)/(s+ α + β)
αF̃r(x0, s) + sβF̃r(x0, s+ α + β)/(s+ α + β)

. (39)

After taking the derivative with respect to s, we obtain
∂Q̃av(x0, s)

∂s

∣∣∣
s=0

= ∂Q̃r(x0, s)
∂s

∣∣∣
s=0
− [Tav(x0)− Tr(x0)]

[
Tav(x0) + 1

α + β

]
(40)

+ β

α(α + β)
∂

∂s

(
F̃r(x0, s+ α + β)

F̃r(x0, s)

) ∣∣∣
s=0

,

where Tr(x0) is the MFPT for the ungated case given by Eq. (27). From the above expression, Cav
is obtained in terms of the coefficient of variation Cr in the ungated case, which is calculated from an
equation equivalent to Eq. (36), namely

Cr = − 2
T 2
r

∂Q̃r(x0, s)
∂s

∣∣∣
s=0
− 1. (41)

Substituting the partial derivative of Q̃r(x0, s) with respect to s into Eq. (41), one gets

Cav =
(
Tr(x0)
Tav(x0)

)2

(Cr + 1) + 2
[
1− Tr(x0)

Tav(x0)

] [
1 + 1

(α + β)Tav(x0)

]
(42)

− 2β
α(α + β) [Tav(x0)]2

∂

∂s

(
F̃r(x0, s+ α + β)

F̃r(x0, s)

) ∣∣∣
s=0
− 1.

The advantage of expressing the coefficient of variation Cav in terms of Cr is to elucidate how
different the fluctuations of the FHT for a dynamical target are from those of a simple target. Specially
important to us is to see whether a generic feature of processes under resetting at the optimal rate
also holds in our model. It is known that search processes under stochastic resetting which are optimal
at a non-zero resetting rate, which is the case here, have a coefficient of variation equal to unity at
optimality [43–45]. This property holds true if the process is brought to the same initial state after each
reset. In our case, this condition is not fulfilled, as resetting only acts on the particle and not on the
target: after resetting the particle position, the target may not be in the state it occupied at t = 0 (we
compare in Appendix B our results with the case where both the particle and the target are subject to
resetting, as studied in [21]). In the following, we see that the aforementioned generic property holds
in the limits β → 0 and β →∞, but is violated in the more general intermediate regime.

It is straightforward to notice that when β = 0, we recover from Eq. (42) the coefficient of variation
for the ungated case, or Cav(β = 0) = Cr [recall that Tav(β = 0) = Tr]. In the limit β → ∞, the first
hitting times diverges as Tav ∝

√
β (see Eq. 28), and it is not difficult to see from the definition of

F̃r(x0, s) that, in the limit of large β and at the optimal resetting rate r∗(β =∞) = D/x2
0,

∂

∂s

(
F̃r(x0, s+ α + β)

F̃r(x0, s)

) ∣∣∣
s=0
∝
√
β. (43)

One deduces from Eq. (42) that Cav(r∗, β → ∞) → 1. These limiting behaviours are checked in Fig.
4b with the exact solution.

Whereas the relative fluctuations of the first hitting times are unity at optimality in the cases
β = 0 and β = ∞, this property is not general. The intricate way in which Eq. (42) depends on the
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Figure 4. a) Coefficient of variation Cav as a function of r/r∗ for fixed x0 = 1, D = 1, α = 1 and several
values of β. b) Same quantity as a function of β at the optimal rate r∗ (for x0 = 1, D = 1).

target intermittency parameters does not allow an explicit analysis at finite α and β. Nevertheless, we
performed a numerical evaluation of Eq. (42) in a wide range of values of β and α at the corresponding
optimal resetting rate r∗. The results are shown in Figs. 4a-b, where the coefficient of variation takes
values different from unity. As displayed in Fig. 4b, when the target spends long periods of time in the
two states, i.e., when α, β � D/x2

0, the quantity Cav can take values much larger than 1 at optimality,
even when the target is reactive most of the time (β � α).

6. Conclusion

We have studied the statistical properties of the first hitting time between a diffusing particle undergoing
stochastic resetting to the initial position and a target that intermittently switches between a reactive
and a non-reactive state. We have calculated the mean time it takes for the particle to hit the target
for the first time in its reactive state, and have shown that this quantity can be minimized with respect
to the resetting rate. This feature is also characteristic of many resetting processes with perfectly
absorbing targets.

The MFHT increases due to the intermittent dynamics of the target. The minimal MFHT can
thus be very high when the target is mostly non-reactive, which is intuitive since the task of searching
an intermittent target is much more challenging.

We have found that when the target becomes highly intermittent, i.e., when the transitions between
the reactive and the non-reactive state occur over a time-scale much smaller than the diffusion time,
the model is equivalent to the problem of a partially absorbing target. In this case, we could establish a
relationship between the target rates, the diffusion coefficient and the effective absorption velocity of the
radiation boundary condition. Such equivalence between partially absorbing and dynamical boundaries
has been observed in other search processes [18, 20], but it does not hold in general. For instance,
when the target transition rates are comparable to the inverse diffusion time, the optimal resetting rate
exhibits distinctive features, such as a non-monotonic behaviours.

It is also worth noting that the coefficient of variation of the search time is not unity at optimality,
in contrast with resetting problems that have a complete renewal structure. Here, the coefficient of
variation can reach values much larger than one at the optimal resetting rate, specially for targets that
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spend a moderate fraction of time in the inactive state but long periods of time in each state. Our
results highlight how target internal dynamics, a widely observed feature in natural systems, affect the
optimisation of random searches by resetting. It would be interesting to extend the scope of this work
to the study of non-Poissonian resetting/target switching, as well as to anomalous diffusion processes.
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Appendix A. Backward Fokker-Planck equations

In this section we derive Eqs. (1) and (2), for a particle located at x at t = 0. Let us first suppose that
the target is initially non-reactive. In a realization of the search process, during a small time interval
[0,∆t], with probability α∆t the target will switch to the reactive state, and with probability 1− α∆t
it will remain non-reactive. Meanwhile, with probability r∆t, the particle will reset to the position x0

and with probability 1− r∆t, it will diffuse and reach a new position x+ ξ, where ξ is a small random
displacement due to Brownian diffusion during ∆t. The position at ∆t (x0 or x+ ξ) is considered as a
new starting position, from which the particle may survive during the interval [∆t, t+ ∆t], which is of
length t. Summing the contributions of the various eventualities, we obtain the evolution of the survival
probability at t+ ∆t, starting from x:

Q0(x, t+ ∆t) = (1− r∆t)
[
α∆t

∫
dξQ1(x+ ξ, t)P∆t(ξ) + (1− α∆t)

∫
dξQ0(x+ ξ, t)P∆t(ξ)

]
, (A.1)

+ r∆t [α∆tQ1(x0, t) + (1− α∆t)Q0(x0, t)]

where P∆t(ξ) is the density of ξ.
We expand the survival probabilities in the right-hand-side in series of ξ, which is Gaussian

distributed with first moment 〈ξ〉 = 0 and second moment 〈ξ2〉 = 2D∆t, with D the diffusion coefficient.
The integrals in Eq. (A.2) are 〈Q(x + ξ, t)〉ξ ≈ Q(x, t) + D∆t∂

2Q(x,t)
∂x2 . Neglecting the terms of order

higher than ∆t, one obtains

Q0(x, t+ ∆t) = Q0(x, t) + ∆t
{
D
∂2Q0(x, t)

∂x2 + αQ1(x, t)− (r + α)Q0(x, t) + rQ0(x0, t)
}
. (A.2)

Similarly, for the initial target state σ = 1, we have

Q1(x, t+ ∆t) = Q1(x, t) + ∆t
{
D
∂2Q1(x, t)

∂x2 + βQ0(x, t)− (r + β)Q1(x, t) + rQ1(x0, t)
}
. (A.3)

In the limit ∆t→ 0, Eqs. (A.2) and (A.2) become (1) and (2), repectively.

Appendix B. Comparison with the Bressloff’s model

In this section we compare our expression for the MFHT, Eq. (26), with the analogous quantity deduced
by Bressloff in [21]. In this work, a one dimensional Brownian particle diffuses in the interval [0, L] and
is subject to stochastic resetting to the initial position x0, with 0 < x0 < L. A dynamic target placed at
the origin switches between an active absorbing state and a reflecting state which prevents absorption.
The MFHT for this model is given by equation (4.19) in [21], from which we can obtain the MFHT in
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the semi-infinite domain by taking the limit L→∞:

TB(x0) = e
√

r
D
x0 − 1
r

+ βe
√

r
D
x0

α
√
r(r + α + β)

, (B.1)

with the same notation for the switching rates α and β than ours. Although the model studied in [21]
is very similar, it bears an important difference. In [21], when the particle is reset to x0, the state
of the target is also re-initialised to the state σ = 0 [with probability β/(α + β)] or σ = 1 [with
probability α/(α+ β)]. Conversely, in our model, the dynamics of the intermittent target is completely
independent of the particle dynamics and not subject to resetting. This leads to quite different results
for the behaviour of the mean time to absorption.

Eq. (B.1) can be rewritten in terms of Tav(x0) here as

TB(x0) = Tav(x0)− β
√
re

(√
r
D
−
√

r+α+β
D

)
x0

α(α + β)
√
r + α + β

, (B.2)

which implies that TB is lower than Tav for all non-zero values of the parameters α, β and r. It is easy
to notice that the difference between both quantities can become very large for cases in which α and β
are � r (see Figs. B1a-c).

a

β=0

β=.1

β=10-3

β=10-5

10-6 10-4 0.01 1

1

10

100

1000

104

α

T
av
/T

B
(x
0
=
1
,r
=
1
,β
=
1
0
-
5
)

b

α=.1

α=10-3

α=10-5

10-9 10-6 0.001 1

1

10

100

1000

104

β

T
av
/T

B
(x
0
=
1
,r
=
1
,α
=
1
0
-
5
)

c

α=1

α=10-1

α=10-3

α=10-5

10-5 0.01 10

1

10

100

1000

104

r

T
av
/T

B
(x
0
=
1
,α
=
β
)

Figure B1. (a) Mean first hitting times Tav/TB as a function of α and several values of β at r = 1. (b)
Same quantity as a function of β for several values of α. (c) Tav/TB as a function of r for several values
of α (and β = α). In all cases, x0 = 1 and D = 1.

To further contrast between these results, let us analyse the limiting case in which the particle
resets to the origin (x0 = 0) at infinite rate (r = ∞). In this scenario, once the search process has
started the particle immediately returns to the origin, with the target still being in its initial state. If
the target is initially in the reactive state (σ = 1), the particle will be immediately absorbed, yielding
to T1 = 0. If the target is initially in the non-reactive state (σ = 0), the particle will remain at the
origin (due to the infinitely frequent resetting) until the target switches to the reactive state with rate
α, in this case T0 = 1/α. Therefore, from the definition of Tav, one obtains

Tav(x0 = 0, r =∞) = β

α(α + β) , (B.3)

which in fact coincides with Eq. (26). Conversely, from Eq. (B.1) one can easily see that

TB(x0 = 0, r =∞) = 0, (B.4)
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i.e., in [21] the particle is immediately absorbed irrespective the initial target state. This is a consequence
of the resetting process which, being infinitely frequent, makes the target rapidly active, even if α

α+β � 1.
In this model, stochastic resetting enhances target detection not only by means of the particle motion
but also by promoting target activation.

We notice in Fig. B1 that Tav approaches TB in the limit of high switching rates, i.e., when
α, β � r. This can be seen directly from Eq. (B.2), where the second term of the right-hand-side
approaches zero in this limit. Furthermore, when β → 0, the two solutions Tav(x0) and TB(x0) tend to
that of the ungated case, given by Tr(x0) in Eq. (27).
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