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LINNIK’S PROBLEM IN FIBER BUNDLES OVER QUADRATIC
HOMOGENEOUS VARIETIES

MICHAEL BERSUDSKY AND URI SHAPIRA

ABSTRACT. We compute the statistics of SLq(Z) matrices lying on level sets of an integral
polynomial defined on SL4(R), a result that is a variant of the well known theorem proved by
Linnik about the equidistribution of radially projected integral vectors from a large sphere
into the unit sphere.

Using the above result we generalize the work of Aka, Einsiedler and Shapira in various
directions. For example, we compute the joint distribution of the residue classes modulo ¢
and the properly normalized orthogonal lattices of primitive integral vectors lying on the
level set —(:c% +a2i+ x%) + 22 = N as N — oo, where the normalized orthogonal lattices sit
in a submanifold of the moduli space of rank-3 discrete subgroups of R*.

1. INTRODUCTION

1.1. Linnik type problems. To put our work in historical context, we will now recall a well
known work of Linnik and its generalizations.
Consider for an integral homogeneous polynomial P : R? — R and for m € Z the level set

Hn(PR) X P71 ({m}) = {v € R | P(v) =m},

and let
def
/Hm,prim(P’Z) = Hm(f7 R) N Zgrim = {V € Zgrim | P(V) = m} )
d e e . . d
where Zy;,, denotes the set of primitive integral vectors in R?.

Assuming that the cardinalities of Hp, prim(P,Z) diverge to infinity along a sequence
{m;};2; €N, it is natural to study the limiting statistics of H,,, (P, Z) when projected radially
into Hl(P, Z).

Linnik appears to be the first to consider the above problem in his seminal work (see [Lin68])
by computing the weak-* limits of the uniform probability measures p,, on the unit sphere
supported on \/—%Hm,prim(ﬁ +y? + 2%,7Z) as m — oco. Under suitable congruence conditions,

Linnik was able to prove that j,, converges towards the natural measure on S? by developing a
method known today as Linnik’s Ergodic method, which has an arithmetic-dynamical nature.

Following Linnik’s original work, the above problem was studied further by Linnik and
his collaborators, see [Mal75|] for a review, and more recently by a variety of other authors
employing dynamical or harmonic analysis tools, see for example the definitely not exhaustive
list [EMV10L [GO03, MV06, EO06L BO12].

1.1.1. Linnik type problem in SLy. The main results of our paper (see Theorems B.7] and B.8]),
concern a problem which falls into a broader category of Linnik type problems in an ambient
manifold that is not necessarily the Euclidean space.

More explicitly, we will replace Euclidean space with SLy(R) and primitive integral vectors
with SLy4(Z). We will consider an integral polynomial P : SLg(R) — R such that its level
sets Zp(R) = P~L1({T}) have a transitive action of a fixed group G < SL4(R) x SLg4(R)
and such that there exists a G-equivariant projection 7r : Zp(R) — Z7,(R), where Z7, (R)

is a chosen reference level set. Then, similarly to the Linnik type problems above, we will

consider (properly) normalized counting measure supported on Zg,(R) of the form ur dof
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ﬁ > vezp(z) Onp(z), Where Z7(Z) 2 (R)NSL4(Z), which are infinite, locally finite, atomic

measures.
Our main result will state that, under certain conditions on the range of T,

Th_I}Cl)OMT(f) = pz(f), Vf € Cc(Z1,(R)),

where 1z will be a measure on Z7,(R) induced by the G-action.

1.2. On the work of Aka, Einsiedler and Shapira. Our original motivation for this
paper comes from the work of Aka, Einsiedler and Shapira that can be found in [AES16b]
and [AES16a]. We will extend [AESI16al in various directions using the limiting distribution
of the measures pr discussed in Section [[LT.T] (see Theorems [A.8 and [.9]).

Remark. This paper relies on the method of the proof of [AES16a], and since analogue prob-
lems in dimension d = 3 are treated by different set of tools (see e.g. [AES16b, [Khal9]), the
case of dimension d = 3 is not treated in this paper.

We will now recall the main results of [AES16a]. Fix d > 4 and consider X;_; the space of
(d — 1)-unimodular lattices in R~!. The space of shapes of (d — 1)-lattices is given by

def
Si—1 = SO04-1(R)\Xy4-1 = SO4—1(R)\SLy_1(R)/SL4_1(Z)
which is simply the space of full rank lattices in R¢~! identified up-to a rotation.
For v € R?, we denote by v+ the orthogonal hyperplane to v with respect to the usual
Euclidean inner product, and for v € Zgrim we define

Ay Croln z,

which is a rank (d — 1)-discrete subgroup of R?.

We embed Sy_; into the space of rank (d — 1)-discrete subgroups of R? by identifying the
horizontal plane R%™! x {0} € R? with R4, Then, by scaling the A,’s into unimodular
lattices and by rotating them into R x {0}, we obtain their “shape” in Sy_;. More ex-
plicitly, for a rank (d — 1)-discrete subgroup A < R%, we denote by covol(A) the volume of
a fundamental domain of A in the hyperplane containing A with respect the volume form
obtained by the restriction of the Euclidean inner product to this hyperplane. An elementary
argument (see e.g. [AES16a]) shows that

covol(Ay) =

prim-

d
S E v, vwezd
i=1

By choosing py € SO4(R) such that pyv = eq, we get that py(||v] /4 "'Ay) is a unimodular
lattice in R¥~1 =2 R~ x {0}. We denote by K = SO,_1(R) the subgroup of SO4(R) stabilizing
e4, and we define shape(Ay) € Sg—1 by

def _ _
shape(Ay) = Kpo(|v]| 7/ 1Ay),

which is well defined as a function of v € Zgrim (see (@4) which extends the definition of
“shape” function to the moduli space of (d — 1)—discrete subgroups of R%).
The main result of [AES16b] and [AES16a] was the joint equidistribution of the normalized

probability counting measures supported on

{(Shape(Av), %v) | v e Hprim,T(Z)} CSy1 % Sd_l,

where S%1 C R? denotes the unit sphere.
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1.2.1. Some historical context for [AES16D] and [AES16a] and subsequent works. Statistics of
shapes of subgroups of Z? were studied by W. Roelcke in [Roe56], H. Maass in [Maa59], and
much later by W. Schmidt in [Sch98| [Sch15] who proved more general results using elementary
counting techniques. Schmidt’s theorem was given a dynamical approach in [Marl0], and T.
Horesh and Y. Karasik recently in [HK20] extended Schmidt’s results to “higher” moduli
spaces using the technique of [GN12].

A considerably more refined problem concerning the shapes of subgroups of Z¢ lying in
sparse subsets was first studied in [EMSS16] and then in [AES16b] and [AESI6a]. We note
the recent works [ERW17, [Khal9l [AEWT9| BB20, [AMW21] which extend and refine [AES16bl,
AES16al [EMSS16] in a various directions.

In this paper we continue the preceding line of research and generalize the results of
[AES16a)]. In a rough description, we will consider tuples of the form (shape(Ay), v, v mod q)
for integral v € ZgrimﬂQ_l({T}) where () is a non-singular integral quadratic form which can
be either positive definite, or of signature (1,d — 1), and moreover, we will consider “higher”
moduli spaces.

1.2.2. AES type result in two sheeted hyperboloids. We now give a special case of our results.
We fix d > 4, we let Q(x) = —(Z?;ll z7) 4+ 2% and we consider the group SOg(R) < SL4(R)
which preserves (. For T' € R, we denote

{xer!| Q) =T},

Hr(R) <

and we let

def
HT,prim(Z) = HT(R) N Zgrim'

In this paper we will concentrate on 7" > 0 because the stabilizers in SOg(R) of vectors in
Hr(R) are compact, which is important for the method that we use. We recall by Theorem
6.9 of [BHC62] that Hr prim(Z)/SOg(Z) is finite, and for N € N we consider the following
measure on Sy_1 X H1(R) defined by

def 1
o ’HN,prim(Z)/SOQ (Z)‘ Z (shapo(Av),\/LNv>

VEHN,prim(Z)

Note that S4_1 x#1(R) is a quotient of SLy_1(R)/SL4—1(Z) xSO¢q(R) by a compact group, and
on the former space there is a choice of a natural measure (for more details, see Section [4.3.2)),
which gives, by taking the pushforward under the natural projection, a product measure on
Sq—1 X Hi(R) which we denote by s, |, ® p, -

Theorem 1.1. For all f € C.(Sg—1 x H1(R)) it holds that
]\}igloo VN(f) = U8, 4 @ P, (f)

By adding congruence assumptions on N € N, we obtain the following joint distribution
of the radial projection into H1(R), the shapes of orthogonal lattices and the residue classes
of the vectors in Hy prim(Z) as N — oo.

We choose ¢ € N and we define for a € Z/(q)

Ha(Z/(0) = {x € (2/(9)" | Qx) = a}.

For N € N and ¢ € N we consider the following measures on Sg—1 X H1(R) X H n(modq)(Z/(q))
defined by

=}
-

€

1
vl = 1)
N |H N prim(Z)/SOQ(Z)] veHNEP;“m(Z) (Shape(Av)v\%ﬁv,V (mod q))

Theorem 1.2. Let g € 2N+ 1 and let a € (Z/(q))™ be an invertible residue mod q. Assume
that {T,,},21 € N satisfy

T, (mod q) =a € (Z/(q))*, Vn € N.
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Then for all f € Ce(Sqg—1 x H1(R) x Ho(Z/(q))) it holds that
lim vf (f) = ps, , @ i, @ figg, z/(q) ()

n—oo

where iy, (z/(q)) 15 the uniform probability measure on Ho(Z/(q))-
1.3. Structure of the paper.

e Section [2] discusses some conventions, standing assumptions and basic facts that will
be used throughout the paper.

e Section [ discusses the manifolds Z7(R) C SLi(R) and presents our main “Linnik
type” results, see Theorems 3.7 and 3.8

e Section @ discusses moduli spaces of discrete subgroups of Z% and states our results
concerning them refining [AES16al, see Theorems .8 and .91 We note that the latter
results may also be interpreted conceptually as a Linnik type result.

e Section B proves Theorems (4.8 and .9 of the moduli spaces using Theorems 3.7 and
.8l of the SLy(R)-submanifolds.

e The rest of the paper is devoted to proving Theorems B.7 and B8 The scheme is
roughly as follows:

— Section [7 generalizes the proof of [AES16al, Theorem 3.1] concerning the equidis-
tribution of a sequence of compact orbits in an S-arithemetic space, which builds
on the results of [GO11].

— Sections exploit the equidistribution of orbits proved in Section [7 to prove
Theorems [B.7 and B.8] by revisiting the method of [AES16a]. The preceding
method is outlined in Section [8l

Acknowledgements. We would like to thank Andreas Wieser and Yakov Karasik for helpful
discussions, and we would like to thank Daniel Goldberg for his comments and suggestions
on the manuscript.

2. SOME CONVENTIONS, STANDING ASSUMPTIONS AND BASIC FACTS

We denote by R a unital commutative ring, and for d € N we view R? as column vectors.
We will denote for 1 < i < d by e; € R? the standard basis vectors, and for x € R% we denote
by z1,...,x4 € R the components of x, namely x = E?:l x;e;, where x; € R.

When V(Z) C Z¢ is defined by the solutions of a collection of polynomials with integer
coefficients, we denote by V(R) its solutions in R?. For ¢ € N we denote by 9, : Z — Z/(q)
the reduction map modulo ¢, and we observe that it induces a map ¥, : V(Z) — V(Z/(q)).

Throughout the paper we will consider

SLa(R) % {g € My(R) | det(g) = 1},

ASLy_1(R) d:“{( o 1 > |m € SLg_1(R), v € Rd‘l},

and for an integral symmetric matrix M € My(Z) we let

SOQ(R) ¥ {g € SL4(R) | ¢' Mg = M},

where () is the quadratic form whose companion symmetric matrix is M. We make the

convention that a quadratic form @ : Z¢ — Z is integral if Q has an integral companion

matrix M, and we say that @ is non-degenerate if disc(Q) def det(M) # 0.

We consider the right SOg(R) linear action on R given by

(2.1) vV-p def p v, pe SOqg(R), v € R%,

and for v € R% we let

H,(R) & {g € SOg(R) | gv = v}.
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Standing Assumption. Throughout the paper Q denotes an integral, non-degenerate qua-
dratic form in d > 4 variables such that Q(eq) > 0 and He,(R) is compact.

Definition 2.1. For ¢ € N we will say that @ is non-singular modulo ¢ if disc(Q)(mod ¢) €
(Z/(a))"

2.0.1. Linear action of SLq by the Cartan involution. Let 6 : SLg(R) — SL4(R) be the
involutive automorphism given by

6(9) < ().

In the paper we will consider the left action of SLy(R) on R? given by

(2.2) g-v = 0(g)v, g€ SLy(R)

(where the right hand-side denotes matrix multiplication of v by 6(g)) and we denote the
translation map of e4 by

(2.3) 7(9) ¥ 0(g)eq, g € SLa(R).

The main motivation that led us to consider the action above (and not the usual left SLg
linear action) is that the vector 7(g) € R? is orthogonal to the first d — 1 columns of ¢ with

respect to the Euclidean inner product, as we now explain.

For x,y € R? we define the Euclidean bi-linear form (x,y) dof Z?:l Z;y;. An important

property of 8 is the invariance

(24) <6(g) "X, 9 y> = <X7y> ) v.g € SLd(R)7
which in particular implies
(2.5) (1(9), 9e;) = (ei, ;) = bi;.

2.0.2. Concerning the covolume and the left action of SLy(R) on R?. For a discrete subgroup
A < R? of rank d — 1, we define covol(A) to be the volume of a fundamental domain of A in
the hyperplane containing A, with respect to the volume form obtained by the restriction of
the Euclidean inner product to this hyperplane.

For g € SLy(R) we denote by § € Mgxq—1(R) the matrix formed by the first d — 1 columns
of g, and we note for A = §Z?~1 (the discrete subgroup of rank d — 1 having the columns of
g as a Z-basis) the formula

covol(A)? = det (9'9) .
Lemma 2.2. We have for g € SLy(R) that

covol(9Z~1) = [|7(g)]!
where ||-|| denotes the usual Euclidean norm.

Proof. We first note that
-1 .
(9'9)" =adj(d'g),
where adj(-) denotes the matrix adjugate, and we observe that the d,d entry of the matrix
adj(g'g) is det (9'g) = covol(A)?. In particular, the d,d entry of the matrix adj(g'g) can be

expressed by <ed, (gtg)_1 ed>, hence

covol (§Z41)% = <ed, (gtg)_l ed> = (ed,97'0(9)ea)
= (0(9)eq, 0(g)eq) = [|10(g)ed|®
= r(9)|*.
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3. LINNIK TYPE PROBLEM IN SL,4(R)

The structure of this section is as follows:

e Section B.1] introduces the one-parameter family of subvarieties Z7 C SL; mentioned
in Section [[.T.1] and discusses basic facts concerning them.

e Section defines a natural homeomorphism between a subvariety Z7(R) to a refer-
ence subvariety Zg(e,)(R).

e Section B3] presents our main results (Theorems 377 and B.)).

3.1. Subvarieties of SL;. Let Q be a quadratic form as in our [Standing Assumption| and
recall that R denotes a unital commutative ring. For T' € R, we let

{veR"|Q(v)=T},

Hr(R) <

and we consider

(3.1) Zr(R) = 7 (Hr(R)),

(see ([23) to recall 7) namely
def

Zr(R) = {g € SLa(R) | (Qo7)(9) = Q ((¢")'eq) = T}.
Note that Q o7 : SLy(Z) — Z is an integral polynomial.
3.1.1. Concerning the (SOg x ASLgq_1) action. We recall the SL;(R) action given in (22]),

and we observe that the stabilizer subgroup of SL;(R) stabilizing e4 is ASLy—1(R), which
allows us to conclude

(3.2) SLg(R)/ASLy_1(R) = 7 (SLa(R)).

In light of [3.2), SLg(R) can be thought of as a union of fibers 77(v), v € R%, where each
fiber is an ASL,_1(R)-right coset, and according to (B.I]), Z7(R) is the union of those fibers
of vectors in 7 (SLy(R)) N Hy(R), which leads to the identification

(3.3) Zr(R)/ASLg-1(R) = 7 (SL4(R)) N Hr (R).
We consider the following right action of SOg(R) on SLg4(R)/ASLg4_1(R) defined by

(3.4) (9ASLa-1(R)) - p = 6 (p) " gASLa1(R),

and we observe that the above action is equivalent to the right SOg(R) action (2.I]) on the
orbit 7 (SLg(R)) € R, namely

(3:5) 7(9ASLg-1(R) - p) = 7(9) - p-

In view of (B.H), it is natural to consider the (SOg x ASL4_1) (R) action on Z7(R) from
the right by

(3.6) g-(p.1) € 0(p)""gn, g€ Zr(R), (n,p) € (SOq x ASLs_1)(R),

and continuing with our description of Zp(R) as a union of fibers of vectors in 7(SLg(R)) N

Hr(R), we interpret gn as a “move” in the fiber of v def 7(g) and by 8(p)~'gn as a “transition”
of gn into the fiber of p~'v (using (3.5))), which allows us to conclude (more formally, by (3.3)

and ([B.3])) that

(3.7) Zp(R)/ (SOq x ASLg-1) (R) = (7 (SLa(R)) NHr(R)) /SOq(R).
We have the following corollary from (B.7)).

Corollary 3.1. The following hold:

(1) (SOg x ASLgq_1)(R) acts transitively on Zr(R) for all T > 0.
(2) Let q € 2N + 1, and assume that Q is non-singular modulo q (Definition [2.1)). Then
(SOg x ASLy_1) (Z/(q)) acts transitively on Z,(Z/(q)) for all a € (Z/(q))™.
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(3) There are finitely many (SOg x ASLq_1) (Z) orbits in Zn(Z) for all N € N, and
moreover

1ZN8(2)/ (SOq x ASLg-1) (Z)| = [H N prim(Z) /SOq(Z)]

Proof. To show () and (2]), we observe that using (3.7)), it is sufficient to prove that SOg(R)
acts transitively on Hp(R) when R € {R,Z/(q)} and T € R are as specified in () and (2]
The claim for R = R follows from Witt’s Theorem.
We now proceed to prove (2)) by going along the lines of the proof of [Cas78, Chapter 8,
Lemma 3.3]. Let p be an odd prime and let k¥ € N. We may consider the following involution
(a generalized reflection)

m: (2/69)" = (2/69)"
defined for v € (Z/(pk))d such that Q(v) € (Z/(p")) by

def  2Q(x,v)
Tv(x) = x — WV,
where Q(x,y) & 1 Qx+y)—Q(x—y)) forx,y € (Z/(q))" is the associated bi-linear form
of Q. By observing that Q(7v(x)) = Q(x) and det(ry) = —1, we deduce that 7y, o T, €
SOQ(Z/(pk)) for all uy,uy € (Z/(pk))d such that Q(u1), Q(uz) € (Z/(pk))x.

We now show that for all vi,ve € Ha(Z/(p*)) with a € (Z/(pk))X there exist uj,uy €
(Z/(pk))d such that Q(up),Q(u2) € (Z/(pk))X and Ty, © Ty,(v1) = vo. Let vi,vy €
Ho(Z/(pF)) with a € (Z/(pk)) " We observe that Q(vi +va) 4+ Q(vi —va) = 4a € (Z/(pk)) *
which implies that either Q(vi + va) € (Z/(pk))X or Q(vi —va) € (Z/(pk))X . Assuming
that Q(vi — va) € (Z/(pk))x, we may consider 7y, _v, and we observe that 7y, _y,vi = va.
Assuming the existence of u € (Z/(pk))d such that Q(u) € (Z/(p")) * and Q(u,vy) = 0, we
note that 7,(v1) = vy, which implies in turn that 7, _y, o7u(v1) = va. To prove the existence

of the above u, we note that Q(vi) mod p is non-zero, which implies that the restriction of
the form @ (mod p) to the vector space

V= {x € (Z)(P) | Q(x,v1) = 0 mod p}

gives a non-singular form, proving in turn that there exists n € V such that Q(@) is non-
zero mod p. Using [Ser73, Section 2, Theorem 1] (Hensel’s Lemma for several variables) for
the polynomial f(x) = Q(x,v1) (by lifting v; to a Zg vector) we deduce that there exists
uc (Z/(pk))d such that u = @ mod p and @Q(u,vy) = 0, and in particular, since u = @ mod p,
we get Q(u) € (Z/(pk))x. If on the other-hand it holds that Q(v1 + v2) € (Z/(p")) ", then
we have
Tvs © Tyvitvy (V1) = Va.
With this we have proved (2] for ¢ being a power of an odd prime, and the result for a

general ¢ € 2N + 1 follows by the Chinese remainder theorem.
Finally, to validate (3]), note that for 7" > 0

(7 (SLal(Z)) N Hr(2)) [SOQ(Z) = (Zisiwa ' Hr(Z) ) /SOQ(Z) = Hepim (2) /SO (Z).
O
3.1.2. Stabilizers subgroups of (SOg x ASLg4_1)(R). We now discuss some facts concerning
the stabilizer subgroup of (SOg x ASL4_1)(R) stabilizing g € SL4(R) by the right action

([B.6). For the following recall that H.(4) (1) < SOg(R) denotes the stabilizer of 7(g) € R by
the SOg(R) action on R (to recall, see (Z.)).

Lemma 3.2. Let g € SLy(R) and consider the group

(3.8) Ly(R) < {(w,97'0(w)g) | w € H(5)(R)} .
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Then Lg(R) < (SOq x ASL4_1)(R) is the stabilizer subgroup of g by the action (B.4).
Proof. To show that Ly(R) < (SOq x ASLg_1)(R) we observe that for all w € Hy)(R) it
holds that
7 (9710(w)g) = 0(g~ wr(g) = 0(g™")7(9) = eq,
which implies that ¢g=10(w)g € ASLy_1(R).

Next, as the reader should easily verify, all elements of Ly(R) stabilize g. For the other
inclusion, let (p,n) € (SOg x ASL4_1) (R) be such that

(3.9) g=29-(p,n) =0(p"")gn.

By rewriting (3.9]), we get

(3.10) 9~ 0(p)g =,

and we observe that to finish the proof, we need show that p € H. ) (R). Indeed, we have

p'7(g) = 7(0(p™")g) T(0(p~ g =_7(9)-
ASLg_1(R) invariance B3)

O
3.1.3. The form Q*. We will now go over some technical facts that we need about the groups
9(SOg(R)) and 6 (Hy(R)) for v € R? (which appears in the second factor of L,(R)). In a
summary, we will show that #(SOg(R)) is identified with SOg«(R) for a (rational) quadratic
form Q* defined below, and the subgroup 6 (Hy (R)) is identified with the subgroup of SOg- (R)

that preserves the orthogonal hyperplane to v with respect to the Euclidean inner product.
Let M € My(Z) be the companion matrix of the form @, namely

Q(x) = x' Mx.
We recall that @ is a non-degenerate integral form, which implies that M € GL4(Q), and we
define the rational form Q* by
(3.11) Q" (x) ¥ x! M x.

Remark. The form Q* can be defined more intrinsically as follows. Let Q(-,-) the bi-linear
form associated to (). Since () is non-degenerate, the map

19 R - (Rd)*

where (Rd)* denotes the dual space, defined by 1% (x) def Q(+,x) is a linear isomorphism. The
form @Q* can be identified as the form on (Rd)* which is makes the map [9 an isometry.

Lemma 3.3. We have that 8(SOg(R)) = SOg«(R). Moreover, let g € SL4(Z) such that
Q(7(g)) # 0, then:

(1) We have that 6 (H, ) (R)) = {p € SOg+(R) | p(MT(g)) = M7(g)}

(2) It holds that (M7(9))* Q") = Spang {g1,...,84-1}, where (M7(g)) @) denotes the
orthogonal hyperplane to MT(g) with respect to Q* , and g; is the i'th column of g.
Moreover

R? = (Mr(9))" Y @ Spang {M7(g)} .
Proof. To show that #(SOg(R)) is the group preserving the form Q*, we observe that
p!Mp =M —
0 (p'Mp) =0(M) —

(3.12) O(p)!M~10(p) = ML

Next, to prove that the subgroup 6 (H,(R)) < SOq-(R) is the stabilizer of M(g), we
observe by ([BI2]) that

0(p) (M7(g)) = Mpr(9),
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and since M is invertible, we deduce that

Mpt(g) = M7(9) <= p7(9) =T7(9),

namely 6(p) stabilizes M 7(g) if and only if p stabilizes 7(g).
Next, to show (2]), we note that

Q" (M7(9)) = Q((9)) #0,
which by [Cas78, Lemma 1.3] shows that
R? = (Mr(9)"?" @ Spang {M(g)}
Note that the bi-linear form Bg« determined by Q* is given by
Bg+(uy,u2) = <u1, M_1u2> )
Let g; be the i’th column of g, then

_ -1
Bq.(gi, M(9)) = (gi, M~ M1(g)) = <gei, (9') ed> = dia,
which proves that (M7(g))*@") = Spang {g1, ..., 84_1} - O

3.2. The equivariant isomorphism. Our goal now is to describe a one-parameter group
{ar}rso < SLg(R) such that ar € Z4(V/Tey)(R) for all T > 0, and such that the stabilizer

group L, (R) < SOg x ASLg_;(R) of ar is independent of 7. This will allow us to define a
(SOg x ASL4_1)(R) equivariant map Z7, (R) — Z7,(R), for T; > 0.
We note that Q(7(I3)) = Q(eq) # 0, and by Lemma B3] (2) we obtain

R? = Spang{ei, ..,e4_1} @ Spang {Me,}

where Spang{ei,..,e;_1} and Spany {Me,} are invariant spaces under the ordinary left

0 (He, (R))-linear action.

Definition 3.4. For T' > 0 we define ap € SLy(R) to be the unique matrix which acts on
1 *

Py def Spang{ei,..,eq_1} by scalar multiplication of a factor of 721 and on POl (@) def

Spang{Me,} by scalar multiplication of a factor of T—1/2.

Corollary 3.5. It holds that ar € ZQ(\/Ted)(R)’ VT >0, and L,,(R) = Ly, (R).

Proof. In order to validate that ar € Zg \/Ted)(R)v we show below that

(313) T(CLT) — ﬁed'
We have
(e;,T(ar)) = <e,~, (aﬁp)_1 ed> -

—1 1
<CLT ei7ed> N, T25i7d7
Definition [3:4]

which implies (8.13]). Next, since Py and POJ' @) are invariant spaces under the left linear
0 (He,(Q)) action, and since ar acts by scalar multiplication on each of these spaces, it
follows that ar is in the center of § (He,(R)). Therefore

Lo, (R) = { (w, (ar)™" e(w)aT) | w € Hyay) (R)}

~ {(w.0w) | v € H oy ).
{ j

Now we have by B.13) that H,(,,)(R) = H 7, (R) = He,(R) = H(7,)(R), which in turn
implies that Lg,(R) = Lz, (R). O
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For the rest of the paper we denote

(3.14) H % Ly, (R) = {(w,0(w)) | w € He,(R)}.
By Corollary we have for all T' > 0 the identification
(3.15) ZQ(\/Ted)(R) ~ H\(SOg x ASLy4_1)(R)

by the orbit map
H (p,n) = 6(p™)arn.

We define
T2orey - 20(/Teg) R) = ZQ(eq) (R),
by
_ def _ _
(3.16) T2 gyrey (0007 Darn) € 05~ ) Ly = 6(p™ ),

which is clearly equivariant with respect to the action of (SO x ASLq-1)(R) on Z, QT ed)( )
and Zg(e,)(R) (since ar has the same stabilizer V1" > 0).

3.2.1. The natural measure on Zg(e,)(R). We now define a (SOg x ASLq_1)(R) invariant mea-
sure on Zg(e,)(R) using the identification (BI5). We choose Haar measures mgq o(R)> MASLy_;(R)
on SOg(R) and ASL4_; (R) respectively with a normalization we discuss in Section .3.2] and
we observe that H is compact (by (8.14), we have H = H (R), and recall that He,(R) is
compact under our [Standing Assumption). Then on Zg d)(R) we can define the following
measure

def
(3.17) pz = (TH), Moo (R) © MASLy_ ()
where g 1 (SOg x ASLg_1)(R) — H\(SOg x ASL4_1)(R) is the natural quotient map.

3.3. Statistics of Zy(Z) as N — oco. We are now ready to discuss our main results. Let
N € N and consider the following atomic measure on Zg,)(R)

3.18 Ve = 57r
(3.18) = By @@ 2 e
SL‘EZN

The following definition amounts to a congruence condltlon of the range of N € N for which
we are able to obtain the asymptotics of the measures vy.

Definition 3.6. Given a prime p and a rational quadratic form Q, we say that v € Q% is
(@, p) co-isotropic if Hy(Qy) (the stabilizer of v in the group SOg(Q))) is non-compact. We
say that N € N has the (Q,p) co-isotropic property if there exists v € Hn prim(Z) which is

(Q,p) co-isotropic.

Remark. For v € Q% we have H, (Q,) is non-compact if and only if Ju € QZ ® v+(@ such
that Q(u) = 0, where v1(@) is the orthogonal hyperplane with respect to Q. We note that if
Q is a rational quadratic form in d > 6 variables, then the form induced on Qg ® vi(@ s in

d > 5 variables and by [Cas78| (see [Cas78, Lemma 1.7]), we obtain that any v € Q% is (Q, p)
co-isotropic, for any prime p.

Our main results are as follows.

Theorem 3.7. Assume that {T,,}22, C N is a sequence of integers satisfying the (Q,po) co-
isotropic property for some fived odd prime po, and T, — co. Then for all f € Ce(Zg(e,)(R))
we have that

lim v7 (f) = pz(f).

n—oo

Next, for N € N and ¢ € N we consider the following measure on Zg,)(R) x Zy_(1)(Z/(q))
given by

1
1 o=
(3.19) N B ) /S0a@)] 2= Oz (a)tnta

SL‘EZN
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Theorem 3.8. Let ¢ € 2N + 1. In addition to our [Standing Assumption] on the form @,
assume that Q is non-singular modulo q (see Definition[21)). Let {T,,}5°; C N be a sequence
of integers satisfying the (Q,po) co-isotropic property for some odd prime py, and assume that
there is a fived a € (Z/(q))™ such that for all n € N it holds 9,(T,) = a. Then, for all
[ € Ce(Zg(ey)(R) x Z4(Z/(q))) we have that

lim v (f) = 1z © pz,z /) (),

n—oo

where fiz,(7/(q) is the uniform probability measure on Z,(Z/(q)).

4. MODULI SPACES - REFINEMENTS OF [AES16a

This section discusses our results which generalize [AES16a]. We note that these results are
also conceptually similar to the Linnik type results that we discussed in Section [I.T], and are
roughly described as follows. We will introduce moduli spaces Y(R) and X'(R) which are fiber
bundles over R? \ 0 with fibers that are isomorphic to Y;_; = ASLy_1(R)/ASLg_1(Z) and
X4_1 =SLg_1(R)/SL4_1(Z). Taking the preimage of a quadratic variety Hr(R) C R?~ 0 by
the projection map to R4~ 0, we obtain for M € {)), X} a one parameter family of subbundles
Mr(R) € M(R) over Hr(R), which are all isomorphic. We will define a geometrically
motivated homeomorphism 7. : M7 (R) — Mg(e,)(R), and our main results, Theorems[4.8-
4.9 will be about the distribution of mrq,, (Mr(Z)) in Mge,)(R), where M (Z) = M(Z) N
Mrp(R).

The structure of this section is as follows:

Sections discuss X'(R) and Y(R).

Section [£.3] discusses the subbundles M7 (R) C M(R), 7" > 0, the homeomorphisms
TMyp, and some natural measures on these subbundles.

Section [4.4] states Theorems

Section relying on Theorems [4.8H4.9] proves Theorems [L.1] and from the intro-
duction.

4.1. The moduli space of oriented rank d — 1 discrete subgroups of R?. Instead
of considering the shapes of orthogonal lattices to integral vectors (which we introduced in
Section [[.2]), we may consider the orthogonal lattices “as is” by

x(2z) {(Av,v) Ivezd. | A, = deVL},

prim>

We will now describe a homogeneous space X (R), which can be thought of as a natural
ambient space that contains X' (Z).

We let X414 be the space of rank (d — 1)-discrete subgroups of R%, and we define X' (R) C
Xa-14 % RIN 0 by

X(R) Y {(A,v) € Xo1.ax R0 |v LA, covol(A) = |yvu} ,

and as we now show, X(R) is a homogeneous space. We consider the left action of SLy(R) on
Xdg—1,4 X R? given by

(4.1) g- (A, v) & (g7, 0(9)v), g € SLa(R).

Lemma 4.1. It holds that
X (R) = SL4(R) - (Spany{e1,...,e4_1},€q).

Proof. 1t is straightforward to verify that SLy(R) acts transitively on Xg_; 4. The rest follows
by (Z3) and Lemma

By noting that the stabilizer of (Spany{ei,..,eqs—1},€eq) is the subgroup ASLy 1(Z)U

SLg_1(Z) x R, where
U:{< Id; I) ]veRd_l},

O

1
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we deduce the identification
X(R) = SL4(R)/ (ASLg—1(Z)U) -

By restricting the above SL4(R) action on X (R) to SLg(Z), we obtain the following obser-
vation.

Lemma 4.2. It holds that
X(Z) =SL4(Z) - (Spany{e1,...,eq_1},€q).

Proof. Since the columns of g € SLy(Z) form a Z-basis for Z¢, and since 7(g) is orthogonal to
the first d — 1 columns of g (see ([2.3])), we have

A+(g) =Spang{ger,..,geq_1}
=g - Spang{ey,..,eq_1}.

Finally, we note that 7 (SL4(Z)) = Zgrim (to recall 7, see (23))) O

We now observe that the map 7%, : X(R) — R? \ 0 defined by

(4.2) Tk (Av) €y,

vec

gives X(R) the structure of a fiber bundle with fibers isomorphic to Xy_1. Indeed

(mee) " (Vo) ={(A, vo) € Xg-1.4 x {vo} | A L vo, covol(A) = [|vo|}
={A€ X4 14| vo LA, covol(A) = [[vo|}
=Xg-1.

4.1.1. The extension of the “shape” map to X(R). We now reconsider the map shape :
28 im — Sa-1 from Section [[2 and extend it to X (R).

We note that SO4(R) acts on X'(R) by

def
p-(A,v) = (pA,pv), peSO4R), (A,v)e X(R),
which is the restriction of ([@I) to SO4(R), and we let K & SO4(R) N ASLg—1(R) be the
stabilizer of ey by the ordinary SO4(R) left linear action on R?. Since (7X.)7'(eq) is

identified with the space of of full rank lattices in R, and since K acts on (7X,.)'(ey)
L

by Euclidean rotations in the plane ey, we obtain that S;_; identifies naturally with the
space of K-orbits in (mX_.)"!(eq). Since (m:X,.)"!(eq) is the ASLy_1(R) orbit passing through

(Spang{ei,...,eq 1}, eq), we get that (mX.)"!(eq) = ASLy_1(R)/ASLy_1(Z)U, and we con-
clude that
(4.3) Si—1 = K\ASL;_1(R)/ASLy4_1(Z)U.

Next, for v € R%\ 0 we choose a py, € SO4(R) such that pyv = ||v| €4, and for t > 0 we

define d; € SL4(R) by
aof (471D,
e N

Then
djvipv - (A, V) = ((d)y)pv) A eq) € (Tee) " (eq),
and we note that (dvpv)A = py (|| V]| ~1/(d=1)A). We observe that the K orbit K(djvpv)A C
X )~!(eq) is independent of the choice of py, and we define shape : X(R) — S;_1 by

(7T’U60

(4.4) shape(A, v) & K (djypv)A, (A,v) € X(R).
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4.2. The space of unimodular lattices with a marked rational hyperplane. As in
[AES16a], we describe an object that extracts more information from a primitive vector v

than we get from A, by telling us how A, is completed to Z¢. Namely, for v € anm, we let
w € Zgnm such that

Ay & WZ = 17"
We say that w completes A, in a positive direction if (v,w) > 0. This data is concisely
recorded by the triple (Zd, v, v) in a natural way, and motivates us to consider

y(z) {(Zd viv)|ve Zprlm}.

As for X(R) and X(Z), we will now describe Y(R) as a homogeneous space that can be
thought of as a natural ambient space containing )(Z).

We let X4 be the space of unimodular lattices in R? and we denote by Gr(d — 1,d) the
space of hyperplanes in R%. For L € X; we define Gr(d — 1,d)y, to be the space of L-rational
hyperplanes, namely

def

Gr(d—1,d)p = {P € Gr(d —1,d) | PN L is a rank (d — 1)-discrete group of Rd} ,

and we define
(4.5)

Y(R) & {(L Pv) € Xyx Gr(d—1,d) xR | P € Gr(d — 1,d)1, P Lv, |v|]| = covol(L N P)} .
We define a left action of SLg(R) on Xy x Gr(d — 1,d) x R by

def
(46) g- (L7P7V) = (gngP70(g)V) » g € SLd(R)
Lemma 4.3. It holds that Y(R) = SL4(R) - (Z¢, Spang{er, ..,e4_1}, €q) -

Proof. Tt is well known that SLy(R) acts transitively on X, and that the stabilizer in SL4(R)
of a lattice L acts transitively on Gr(d —1,d)r. The rest follows by (23] and Lemma 22l O

We observe that the stabilizer of (Zd, Spang{ei,..,eq_1}, ed) is ASLy_1(Z), hence
Y(R) = SLq(R)/ASLy—1(Z).

By restricting the action of SLy4(R) to SL4(Z), we obtain the following observation which we
leave the reader to verify.

Lemma 4.4. We have Y(Z) = SL4(Z) - (Z%, Spang{e1, ..,e4_1},€q) -

4.2.1. The projection to X(R). A natural connection between Y(R) and X' (R) is given by the
projection 7 : Y(R) — X (R) defined by

(4.7) (L, P,w) ¥ (LnP, w)

We observe that for (A, v) € X'(R), the fiber 7701 ((A,v)) consists of the triples of the form
- V>ZA®R ).

where u € A ® R. Namely, the fiber 75! ((A,v)) can be identified with (A @ R) /A =

R4=1 /7971, In terms of coset spaces, we have

(4.8) Tn (9ASLa-1(Z)) = g (ASL4—1(Z)U) ,

which implies that
751 (9(ASLq_1(Z)U)) = gASLy_1(Z)U/ASLy_1(Z) = Rt /7471,
In particular, mn has compact fibers.

Remark. We note that the analogue space to Y(R) for dimensions 3 < k < d — 1 in d-space
was recently considered in [AMW21] which studies a problem similar to the one addressed in
the current paper.
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4.2.2. Y(R) as the space of oriented (d — 1)-grids in R?. We will now present another descrip-
tion of Y(R) that, in our opinion, is more geometrically transparent. This description more
clearly connects Y(R) to the notion of grid shapes considered in [AESI6a] (which actually
motivated us to consider the space Y(R)).

We recall the space of unimodular grids in R9~! (translates of unimodular lattices)

{A+u |A e X4 1, ue]R{d‘l}.

For a triple (L, P,v) € Y(R) we let w € L such that (LN P) & wZ = L and (w,v) > 0. We
denote by 7T}J5 : R4 — P the orthogonal projection. Then

(4.9) 5 (LN P)+w) = (LNP)+rp(w),

which can be viewed as a grid that sits in the hyperplane P, is independent of the choice of

w. By defining f(L, P,v) & ((L N P)+ 75(w), v), obtain an identification of Y(R) with
{(A+u,v)|AeXg 14, ue AQR, v LA, ||v| =covol(A)}.

Using the above description of Y(R), we see that the projection 72, : Y(R) — R?~ 0 defined

by

(4.10) w2 (A +u,v) Yy,

vec

def
Yo1 =

endows Y(R) with the structure of a fiber bundle with fibers isomorphic to Y;_;.

A quick summary - hierarchy of moduli spaces. We summarize the discussion concerning the
moduli spaces by the following commuting diagram

(4.11) Y(R) "~ X(R) e i g

y
Toec

and we note that in terms of coset spaces, the following diagram is equivalent to (4.11)

(4.12) SL4(R)/ASLy_1(Z) —= SLg(R) /ASLy_1 (Z)U — SLy(R)/ASLy_1 (R)

\—/

where all the maps are the natural projections.

4.3. Moduli level sets, their measures and their isomorphisms. Let ) be as in our
[Standing Assumption|l For T" > 0 we define

(4.13) Vr@®) ¥ ()7 (Hr(R), Xr(R) Y (7X,) T (Hr(R)),

namely

Xr(R) < {(Av) € X(R) | Q(v) =T},
and
Yr(R) € {(L, P,v) € Y(R) | Q(v) = T}.
We note the following commuting diagram (which follows from (@IT])) that describes the
hierarchy between the above moduli level sets

(4.14) Vr(R) —= Xr(R) oy Hr(R)

¥

vec

Next, we define the integral points lying on the moduli level sets. We consider for N € N
def
Hovprim(Z) & {x € Ly | Q) = N}

and we define

Xn(Z) € X(Z) N AN (R) = {(Ay,v) | v € Hnprim(Z)}
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and
def

IN(Z) S V(2) N YN (R) = {(Zd,vl,v) v e ’HN,prim(Z)}.

We also note the following commuting diagram

(4.15) IN(Z) <> XN (Z) < H prim ()

W

where «— denotes bijection.

4.3.1. Maps between level sets. We now define the homeomorphisms Yooy yQ( JT ed)(R) —

Vo(eq)(R) and TX Ty XQ(\/Ted)(R) — X(ey)(R), by using a geometrically natural scaling
transformation.

We define LB XQ(\/Ted)(R) — XQ(e,) (R) by

def 1 1
(4.16) Ty ey (A V) = <mA, ﬁv>, (A, v) € Xy /T, (R)-

We now give an alternative description of (£I6]) using the SLy4(R) action on X(R). For
v € Ho(/Tey) (R) we define the unique matrix Sty € SL4(R) that acts by scalar multiplication
1

of a factor T~ 26@-D on P = v* and that acts by scalar multiplication of a factor 7"/2 on the
line Rv. Then, it follows for (A,v) € XQ(\/’Ted)(R) that

(A, V) = ST,v . (A, V) \:’/ (STNA, Q(STN)V) .
recalling (A1)

Next, using the matrices Sty, v € R? T > 0 which were defined above, we define
owrey  YoTeyB) = Vaten (R) by

X (VTey)

def

(4.17) Woutey In Pov) & Sty - (L, V), (L, P,v) € Vg 7y (R),
where ST,V . (L, P, V) \:,/ (STNL, P, H(ST,V) ) (ST VL P, \/— )
recalling (4.6

Remark. By identifying Y(R) as in Section 2.2, we observe that my, vrey - YaW/T VTey)(R) =
Vo (ey)(R) takes the form

def 1 1
(4.18) LRV (A4u,v) = <m (A+u), T/ >

It follows that mx, and my, are homeomorphisms for all 7" > 0, and we conclude the
following commuting diagram

(4.19) Yr(R) Ar(R)

"z l ity l

Vo(ea) R) == Xg(e) (R)

4.3.2.  Measures on moduli level sets. As Y(R) and X(R) are fiber bundles over R¢ \ 0,
it follows (by (@I3)) that Vg, (R) and Xy, (R) are fiber bundles over the base space
H(e,)(R). We will now define certain measures on Vg(e,)(R) and Xg(e,)(R) by integrating

the natural measures on the fibers of the maps (73, - (v) and (m Uec)_l (v), with respect to
the measure on the base space Hge,)(R).
For v € Hg(e,) (R) we denote by gy € SL4(R) a matrix satisfying

T(gv) \:,_, H(QV)ed = V.

recalling ([2.3))
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Then, with the help of diagram (4.I2]), we observe that
-1
(Toee)  (v) = gvASLy_1(R)/ASLy_1(Z),

and
(7%,) ™" (v) = g ASLy_ (R)/ASLg_1(Z)U,

which shows us explicitly the identification of the fibers of 7Y, with

Y1 & ASLy (R)/ASLy1(Z) = (m )_1 (eq),

vec

and the identification of the fibers of 7¥ . with

(4.20) X1 ASLy_1 (R)/ASLe1 (Z2)U = (r5,) " (ea).

vec

We need the following technical definition which describes the normalization of the Haar
measures we will be using.

Definition 4.5. Let G be a locally compact second countable group and let I' < G be a lattice.
Let m¢ be a left Haar measure on G and let mg,r be the unique left G-invariant probability
measure on G/T". We say that mg and mg r are Weil normalized if for all f € C.(G)

/f Ydme(x /G/F Zf (z7) | dmgr(aT).

el

To define a measure on Hge,)(R), we recall that SOg(R) acts transitively on Hege,)(R)
(by Witt’s theorem, since we assume Q(eg) # 0) via the right action (2.1I), which in turns
implies the identification

H(eq) (R) = He, (R)\SOq(R),

where He, (R) < SOq(R) denotes the stabilizer of eq. We let mgo,®) and mso, k)/s0,(2)
be Weil normalized, and we define the measure jiy, (o (B) O Ho(e,) (R) by

def
HH e H(R) = (T‘-Hed(R)>*mSOQ(R)7

where 7, () 1 SO@(R) — He,(R)\SO@(R) is the natural quotient map ('“HQ(ed)(R) is well
defined since we assume that He, (R) is compact).

We now proceed to define the measures on the fibers (713’66)_1 (v) and (mt.)  (v) for

v € Hge,)(R). We let magr, ) and my, , be Weil normalized, and we let mx, , the
unique ASLy 1(R) invariant measure on Xy 1. We define for v € Hg(e,)(R) the measure

,U,( (v) on (ﬂ-l)))ec)_l (V) by

)

ety oD [ Sy, @), ¥ € C(=2) ™ ()

erc)
and similarly, the measure i x )-1(,) on (775,(66)_1 (v) by

def -1

o [ fgadm, (@), ¥ € Cul(m) T (¥),

and [rx =1 (y) ATC independent of the choice of g,. Indeed,

Hrx

Uec)

We show now that u (¥ )71 )

if one chooses another §, € SLy(R) such that 7(jy) = v, then 7(gy'gy) = ey, so that there
exists h € ASLy_1(R), such that g, = gyh. Therefore we conclude for M € {X;_1,Yy 1}
that

[ H@uadmuiz) = [ Flauho)ima(a)

~—
maq is ASLy—1 (R) invariant

[ Hoadmua)
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Finally, using the above, we define the following measures on the spaces Vg, (R) and
XQ(ed)(R) by

Toec

def def
(421) ny = /,U,( hY )*l(v) duHQ(ed)(R)(V)7 and hx = /M(W{Fec)l(v) dNHQ(ed)(R)(V)-

4.3.3. Pushforwards. We now turn to explain the relation between the measures py and py,
as well as the connection between py and the natural measure on the space of shapes.

Recall that the map 7 : Vg(e,) (R) = Xg(e,) (R) defined in (4.7) has compact fibers, hence
(mn), py is a well defined measure on Xge,)(R).

Lemma 4.6. It holds that (7n), py = px.

Proof. We notice that for all v € Hge,)(R) it holds that 770((773}66)_1 (v)) = (775566)_1 (v),

X

which shows that for all v € He,)(R) the measure (7 )« ( is supported on (mi%.) (V).

Using ([@.21]), we conclude that it is sufficient to show

7T%}ec) -t (V)

(422) (Wﬂ)*,u(ﬂ_%iec)—l(v) = /J(Wi(ec)fl(v)a Vv € HQ(ed) (R)

in order to prove (mn), uy = px.
We let v € Hge,)(R), and we observe that in terms of cosets, the restriction of mn to a

fiber (771);}@(;)_1 (v) = gvASL4—1(R)/ASL4_1(Z) takes the form
Tn(gvnASLy—1(Z)) = gynASL4—1(Z)U, n € ASL4—1(R),

(see (£8])). Since the natural projection ASL;_1(R)/ASLy—1(Z) — ASLy—1(R)/ASLy—1(Z)U
pushes my, , to myx, ,, we can deduce (£.22]). O

Next, we recall the space of shapes Sy_1 f i \X4—1 (see Section A I.1]), and we consider
the product space

w dzef Sd_1 X HQ(ed)(R)~

We define the product measure pyy def Hs,_, ® PH e, (R) where s, , is the push-forward of
mx, , by a quotient from the left by K.
We define the map (shape x mi..) : Xg(e,)(R) = W by

(4.23) (shape x mp..) (A, v) dof (shape(A,v),v),

vec

where shape(A, v) was defined by ([44]). As above, the map (Shape X szfec) has compact fibers.
Lemma 4.7. We have (shape X 775)(66)* Hx = -

Proof. Similarly to the proof of Lemma [£.6] we observe that it suffices to show that

(4.24) (shape)*u(ﬁ(ec)ﬂ(v) = s, ,, Vv E ’HQ(ed)(R).

We now describe (erc)_l (v) in a more convenient way, which makes the description of

shape | (n )~1(y) more transparent. Fix v € Hge 2 (R). We recall the diagonal matrix (see
Section E.I.T])
gl (VT o
(v 0 Iv| )
and we let p, € SO4(R) such that pyleg = ﬁv. We denote

def _1,-1
v = Py d||v||7

and we observe that
T(gv) = py ' djvjed = py | v]lea = v.
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By using the action of SLy(R) on X' (R) (see (@I))), we get (71{’,‘;0)_1 (v) = gv - (771))(66)_1 (eq),
and by recalling (4.4]), we see that shape |(7r ) takes the form

(4.25) shape(gyA,v) = KgylgyA = KA, VA L eqsuch that covol(A) = 1.
@3

Finally, by using (4.25]), we see that the function fy : X431 — R, defined by

(ed)7

fv(z) def foshape(gyz), v € Xg-1 = (771),(66)_1

is right K invariant, and by noting that
(shape).ii iy (1) = [ Fuloddma, (z),

we obtain (£.24)). O

4.4. Statistics in moduli spaces. We are now able to state our main results for the moduli
spaces.
For N € N and for M € {), X'}, we define the following measures on Mg, (R) by

M def 1
VN = Or z)»
Y Hvprin(Z)/S0(2) x@%@ ro ()

(to recall maq, see (£10) and (£I7)), and we define a measure on W by

W def 1
S 5 L
N |HN,prim(Z)/SOQ (Z)| VEHNEP;rim(Z) (ShapC(Av,V),Wv)

Our first main theorem is as follows.

Theorem 4.8. Assume that {T,,}72; C N such that T,, — oo and such that for some fized
odd prime pg, the (Q,po) co-isotropic property (to recall see Definition [3.0) holds. Then

Tim vl (f) = pa(f),
where M € {Y, X}, and f € Co(Mge,)(R)), or for M =W and f € C.(W).

Let ¢ € N and recall that ¥, denotes the natural reduction modulo ¢q. For N € N and for
M e {Y, X} we define measures on Mge,)(R) x Hy, (1)(Z/(q)) by

M.,q 1
14 = 67-( . M
N ‘%N,prim(Z)/SOQ(Z)‘ wE/\%(Z) ( MN( ) 0q(mdde (),

and similarly a measure on W x Hy_(1y(Z/(q)) by

W,q def 1
v = ) 1 .
N [ HNpim(Z)/SOq(Z))] veﬂgp:“m(z) (shape(Av,v), 75 v:04(¥))

By adding some further assumptions on the sequence {7},}72 ; appearing in Theorem (.8 we
are able to obtain the following.

Theorem 4.9. Let ¢ € 2N + 1. In addition to our |Standing Assumption] on the form Q
assume that Q is non-singular modulo q (see Definition[2.1)). Let {T,,}2; C N be a sequence
of integers satisfying the (Q,po) for some odd prime py and assume that there is a fived
a € (Z/(q))* such that for all n € N it holds 9, (T,,) = a. Then

lim v () = v @ piag,z/0) ()

n—o0

where M € {Y, X}, and f € Ce(Mg(e,(R) x Ha(Z/(q))), or for M =W and f € C.(W x
Hal(Z/(q)))-
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4.5. Proof of Theorems [I.1] and We now prove Theorems [Tl and by validating

the assumptions of Theorems [4.8] and for the form Q4(x) dof z2 — Zf:_ll x?, for d > 4.

Fix d > 4. We observe that the form (Q; satisfies our [Standing Assumption] since Qg is
clearly non-degenerate, since Qq(eq) = 1 # 0 and since He, (R) =2 SO4_1 (R) which is compact.

Since the determinant of ();’s companion matrix is +1, the form (4 is non-singular modulo
p for any prime p.

We now claim that the sequence N has the (Qg,5) co-isotropic property. Let Q5 be the
field of 5-adic numbers. We note that /—1 € Q5 (by Hensel’s lemma, since 22 = —1 mod 5)
and we observe that the plane

def
Ve Spang, {\/—192 +es,e; + ed} - (Qs)d,

consists of Qg-isotropic vectors. For N € N and for v € Hy(Q), we let v1(@d) pe the
orthogonal space to v with respect to Q4. Since v1i@Qd) @Qsis a (d—1)-dimensional subspace
of (Q5)¢, we deduce that V N (v1(@4) @ Q5) # {0}. By the remark below Definition B.6] we
deduce that the sequence N has the (Qg,5) co-isotropic property.

We now verify that Hx prim(Z) # 0 for all N € N. We recall that there exists u € Z3
such that

(4.26) ui +u3 +uj =m,

for all positive integers m # 0,4, 7 modulo 8 (see e.g. [Gro85]). Since a square modulo 8 attains
the residues 0, 1,4, for we deduce that all N € N there exists x4 € Z such that xi —N>0
and such that 7 — N # 0,4,7, which implies by (28] that there exists x € Zérim - Zgrim
such that

2.2 .2 2 _
xy —x] — x5 —x3 = N.

5. THE RESULTS FOR Z IMPLY THE RESULTS FOR )/

Our goal in this section is to use Theorems [3.7] - B.8 to deduce Theorems [A.§] - We
divide this section into two parts as follows.

e Section [5.1] proves Theorems [4.§] - for ). This is the main difficulty in proving
Theorems [A.8] -

e Section gives the proof for Theorems[4.§] - for X and W, which relies on Section
433l and Theorems (4.8 - for M = ).

5.1. Proof of Theorems [4.§]- for ). We now outline our method for proving Theorems
4y - for M = Y which is based on the result of Theorems [3.7] - B.8]
We claim that for all 7" > 0 it holds that

(5.1) Yr(R) = Zp(R)/ASLy—1(Z),
Indeed, we recall that SLy(R)/ASLg—1(Z) identifies with Y (R) by the orbit map
(5:2) m(9ASLa1(2)) < (42", Spang{ger. .. gea1},7(9)). 9 € SLa(R),

(see Section [4.2]), and we observe that

5 (Vr(R)) < {9ASLa1(Z) € SLa(R)/ASLg—1(Z) | 7(9) € Hr(R)}
recalling (Z13))

(5.3) B
= Zr(R)/ASLq_1(Z).
recalling ([AI3)
Similarly, we obtain for all N € N that
(5.4) YN(Z) = ZN(Z)/ASLy_1(Z).

Using (5.0)), we can relate the measure py on Vg e,)(R) to the measure pz on Zge,)(R) by
using “unfolding”, as we will now explain. For f € C¢(Zg(e,)(R)) we obtain f € Ce(Vge,) (R))
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by defining
(5.5) FgASLaa(z) = Y flom),
YEASLg_1(Z)

and, as we show in Section G.IT] it holds that the map f — f is onto C¢(Vg(e,)(R)) and that
pz(f) = py(f) for all f € Ce(Zg(e,)(R)).

Next, recall that 7z, : Zr(R) — Zg(e,)(R) (defined in [BI8), is right ASLy_1(R) equi-
variant, namely

(5.6) Tz (gn) = 7z, (9)n, Vg € Zr(R), n € ASLy_1(R).

Using the equivariance of 7z, and using (5.1 we define 7Ty :Vr(R) = V(e (R) by
def
(5.7) 5 (2ASLy_1(Z)) = 7z, (2)ASLa-1(Z).

The main reason for introducing 7T§)2T is that by assuming the asymptotics of the form
Y fwzy(9)) ~ e(T)pz(f), as N — oo,
9gEZN(Z)
we are able to obtain the asymptotics
Yo F@ S, @) ~ e(Duy(f), as N = oo,
YyEYN(Z)
by observing that

]
Kh
3
2
|

> > fmzn(ey)

9E€ZN(Z) gASLg_1(Z)€ZN (Z)/ASLa—1(Z) v€ASL4_1(Z)

> S flazy(e))

N’

G8) 9ASLg—1(Z)€ZN(Z)/ASLa—1(Z) vEASL4—1(Z)
= Z %, (v

Ea) yeVN

and by using that puz(f) = py(f).
However, we are interested in proving Theorems [4.8] - for M = Y which concern the
asymptotics of averages of the form

Z f(ﬂ-)}N(y))’ as N — 00,
yeYVN (Z)

where Ty, : Vr(R) = Vo(e,) (R) was defined in (A.I8]). Fortunately, it turns out that 7T§§T and

7y, differ asymptotically uniformly by a fixed map that preserves the measure py, allowing
us to prove Theorems [4.8] -

Remark. Observe that the right SOq(R)-actions on Yg(e,)(R) and on Yr(R) given by

(L, P,v) - p = (0o~ )L, 05~ )P, p'v) (L, P,v) € Vs(R), p € SOq(R),

are equivariant with respect to the map m? . Yet, as we will see in Section [5.1.2], this statement
is wrong in general for my,,.

The structure of the rest of the section is as follows:

e Section [B.IT] relates the measure py and pz by “unfolding”.
e Section [5.1.2] compares 7TjQ, and 7y,
e Section [5.1.3] proves Theorems 8] - 9 for M = ).
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5.1.1. Unfolding the measure on Yg(e,)(R). To relate the measure pz on Zg(e,)(R) (defined
in Section B.3)) with py (defined in Section K.3.2), we now give pz a different description,
which is conceptually similar to the definition of uy. We observe that 7 : Zge,)(R) —
H(e,)(R) endows Zge,)(R) with a fiber bundle structure over Hge,)(R) with fibers being
right ASLy—1(R) cosets (to recall 7, see ([2.3))). As for puy, we define for each v € He(e,) (R)
a measure on the fiber 771(v) by

pra () & / Flgva)dmase, @) (@), v € Hoey(R), f € Ce(r'(v)),

where gy € SLy(R) is chosen such that 7(gy) = v. By integrating the measures on the fibers
we define the measure vz on Zg(e,)(R) by

def
(5.8) vz = /“Tl(V) g e, (®) (V)-

We obtain the lemma below which we leave the reader to verify.
Lemma 5.1. It holds that vz = uz, where puz was defined in (317).

The unfolding relation between py and pz is given by the following lemma.

Lemma 5.2. For all f € Cc(Zg(e,)(R)) it holds that pz(f) = uy(f), where f is given by

E5).

Proof. Using Lemma [B.1] and by recalling the definition of py in (£2I)), we see that it is

sufficient to prove that pi.-1v)(f) = Hir .)’1(v)(f) for all v € He(e,)(R). Let gy € SLa(R)

such that 7(gy) = v, and recall that masr,, ,(r) and my,_, are Weil normalized (see Definition

[45). Then,

iy = [ foven | dmy, @ASL @)

YEASLy_1(Z)
Z/f(gvﬂf)dmASLdl(R)(x)
=fr-1(v)(f)-
O

We now turn to show that for all 7 > 0 the map * : Ce(Z27(R)) — Cc(Yr(R)) defined by
f+— fisonto (torecall f see (B.0]). To prove the latter, we note the following general lemma.

Lemma 5.3. Let G be a locally compact, second countable group, K < G be compact, and
I' < G be discrete. Then the map

%1 O.(K\G) — C.(K\G/T)

defined by f(Kgl') def > ver f(Kgy) is onto.

Proof. We let mx : G/T' — K\G/T' be the natural map. Since K is compact, for ¢ €
Ce(K\G/T') it holds that g o mx € Cc(G/T). We recall that [Foll5, Proposition 2.50] tells us
there exists f € C.(G) such that

pomk(gl) =>_ flgv).

vel’
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We let my be the Haar probability measure on K and we observe that

oo mx(gT) = / o 0 mic(kgT)dmic (k)

- / S F(kg) | dmac(k)

vel

-y / Fkgy)dmuc (k).

vyel

where in the last line we used that for all ¢ € G, the sum }_ p f(kgy) is a finite sum,
where the number of summands is bounded uniformly in k& € K (this follows by Lemma
[A4)). The proof is complete by denoting f(Kg) def i f(kg)dmpg (k) and by observing that
f € C(K\G). O

Let G & (SOqg x ASL4—1)(R), K " I which was defined in BI4), and T & {e} x

ASLg_1(Z) < (SOg x ASL4—1)(R). Lemma [5.4] below shows that Yr(R) = K\G/T'. Since
Zr(R) =2 K\G, the proof that * : C.(Zr(R)) — C.(Yr(R)) is onto will be done by Lemma
.3 and Lemma 5.4
Lemma 5.4. For allT > 0, H\(SOgxASL4_1)(R)/ASL4_1(Z) is homeomorphic to yQ(\/Ted)(]R),
by the map

O(H (p,n)ASLy1(Z)) = 7y (0(p~")arnASLy_1(2)) ,
where Ty is given by (5.2) and ar € SLy(R) is given by Definition [33)

Proof. We recall that Z 7 \(R) is identified with H\(SO¢q x ASL4—_1)(R) by the map

®(H(p,)) = 0(p~")arn,
(to recall, see ([B.14]) defining H, and see below (3.I5])) which shows that
ZQ(\/Ted) (R)/ASLd_l(Z) = H\(SOQ X ASLd_l)(R)/ASLd_l(Z)

by the map R

®(H (p,n)ASLg-1(Z)) = 0(p~")arnASLq-1(Z).
Because Yr(R) is identified with Z7(R)/ASLy_1(Z) for all T > 0 via 7y (see below (G1])),
the proof is complete. O

5.1.2. Comparing of Ty, and 7T§§T. We will now discuss the difference between my,. and ﬂgT
with the goal of showing that it converges as T" — oo in a certain uniform way to a fixed map
that preserves the measure on Vg (e,)(R).

We recall that for T > 0 and (L, P,v) € yQ(ﬁed)(R),
(59) L7P7V) = (STNL7P7 )7

1
TYaTep T
1
where Sty € SL4(R) acts by scalar multiplication of a factor 7~ 2@ on P = v! and acts
on the line Rv by scalar multiplication by a factor T/2 (see Section E3.1).

Q. L
Next, we describe 7y in a manner similar to (5.9).

Definition 5.5. Recall the form Q* defined in [BI1). For v € R? \ 0 such that Q(v) > 0,
we denote by vg € R? . 0 the unique vector orthogonal with respect to the form Q* to the
hyperplane v+, having the normalization

Vg =V —+ \A/Q,
where Vg € vt. We define S? v € SLg(R) which acts by scalar multiplication of a factor

1
T~ 2@-1) on the hyperplane v and which acts on Rv (the orthogonal line to the hyperplane
v with respect to the form Q*) by scalar multiplication of a factor T 1/2,
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Remark. We observe that vg = ﬁM v, where M is the companion matrix of the form Q.
This implies that the map v — v is continuous.

Lemma 5.6. For all T > 0 it holds that

Q def , oQ 1
(5.10) wa(ﬁed)(L,P,v) = (SE L. P, ﬁv), (L, P,v) € Vo yTap (®)-

Proof. Let (L,vt,v) € yQ(ﬁed)(]R). By using the identification (5.10), we take g € Zp(R)
such that (L,v',v) = 7y(gASLg_1(Z)).
Using ([B.15]), we take (p,n) € (SOg x ASL4—1)(R) such that
g="0(p"Yarn,
and we observe that
Q 1 —
TryQ(\/Ted)(L7V 7V) ~ Ty(ﬂ-ZQ(ﬁEd)(g)ASLd—l(Z))
recalling (B.7)
= (0 )az'0(p)gASL1(Z)).
recalling (3.16)
By recalling that 6(p~!) € SOg+(R) (see Lemma [B.3]) and by recalling the definition of ar
(see Definition [3.4]), we deduce that
0~ )az'0(p) = 57,
where S? + Was given in Definition Then by (5.11]),
i i
W%Q(ﬁed)(L,v , V) = (S%VL, S%Vv ,H(S%V)v)
recalling (5.2))

1
:(S%VL,VJ', —V).

VT

(5.11)

g
Lemma 5.7. Let (L, P,v) € Yg(e,)(R), and consider the unipotent matriz u¥ which satisfies

that ugv = vg and acts as identity on v, Let

def _
(5.12) uf, < (s8,) s
then A
Th_I)I;O (ug) uT,v = Id’

and the convergence is uniform when v is restricted to a compact subset of R% . 0.
Proof. 1t is easy to verify that <S§g v) Sr {, acts as identity on v, namely (Sj@ v> Sr {, and

ug agree on v+. Next,

_ 1
<SjQ—"V) ST,&/V :SjQ_‘,V <ﬁv>
1 .
:ﬁsjq,v (v — V@)

=vQ — T_W%QQ,
namely
(w9 - (s2,) 574 ) v = T T,
By multiplying both sides of the preceding equality by (uf,2 ) _1, and by recalling (3.4]), we get

_ _ d
<Id — (ud) 1“%;) v=-T v
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Since the map v + v¢ is continuous (see remark below Definition [.5), we deduce that

-1
limy_, 00 <u§,2 > u%v = I; converges uniformly when v varies in a compact set of R%~ 0. [

Now let u® : Yo(e,)(R) = Voe, (R) be defined by u@(L, P,v) & (u%L, P,v).

Lemma 5.8. The map u® preserves the measure iy on Vo(eq) (R).

Proof. Let f € Cc(Vg(e,)(R)). By recalling the definition of py in (£21]), it is sufficient to
prove that u(ﬂ%,ec)fl(v)(f ou?) = M(ﬂg}ec)—l(v)(f) for all v € Hge,)(R). Let v € Hee,) (R)
and let gy € SLy(R) such that 7(gy) = v. Then

ey T 249 = [ FuBgua)dmy, (o)

B / Fgv(gy ugv))dmy,_, (z).

As the reader may verify, it follows that gy 1,9 gv € ASLy_1(R), and by recalling that my,_,

is left ASL,4_1(R) invariant, the proof is done. O

Consider 5:? 1 Vo(en) R) = Vo(e,) (R) defined by 5:? def (uQ)_1 ° FjQ)T o 715; Using Lemma

(.7, we obtain that 5% converges to the identity transformation on Vg, (R) as 7' — oo in
the following uniform manner.

Corollary 5.9. Assume that yn — yo in Vg(e,)(R) and let {T,}72; € Rsg such that T,, — oo.
-1
Then (5% (yn) = yo and (5%) (Yn) = Yo-

Proof. We write y,, = (Ly, Py, vy) and yo = (Lo, Py, vo), and we observe that y,, — yo implies
that L, — Lo and v,, — vq in the usual topology of X, and RA correspondingly.
Let for T}, > 0 and v, € R\ 0, let Ir, v, € SL4(R) be defined by

def -1 —1
I, < (u)) (Sjcg,vn) STvar

82 (L, Payvy) = (IT v Ly Py V).
Since L, — Lo, since v,, — vq and since Ir, v, — I4 uniformly when v is restricted to a
compact subset of R \ 0 (by Lemma [5.7)), we conclude that Ir, v, L, — Lg, which shows

5%1 (yn) — Yo-
Similarly, we have that

(5j‘2n>_1 (Lo Pusvi) = (I7} L Py vin),

n

and observe that

and since I:F:Vn — I converges uniformly when v is restricted to a compact subset of R%~ 0

-1
(which follows by Lemma [5.7]), we also obtain that <5%) (Yn) = Yo- O

Lemma 5.10. Let X be a manifold and assume that {‘PT}TeR>0 s a family of bijections o :
X — X such that for any sequence {x,} C X with lim, o T, = xo and any {T,,}72; € R5y
such that T,, — 00 it holds that lim,_,o @1, () = o and lim, go;nl (n) = xo . Then for
all f € C(X), foer converges to f uniformly. Namely, for all f € Co(X) and all € > 0
there is Ty > 0 such that

|fopr(x) — f(x)] <e VT >Tp, Voe X.

Proof. Let f € C.(X) and assume for contradiction that f o ¢p doesn’t converge uniformly
to f. Then there exists a § > 0, a sequence T, — oo and a sequence {x,} C X such that

|f oo, (zn) — f(zy)] > d for all n € N. Let K aof supp(f) and observe by the preceding
inequality that either @7, (z,) € K infinitely often or z, € K infinitely often. Assume that
o1, (r,) € K infinitely often. By sequential compactness we may assume that op, (z,) — 2o



LINNIK’S PROBLEM IN FIBER BUNDLES OVER QUADRATIC HOMOGENEOUS VARIETIES 25

which implies by assumption on cp;l that z,, = 90}”1 (¢1, (25)) = xo. We reach a contradiction
since

[f opr, (xn) = fan)| < |f o or, (xn) = fzo)| + [f(x0) = f(2n)],

and since the continuity of f implies |f o o1, () — f(x0)| = 0 and | f(xo) — f(x,)| — 0.
In a manner similar to the preceding, we obtain a contradiction when assuming that =, € K
infinitely often. U

Corollary 5.11. Let f € Ce(Vg(e,)(R) X Ha(Z/(q))), let € > 0 and let K 2 Supp(f) be an
open precompact set. Then, there exists Ty > 0 such that for all T > Ty the following hold

(1) | F((u®) " o n (y),v) = Flmy, (1), V)| < € ¥ (4. v) € Yr(R) x Ha(Z/(q)).
(2) if (uQ)" o (y),v) & K, then (1y,(y),v) ¢ Supp(f).

Proof. Let f € Ce(Vg(ey) (R) X Ha(Z/(q))) and let € € (0,1). Using Corollary 5.9/ and Lemma
.10l with the fact that H,(Z/(q)) is a finite set, we obtain 77 > 0 such that for all T' > T} it
holds

£ (586, v)) = 1 (V)| < & V(,v) € Ve (R) X Ha(Z/(0)).
Then, by substituting y' = my,.(y), we obtain for all 7' > T} that

£ (@)™ 0, ). v) = £ (myr (), V)| < & ¥ (5 v) € Vr(R) x Ha(Z/ ()

Let K 2 Supp(f) be an open precompact set. By Urysohn’s lemma there exists ¢ :
Ce(Vg(eq)(R) x Ha(Z/(q))) — [0,1] such that

def ] 0 V) &K
ey, v) = w,v) ¢

1 (y,v) € Supp(f).
As above, there exists Ty > 0 such that for all T' > Ty

(513) el 07§, (1),v) — plrye(y),V)] < € V(y,v) € Vr(R) x HalZ/(q)).

Assuming ((uQ)_IOWng (y),v) ¢ K, we see by (5.13)) and by the definition of ¢ that ¢(my, (y),v) =
0, which implies that (my,(y),v) ¢ Supp(f).

By defining Ty & 0 = max{T 1, To} the proof of the statements of Corollary [5.11]is done. O

Fix ¢ € N and let {T},}>2; € N be an unbounded sequence such that J4(7},) = a, where
a € Z/(q) is fixed. We consider the following measure on Yg(e,)(R) X Ha(Z/(q)) defined by

(5.14) Y@ &ef !

1% 0
T \%Tmpﬂm@)/socg@)!y%@ (8, 0)Pa(ec ()

Corollary 5.12. For all f € Ce(Vg(e,)(R) x Ha(Z/(q))) it holds that
(5.15) lim 12,%9(f o (u?) ™) = 1%(f) =0,

where we recall that

1
;)7

0 Y -
T |HT prlm( )/SOQ (Z)| yegT:(Z) (7ryT (y)ﬂSq (7T1;ec (y))

Proof. We let f € Ce(Vg(e,)(R) X Ha(Z/(g))) and we denote

o1(y) = F((uR) " onD (1), 0g(mhe(y)) — Fryr(¥), 9g(mhe(y)), y € V1 (2).
Then
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_ 1
(10 7)) = o] 2, W)
’ yeYVr(Z)
1
(5.16) [ Hrpim(2)/500(2)] 2 2 orlw

yS0q@(2)edr(2)/S0q(Z) €S0 (Z)

Let € > 0 and let K 2 Supp(f) be an open precompact set. We fix Ty > 0 such that Corollary
E.11] holds. By Corollary E.I11 () it holds for all T' > T

(5.17) o7 (y)| <€, Vy € Vr(Z).

We now claim that there exists a constant ¢ = ¢(f) > 0 such that for all ySOg(Z) €
Yr(Z)/SOq(Z) it holds that

(5.18) {7 €S0q(Z) | y-~ € Supp(¢r)}| < c.

By Lemma [A4 (for G = (SOg x ASLy_1) (R), K = H, T = (SOg x ASLg_1)(Z) and T =
{e} x ASL4_1(Z)), we obtain that for any precompact set C C Vg (e,)(R) there exists a uniform
constant ¢ > 0 such that for all yy € Vg(e,)(R)

(5.19) {y € SOQ(Z) |yo-v€C} <ec

We recall that 7T§T is SO (Z) equivariant, so that
(W) ony, (y-7) = () w3, (v) ).
By Corollary B5.111(2)), for all T' > Ty and for v € SOg(Z) such that
(15, (1) 7 V(e - 7)) & u (K0,

we have |¢r(y - v)| = 0, namely Supp(¢7) C u?(K), which shows

[y €500(2) |y € Supp(ér)} < | {7 € S00(Z) | (=5, (1) - 7, Va(mhely - 7)) € (O}

Consider the natural map oo : Yg(e,)(R) X Ha(Z/(q)) = Vo(ey)(R). Since u€ is a home-
omorphism, and as K is precompact, by (5.19]) there is a constant ¢ > 0 such that for all
y € Vr(Z)

{7 €500(@) | 7§, (1) - 7 € mae (20N }| < e,
which shows (B.I8). Finally, by (516]), (517) and (5I8]) we obtain for all T' > Ty
Y.Q4 Q) [Vr(2)/S0(Z)]
v o (u c.
‘ Tn (f ( > B |HTpr1m /SOQ( )|6

Now the map 7. : Y1r(Z) — Hr prim(Z) is a bijection which is equivariant with respect to
the right SOg(Z) action, which shows that

| Yr(Z)/SOq(Z)|
‘HT,prim(Z)/SOQ(Z)’

and completes our proof. O

=1,

5.1.3. Concluding the proof that the results for Z imply the results for V. We now give a
detailed proof that Theorem [B.8] implies Theorem E.9] for M = ). The proof that Theorem
3.1 implies Theorem [4.8] follows along the same lines, and is left for the reader.
In the following we fix ¢ € 2N + 1 and we let a € (Z/(q))™.
) Let f € Ce(Vgey)(R) X Ha(Z/(q))), and consider g5 € Ce(Vg(e,)(R) X Ha(Z/(q))) given
Yy

where we abuse notations with f o (u@)™(y,v) = f ((uQ)_l(y), v).
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By Lemma 53] there exists ¢ € Ce(Zg(e,)(R) X Ha(Z/(q)) such that
pr(zASLa_1(Z),v) = > @(27,v).

YEASL4-1(2)

Let ¢} € Ce(Zq(e,)(R) X Z4(Z/(g)) be defined by ¢7(z, g) def ©¢(2,7(9)) (where 7 defined in

(23)) We claim that
27 T ) =
vl (e}) = v @ i(py),

where 1/7‘? ! defined in (319) and 1/%) @1 defined in (5I4). We have

1

4 ©r(mz.(2),9,(2
D) @) 50gTEN 2, #2002
1
‘Wﬂzmmxzvsoanuﬁgim@fﬁfT@%ﬂAT@»>
1
T 2 Y sl da(r(z))
Hrpim(Z)/SOQZN o ayeorimy/asio @) ~erdiya@)
1
B i Z Z er(mz.(2)7, 9 (1(2)))
[ Hr prim(Z) /SOQ(Z)] 2ASLy_1(2)€Z7 (Z)/ASLq_1(Z) vEASLy_1(Z)
_ 1 e )
[Pl i 217500 @] 2 #1500 Dl
=7 (py).

Assume that @ is non-singular modulo ¢ € 2N + 1. Let {7,,}2°; C N be an unbounded
sequence of integers satisfying the (@, pg) co-isotropic property for some py and assume that
Y4 (T5) = a, Vn € N. Then by assuming Theorem 3.8, we get

yQQ(

Jim v pr) = lim VT Wo}) = 1z @ pz,z/q)(#F)-

We recall by the proof of Corollary Bl that 7(Z2,(Z/(q)) = Ha(Z/(q)) and we observe that
1z @ fiz,2)(q) (PF) = Bz ® Teliz,2/)(q) (PF) = Bz ® K, (z/(q)) (PF)-
By Lemma [5.2]
1z ® fia,2)(q) (Pf) = 1Y ® Bat,(z/(q) (Pr),

which implies in turn that

(5.20) lim v %@y) = py @ i, @) (Pr)-

n—oo

Our goal now is to show that (5.20) implies

(5.21) Jim v U(f) = 1y © 20 ()5

which is the statement of Theorem [
We have by definition of @

lim l/qu(f (uQ)_l) = hm Vqu(‘Pf)

0
(5.22) = 7}1}11;0 1y @ fia,(z/(q)(Pf)
= lim_ iy @ pig, (z/()(f © @)™,
By Corollary and by (5:22)) we obtain that
Jim v (f) = 1y @ b, 20 (f o (u9) 7Y,

and finally, since u? preserves uy (see Lemma [5.8) we obtain (5.21)).
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5.2. The results for J imply the results for X and W. In the following we show that
Theorems 4.8 - for M =Y imply Theorems g - 9] for M € {X, W} . It may be helpful
for the reader to recall Section 3.3l

We fix T' € N and we note the following commuting diagram (which follows from (ZI19])),

Trvec

™1 f [”XT

which shows that

1
X.q
v = 57r T X . (x
T Hrpnin(2)/S0q(@)] xe;m )
1
= 5 v
. (Wﬁoﬂ' (y)ﬂ? (erc(y))
o @50a0] | 2 om0

= (n x id), V24,

By Lemma [4.6] we have (7n), pty = prx, hence we obtain the limits for X from the limits of
y

Next, we observe that

1

W,

1% = 5

T My pim(Z) /SO (Z))] VEHTZWM(Z) (shape(Av), Lv.04(v))

1
[Pl o @)/500@ , 2 (rex L () 4(r)
TEXT

, X
= ((shape x m..) x id) vy,

X
vec

and by Lemma 7, we have (m
follow from the limits of X.

X shape)* Ux = pyy, which shows that the limits for W

6. SOME TECHNICALITIES

This section discusses several technical facts about quadratic forms that will be used in the
rest of the paper (mainly in Section [7]).

For a prime p we denote by Z, the ring of p-adic integers and by Q, the field of p-adic
numbers.

Lemma 6.1. Let Q be an integral form which is non-singular modulo q (see Definition [2]))
for g € 2N + 1 and let S, be the set of primes appearing in the prime decomposition of q.
Then the following hold:

1 e reduction map 9 : — p")) is onto for all p € an > 1.
The red Ve : SOQ(Zy SO@(Z k for all Sq and k
(2) Q is isotropic over Q, for all p € S,.

Proof. (1) Fix p € S4. To prove that ¥, : SOq(Zp) — SO@(Z/(p*)) is onto, we will prove
that the natural projection

m. : SOQ(Z/ (™)) = SOq(Z/("))
is onto for all k& > 1. We let g € SOg(Z/(p*)) and we take F € My(Z,) such that

J,r(F) = g. Since det(g) = 1, it follows that det (/) € Z), which implies that

F € GL4(Zy). Fix a symmetric matrix M € My(Z) such that
Q(x) = x' Mx



(6.2)

For

(6.3)
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Since @ is non-singular modulo g it follows that det(M) € Z, for all p € S;, namely
M € GL4(Zy) for all p € S;. We may now define S € My(Z,) by

def L (=1 oty =1y

s (M () M- F).

By noting that 0. (F*MF) = 9, (M) we obtain that 9, (S) = 0, so that in particular
U, (F +5) = g. To finish the proof, it is sufficient to show that ¥, (F + 5) €

SOq(Z/(pF*1)). We observe that
(F+S)M(F+8)=F'MF+ F'MS + S'MF + S'MS.

We treat each of the terms appearing in (6.2)) separately.
(a) The term F'MS. By substituting (6.I) in S, we obtain that

1 11
F'MS = SF'M (M~ (F7) M= F) = M — SF'MF.

(b) The term S‘MF. By substituting (6.I]) in S?, we obtain that

1 1

SIMF =1 (MFt (M)~ FY) MF = SM — SF'MF.
2 S~ 22

Hence we deduce by the above that
(F+S) M(F+S)=M+S'MS,

Since ¥, (S) = 0, we obtain that 92 (S'MS) = 0. Namely 9 x+1 ((F + S) M (F + S)) =
¥, k+1(M), which completes the proof.
Let M be the companion matrix of (). By definition of non-singularity modulo ¢ (see
Definition 2.T)) we have that |det(M)|, = 1 for all p € S;, where |-|, denotes the p-adic
valuation. Fix p € S;. By [Cas78, Chapter 8, Theorem 3.1] there exists g € GL4(Z,)
such that
a1
g'Mg = :
Qad
where aq,...,aq € Zp. Now
jailp - ... |aal, = |det(g'Mg)| = |det(M)], = 1.

Hence |a1], = ... = |aqlp, = 1, and by [Cas78, Chapter 3, Lemma 1.7] we get that

Q(gx) = arz? + ... + ada;?l has an isotropic vector over Q,,.
O

g € SL4(Z) and «y € SLy_1(Q) we define a quadratic form ¢j : Q1 — Q, by

oy(u) Q" o gory(u)

(see definition of Q* in (B.I1)), where we identify Q% with Q%! x {0}. We will denote

def

Pg = ¢

Let

(6.4)

Iy
g
g € Mgxq—1(R) be the matrix formed by the first d — 1 columns of g. Then the matrix

def ~ —1aA
Mgy = 4'¢'M ™ gy

is a companion matrix for the form .

Lemma 6.2. It holds that det (M%y) = W@(T(Q)).

Proof.
Next,

First, by the multiplicativity of the determinant, we get that det <M§03> = det (M<p g) .

we observe that
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Qr(9) = ((g) " eas M (g") "ea)
= <ed7 (.gtM_lg)_l ed> )
which is the d, d entry of the matrix (gtM_lg)_l. Now
- 1
det(gtM—1g)
=det(M) - adj (gtM_lg) .

We note that the d, d entry of adj (gtM_lg) is given by the minor det (gtM—lg) = det (Mgpg),
which proves our claim. O

(g'Mg) ™ adj (g' M~1g)

Consider the natural map
TSL4_1 - ASLd_l — SLd_l,

m %
1 = m.
Lemma 6.3. We have
v st (9710 (Hyg)(R)) 9) ¥ = SO, (R).

Proof. We recall by Lemma B3] that 6 (H,,(R)) is the subgroup of SO« (R) that preserves
the hyperplane Spang{gi,...,84—1}, where g; denotes the i’th column of g. Therefore group
9710 (H,(;)(R)) g is the subgroup of SOqg«og(R) which preserves the hyperplane R4 x {0}
by the left linear action. Hence msr,_, (970 (H,(5)(R)) g) is the restriction of SOg«og(R) to
the hyperplane R4~! x {0}, which shows 7gr,, , (9_19 (HT(Q) (R)) g) = SOy, (R). Finally we
note that

given by

17180, (R)y = 80,5 (R).
O

Lemma 6.4. Let A € My(Z) N GL4(Q). Then for any g € SLy(Z), the g.c.d of the entries

of the integral matriz
def ¢ 1A
Ay = §'Ag
where § is the matriz formed by the first d — 1 columns of g, is at-most det A.

Proof. To prove our claim it is sufficient to show that there exist two integral vectors b,a €
731 such that

btAga = q,
for a € 7Z satisfying that o | det(A). This will be done by a variation on the geometric
argument given in the proof of [AESI6a, Lemma 3.2]. Let u; € Zgrimﬂ (Agg)t N gQd-?
where g, def geq (such a vector exists since (Agq)™ () §Q% ! is the intersection of two rational
hyperplanes). Namely, we choose u; € ngm such that

u =ga, ac 741,

(the entries of a are integral since the columns of g form a Z basis for Z%) and

(6.5) 0= (Agg)" u; = g Au.

Let a € N be the g.c.d. of the entries of Au;. Since u; € Zﬁrim, we may use [Cas97, Chapter
1, Theorem 1.B] to deduce that « | det(A). Let ip € Z¢ such that

(6.6) b (Auy) = .

Since g1, ..., gq form a Z-basis for Z%, we may write

Qs = b + bygy, be Z4, b, € Z,
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then by (6.5) and (G.6]) we obtain
a = (gb) (Aga) = b'A,a,

which completes the proof. O

7. A REVISIT TO THE S-ARITHEMETIC THEOREM OF [AES16a]

The purpose of this section is to prove Theorem [7.1] below, which concerns the equidistri-
bution of a sequence of compact orbits in an S-arithemetic space. We note that Theorem [7.1]
generalizes Theorem 3.1 of [AES16a] by taking into account more general quadratic forms and
by also taking into account more than one prime. Yet, we note that our proof of Theorem [7.1]
strongly relies on the ideas and methods which already appear in the proof of Theorem 3.1 of
[AES16a].

In the following we consider algebraic groups defined over Q, and we follow the notations
and conventions as in [PR94], Chapter 2.

To ease the notation, we introduce

G1 ¥ S0q, Gy © ASLy_1, G £ Gy x Go,

where we recall that @ is as in our [Standing Assumption. For a finite set of primes S, we

denote by Qg dof Hpe g Qp, where Q, is the field of p-adic numbers, by Zg dof II

Z,, is the ring of p-adic integers, and by Z [S‘l] Lty [%;p € S].

We consider

pesS Z,,, where

G(R x Qs) & G(R) x G(Qs),

we define G (Z [S7']) < G(R x Qg) by

— def _
G(Z [S 1]) = {(717/727717/72) |/}/Z€GZ(Z [S 1])}7
we recall that G(Z [S™!]) is a lattice in G(R x Qg) (see [PR94], Chapter 5), and we define

Vs € GR x Qg)/G (Z[571])

(we use the above notation in this section only. Note not to be confused with the notation )
for the space of oriented grids). Let g € SL4(Z) such that Q(7(g)) > 0. Using the transitivity
of the G(R)-action on Zg(-(y))(R) (see Corollary B, we choose t, = ((t4);, (tg),) € G(R)
such that

—1
(7.1) 9= 0Q(r(9)) "ty = 0 <(7fg)1 ) aQ(r(g)) (tg)y

definition of the G action on SLg4

where ag(-(g)) € Z2¢(r(g))(R) was defined in Definition [5.41
We define the twisted orbit
def _
(7.2) Oy = (tg,e5)Lg(R x Qs)G(Z [ST1)),
where L, < G is the stabilizer of g (see Lemma [3.2]).

We observe that Lg(R) is a compact group since by assuming that Q(7(g)) > 0, it fol-
lows that Q(7(g)) = TQ(eq) for T > 0 implying that H,,(R) (which is isomorphic to
L,(R)) is conjugate to He,(R) (the action of SOg(R) is transitive on HQ(ﬁed)(R))v which
is compact by our [Standing Assumption Then by [PR94, Theorem 5.7] we obtain that
L,(R x Qg)G (Z [S_l]) C Vg is a compact orbit, and we define

def
(7.3) tg,s = (tg,es), ML, (RxQs)G(Z[S—1])

where ur, (rxQg)G(zjs-1)) I8 the Ly (Rx Qg)-invariant probability measure supported on Lg (R x

Qs)G (Z [S71]).



32 MICHAEL BERSUDSKY AND URI SHAPIRA

Theorem 7.1. Assume that S is a finite set of odd primes such that Q) is isotropic over
Qp for allp € S. Let {gn},—; € SL4(Z) such that Q(7(gn)) > 0 for all n € N, such that
Q(7(gn)) — 00, and such that there exists pg € S for which 7(gyn) is (Q,po) co-isotropic for
all n € N (see Definition[3.6). Then,

weak *

Mgn7s — Mys’
where pyg is the G(R x Qg)-invariant probability measure on Vs.

7.1. Proof of Theorem [7.1l The key input for the proof of Theorem [71]is [GO11, Theorem
4.6], which we state in a simplified form in Theorem below.

For the rest of the section, we will denote the simply connected covering of a semi-simple
algebraic group L defined over Q by L and the universal covering map by 7 : L — L (for more
details see e.g. [PR94] Section 2.1.13]).

Theorem 7.2. Let G be a connected semi-simple algebraic group defined over Q, let S be a

finite set of primes and let L,,, n € N, be a sequence of connected semi-simple Q-subgroups of
o

. de
G. Consider a sequence {t, },~; C G(RxQg) and let vy, el (tn), Hr (L. (RxQs)) G(Z[S~ 1)) where
For (L (RxQs)) G (ZIS—1)) is the unique T <Iﬁn (R x Q3)> -tnvariant probability measure supported
on (Lo (R x Qs)) G (Z[57]).

$1: Assume that there exists p € S such that for all m € N and all connected non-
trivial normal Qp-subgroups N < LL,, it holds that N(Q)) is non-compact (in terms
of |[GO11], S is strongly isotropic).

Let v be a probability measure on G(RxQg)/G(Z [S™1]) which is a weak-star limit of {vy}; ;.

Then:

(1) There exists a connected Q-algebraic subgroup M < G such that v = (to)«firc(zis—1))
where M is a closed finite index subgroup of M(R x Qg), to € G(R x Qg) and
KarG(zis-1)) s the left M-invariant probability measure supported on MG(Z [S‘l]).

(2) There exists a sequence {yn}or, € G(Z[S™Y]), such that for all large enough n it
holds that

Yo LY © M.
(3) There exists a sequence {1,}°°, C 7(L,(R x Qg)) such that
nh_)rgo tnlnyn = to-

In addition,
$2: assume that for all n € N the centralizer of L, in G is Q-anisotropic.

Then the sequence of measures {vy,}, - is relatively compact in the space of probability mea-
sures on G(R x Qg)/G(Z [S™]), and the group M above is semi-simple.

For the rest of this section, we fix a finite set of odd primes S and a sequence {g,} -, C
SL4(Z) which meets the assumptions of Theorem [I.T]

Recall that our goal is to find the limit of the measures ji4, g (defined in (Z3])), but note
that Theorem applies for a sequence of measures of the form (z,), Hr (L, (RxQs))G(Z[S—1])"

As we will see in Section [Z.I.1] the subgroup 7 <fJgn (R x Qs)> < Ly, (R x Qg) has a fixed

finite index for all n € N . Using this fact, we will partition the orbits Oy, s (defined in
(C2)) into finitely many pieces Oy, g; (defined in (Z.8) below), and we will be able to apply
Theorem [T.2] to the sequence of natural measures jg, i (see (.10)) supported on Oy, g;. By
finding the limiting measure of the sequence of ji4, 5 for each choice of i, we will obtain limit
of the measures (14, 5 (see Section [[.T.2]).
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7.1.1. The universal covering of Ly and of Gy. In the following we will recall some facts
concerning the Spin group which is the universal covering of an orthogonal group of a quadratic

form, and then we will be able to describe the subgroup = <fJgn (R x Qs)> in a useful way.

Assume that m > 3 and let ¢ be a non-degenerate rational quadratic form in m variables.
We denote by SO, its special orthogonal group, and for a field F © Q we consider the spinor
norm ¢ : SO, (F) — F*/(F*)? (see e.g. [Cas78, Chapter 10] for more details). We recall that
the spin group Spin,, is the simply connected covering of SO, (see [Cas78l Chapter 10], or
[PR94] Section 2.3.2] for more details) and we note the following exact sequences (see [EVO0S|
Lemma 1]). For an odd prime p it holds

(7.4) Spin, (@) & S0,(Q,) % QX / (QF)* o,
for a positive definite ¢ we have

(7.5) Spin,(R) 5 SO,(R) % 0,

and for an indefinite ¢ it holds

(7.6) Spin,(R) 5 SO,(R) % {+1} — 0.

We also note that 7(Spin,(R)) equals to the connected component of SO,(R).

Returning to our case, we let T(gn)L(Q) be the hyperplane orthogonal to T(gn) with respect
to the form Q. We observe that Sping, oy L@) (F) naturally identifies with H,,, \(F) (see
T(9n

[EV0S|, Section 2.4, footnote 6]). Since we assume that H,(,, )(R) is compact, it follows that
Q |T(gn) 1(q) 18 positive definite. Therefore we may conclude by (7.5]) that

(7.7) T (ign (R x Q5)> —L,, (R) x 7 (ign((@s)> .

Forie€ [[,csQ)/ ((@;)2 we pick hg,z € H.(,,)(Qs) such that (b(hg,?) =1i. By (T4) and (Z7)
we deduce that (61700,62700,]15(;2,9519 (h§2> gn) , 1€ Hpes Qy/ (Q;)2 is a complete set of
representatives of 7 (ign (R x QS)) cosets in Ly, (R x Qg). We define

(78) Ogo 55 E 17 (Ly, (R x Qs)) G(Z [571)),
where
(7.9) 1 (1,10, 6720 (n)) 92

(to recall t,4, see (ZI])) and we let

(7.10) fgn i <l§1))* P (L, (RxQs))G(ZIS1])*

where For (L, (RXQs))G(2S-1]) is the left ™ (INJgn (R x Qg))—invariant probability measure on the
orbit 7 (ign (R x QS)) G(Z[571])) .

7.1.2. A reduction - The limit of g, s; implies Theorem [7.1. We recall the following lemma

from [AES16a].

Lemma 7.3. Let N < K < G be locally compact groups such that N is of index k € N in K.
Assume that T' < G is a lattice, let KxI' be a finite volume orbit and denote its K-invariant
probability measure by pr.r. Then

k
1
HKal = % Z Hk; Nl
i=1

where ki, ...,kn is a complete list of representatives for N cosets in K and pu,nor 15 the
N -invariant probability measure on k;NxI' = Nk;xI'.
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An immediate corollary from Lemma [7.3]is that

1
7.11 = e b
( ) lugn,S ks ;MQTM‘S’
2
where kg = ‘HpES @;/ (@;) :

Next, for each i € [[,c5Qp/ (Q;)2 we choose pg) € SO@(Qg) such that QS(,og)) =1, and
we denote

Vs o (1,005 ez,m,pg), €2,5)T <@(R X Qs)) G(Z[S7]).
We claim that
(7.12) T (@(R x @S)> G(Z[$7Y]) = (G(]R) X W(G(@S))> G(Z [$7Y)).

Indeed, recall that G is simply connected, so that
(7113) 7 (GR xQs)) GEZ [$7Y]) = (7(G1(R) x G2(R) x 7(G(Qs))) G(Z [$7]),
hence to prove (ZI2) it is sufficient by (ZI3) to show that

7(G1(R)G1(Z [S7']) = G1(R)G1(Z [S7']).

If Q is positive definite then we deduce by (7)) that 7(G1(R)) = G1(R). If on the other-hand
Q is indefinite, we note that there exists y € G1(Z) with ¢(y) = —R*/ (R*)? (there are inte-
gral vectors vy and v_ such that Q(vy) € £R*. The orthogonal transformation ~ obtained

by the composition of the associated reflections v = 7, o7y_ has ¢(y) = —R*/ (R*)?), which
shows that

We let

def 0
HYsa = (€100, 2,00 P55 €2,5 )1l (R) xn(B(Qs))G(EZIS 1))’

where g gy (@(04))6(z1s-17) 15 the G(R) x 7(G(Qg)) invariant probability measure supported
on 7 (@(R X @S)) G(Z [S71]).

Running over i € [[ s Q/ (Q;)2 we obtain by (Z4) that (1, 62700,,0?), e2,5) is a com-
plete list of representatives of G(R) x 7(G(Qg)) cosets in G(R x Qg), and we conclude by
Lemma [7.3] that

1
(7.14) Hys = kg Z/‘ys,i'

We note that for each i € Hpe sQy/ (Q;)2 we have Oy, g; € Vsj, and our goal in the
following will be to prove that

(7.15) Hgn.5i — Vs.i,

which by (ZII) and (Z.I4) will imply Theorem [7.1]
For the rest of the proof we fix i € [ csQ;/ (Q;)? We now proceed to prove (TI5),
which will be done in two steps.
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7.1.3. First step - the limit of By oss We cannot apply Theorem as is because Yg is not

a quotient of a semi-simple group Therefore in our first step below we project to a smaller
space in which we can apply Theorem

Denote G, dof SLy4_1, and define G def G1 x Gy. Consider the natural map

TG, Gy — Go,

mo o
0 1 = m,
and let 7g : G — G be defined by mg(p, 77) (p, 7, (1), V(p,n) €G.
We define

given by

def —
L, = m6(Ly) = {(h.7e, (970 (n) g)) | h € Hyg)}.
The following lemma has essentially the same content as [AES16al, Lemma 3.4 | (the proof
is also essentially the same).

Lemma 7.4. Let g € SLy(Z) such that Q(7(g)) > 0. Then:

(1) Hy()(R) (resp. mg, (g 0(H,(4)(R))g)) is mazimal among connected algebraic sub-

groups of Gl( ) (resp. G,(R)).
(2) Assumption [$2| of Theorem [7.2 holds for L.

(8) Let p be an odd prime, and assume that there exists u € Q, ® 7(9)- @) such that

Q(u) = 0. Then assumption [§1] of Theorem [7.3 is valid for Ly(Qp) and for L,(Qp) )

{(h, 7, (9710(h)g)) | h € Hy ()}

Proof. To obtain () we recall by [Dyn52|] that the stabilizer of a non-isotropic vector in a
special orthogonal group of a non-degenerate quadratic form is a maximal connected Lie sub-
group of Gy, hence it follows that H. (4 (R) is maximal among connected algebraic subgroups of
G1(R). Next, by LemmalG.3] g, (97 '0(H, 4 (R))g)) is the stabilizer of a non-degenerate qua-
dratic form in d—1 variables, and since H (4 (R) is compact, we have g, (g_lﬁ(HT(g)(R))g)) &
SOg4—_1(R), which is a well known maximal Lie subgroup of G,(R). Next, to prove ({2, it is
sufficient to prove that the centralizer of H,(,(R) (resp. 7g,(97'0(H (5 (R))g)) in G1(R)
(resp. G4(R)) is finite. In fact, if not, we would obtain a proper connected algebraic subgroup
containing H, ) (R) (resp. mg, (g 0(H,(,)(R))g), which is a contradiction to (I). Finally, if
we assume that there exists u € Q, ® T(g)L(Q) for an odd prime p such that Q(u) = 0, then
by the proof of [AES16a, Lemma 3.4] we get that assumption [$1] of Theorem is valid for
H, ;) (Qp). Since H,(4)(Qp) = Ly(Qy) = L, (Q,), assumption [$1] of Theorem is valid for
Ly(Qp) and Ly (Qp). O

Consider Jg : G(Rx Qg)/G(Z [S™']) = G(RxQs)/G(Z [S~']) be the map induced by ng,

and note that YJg has compact fibers. We define Xg ; o U6 (Vs,i), and Oy g def Vg (Og.51)

which are equivalently described by

X5 7 (G(R X Qs) ) (€100, €200, P8 €2,5)G (Z[57])

0,51 % 1§ (L, (B x Qs)) G(Z [S7]),

where l(i) aof (l(l ) (see (L) for the definition of l( ))
Let p,, s d—ef (Ug), Hgn,si> and we note that

o550 = UG ebin(E, (Bx0s)@S1)"

where Pr(L, (RxQg)G(Z[S-1]) isthe 7 (Lgn (R x QS))—invariant probability measure supported
—gn
on 7 (L, (R x Qs)) G(Z [57]).
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Let v be a weak star limit of a subsequence By o™ E Cy C€ N. Then by Lemma[74] (2]) and

Theorem [T.2] v is a probability measure and there exists a semi-simple connected Q-algebraic
subgroup M < G such that

(7.16) v = (to). hve(zis—)):

where M is a closed finite index subgroup of M(R x Qg) and ¢ty € G(R x Qg).
For the rest of this section, our goal will be to prove that M = G, and as we now show,
this will prove that

def

(7.17) V= [lxg; = (19@)* HYs s>

which is the unique 7 <@(}R X QS)>—invariant probability measure on Xgj;.
So assume that M < G is of finite index. We now show that

(7.18) m(G(R x Qs)) € M.
Since 7(G(R)) x {eg} is the connected component of G(R) x {eg}, we get
(7.19) T(G(R)) x {es} € M N (G(R) x {es}).

Let G™(Qg) the group generated by unipotent elements of G(Qg). By Corollary 6.7 of [BT73],
any subgroup of finite index contains the group G*(Qg). Since M N ({ex} X G(Qg)) <
{exc} X G(Qg) is of finite index, we deduce

(7.20) {exc} x GT(Qs) € M N ({exc} x G(Qs)) -

Since we assume that @ is isotropic for all p € S, by Lemma 1 of [EV0S| we have that
GT(Qs) = 7(G1(Qs)), and it is well known that G5 (Qs) = G5(Qs) = 7 <@2(Q5)>. Thus we
conclude that

(7.21) G*(Qs) = m(G(Qs)),
and by (CI9), (Z20)), and (Z2I) we deduce that (ZI8]) holds. Since for all n, the measure
Lg, 5. is supported on O, ¢; C Xgj, we deduce that tocMG(Z [S™1]) C Xg;, and by (ZI8) we
conclude that toMG(Z [S~!]) 2 X4, which shows the implication M = G = (ZI7).

Now assume for contradiction that Ml < G. Let

m: G — Gy, m2: G = G,

be the natural maps. Since M is semi-simple and since G; and G, have no isomorphic simple
Lie factors (due to ambient dimensions, accidental isomorphisms play no role), it follows that
™1 (M) § Gl or 7o (M) § @2.

By Theorem [T2] we let {y4,}°2, € G(Z [S™']) and a further subsequence C3 C C; such
that |Cy \ C3| < oo, which satisfies

(7.22) Y9 Ly Vg, €M, Vn € Cs,
and we let {l,,},2, C F(Lgn (R x Qg)) such that
(7.23) U, g, — to-

In case m (M) < Gy. Let dg, o (Vg) € G1(Z [S71]). Since w1 (M) is a strict, connected,

semi-simple Q subgroup of G;, we obtain that m (M(R)) < G1(R), and by maximality of the
subgroups H(, )(R), (see Lemma [Z4L(T])) we obtain that for all 4,5 € Cy

557_1'1HT(91')(R)5H¢ = 55;leT(gj)(R)5gj =T (M(R))’

which implies that

(7.24) H (R) = H (R).

8, 7(g:)

We fix i € Co, and by (.24)) we may deduce that for each j € Cy there exists 0 # «; € Z [S _1]
such that

(7.25) 85 7(9i) = @0, 7(g5)-

8q; 7(95)
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We will now show that {o;} jec, 18 bounded and bounded away from 0, which will be a
contradiction since Q(7(g;)) — oo, since i is fixed, and since by (Z.25]) we have

Q(m(9:)) = Q (35, 7(91)) = oFQ (7(g5)) -
By recalling that {7(g;)} jec, 18 a sequence of primitive integral vectors, we deduce that

{5;]_17'(9]-)} o, Are primitive vectors in Z [S‘l]d considered as a Z [S™'] module. This
7€C2

implies that o; € Z [S _1] " where

Z[S_l]X: Hp"f’\npez

peS
By (Z.23) we obtain a sequence {hg, }jECz with hy, € 7 (ﬁT(gj)(Qg)) such that

héij)hgjégj — 771,S(t0)a

where m1 g : G(RxQg) — G1(Qg) is the natural map and ty is given in (7.I6]). By multiplying
both sides of (7.25]) with hg;) hg,dg,, we obtain that

j?

(7.26) 02191],103)00 a;7(g;) = m1,5(t0)8,, 7(g:)-

Since 7(g;) is a primitive integral vector, ||7(g;)[|, (the maximum of the p-adic valuations
of the entries) is constant in j for all p € S. Thus, by (Z.26]), the p-adic valuation of «; is
bounded, and since o; € Z [S _1] " we conclude that {o }j cc, 18 bounded and bounded away
from 0.

In case ma (M) < G,. We will obtain a contradiction in a similar way as we had in the case that

1 (M) < Gy. We denote 7y, def T2(Vgn) € Go(Z [S71]). Since ma (M) is a strict, connected
semi-simple Q subgroup of G,, we obtain by maximality (see Lemma[7.4](I])) and by recalling
(T22)), that for all 7,5 € Cy

(7.27) 779:177@2 (gi_le (HT(gi) (R)) gi) Ng; = ng_jlﬂ'@g (gj_19 (HT(gj)(R)) gj) Ngj-
By Lemma [6.3] we find that (7.27]) can be rewritten by
SO@Z;;J- (R) = SO@Z? (R),

where the quadratic form ¢y is a given by (6.3)). By recalling Lemma 3.3 of [AES16a], we find
that there exists o; € Q such that

(7.28) ajs = al

where we fix ¢ and let j € Cy vary. Our plan now is to show that {a;};ec, is bounded and
bounded away from 0. This will be a contradiction since we assume that Q(7(g;)) — oo and
since by Lemma we have that disc(ngfj ) = 325:Q(7(g;)), where disc(¢) denotes the

disc(Q)
determinant of the companion matrix of a quadratic form .

We recall that (see (6.4]))
pp(u) =u' (n'g" M~ gn) u,
where ¢ is the matrix formed by the first d — 1 columns of g and where M is the companion
matrix of Q. Therefore, by (T.28) we deduce

a;j(nig;* M~ gin;) = ntgi* M~ gims,
which in turn implies that
(7.29) aj(nigitadj(M)gn;) = ntgi'adj(M)gimi,
where adj(M) is the matrix adjugate of M, which has integral entries as M is integral. We

denote ot
M p = n'gradj(M)gn,
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and for [ € Cy we let ¢; € N be defined by

def A .
@ = g.cd(gitadj(M)g).
We rewrite (7.29) to

(7.30) %< MW>Z_M%
qi q; wgﬂ q; i

and by noting that % Gi'adj(M)g; has co-primes entries, we may deduce that % € (Z [S _1] ) .
By (7.23) there exists a sequence {kg, }j cc, With kg, € SOy, (Qg) such that
(7.31) EDkgng, — ma.s (o),

where Eéij) & G, <gj_19 <h§i.)> gj> € S0y, (Qs), m,5 : G(R X Qs) — G4(Qg) is the natural

J

map and tg is given in (L.I6). We conclude by denoting ]\_4% = M X and by noting that

]\_Lp o is a multiple of the companion matrix of the quadratic form gpgj, that

o (ko)) T (k) = (8,) ) W, (k00)

M%J

To simplify notation, we denote the fixed matrix %M@ng by B and we deduce by (Z.30) and
i 95
(.32) that

(7.33) S (i, ) = <<E§lj)kgmgj)t>_1 B ((EDko,m,)) "

We conclude by (731)) and (7.33) that the p-adic norm of % <i]\_4 ) is bounded for all
p € S, and since Mg is a primitive integral matrix, the p-adic norm of aﬂ qj <q%ng) equals

a;q; —17\X
) for all p € S. Since { . }j602 C (Z [S ]) , we conclude

i =

to the p-adic valuation

;45
1

that {%} o is bounded in absolute value from above and away from 0.
7€C2

Finally, using Lemma we deduce that ¢; is uniformly bounded in j € Cy from above
and below, which implies in turn that «; is bounded in j € C3 from above and away from 0.

7.1.4. Second step - Upgrading to G. In a summary of the first step, it holds that

(7.34) (9G), Hgn.54 = Lg, 5.i»
and it holds that pg ¢; = pxg;, where
(7.35) (19@)* Hys; = HXs;-

for C; C N. Using (7.34) and

Let v be a weak-star limit of a subsequence {1, si},cq,:
(C.35), we deduce that v is a probability measure.
In order to prove that v = uy,,, we will apply Theorem in the ambient space

G'(R x Qs)/G'(Z [S71]),

where G/ Gl x SLg.
By Theorem [I.2] and Lemma [T.4],([3)) there exists a connected Q-algebraic subgroup M < G/
such that

(7.36) v = (to) «frrer(zis—1))»
where M < M(R x Qg) is a closed finite index subgroup and tg € G'(R x Qg).
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As explained in [AESI6a] (see below equation (4.5) in [AES16al), it follows that M < G,
that to € G(R x Qg), that there exists a sequence {v, } C G(z [S™1]), where C, C Cy,
|C1 ~ Cq| < oo such that

and that either M = G or M = G; x SLY | where

neCs

and ¢ : SLg_1 — ASLg4_1 is the natural embedding which maps m — < Tg (1) . Asin

Section [[.T.3] (by the same argument), the proof will be done once we show that Ml = G.
Assume by contradiction that M = Gy x SLE_I. We let 7o : G — Go be the coordinate

map, and we denote 7, o m2(7y). By definition of SLY_; and by (T.37) we obtain Vn € Cs
that

(7.38) Ce Mg 9n 0 (Hr(g,)) gnnlgnce C ¢ (SLa-1) -

We fix N € N such that Nt Zﬁ;}n . By using that ¢ (SLy_1) fixes e; and by using (7.38]) we
conclude that

~ def
(739) Vp = (gnngnct) (NEd) >

is fixed by the left linear action of 6 (HT(gn)). By Lemma [3.3] the group 6(H,,,) is the
stabilizer subgroup of the non-isotropic vector M7 (gy) under the left linear action of SOg-.
The space of fixed vectors for such groups is one-dimensional, hence there exists oy, € Q such
that

(7.40) g, (M7(gn)) = Va.

Again as above, we will show that {agn}nEC'g is bounded and bounded away from 0.
Before continuing, we will now explain why the boundedness of {«g, }
diction. By definition of v,, in (Z.39), we may express v,, by

nec, yields a contra-
d—1
V= ai(gne:) + N (gnea),
i=1
where ay,...,aq_1 € Q. We now observe that

agnQ(T(gn)) :agnT(gn)tMT(gn) T(gn)t{’n

-~

(.40)
d—1

= Z a; <T(gn)7 gnez> +N <T(gn), gned>

=0 =1

and since Q(7(gn)) — oo and N is fixed, this will be a contradiction.
We now proceed to show the boundedness of {ag, } We denote for n € N by ¢, the
g.c.d of M7(g,), and we rewrite (7.40) by

1
(g, q9,) <q—MT(gn)> = gnNg, (Ncreq)
an

neCs"

Using that ﬁM 7(gn) and Ncgey are primitive integral vectors, we deduce by the preceding

equality that oy, qqg, € Z [S7}] *. By Theorem [Z.2,(3) there exists a sequence {hgn tnec, With
hg, €T (ICIT(g) (QS)) such that

hglg h’gnégn - 1,8 (t()) ’
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where dg, o (Yg.), 1,5 : G(R x Qg) — G1(Qg) is the natural map, ¢ is given in (Z.30]),
and

(7.41) 6.0 (hDhy, ) gung, = 2.5 (to)

where 74, © o (Ygn)s 2,5 : G(R x Qg) — G2(Qg) is the natural map. We obtain by (7.40)
and by recalling that H(hg) hg,, ) stabilizes MT(gy,) (see Lemma [3.3]), that

n

g, M7(gn) =9(h§i2 hg,)Vn

(7.42) = 90 (92 00Dhg,)gumy, ) e (Nea)

recalling (T39))
Since g, € SL4(Z), we get for any p € S that

o (5 0D hgDptams. ) e Vea)| = | (a0t s )gums, ) ex (New)

)

p

where |||, is the maximum of p-adic valuations of the entries, and H(thhgn)p is the p’th
component of H(hg)hgn) € G(Qs). By (41l and (7.42)) we deduce for all p € S that the

n

p-adic valuation of [[ag, M7(gn)|, is bounded. Since iM 7(gn) is a primitive integral vector,
we get that

1
agnqgn <q_MT(gn)>

gn

= ’agann‘pa
P

which implies in turn that |oy, qq, ]p is bounded in n € N, for all p € S. By recalling that
g, dg, € (Z[S71])*, we conclude that {ag.9g, }pec, 18 bounded and bounded away from 0.

Finally, since MZ®* C Z% and since M T(gn) € M Z% is a primitive vector in the lattice MZ?,
we get by [Cas97], Chapter 1, Theorem 1,B. that g4, < det(M), which completes the proof.

8. EQUIVALENCE CLASSES OF INTEGRAL POINTS AND THEIR RELATION TO THE
S-ARITHMETIC ORBITS

In this section we define for each T' > 0 an equivalence relation on Z7(Z) for which there are
finitely many equivalence classes Eg, | |...| | Egy = Z27(Z), see Section Bl The motivation for
this equivalence relation is a connection established in Section B.3] between each equivalence
class E, and the orbit O, ¢ (the main result is Corollary [84]).

Outline for the rest of the paper. The current section may be viewed as a prelude to Section
in which we use the aforementioned connection (Corollary B.4]) and Theorem [T.I] to prove
Theorem [0.1], which gives the limiting distribution of the normalized counting measures on

the subsets {(WZQ(T(Q))(m),ﬁq(x)) |z € Eg} C Zg(e,)(R) x Z4(Z/(q)), as Q(7(g)) — oc.

In Section [I0] we achieve our main goal of proving Theorems B.7] - B.8 concerning the limit
of the normalized counting measures supported on {(7wz,(z),Y4(z)) |z € Zr(Z)}, T € N,
by rewriting the counting measures on {(7z,(x),%(x)) | z € Zr(Z)} as an average of the
counting measures on {(7z,(x),V(x)) | € E4} and by employing Theorem 8.1.

8.1. The equivalence relation. A natural way to “generate” integral points on Zp(Z) from
a given g € Zp(7Z) is to view g as a point in Z7(Qg) and to consider the intersection of orbits

(8.1) E, ¥ g-GZ 579 G(Zs)

(to recall the definition of the right action of G on Z7 see (8.6])). We define our equivalence
relation on Z7(Z) by g ~ ¢ <= E4 = Ey. Clearly, the equivalence class of each g € Zr(Z)
is given by Ej.

Lemma 8.1. For each T' > 0, it holds that each equivalence class E, is composed of finitely
many G(Z) orbits, and it holds that there are finitely many equivalence classes.
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Proof. Note that each equivalence class is G(Z) invariant, hence each equivalence class is
composed of G(Z) orbits. There are finitely many G(Z) orbits in Zp(Z) by Corollary B, (),
which proves our claim. O

8.2. A decomposition of the orbits O, s. For the rest of this section we fix a finite set of
primes S, and we take g € SL4(Z) such that Q(7(g)) > 0.

The goal of this section is to deduce the decomposition (8S]), which is a technical fact that
we will need in Section B3] to relate the orbit O, ¢ with Ej.

We recall the definition of O4 ¢ and we rewrite it as follows

(8.2) Og.5 =(tg,e5)Lg(R x Qg)G(Z [S7])
= (tng(R)t;1 x Lg(Qs)) (g, e5)G(Z [S71]),
where ¢, is defined in (ZI). By Lemma we deduce that t,Ly(R)t;! = H (where H =

g
L;,(R)) and by (82]) we deduce that
(8.3) Og,s = H x Liy(Qs)(tg,5)G(Z [S7']).
We have that L, is a Q-group, hence we obtain
(8-4) Ly(Qs) = | | Le(Zs)hLe(Z [57)),
heM

where M = M(g) is a finite set of representatives of the double coset space (see [PR94
Chapter 5]). Using (83]) and (84]) we obtain the decomposition

(8.5) Ogs = | | Ogsn;
heM
where

def

(8.6) Og,sn = (H x Ly(Zs)) (tg,h) G (Z [S7']) .

8.2.1. Intersection with the principle genus. We will be actually interested in the intersection
Og,s NUs, where Us C G(R x Qg)/G(Z [S™!]) is the clopen orbit of the clopen subgroup
G(R x Zg) passing through the identity coset G(Z [S _1] ), namely

(8.7) Us € GR x Z5)G(Z [S71)).

Since G(Z) < G(R x Zg), where G(Z) C G(R x Zg) is diagonally embedded, is the stabilizer
subgroup stabilizing G(Z [S _1]) by the natural left action, we conclude that Ug is naturally
identified with G(R x Zg)/G(Z), where each element (goo,gs) G(Z [S™']) € Us viewed as
a point in G(R x Qg)/G(Z [S™!]) identifies with (907~ ", 9577") G(Z) € G(R x Zg)/G(Z),
where v € G(Z [S™']) is an arbitrary element which gives that gy~ € G(Zg).

We observe that O, g5, NUs # O if and only if Oy g5, C Us, which shows that

(88) Og,SmuS = |_| Og,S,h)
he My

where My = My(g) C M(g) is a finite subset.
For all h € My, since Oy s C Us, we obtain that h € Ly(Qg) N G(R x Zg)G(Z [S_l]).
Namely there are ¢ € G(Zg) and v € G(Z [S™']) such that

(8.9) h=cy b
Then, for h € My, we get that the orbit O, g (defined in ([8I3)) is identified by
(5.10) Opsin = (H % Ly(Z5))(tg,)G(Z).
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8.3. A duality principle relating £, with O, s NUs. The main idea that stands behind
the relation of F, with O, s can be roughly described as a “duality” principle by which
we transfer a left (H x Lgy(Zg))-orbit (8I0) in G(R x Zg)/G(Z) to a right G(Z)-orbit in
(H x Ly(Zs))\G(R x Zg) via the following diagram of natural maps

(8.11) G(R x Zg)

/\

(H x Lg(Zg))\G(R x Zg) G(R x Zs)/G(Z)

Namely, by (811]), we transfer an orbit (810) to a G(Z)-orbit Qg s € (H x Ly(Zs))\G(R x
Zs) passing through the base point (H x Ly(Zg))(t47,c). By using the right action of G(R x
Zs) on Zge,)(R) X Zg(7(g))(Zs), and by recalling that H x Ly(Zg) is the stabilizer of (14, g),
we may identify Qg g5 with (where we abuse notations)

(8.12) Qysn = (Ia- (tg7),9 - ¢) - G(Z) C Zqey)(R) X Zq(r(g))(Zs)-

To relax notations, we denote the homeomorphism 7z, : Zr(R) — Zg(e,)(R) (defined in
(BI6)) by mz. The lemma below gives the key correspondence between Oy s NUs and E,.

Lemma 8.2. It holds that | |;,c 5 Qg0 = {(m2(2),2) | € By}, and that |Mo| = |E,/G(Z)].

Proof. Let us first show that for each h € My it holds that Q, s, C {(7z(z),2) | € E,}. By
writing h = ¢y~ for ¢ € G(Zg) and v € G(Z [S~!]) and by noting that g =g-h =g- (cy™ ),
we obtain that g -~y = g-c. Then, ¢’ defined by
; def
g=g9v=gc
is in E,. By definition of ¢, (see (Z.II)) we have

9 =g-7=aqgu@) - (),
and by using the equivariance of the map 7wz, we get
mz(9) =7z(9-7) = mzlage) - (7)) = Ta-(tg):
recalling (316)
We may now conclude that
(r2(9"),9') - G(Z) = Qq,5,n,

and by using equivariance of wz, we deduce that

(rz(9),9) - G(Z) = {(mz(g" - ), 9 -7) |7y € G(Z)} C {(rz(x),z) | x € E,}.

We will now prove the inclusion in the opposite direction. We let ¢’ € E, and we note that,
according to the definition of E, (see (BI)), there are ¢ € G(Zg) and v € G(Z [S™!]) such
that

g=g9gv=g-c

We can deduce from the preceding equality that h def cy~! is an element of L,(Qg) N G(R x
Zs)G(Z [S~]), and we conclude by the preceding paragraph that (7z(¢'),d') € Qg,s,h-
Finally, since Oy g, h € My, are disjoint (H x Lgy(Zg))-orbits in G(R x Zg)/G(Z), it follows
that Qg gpn, h € My, are disjoint G(Z)-orbits in (H x Ly(Zs))\G(R x Zg). As {(nz(x),z) |
x € E,}/G(Z) is in bijection with E;/G(Z), it follows that My = |E4/G(Z). O

We are actually interested in the set {(7z(x),94(z)) | € E4}, and in order to relate it to
the orbits Oy g5 we will consider the projection modulo ¢ in the following subsection.
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8.3.1. Taking the residue modulo q. We note that the natural ring homomorphism
Oph : Ly — Zp/kap = Z/(pk)a

induces a homomorphism 9. : G(Z,) — G(Z/(p*)). Let ¢ € N and assume that S includes
the primes S, appearing in the prime decomposition of ¢q. The Chinese remainder theorem
yields the identification
I c@/iz)=c(z/(),
pi€s’,
and so we obtain the map 9, : G(Zs) — G(Z/(g)) in the obvious way. We also note that
Uq(Lg(Zs)) € Lig,(g)(Z/(q))-
We consider the map (ido X ¥q) : G(R X Zg) = G(R x Z/(q)) given by

(idoo X D) (Goos 95) % (goo» Pq(95))

and we upgrade Diagram (8.11]) to the following diagram

G(R X Zs)
(H x Ly(Zs))\G(R x Zsg) G(R x Zg)/G(Z)
(idwxﬁq)l (idwxﬁq)l
(H X Ly, (4)(Z/(@)\G(R x Z/(q)) GR xZ/(q))/G)(Z)
where
Gio)(2) = {(u, 9y (w) | u € G(Z)} <G (R x Z/(q))-
We let
819 Onan = (i X 00) 0 Oy s
=(H x 7911(1‘9(25)))@9%ﬁq(c))G(q) (z)
and we let
(8.14) Qg & (idso X 9g) (Qg.5.1)

where Q, , , is the right G(4)(Z)-orbit passing through (H x Ly, (4y(Z/(q)))(ts7,V4(c)).

Lemma 8.3. Let h,h' € My be two different elements and let v, € G(Z [S‘l]) which appear
in a decomposition [89) of h,h' correspondingly. Then HtyyG(Z) N Ht,y'G(Z) = 0.

Proof. Assume for contradiction that Ht,vG(Z) N Htyy'G(Z) # (. Then there exists k € H
and u € G(Z) such that

(8.15) tg_lmfgvu =4

This gives that

(8.16) (tg_lmfg) W (cud ™) = w1,

where ¢, € G(Zg) appear in the decomposition ([89]) of h,h’ correspondingly. By the
definition of t, and by (8I5]) we conclude that t;lmtg e L,R)NG(Z [S7]) = Ly(Z [S7]),
and by (BI6) we get (cuc ™) € Ly(Qs)NG(Zs) = Ly(Zg). Hence (BI6) shows that h and A’

are equivalent, which is a contradiction since h, i’ are representatives for two different cosets
in the space Ly(Zs)\Lgy(Qs)/Lg(Z [S71]). O

From Lemma [8.2] we obtain the following corollary, which is the main conclusion of our
discussion in this section.

Corollary 8.4. It holds that | |;,cp; Qgan = {(m2(2),94(2)) | € E,;}, and that My =
|Eq/G(Z)].
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Proof. By Lemma B3] it follows that | |, Mo Qg.q.h 18 indeed a disjoint union, and by using
Lemma B2 we obtain that

U Qg.q.h = (idoo X V) U Qg,5,h
heMy heMy
= (idoo x Vq) ({(72(2), ) | x € Ey})
={(7z(2),04(x)) | x € Eg}.

9. STATISTICS OF THE EQUIVALENCE CLASSES E,

We are now ready to study the statistics of E; as Q(7(g)) — oo by using the limiting
distribution of the orbits Oy g (Theorem [1]), and by exploiting the connection between the
equivalence classes E, and the orbits Oy g (Corollary [8.4]).

We now list the assumptions that will hold throughout this section, which will allow us to
employ Theorem [7.11

e () is a form as in our [Standing Assumption| and ¢ € 2N + 1 is such that ¢ is non-
singular modulo q.
e {gn}r, CSL4(Z) satisfy that Q(7(gn)) — oo and for all n € N
— Q(7(gn)) >0
— there is a prime pg for which 7(g,) is (Q,po) co-isotropic (see Definition [3.6]),
— The reduction mod ¢ is fixed in n, namely 94(g,) = g, for all n € N,

e S, denotes the set of primes decomposing ¢ and S dof Sq U {po}-
By Lemma [6.1I([2), we deduce that the assumptions of Theorem [Tl indeed hold for S and the
sequence {gn oo ;.

We denote a %' Q(7(9)) € Z/(q) and consider the measures on Zy(e,)(R) x Z,(Z/(q)) given
by

q def 5 N
Vo, = ‘Egn/G Z (rz(x)9q(z))s T E N

Our main goal in this section is to prove the followmg theorem.

Theorem 9.1. Consider O C Z,(Z/(q)) defined by
def _

Oz = 3-G(Z/(q)),
and let po, be the normalized counting measure on Og. Then for all f € Ce(Zg(e,)(R) X
Z.(Z/(q))) it holds that

lim v! (f) = pz ® po,(f)-

n—oo In

9.1. Outline of proof for Theorem We now outline the method we will use in the
proof of Theorem [@.1], building on Theorem [7.T] and the link between the equivalence classes
E,, and the orbits Oy, s

We denote
def def
(9.1) G =GR xZ/(q), K= (HxLg(Z/(q)), I =Gy(Z),
and we consider the following diagram of natural maps
K\G G/T
{ y
K\G/T

where mx and mr denote the natural quotient map.
We recall that | ],cp Og.qn is a disjoint union of finitely many (H x 9,(Lg, (Zs)))-orbits
and we recall that (H x ¥4(Lg,(Zs))) € K. Hence Ry, € K\G/I" defined by
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def
(9-2) Rong = i ( |_| Og.q.h
he My

is a finite set, and by Lemma B3] we obtain that |R,, 4 = |Mo| = |Ey,/G(Z)|. In Section
9.2, we will prove, by relying on Theorem [.1], that the uniform probability counting measures
Agn.g O0 Ry, 4 equidistribute towards the natural probability measure iz gr on K\G/T.

To deduce the limit of our counting measures that are supported on {(7z(z),9,(x)) | = €
E,,} by the equidistribution of {\g, 4}52; we observe that R, , can be also descrlbed by

(9.3) Ryna S 0( || Quan) = mr({(nz(2),9,(z)) | = € Ey}),

he My

and we use “unfolding” technique (similarly to Section G.IT]) to lift the measure A, , for
n € N to the counting measure on K\G supported on {(rz(x),V,(z)) | x € E,}.

9.1.1. Unfolding. We now discuss the “unfolding” process mentioned above which lifts an
equidistribution result in K\G/T" to an equidistribution result in K\G.
Let mg, mgr, be G-invariant measures on G, G/T respectively, such that mgr is a

probability measure and all the measures are Weil normalized (a notion introduced in Section
[4.3.2]), namely such that for all ¢ € C.(G)

(9.4) /G (9)dma(g /G i > lgy) | dmeyr(gT).

vyel’

We define a measure on K\G by pg\g def (rK), ma, and a measure on K\G/I' by

KE\G/T dof (7K ), mayr (which is well defined, since we assume that K is compact).
Assume that S,, C K\G/I is a finite set, and consider the measures 7, supported on K\G

defined by
7n d—ef|—1| oo
" ze(mr) M (Sn)
Let
def
= {KgI' | |Stabp(K 1
05) (gD | [Stabr(Kg)| > 1)

={Kgl'||g7'KgnT|>1}.

Lemma 9.2. Assume that S, C K\G/T', n € N, are finite sets such that the probability

counting measures supported on Sy converge weakly to pg\gr, and that

|F NSy
|5l

Then for every f € C.(K\G), it holds that v, (f) — pr\a(f)-

(9.6) — 0.

The proof of Lemma[@.2linvolves elementary tools, hence we decided to include the complete
details in the appendix.

Our goal in the following section is to verify the assumptions of Lemma[Q.2] for S, = Ry, 4,
which will prove Theorem

9.2. Equidistribution in K\G/T. Let 7,, s be the measure supported on O, s NUs, given
by

~ def
(9'7) Ngn,S = Hgn,S |l//s’

where Us = G(Rx Zg)G(Z [S7']) 2 G(R x Zs)/G(Z) and pg, s defined in (Z.3)) is the natural
probability measure supported on Oy, 5. We consider the following probability measure 7, 4
on K\G/I" supported on Ry, 4 (by Corollary B4) defined by

def . ~
Ngn.q = (T 0 (idoo X Vg))sTg,,5-
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We obtain the following corollary which follows by Theorem [Z11
Corollary 9.3. It holds that

(9.8) Ngn,g —> HK\G/T
where g 18 the push-forward by the natural quotient map mr of the unique G-invariant
probability measure on G/T .

Proof. Since Us C G(R x Qg)/G(Z [S™']) is a clopen set, we get by Theorem [T1] that

weak *

(99) ﬁgn,s — Mg,
where py, is the unique G(R x Zg) invariant probability on
Ug = G(R X Zs)/G(Z).

By Lemmal6.1] (T]), by the Chinese remainder theorem, and by noting that ¥, (ASLy_1(Zg)) =
ASL4-1(Z/(q)), we conclude that

U (G(Zs)) = G(Z/(q))-
Hence (ids x ¥q) : G(R x Zg)/G(Z) — G/T" is onto. It now follows that
Ngng = (T © (idoo X Uq))xilg,,5 —(TK )x(idoo X Vg)xpiss
:(ﬁK)*/‘G/F
=HK\G/T-
O

9.2.1. Weights of the measures 1g, - In the following we study the weights of the atoms of
the measures 7, , which are supported on the finite sets R, 4.
We express 1, 4 by

(910) ng’mq = Z agln)éwK(Ogn;th),
he My
and by recalling (9.7)) and the decomposition ([88) of Oy, s NUs, we conclude that
aﬁlm = Tg,,S ((WK o (idoo X 7911))_1 (Ogn,q,h)) Nigh, ﬁgnvS(Ogn’Svh)’
Lommam

It follows that
()

(n) _ ~
9.11 = O - 7
( ) Oéh nng( g'mSvh) ‘StabHXLgn(ZS) ((tgn%C)G(Z))‘

where ¢ € G(Zg), v € G(Z[S™']) decompose h as in ([BI), where stabp L, (zs) (z) for
z € G(R x Zs)/G(Z) is the stabilizer of  under the natural left action of H x Ly, (Zg), and
where o™ € Ry is a normalizing factor which turns Ngn,q O @ probability measure.

Lemma 9.4. Let g € {gn}or,, and let h € My be such that h = ¢y~ !, for v € G (Z [S_l])
and ¢ € G(Zg). Then

|stabrixw,, (zs) (tg7, G(Z))] < [Hr(ry (1, (R) N Ga(Z)].
Proof. We have that
tabyrer (zs) (g7, )G(Z)) = (H x Ly(Zs)) Ny nG(Z)ars
where x5 = (tgv,c). We recall that H x Ly(Zg) is a graph of a function f : He,(R) x
H, () (Zs) = G(R) x G(Z [S71]), (see Lemma [B.2)), which gives
(H x Lg(Zg)) N a:gﬁ(G(Z)x;}L‘ < | (He, (R) x H,(4)(Zs)) N1 (2g0)G1(Z)m1 (2g0) 7|

where m; : G — Gy is the natural projection, and m(z44) = (m1(tg7),m1(c)). We observe
that
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|(He, (R) x Hry) (Z9)) ()7 (20)G1 (D)1 (4.) |
= |m1(2) ™" (Hey (B) x H()(Zs)) iz ()G (Z)]

= 71 (1) ™ He, (R)m1 (847) () G1(Z)
G1(Z) is diagonally embedded
We conclude that
|stab g1, (zg) ((tg7,©)G(Z))| < ‘Wl(tg’Y)_lHed(R)Fl(tg’Y) mGl(Z)‘ ,
and we note that we may finish the proof by verifying that
(9.12) m1(tg7) " Hey (R)m1(tgy) = Hr(1,.(1,7)) (R).

To prove the latter equality we recall that the right SOg(R) actions on SL4(R) and on R?~. {0}
are equivariant with respect to 7 : SLg(R) — RY~ {0} (to recall, see ([3.5)), which shows that

ed - mi(tyy) = 7(la - (tg7)),
and which in turn implies (@.12]). O
For g € G(R), n € H and u € G(Z) we note that
e (14:600) (B) N GLZ)| = [Ha1, (ngocuy) R) N C1(2)
and we define £ C K\G/T by

)

(9.13) £ C{(H x Ly(Z/(2))) (950 9(9))Ca)(Z) | [Hr (1901 (R) N G1(Z)] > 1} .

Lemma 9.5. We denote a%ﬁz = maxheMo{a%n)}, where 042") are the weights of the atoms of

(n)
Ngn,q (see @QI0QN). Then there exists m > 0 such that *mez < ozgn) < a%()m, VYn € N. Moreover,
for all h € My such that 7k (Oy, q1) ¢ E, it holds that ozgln) = oz%)w.

Proof. Tt follows by Lemma and by (O.I1]) that

a < a(") < o™
pyRYNG(Z) =" —

(9.14)
L (7t
We recall that

TK (Ogn,q,h) =K (tgn%ﬁq (C)) r,

and we conclude by (9.13]) and (9.14]) that

ol =) = o™ =1y (O, 4n) ¢ E.

max

Finally, we show that ‘HT( La-(tgy) R) N Gl(Z)| is uniformly bounded from above. Indeed,
since Hy(7,.(z,,+)) (R) is compact (being a conjugate of He,(R), which is compact by our
[Standing Assumption), we obtain that the subgroup H.(;,.«, +)(R) N G(Z) < GL4(Z) is
finite. For a fixed d € N, the size of finite subgroups of GL4(Z) is uniformly bounded (see for

(n)
example [Fri97]), which implies that there exists m > 0 such that “mex < agn). O

Lemma 9.6. It holds that % — 0 as n — oo.

‘Rgn »qmg‘

Proof. We claim that in order to prove lim,, ..o o
9gn.q

& C K\G/T is closed and that
(9.15) p\ayr(€) = 0.

Indeed, by assuming the preceding limit, the proof will be complete since

= 0, it is sufficient to show that
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0 :MK\G/F(E) 2> lim sup 7, 4(€)

n—oo
Corollary 03]
(n)
- ENR . amax Ry, g NE|
— lim sup ngmq( (R gnjq) > lim sup m(n) In,q '
~—~—
n—oo  Tgn,g Mgnq Lemma 07 n—oo amax‘Rgmq‘

We will now proceed to prove (@.15]). Consider the natural projection

p: (H xLg(Z/(@))\GR x Z/(q))/G()(Z) = He,(R)\G1(R)/G1(Z),
and note that
p(€) = {He,(R)pG1(Z) | p ' He, (R)p N G1(Z) # {e}} -

We now recall some basic facts concerning orbifolds (we follow [Bor92]). Since He,(R) is
compact, it follows that He,(R)\G;(R)/G1(Z) is an orbifold, and the set p(£) is known as its
singular set (see [Bor92, Definition 25]). The singular set is closed and has empty interior, see
[Bor92l, Proposition 26], hence in particular £ is closed (as a preimage of a closed set). Now
since He, (R) is compact, it is known that there exists a G;(R) right invariant Riemannian
metric on He,(R)\G;(R). Hence by [Bor92, Proposition 34|, the singular set is locally the
image of a union of finitely many sub-manifolds of He,(R)\G1(R) under the natural quotient
map. Therefore

HH,, (R)\G: (R)/G1 () (P(E)) = 0,
which implies (O.15). O
Lemma 9.7. It holds that F C &, where F C K\G/T' is given by (0.5).
Proof. We recall that F is given by

F = {K (900, 9))T | |(9s0> 9g)) "' K (g 9(q)) NT| > 1}
We let K(goo,9(q))I" € F, and upon recalling the notations of K, G and I' in ([@.I]), we deduce
that there exists u € G(Z) \ {e} and hy € H such that
go_olhoogoo = u.

By recalling the definition of H (see (B.I4])) we obtain that
(9.16) T1(go oo o) = T1(u) € G1(Z) ~ {e},

where 7w : G — G is the natural projection. We have that

Wl(g;olhmgm) = 771(900)_17(1(}100)7(1 (9o);
and that 7 (heo) € m1(H) = He,(R), which implies by (Q.16]) that

(9.17) |71(go0) "' He, (R)m1(goo) N G1(Z)| > 1.
By (@I7), by observing that

T (gOO)_lHed (R)Trl (goo) = Hed-m(goo)(R) \:,_,HT(Id'goo)(R)’

B3)
and by recalling (O.I3) which defines £, we obtain that K(goo,g(q))I" € €. O

We now state the key corollary of this section, which verifies the assumptions of Lemma
and finishes our proof of Theorem

Corollary 9.8. It holds that

|]: N Rgn,Q| _

lim =0,

n—00 ’Rgnyq,
and it holds that the sequence probability counting measures Ay, 4 supported on Ry, 4 forn € N

converges to [Lg\G/r-
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Proof. By Lemma and Lemma [0.7] we deduce that lim,, ., % = 0. By Corollary
0.5 Lemma [0.6] we obtain

(9.18) Ngn.g = Agng = 0,

and by (0.8), we deduce that Ay, ; — pr\g/r- O

10. PROOF OF THEOREMS 4.8 AND 4.0 FOR Z

We let @ be as in our [Standing Assumption] We consider a sequence {7, },-; C N such
that T,, — oo, and assume that there is an odd prime pgy for which it holds that 7;, has the
(Q,po) co-isotropic property for all n € N (see Definition B.6)).

For each n € N, let g1.n, -, Gmn)n € 21, (Z) be a complete set of representatives for the
equivalence relation defined in Section [8] namely

Egym |_| |_| Eg,onn = 21, (Z).

We claim that each of vector of the list 7(g1,n), -, T(gm(n)n) is also (Q,po) co-isotropic (see
Definition B:6). Indeed, by Witt’s theorem, the action of SOg(Q) is transitive on Hr, (Q),
and if v € Hp, (Q) is (Q,p) co-isotropic, then it follows that pv is (Q,p) co-isotropic, for
p € S0q(Q).

We now fix an arbitrary sequence {gj, »} -, for 1 < j, < m(n), we fix ¢ € 2N+ 1 such that
(@ is non-singular modulo ¢ and we let S = S, U {pg} where S, is the set of primes appearing
in the prime decomposition of g.

10.1. Proof of Theorem [B.7. We partition the sequence {g;, »}, ., into finitely many sub-

sequences {gjnvn}nec’ C C N such that for all n € C the reduction mod ¢ is fixed, say

g def Y¢(gjnn), Yn € C. Then, we may apply Theorem to any of those unbounded

subsequences. B
We let f € Co(Zg(e,)(R)) and we consider f € C. (Zg(e,)(R) x Z4(Z/(q))) defined by

flz,y) & f(z), where a & Q(g) € Z/(q). Then, in the notations of Theorem [0I], we have

im vi  (f) = pz(f),

Con—oo Jinm

which implies in turn that for the full sequence (namely, without the assumption that ¥4(g;, n)
is fixed in n) it holds that

(10.1) lim vg () = pz().
We recall that )
qg - _ - 1)
Yajn ‘Egj,n/G(Z)| Z (”ZTn (x),ﬁq(x))a

mGEgj’n
and that (see (3.19)))

1
Z,q

Vil = Y 6 _
T, 21,()/G@)] =, (72, (@).04())

It follows that

(10.2) Z > 5(MTn(x),19q(x)) = > 5(7@%@)70(1(@)-’

7j=1 (EGEgj’n T€ZT, (Z)

and that
(10.3) S By /G(Z)] = |21,(2)/G(D)] = [Ha prim ()G (Z)]
j=1

We now note the following elementary lemma (which we give without a proof).



50 MICHAEL BERSUDSKY AND URI SHAPIRA

Lemma 10.1. Let {a; » };0 0 {bin}i ™" be positive real sequences. Assume a;, n/b;

i=1,n=1 i=1n=1 zn,n_>

L, for any sequence {in},-, such that in, € {1,..,m,}. Then %gﬂ% bm — L.

We may now deduce by Lemma [0l and (I0.T]), (I0.2), (I0.3) that

1 _
vi (f) = Yo frzg, (@) = v () = nz(f),
4 ma@g’m HTprim(2)/G1(Z)] = 4

which proves Theorem 3.7

10.2. Proof of Theorem B.8l We assume further that there is a fixed a € (Z/(q))* such
that ¥, (T5,) = a, Vn € N.
By Corollary B1, (2)

Z4(Z/(9) = Vq(gjn) - G(Z/(q)), Yn €N, Vj < m(n)

Then, by using Theorem [0.1], and following the same arguments as above, we obtain Theorem

B8

APPENDIX A. UNFOLDING

_ In the following we let G be locally compact second countable group, I' < G be a lattice,
I' <T, and K < G be a compact subgroup. We will discuss in this section a mechanism
which lifts an equidistribution result in K\G/I" to an equidistribution result in K\G/T" (see

Corollary [A.3]).
Let mg, mgr, mg /P be G-invariant measures on G, G/I'; G/I" respectively, such that

mq,r is a probability measure and such that all the measures are Weil normalized (a notion
introduced in Section [£3.2]), namely such that for all p € C.(G)

(A1) /G (9)dma(g / > w(gy) | dmgr(gl) = / Zso (97) | dmgz(aT)

vyel’

(such a normalization exists by Theorem 2.51 in [Fol15]). Let f € C.(G/T) and consider

(A:2) )€ 37 flaal),

We claim that f € C.(G/T). Indeed, by [Foll5, Proposition 2.50] there exists ¢ € C.(G) such

that
[) = o)

Fel

> flanl)

which shows that

(A 3) ATer/T
S ward) =Y e,
ATer/T el ver

and we note that 3 p(z7) € Ce(G/T).
Lemma A.1. It holds that

(A4) f(@D)dmegp(g0) = | f(aT)dmgr(gT),
G/T G/T

for all f € C.(G/T)
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Proof. Let ¢ € C.(G), and assume that f(zI') = > ser (7). Then

=_ [ »lg)dmea(g)

E_ﬂ/

g /G - %sﬁ(m)) dmer(gT)

= e(977) | | dmayr(gl)
/G/F 'yf%“:/f (% )) o

= 2T | dm ) = f(zT)dm ).
Lol X s >) ool [ FaTyime(ar)
ATer/ @2
0
We denote by 7 the natural quotient map nx : G — K\G. We define a measure on
= def def . .

K\G/T by tr\GP = (WK)*mG/f, and on K\G/I" by up\g/r = (7k), mgr (which is well
defined, since we assume that K is compact).

Lemma A.2. Assume that S, C K\G/T, n € N, are finite sets such that the uniform

probability measures supported on S, converge weakly to p\qr- Assume that {K gmf} C

K\G/f are representatives for Sy (namely a choice of one point in the preimage of Kg;,I'
under the natural projection for each 1 <1i < |Sy|). Then for all f € C.(K\G/T') it holds that

|Sn|
Jim = ’Z > F(EgnT) = e gp(f)-
i=1 yTer/T

Proof. Let f € C.(K\G/T), consider
f(KxF Z f(KzAl),
~ler/T

and note that f(Kal') € C.(K\G/T) (indeed, since f o mx € C.(G/T), it follows that
f(Kal') = forg(2l') € C.(G/T) by the discussion above Lemma [A.T]). By the assump-
tion of the lemma, we have that

S|
(A.5) Bl S 2 Z F(Kginl) — e F(K ) dpge\yr-
The proof is complete by observmg that the left hand side of (A.5) may be rewritten by
15| EN
’S’Zf Ginl ’S’Z Z ngzn’VF
i=1 yTer/T

and the right hand side of (A.5) may be rewritten by

/ F(KgD)dm\gr = / > fomg(zT)dmer =
K\G/T T s

o fomk(@l)dmy i = pyeqp(f).
@9
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Phrased differently, Lemma states that for the locally finite atomic measures
qer 1 en
€
Vn = S| Z ~Z i OK gy
i=1 1Ter/T

it holds that v, (f) — gy (f) for all f e C.(K\G/T'). We observe that v, are not uniform

measures, namely, some atoms can have different weights. We let 7! : G /f‘ — G/T be the
natural map, and we note that the support of v, can be expressed by

supp(v) = (+7) " (5,).

We define 7, to be the uniform measures supported on supp(v;,), namely

Similarly to Lemma [A.2] we would like to show 7, (f) — tgr(f), for all f € C.(K\G/T).
This requires an additional assumption that the points which are counted more then once are
negligible. We define 7 C K\G/T by

F YK gr | Stabr(Kg)| > 1}

={Kgl'||g7'KgnT|>1}.

Corollary A.3. Assume that S, C K\G/TI', n € N, are finite sets such that the uniform

probability measures supported on S, converge weakly to pg\gr, and assume that

|F NSy
|5l

Then it holds that v, (f) — t\gyi(f), for all f € C.(K\G/T).

(A.6)

(A7) — 0.

We require the following basic lemma for the proof of Corollary (A.3]).

Lemma A.4. Let U C K\G/T be a set with compact closure. Then there exists my > 0 such
that for all g € G it holds that

(A.8) H’yfef/f]Kg’yer}‘ <mg.

Proof. Let U C K\G/ I be a set with compact closure. We let U C G be a compact set such
that U = KUT (where U denotes the closure of U), and we observe that

nyf eT/T' | KgT € UH - nyf eT/T' | KgT € KUFH < \r mg—lfm( ,

for all g € G. We recall that a lattice subgroup is uniformly discrete, namely, there exists an
open neighborhood of identity N such that [uN NT| < 1, Yu € G. Since K U is compact,
there exist uq, ..., upy, € G such that wyN U .. Uty N 2 KU. This implies that ¢~ lus N U
ZUg g, N D g KU. Since there is at most one point of ' in each set ¢~ u; N, it follows

that ‘F N g_lKﬁ‘ < my, which implies (A.S)). O

|Sn]

Proof of Corollary[A.3. We denote by {K gmf‘} ) CK \G/f a set of representatives for

1=
o\ —1
(ﬂ'F) (Sn) (a choice of a unique point in each fiber) and we fix a positive function f €
C.(K\G/T).
By noting that the weights of the atoms of v, are larger then the weights of the atoms of
Uy, we find that

Un(f) < vn(f).
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-\ —1
We consider the uniform counting measure v, supported on (ﬂ'F > (Sp \ F) where each

- N\ —1
atom has mass ﬁ We note that for all Kg;,I' € (7TF) (S N F) and for any two distinct
1T, 7T € I'/T it holds that

KginnT # Kginyel.

-\ —1
Namely, the weights of the atoms of v, and of 7, are the same on <7TF > (Sp \ F), which

implies that

vy (f) < on(f)-

We observe that

valf) — vy (f) = ,5—1, 3 S F(KgiaD),
" Kgiynf‘e(wf)il(]:ﬂsn) VTel/T

We denote by U the support of f, and we obtain by the triangle inequality and by Lemma

[A. 4] that

my

Sy N F| — 0.

Finally, since Lemma gives

m v (f) = g g/ (f):

n—oo

then we also get

[AES16a)
[AES16b]
[AEW19]
[AMW?21]
[BB20]
[BHC62]
[BO12]
[Bor92]
[BT73)]
[Cas78]
[Cas97]

[Dyn52]
[EMSS16]

[EMV10]
[EO06]
[ERW17]
[EVO0S]

[Fol15]

lim 7, (f) = NK\G/f(f)-

n—oo
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