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LINNIK’S PROBLEM IN FIBER BUNDLES OVER QUADRATIC

HOMOGENEOUS VARIETIES

MICHAEL BERSUDSKY AND URI SHAPIRA

Abstract. We compute the statistics of SLd(Z) matrices lying on level sets of an integral
polynomial defined on SLd(R), a result that is a variant of the well known theorem proved by
Linnik about the equidistribution of radially projected integral vectors from a large sphere
into the unit sphere.

Using the above result we generalize the work of Aka, Einsiedler and Shapira in various
directions. For example, we compute the joint distribution of the residue classes modulo q

and the properly normalized orthogonal lattices of primitive integral vectors lying on the
level set −(x2

1 + x2
2 + x2

3) + x2
4 = N as N → ∞, where the normalized orthogonal lattices sit

in a submanifold of the moduli space of rank-3 discrete subgroups of R4.

1. Introduction

1.1. Linnik type problems. To put our work in historical context, we will now recall a well
known work of Linnik and its generalizations.

Consider for an integral homogeneous polynomial P : Rd → R and for m ∈ Z the level set

Hm(P,R)
def
= P−1({m}) =

{

v ∈ Rd | P (v) = m
}

,

and let

Hm,prim(P,Z)
def
= Hm(f,R) ∩ Zd

prim =
{

v ∈ Zd
prim | P (v) = m

}

,

where Zd
prim denotes the set of primitive integral vectors in Rd.

Assuming that the cardinalities of Hmi,prim(P,Z) diverge to infinity along a sequence
{mi}∞i=1 ⊆ N, it is natural to study the limiting statistics of Hmi

(P,Z) when projected radially
into H1(P,Z).

Linnik appears to be the first to consider the above problem in his seminal work (see [Lin68])
by computing the weak-* limits of the uniform probability measures µm on the unit sphere
supported on 1√

m
Hm,prim(x

2 + y2 + z2,Z) as m→∞. Under suitable congruence conditions,

Linnik was able to prove that µm converges towards the natural measure on S2 by developing a
method known today as Linnik’s Ergodic method, which has an arithmetic-dynamical nature.

Following Linnik’s original work, the above problem was studied further by Linnik and
his collaborators, see [Mal75] for a review, and more recently by a variety of other authors
employing dynamical or harmonic analysis tools, see for example the definitely not exhaustive
list [EMV10, GO03, MV06, EO06, BO12].

1.1.1. Linnik type problem in SLd. The main results of our paper (see Theorems 3.7 and 3.8),
concern a problem which falls into a broader category of Linnik type problems in an ambient
manifold that is not necessarily the Euclidean space.

More explicitly, we will replace Euclidean space with SLd(R) and primitive integral vectors
with SLd(Z). We will consider an integral polynomial P : SLd(R) → R such that its level
sets ZT (R) = P−1({T}) have a transitive action of a fixed group G ≤ SLd(R) × SLd(R)
and such that there exists a G-equivariant projection πT : ZT (R) → ZT0(R), where ZT0(R)
is a chosen reference level set. Then, similarly to the Linnik type problems above, we will

consider (properly) normalized counting measure supported on ZT0(R) of the form µT
def
=
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1
c(T )

∑

x∈ZT (Z) δπT (x), where ZT (Z)
def
= ZT (R)∩SLd(Z), which are infinite, locally finite, atomic

measures.
Our main result will state that, under certain conditions on the range of T ,

lim
T→∞

µT (f) = µZ(f), ∀f ∈ Cc(ZT0(R)),

where µZ will be a measure on ZT0(R) induced by the G-action.

1.2. On the work of Aka, Einsiedler and Shapira. Our original motivation for this
paper comes from the work of Aka, Einsiedler and Shapira that can be found in [AES16b]
and [AES16a]. We will extend [AES16a] in various directions using the limiting distribution
of the measures µT discussed in Section 1.1.1 (see Theorems 4.8 and 4.9).

Remark. This paper relies on the method of the proof of [AES16a], and since analogue prob-
lems in dimension d = 3 are treated by different set of tools (see e.g. [AES16b, Kha19]), the
case of dimension d = 3 is not treated in this paper.

We will now recall the main results of [AES16a]. Fix d ≥ 4 and consider Xd−1 the space of
(d− 1)-unimodular lattices in Rd−1. The space of shapes of (d− 1)-lattices is given by

Sd−1
def
= SOd−1(R)\Xd−1

∼= SOd−1(R)\SLd−1(R)/SLd−1(Z)

which is simply the space of full rank lattices in Rd−1 identified up-to a rotation.
For v ∈ Rd, we denote by v⊥ the orthogonal hyperplane to v with respect to the usual

Euclidean inner product, and for v ∈ Zd
prim we define

Λv

def
= v⊥ ∩ Zd,

which is a rank (d− 1)-discrete subgroup of Rd.
We embed Sd−1 into the space of rank (d− 1)-discrete subgroups of Rd by identifying the

horizontal plane Rd−1 × {0} ⊆ Rd with Rd−1. Then, by scaling the Λv’s into unimodular
lattices and by rotating them into Rd−1 × {0}, we obtain their “shape” in Sd−1. More ex-
plicitly, for a rank (d − 1)-discrete subgroup Λ ≤ Rd, we denote by covol(Λ) the volume of
a fundamental domain of Λ in the hyperplane containing Λ with respect the volume form
obtained by the restriction of the Euclidean inner product to this hyperplane. An elementary
argument (see e.g. [AES16a]) shows that

covol(Λv) =

√
√
√
√

d∑

i=1

v2i
def
= ‖v‖ , ∀v ∈ Zd

prim.

By choosing ρv ∈ SOd(R) such that ρvv = ed, we get that ρv(‖v‖−1/d−1Λv) is a unimodular
lattice in Rd−1 ∼= Rd−1×{0}. We denote byK ∼= SOd−1(R) the subgroup of SOd(R) stabilizing
ed, and we define shape(Λv) ∈ Sd−1 by

shape(Λv)
def
= Kρv(‖v‖−1/d−1Λv),

which is well defined as a function of v ∈ Zd
prim (see (4.4) which extends the definition of

“shape” function to the moduli space of (d− 1)−discrete subgroups of Rd).
The main result of [AES16b] and [AES16a] was the joint equidistribution of the normalized

probability counting measures supported on
{(

shape(Λv),
1√
T
v

)

| v ∈ Hprim,T (Z)

}

⊆ Sd−1 × Sd−1,

where Sd−1 ⊆ Rd denotes the unit sphere.
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1.2.1. Some historical context for [AES16b] and [AES16a] and subsequent works. Statistics of
shapes of subgroups of Zd were studied by W. Roelcke in [Roe56], H. Maass in [Maa59], and
much later by W. Schmidt in [Sch98, Sch15] who proved more general results using elementary
counting techniques. Schmidt’s theorem was given a dynamical approach in [Mar10], and T.
Horesh and Y. Karasik recently in [HK20] extended Schmidt’s results to “higher” moduli
spaces using the technique of [GN12].

A considerably more refined problem concerning the shapes of subgroups of Zd lying in
sparse subsets was first studied in [EMSS16] and then in [AES16b] and [AES16a]. We note
the recent works [ERW17, Kha19, AEW19, BB20, AMW21] which extend and refine [AES16b,
AES16a, EMSS16] in a various directions.

In this paper we continue the preceding line of research and generalize the results of
[AES16a]. In a rough description, we will consider tuples of the form (shape(Λv),v,v mod q)
for integral v ∈ Zd

prim∩Q−1({T}) where Q is a non-singular integral quadratic form which can

be either positive definite, or of signature (1, d− 1), and moreover, we will consider “higher”
moduli spaces.

1.2.2. AES type result in two sheeted hyperboloids. We now give a special case of our results.

We fix d ≥ 4, we let Q(x) = −(∑d−1
i=1 x2i ) + x2d and we consider the group SOQ(R) ≤ SLd(R)

which preserves Q. For T ∈ R, we denote

HT (R)
def
=

{

x ∈ Rd | Q(x) = T
}

,

and we let

HT,prim(Z)
def
= HT (R) ∩ Zd

prim.

In this paper we will concentrate on T > 0 because the stabilizers in SOQ(R) of vectors in
HT (R) are compact, which is important for the method that we use. We recall by Theorem
6.9 of [BHC62] that HT,prim(Z)/SOQ(Z) is finite, and for N ∈ N we consider the following
measure on Sd−1 ×H1(R) defined by

νN
def
=

1

|HN,prim(Z)/SOQ(Z)|
∑

v∈HN,prim(Z)

δ(
shape(Λv),

1√
N
v

).

Note that Sd−1×H1(R) is a quotient of SLd−1(R)/SLd−1(Z)×SOQ(R) by a compact group, and
on the former space there is a choice of a natural measure (for more details, see Section 4.3.2),
which gives, by taking the pushforward under the natural projection, a product measure on
Sd−1 ×H1(R) which we denote by µSd−1

⊗ µH1 .

Theorem 1.1. For all f ∈ Cc (Sd−1 ×H1(R)) it holds that

lim
N→∞

νN (f) = µSd−1
⊗ µH1(f).

By adding congruence assumptions on N ∈ N, we obtain the following joint distribution
of the radial projection into H1(R), the shapes of orthogonal lattices and the residue classes
of the vectors in HN,prim(Z) as N →∞.

We choose q ∈ N and we define for a ∈ Z/(q)

Ha(Z/(q))
def
=

{

x ∈ (Z/(q))d | Q(x) = a
}

.

For N ∈ N and q ∈ N we consider the following measures on Sd−1×H1(R)×HN(modq)(Z/(q))
defined by

νqN
def
=

1

|HN,prim(Z)/SOQ(Z)|
∑

v∈HN,prim(Z)

δ(
shape(Λv),

1√
N
v,v (mod q)

)

Theorem 1.2. Let q ∈ 2N + 1 and let a ∈ (Z/(q))× be an invertible residue mod q. Assume
that {Tn}∞n=1 ⊆ N satisfy

Tn (mod q) = a ∈ (Z/(q))× , ∀n ∈ N.
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Then for all f ∈ Cc (Sd−1 ×H1(R)×Ha(Z/(q))) it holds that

lim
n→∞

νqTn
(f) = µSd−1

⊗ µH1 ⊗ µHa(Z/(q))(f),

where µHa(Z/(q)) is the uniform probability measure on Ha(Z/(q)).

1.3. Structure of the paper.

• Section 2 discusses some conventions, standing assumptions and basic facts that will
be used throughout the paper.
• Section 3 discusses the manifolds ZT (R) ⊆ SLd(R) and presents our main “Linnik
type” results, see Theorems 3.7 and 3.8.
• Section 4 discusses moduli spaces of discrete subgroups of Zd and states our results
concerning them refining [AES16a], see Theorems 4.8 and 4.9. We note that the latter
results may also be interpreted conceptually as a Linnik type result.
• Section 5 proves Theorems 4.8 and 4.9 of the moduli spaces using Theorems 3.7 and
3.8 of the SLd(R)-submanifolds.
• The rest of the paper is devoted to proving Theorems 3.7 and 3.8. The scheme is
roughly as follows:

– Section 7 generalizes the proof of [AES16a, Theorem 3.1] concerning the equidis-
tribution of a sequence of compact orbits in an S-arithemetic space, which builds
on the results of [GO11].

– Sections 8-10 exploit the equidistribution of orbits proved in Section 7 to prove
Theorems 3.7 and 3.8 by revisiting the method of [AES16a]. The preceding
method is outlined in Section 8.

Acknowledgements. We would like to thank Andreas Wieser and Yakov Karasik for helpful
discussions, and we would like to thank Daniel Goldberg for his comments and suggestions
on the manuscript.

2. Some conventions, standing assumptions and basic facts

We denote by R a unital commutative ring, and for d ∈ N we view Rd as column vectors.
We will denote for 1 ≤ i ≤ d by ei ∈ Rd the standard basis vectors, and for x ∈ Rd we denote

by x1, ..., xd ∈ R the components of x, namely x =
∑d

i=1 xiei, where xi ∈ R.

When V(Z) ⊆ Zd is defined by the solutions of a collection of polynomials with integer
coefficients, we denote by V(R) its solutions in Rd. For q ∈ N we denote by ϑq : Z → Z/(q)
the reduction map modulo q, and we observe that it induces a map ϑq : V(Z)→ V(Z/(q)).

Throughout the paper we will consider

SLd(R)
def
= {g ∈Md(R) | det(g) = 1} ,

ASLd−1(R)
def
=

{(
m v
0 1

)

| m ∈ SLd−1(R), v ∈ Rd−1

}

,

and for an integral symmetric matrix M ∈Md(Z) we let

SOQ(R)
def
=

{
g ∈ SLd(R) | gtMg = M

}
,

where Q is the quadratic form whose companion symmetric matrix is M . We make the
convention that a quadratic form Q : Zd → Z is integral if Q has an integral companion

matrix M , and we say that Q is non-degenerate if disc(Q)
def
= det(M) 6= 0.

We consider the right SOQ(R) linear action on Rd given by

(2.1) v · ρ def
= ρ−1v, ρ ∈ SOQ(R), v ∈ Rd,

and for v ∈ Rd we let

Hv(R)
def
= {g ∈ SOQ(R) | gv = v} .
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Standing Assumption. Throughout the paper Q denotes an integral, non-degenerate qua-
dratic form in d ≥ 4 variables such that Q(ed) > 0 and Hed

(R) is compact.

Definition 2.1. For q ∈ N we will say that Q is non-singular modulo q if disc(Q)(mod q) ∈
(Z/(q))×.

2.0.1. Linear action of SLd by the Cartan involution. Let θ : SLd(R) → SLd(R) be the
involutive automorphism given by

θ(g)
def
=

(
gt
)−1

.

In the paper we will consider the left action of SLd(R) on Rd given by

(2.2) g · v def
= θ(g)v, g ∈ SLd(R)

(where the right hand-side denotes matrix multiplication of v by θ(g)) and we denote the
translation map of ed by

(2.3) τ(g)
def
= θ(g)ed, g ∈ SLd(R).

The main motivation that led us to consider the action above (and not the usual left SLd

linear action) is that the vector τ(g) ∈ Rd is orthogonal to the first d − 1 columns of g with
respect to the Euclidean inner product, as we now explain.

For x,y ∈ Rd we define the Euclidean bi-linear form 〈x,y〉 def
=

∑d
i=1 xiyi. An important

property of θ is the invariance

(2.4) 〈θ(g) · x, g · y〉 = 〈x,y〉 , ∀g ∈ SLd(R),

which in particular implies

(2.5) 〈τ(g), gej〉 = 〈ei, ej〉 = δi,j .

2.0.2. Concerning the covolume and the left action of SLd(R) on Rd. For a discrete subgroup
Λ ≤ Rd of rank d− 1, we define covol(Λ) to be the volume of a fundamental domain of Λ in
the hyperplane containing Λ, with respect to the volume form obtained by the restriction of
the Euclidean inner product to this hyperplane.

For g ∈ SLd(R) we denote by ĝ ∈Md×d−1(R) the matrix formed by the first d− 1 columns
of g, and we note for Λ = ĝZd−1 (the discrete subgroup of rank d − 1 having the columns of
ĝ as a Z-basis) the formula

covol(Λ)2 = det
(
ĝtĝ

)
.

Lemma 2.2. We have for g ∈ SLd(R) that

covol(ĝZd−1) = ‖τ(g)‖ ,
where ‖·‖ denotes the usual Euclidean norm.

Proof. We first note that
(
gtg

)−1
= adj(gtg),

where adj (·) denotes the matrix adjugate, and we observe that the d, d entry of the matrix
adj(gtg) is det

(
ĝtĝ

)
= covol(Λ)2. In particular, the d, d entry of the matrix adj(gtg) can be

expressed by
〈

ed,
(
gtg

)−1
ed

〉

, hence

covol(ĝZd−1)2 =
〈

ed,
(
gtg

)−1
ed

〉

=
〈
ed, g

−1θ(g)ed
〉

= 〈θ(g)ed, θ(g)ed〉 = ‖θ(g)ed‖2

= ‖τ(g)‖2 .
�
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3. Linnik type problem in SLd(R)

The structure of this section is as follows:

• Section 3.1 introduces the one-parameter family of subvarieties ZT ⊆ SLd mentioned
in Section 1.1.1, and discusses basic facts concerning them.
• Section 3.2 defines a natural homeomorphism between a subvariety ZT (R) to a refer-
ence subvariety ZQ(ed)(R).
• Section 3.3 presents our main results (Theorems 3.7 and 3.8).

3.1. Subvarieties of SLd. Let Q be a quadratic form as in our Standing Assumption and
recall that R denotes a unital commutative ring. For T ∈ R, we let

HT (R)
def
= {v ∈ Rd | Q(v) = T},

and we consider

(3.1) ZT (R)
def
= τ−1(HT (R)),

(see (2.3) to recall τ) namely

ZT (R)
def
= {g ∈ SLd(R) | (Q ◦ τ)(g) = Q

(
(gt)−1ed

)
= T}.

Note that Q ◦ τ : SLd(Z)→ Z is an integral polynomial.

3.1.1. Concerning the (SOQ × ASLd−1) action. We recall the SLd(R) action given in (2.2),
and we observe that the stabilizer subgroup of SLd(R) stabilizing ed is ASLd−1(R), which
allows us to conclude

(3.2) SLd(R)/ASLd−1(R) ∼= τ (SLd(R)) .

In light of (3.2), SLd(R) can be thought of as a union of fibers τ−1(v), v ∈ Rd, where each
fiber is an ASLd−1(R)-right coset, and according to (3.1), ZT (R) is the union of those fibers
of vectors in τ (SLd(R)) ∩HT (R), which leads to the identification

(3.3) ZT (R)/ASLd−1(R) ∼= τ (SLd(R)) ∩HT (R).

We consider the following right action of SOQ(R) on SLd(R)/ASLd−1(R) defined by

(3.4) (gASLd−1(R)) · ρ def
= θ (ρ)−1 gASLd−1(R),

and we observe that the above action is equivalent to the right SOQ(R) action (2.1) on the

orbit τ (SLd(R)) ⊆ Rd, namely

(3.5) τ(gASLd−1(R) · ρ) = τ(g) · ρ.
In view of (3.5), it is natural to consider the (SOQ ×ASLd−1) (R) action on ZT (R) from

the right by

(3.6) g · (ρ, η) def
= θ(ρ)−1gη, g ∈ ZT (R), (η, ρ) ∈ (SOQ ×ASLd−1)(R),

and continuing with our description of ZT (R) as a union of fibers of vectors in τ(SLd(R)) ∩
HT (R), we interpret gη as a “move” in the fiber of v

def
= τ(g) and by θ(ρ)−1gη as a “transition”

of gη into the fiber of ρ−1v (using (3.5)), which allows us to conclude (more formally, by (3.3)
and (3.5)) that

(3.7) ZT (R)/ (SOQ ×ASLd−1) (R) ∼= (τ (SLd(R)) ∩HT (R)) /SOQ(R).

We have the following corollary from (3.7).

Corollary 3.1. The following hold:

(1) (SOQ ×ASLd−1)(R) acts transitively on ZT (R) for all T > 0.
(2) Let q ∈ 2N + 1, and assume that Q is non-singular modulo q (Definition 2.1). Then

(SOQ ×ASLd−1) (Z/(q)) acts transitively on Za(Z/(q)) for all a ∈ (Z/(q))×.
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(3) There are finitely many (SOQ ×ASLd−1) (Z) orbits in ZN (Z) for all N ∈ N, and
moreover

|ZN (Z)/ (SOQ ×ASLd−1) (Z)| = |HN,prim(Z)/SOQ(Z)|
Proof. To show (1) and (2), we observe that using (3.7), it is sufficient to prove that SOQ(R)
acts transitively on HT (R) when R ∈ {R,Z/(q)} and T ∈ R are as specified in (1) and (2)

The claim for R = R follows from Witt’s Theorem.
We now proceed to prove (2) by going along the lines of the proof of [Cas78, Chapter 8,

Lemma 3.3]. Let p be an odd prime and let k ∈ N. We may consider the following involution
(a generalized reflection)

τv :
(

Z/(pk)
)d
→

(

Z/(pk)
)d

,

defined for v ∈
(
Z/(pk)

)d
such that Q(v) ∈

(
Z/(pk)

)×
, by

τv(x)
def
= x− 2Q(x,v)

Q(v)
v,

where Q(x,y)
def
= 1

4 (Q(x+ y)−Q(x− y)) for x,y ∈ (Z/(q))d is the associated bi-linear form
of Q. By observing that Q(τv(x)) = Q(x) and det(τv) = −1, we deduce that τu1 ◦ τu2 ∈
SOQ(Z/(p

k)) for all u1,u2 ∈
(
Z/(pk)

)d
such that Q(u1), Q(u2) ∈

(
Z/(pk)

)×
.

We now show that for all v1,v2 ∈ Ha(Z/(p
k)) with a ∈

(
Z/(pk)

)×
there exist u1,u2 ∈

(
Z/(pk)

)d
such that Q(u1), Q(u2) ∈

(
Z/(pk)

)×
and τu1 ◦ τu2(v1) = v2. Let v1,v2 ∈

Ha(Z/(p
k)) with a ∈

(
Z/(pk)

)×
. We observe that Q(v1+v2)+Q(v1−v2) = 4a ∈

(
Z/(pk)

)×
,

which implies that either Q(v1 + v2) ∈
(
Z/(pk)

)×
or Q(v1 − v2) ∈

(
Z/(pk)

)×
. Assuming

that Q(v1 − v2) ∈
(
Z/(pk)

)×
, we may consider τv1−v2 and we observe that τv1−v2v1 = v2.

Assuming the existence of u ∈
(
Z/(pk)

)d
such that Q(u) ∈

(
Z/(pk)

)×
and Q(u,v1) = 0, we

note that τu(v1) = v1, which implies in turn that τv1−v2 ◦τu(v1) = v2. To prove the existence
of the above u, we note that Q(v1) mod p is non-zero, which implies that the restriction of
the form Q (mod p) to the vector space

V =
{

x ∈ (Z/(p))d | Q(x,v1) = 0 mod p
}

gives a non-singular form, proving in turn that there exists ũ ∈ V such that Q(ũ) is non-
zero mod p. Using [Ser73, Section 2, Theorem 1] (Hensel’s Lemma for several variables) for
the polynomial f(x) = Q(x,v1) (by lifting v1 to a Zd

p vector) we deduce that there exists

u ∈
(
Z/(pk)

)d
such that u = ũ mod p and Q(u,v1) = 0, and in particular, since u = ũ mod p,

we get Q(u) ∈
(
Z/(pk)

)×
. If on the other-hand it holds that Q(v1 + v2) ∈

(
Z/(pk)

)×
, then

we have

τv2 ◦ τv1+v2 (v1) = v2.

With this we have proved (2) for q being a power of an odd prime, and the result for a
general q ∈ 2N+ 1 follows by the Chinese remainder theorem.

Finally, to validate (3), note that for T > 0

(τ (SLd(Z)) ∩HT (Z)) /SOQ(Z) =
(

Zd
prim ∩HT (Z)

)

/SOQ(Z) = HT,prim(Z)/SOQ(Z).

�

3.1.2. Stabilizers subgroups of (SOQ × ASLd−1)(R). We now discuss some facts concerning
the stabilizer subgroup of (SOQ × ASLd−1)(R) stabilizing g ∈ SLd(R) by the right action

(3.6). For the following recall that Hτ(g)(R) ≤ SOQ(R) denotes the stabilizer of τ(g) ∈ Rd by

the SOQ(R) action on Rd (to recall, see (2.1)).

Lemma 3.2. Let g ∈ SLd(R) and consider the group

(3.8) Lg(R)
def
=

{(
w, g−1θ(w)g

)
| w ∈ Hτ(g)(R)

}
.
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Then Lg(R) ≤ (SOQ ×ASLd−1)(R) is the stabilizer subgroup of g by the action (3.6).

Proof. To show that Lg(R) ≤ (SOQ × ASLd−1)(R) we observe that for all w ∈ Hτ(g)(R) it
holds that

τ
(
g−1θ(w)g

)
= θ(g−1)wτ(g) = θ(g−1)τ(g) = ed,

which implies that g−1θ(w)g ∈ ASLd−1(R).
Next, as the reader should easily verify, all elements of Lg(R) stabilize g. For the other

inclusion, let (ρ, η) ∈ (SOQ ×ASLd−1) (R) be such that

(3.9) g = g · (ρ, η) = θ(ρ−1)gη.

By rewriting (3.9), we get

(3.10) g−1θ(ρ)g = η,

and we observe that to finish the proof, we need show that ρ ∈ Hτ(g)(R). Indeed, we have

ρ−1τ(g) = τ(θ(ρ−1)g) =
︸︷︷︸

ASLd−1(R) invariance

τ(θ(ρ−1)gη) =
︸︷︷︸

(3.9)

τ(g).

�

3.1.3. The form Q∗. We will now go over some technical facts that we need about the groups
θ(SOQ(R)) and θ (Hv(R)) for v ∈ Rd (which appears in the second factor of Lg(R)). In a
summary, we will show that θ(SOQ(R)) is identified with SOQ∗(R) for a (rational) quadratic
formQ∗ defined below, and the subgroup θ (Hv(R)) is identified with the subgroup of SOQ∗(R)
that preserves the orthogonal hyperplane to v with respect to the Euclidean inner product.

Let M ∈Md(Z) be the companion matrix of the form Q, namely

Q(x) = xtMx.

We recall that Q is a non-degenerate integral form, which implies that M ∈ GLd(Q), and we
define the rational form Q∗ by

(3.11) Q∗(x)
def
= xtM−1x.

Remark. The form Q∗ can be defined more intrinsically as follows. Let Q(·, ·) the bi-linear
form associated to Q. Since Q is non-degenerate, the map

lQ : Rd →
(

Rd
)∗

where
(
Rd

)∗
denotes the dual space, defined by lQ(x)

def
= Q(·,x) is a linear isomorphism. The

form Q∗ can be identified as the form on
(
Rd

)∗
which is makes the map lQ an isometry.

Lemma 3.3. We have that θ(SOQ(R)) = SOQ∗(R). Moreover, let g ∈ SLd(Z) such that
Q(τ(g)) 6= 0, then:

(1) We have that θ
(
Hτ(g)(R)

)
= {ρ ∈ SOQ∗(R) | ρ(Mτ(g)) = Mτ(g)}.

(2) It holds that (Mτ(g))⊥(Q∗) = SpanR {g1, ...,gd−1} , where (Mτ(g))⊥(Q∗) denotes the
orthogonal hyperplane to Mτ(g) with respect to Q∗ , and gi is the i′th column of g.
Moreover

Rd = (Mτ(g))⊥(Q∗) ⊕ SpanR {Mτ(g)} .
Proof. To show that θ(SOQ(R)) is the group preserving the form Q∗, we observe that

ρtMρ = M ⇐⇒
θ
(
ρtMρ

)
= θ(M) ⇐⇒

(3.12) θ(ρ)tM−1θ(ρ) = M−1.

Next, to prove that the subgroup θ
(
Hτ(g)(R)

)
≤ SOQ∗(R) is the stabilizer of Mτ(g), we

observe by (3.12) that

θ(ρ) (Mτ(g)) = Mρτ(g),
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and since M is invertible, we deduce that

Mρτ(g) = Mτ(g) ⇐⇒ ρτ(g) = τ(g),

namely θ(ρ) stabilizes Mτ(g) if and only if ρ stabilizes τ(g).
Next, to show (2), we note that

Q∗(Mτ(g)) = Q(τ(g)) 6= 0,

which by [Cas78, Lemma 1.3] shows that

Rd = (Mτ(g))⊥(Q∗) ⊕ SpanR {Mτ(g)} .
Note that the bi-linear form BQ∗ determined by Q∗ is given by

BQ∗(u1,u2) =
〈
u1,M

−1u2

〉
.

Let gi be the i’th column of g, then

BQ∗(gi,Mτ(g)) =
〈
gi,M

−1Mτ(g)
〉
=

〈

gei,
(
gt
)−1

ed

〉

= δi,d,

which proves that (Mτ(g))⊥(Q∗) = SpanR {g1, ...,gd−1} . �

3.2. The equivariant isomorphism. Our goal now is to describe a one-parameter group
{aT}T>0 ≤ SLd(R) such that aT ∈ ZQ(

√
Ted)

(R) for all T > 0, and such that the stabilizer

group LaT (R) ≤ SOQ × ASLd−1(R) of aT is independent of T . This will allow us to define a
(SOQ ×ASLd−1)(R) equivariant map ZT1(R)→ ZT2(R), for Ti > 0.

We note that Q(τ(Id)) = Q(ed) 6= 0, and by Lemma 3.3,(2) we obtain

Rd = SpanR{e1, .., ed−1} ⊕ SpanR {Med}
where SpanR{e1, .., ed−1} and SpanR {Med} are invariant spaces under the ordinary left
θ (Hed

(R))-linear action.

Definition 3.4. For T > 0 we define aT ∈ SLd(R) to be the unique matrix which acts on

P0
def
= SpanR{e1, .., ed−1} by scalar multiplication of a factor of T

1
2(d−1) and on P

⊥(Q∗)
0

def
=

SpanR{Med} by scalar multiplication of a factor of T−1/2.

Corollary 3.5. It holds that aT ∈ ZQ(
√
Ted)

(R), ∀T > 0, and LaT (R) = LId(R).

Proof. In order to validate that aT ∈ ZQ(
√
Ted)

(R), we show below that

(3.13) τ(aT) =
√
Ted.

We have

〈ei, τ(aT )〉 =
〈

ei,
(
atT

)−1
ed

〉

=

〈
a−1
T ei, ed

〉
=

︸︷︷︸

Definition 3.4

T
1
2 δi,d,

which implies (3.13). Next, since P0 and P
⊥(Q∗)
0 are invariant spaces under the left linear

θ (Hed
(Q)) action, and since aT acts by scalar multiplication on each of these spaces, it

follows that aT is in the center of θ (Hed
(R)). Therefore

LaT (R) =
{(

w, (aT)
−1 θ(w)aT

)

| w ∈ Hτ(aT )(R)
}

=
{

(w, θ(w)) | w ∈ Hτ(aT )(R)
}

.

Now we have by (3.13) that Hτ(aT )(R) = H√
Ted

(R) = Hed
(R) = Hτ(Id)(R), which in turn

implies that LaT (R) = LId(R). �
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For the rest of the paper we denote

(3.14) H
def
= LId(R) = {(w, θ(w)) | w ∈ Hed

(R)} .
By Corollary 3.5 we have for all T > 0 the identification

(3.15) ZQ(
√
Ted)

(R) ∼= H\(SOQ ×ASLd−1)(R)

by the orbit map
H (ρ, η) 7→ θ(ρ−1)aT η.

We define
πZ

Q(
√

Ted)
: ZQ(

√
Ted)

(R)→ ZQ(ed)(R),

by

(3.16) πZ
Q(

√
Ted)

(
θ(ρ−1)aT η

) def
= θ(ρ−1)Idη = θ(ρ−1)η,

which is clearly equivariant with respect to the action of (SOQ×ASLd−1)(R) on ZQ(
√
Ted)

(R)

and ZQ(ed)(R) (since aT has the same stabilizer ∀T > 0).

3.2.1. The natural measure on ZQ(ed)(R). We now define a (SOQ×ASLd−1)(R) invariant mea-
sure on ZQ(ed)(R) using the identification (3.15). We choose Haar measuresmSOQ(R), mASLd−1(R)

on SOQ(R) and ASLd−1(R) respectively with a normalization we discuss in Section 4.3.2, and
we observe that H is compact (by (3.14), we have H ∼= Hed

(R), and recall that Hed
(R) is

compact under our Standing Assumption). Then on ZQ(ed)(R) we can define the following
measure

(3.17) µZ
def
= (πH)∗mSOQ(R) ⊗mASLd−1(R),

where πH : (SOQ ×ASLd−1)(R)→ H\(SOQ ×ASLd−1)(R) is the natural quotient map.

3.3. Statistics of ZN (Z) as N → ∞. We are now ready to discuss our main results. Let
N ∈ N and consider the following atomic measure on ZQ(ed)(R)

(3.18) νZN =
1

|HN,prim(Z)/SOQ(Z)|
∑

x∈ZN (Z)

δπZN
(x).

The following definition amounts to a congruence condition of the range of N ∈ N for which
we are able to obtain the asymptotics of the measures νN .

Definition 3.6. Given a prime p and a rational quadratic form Q, we say that v ∈ Qd is
(Q, p) co-isotropic if Hv(Qp) (the stabilizer of v in the group SOQ(Qp)) is non-compact. We
say that N ∈ N has the (Q, p) co-isotropic property if there exists v ∈ HN,prim(Z) which is
(Q, p) co-isotropic.

Remark. For v ∈ Qd we have Hv(Qp) is non-compact if and only if ∃u ∈ Qd
p ⊗ v⊥(Q) such

that Q(u) = 0, where v⊥(Q) is the orthogonal hyperplane with respect to Q. We note that if

Q is a rational quadratic form in d ≥ 6 variables, then the form induced on Qd
p ⊗ v⊥(Q) is in

d ≥ 5 variables and by [Cas78] (see [Cas78, Lemma 1.7]), we obtain that any v ∈ Qd is (Q, p)
co-isotropic, for any prime p.

Our main results are as follows.

Theorem 3.7. Assume that {Tn}∞n=1 ⊆ N is a sequence of integers satisfying the (Q, p0) co-
isotropic property for some fixed odd prime p0, and Tn →∞. Then for all f ∈ Cc(ZQ(ed)(R))
we have that

lim
n→∞

νZTn
(f) = µZ(f).

Next, for N ∈ N and q ∈ N we consider the following measure on ZQ(ed)(R)×Zϑq(T )(Z/(q))
given by

(3.19) νZ,q
N =

1

|HN,prim(Z)/SOQ(Z)|
∑

x∈ZN (Z)

δ(πZN
(x),ϑq(x)).
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Theorem 3.8. Let q ∈ 2N + 1. In addition to our Standing Assumption on the form Q,
assume that Q is non-singular modulo q (see Definition 2.1). Let {Tn}∞n=1 ⊆ N be a sequence
of integers satisfying the (Q, p0) co-isotropic property for some odd prime p0, and assume that
there is a fixed a ∈ (Z/(q))× such that for all n ∈ N it holds ϑq (Tn) = a. Then, for all
f ∈ Cc(ZQ(ed)(R)×Za(Z/(q))) we have that

lim
n→∞

νZ,q
Tn

(f) = µZ ⊗ µZa(Z/(q))(f),

where µZa(Z/(q)) is the uniform probability measure on Za(Z/(q)).

4. moduli spaces - refinements of [AES16a]

This section discusses our results which generalize [AES16a]. We note that these results are
also conceptually similar to the Linnik type results that we discussed in Section 1.1, and are
roughly described as follows. We will introduce moduli spaces Y(R) and X (R) which are fiber
bundles over Rd r 0 with fibers that are isomorphic to Yd−1 = ASLd−1(R)/ASLd−1(Z) and
Xd−1 = SLd−1(R)/SLd−1(Z). Taking the preimage of a quadratic variety HT (R) ⊆ Rd r 0 by
the projection map to Rdr0, we obtain forM∈ {Y,X} a one parameter family of subbundles
MT (R) ⊆ M(R) over HT (R), which are all isomorphic. We will define a geometrically
motivated homeomorphism πMT

:MT (R)→MQ(ed)(R), and our main results, Theorems 4.8-
4.9, will be about the distribution of πMT

(MT (Z)) inMQ(ed)(R), whereMT (Z) =M(Z) ∩
MT (R).

The structure of this section is as follows:

• Sections 4.1-4.2 discuss X (R) and Y(R).
• Section 4.3 discusses the subbundlesMT (R) ⊆ M(R), T > 0, the homeomorphisms
πMT

, and some natural measures on these subbundles.
• Section 4.4 states Theorems 4.8-4.9.
• Section 4.5 relying on Theorems 4.8-4.9 proves Theorems 1.1 and 1.2 from the intro-
duction.

4.1. The moduli space of oriented rank d − 1 discrete subgroups of Rd. Instead
of considering the shapes of orthogonal lattices to integral vectors (which we introduced in
Section 1.2), we may consider the orthogonal lattices “as is” by

X (Z) def
=

{

(Λv,v) | v ∈ Zd
prim, Λv = Zd ∩ v⊥

}

.

We will now describe a homogeneous space X (R), which can be thought of as a natural
ambient space that contains X (Z).

We let Xd−1,d be the space of rank (d− 1)-discrete subgroups of Rd, and we define X (R) ⊆
Xd−1,d × Rd r 0 by

X (R) def
=

{

(Λ,v) ∈ Xd−1,d × Rd r 0 | v ⊥ Λ, covol(Λ) = ‖v‖
}

,

and as we now show, X (R) is a homogeneous space. We consider the left action of SLd(R) on
Xd−1,d × Rd given by

(4.1) g · (Λ,v) def
= (gΛ, θ(g)v) , g ∈ SLd(R).

Lemma 4.1. It holds that

X (R) = SLd(R) · (SpanZ{e1, .., ed−1}, ed) .
Proof. It is straightforward to verify that SLd(R) acts transitively on Xd−1,d. The rest follows
by (2.5) and Lemma 2.2. �

By noting that the stabilizer of (SpanZ{e1, .., ed−1}, ed) is the subgroup ASLd−1(Z)U ∼=
SLd−1(Z)⋉Rd−1, where

U =

{(
Id−1 v
0 1

)

| v ∈ Rd−1

}

,



12 MICHAEL BERSUDSKY AND URI SHAPIRA

we deduce the identification

X (R) = SLd(R)/ (ASLd−1(Z)U) .

By restricting the above SLd(R) action on X (R) to SLd(Z), we obtain the following obser-
vation.

Lemma 4.2. It holds that

X (Z) = SLd(Z) · (SpanZ{e1, .., ed−1}, ed) .

Proof. Since the columns of g ∈ SLd(Z) form a Z-basis for Zd, and since τ(g) is orthogonal to
the first d− 1 columns of g (see (2.5)), we have

Λτ(g) =SpanZ{ge1, .., ged−1}
=g · SpanZ{e1, .., ed−1}.

Finally, we note that τ (SLd(Z)) = Zd
prim (to recall τ , see (2.3)) �

We now observe that the map πX
vec : X (R)→ Rd r 0 defined by

(4.2) πX
vec ((Λ,v))

def
= v,

gives X (R) the structure of a fiber bundle with fibers isomorphic to Xd−1. Indeed

(πX
vec)

−1(v0) = {(Λ,v0) ∈ Xd−1,d × {v0} | Λ ⊥ v0, covol(Λ) = ‖v0‖}
∼= {Λ ∈ Xd−1,d | v0 ⊥ Λ, covol(Λ) = ‖v0‖}
∼=Xd−1.

4.1.1. The extension of the “shape” map to X (R). We now reconsider the map shape :
Zd
prim → Sd−1 from Section 1.2 and extend it to X (R).
We note that SOd(R) acts on X (R) by

ρ · (Λ,v) def
= (ρΛ, ρv) , ρ ∈ SOd(R), (Λ,v) ∈ X (R),

which is the restriction of (4.1) to SOd(R), and we let K
def
= SOd(R) ∩ ASLd−1(R) be the

stabilizer of ed by the ordinary SOd(R) left linear action on Rd. Since (πX
vec)

−1(ed) is
identified with the space of of full rank lattices in Rd−1, and since K acts on (πX

vec)
−1(ed)

by Euclidean rotations in the plane e⊥d , we obtain that Sd−1 identifies naturally with the

space of K-orbits in (πX
vec)

−1(ed). Since (πX
vec)

−1(ed) is the ASLd−1(R) orbit passing through
(SpanZ{e1, .., ed−1}, ed), we get that (πX

vec)
−1(ed) ∼= ASLd−1(R)/ASLd−1(Z)U , and we con-

clude that

(4.3) Sd−1
∼= K\ASLd−1(R)/ASLd−1(Z)U.

Next, for v ∈ Rd r 0 we choose a ρv ∈ SOd(R) such that ρvv = ‖v‖ ed, and for t > 0 we
define dt ∈ SLd(R) by

dt
def
=

(

t−1/(d−1)Id−1

t

)

.

Then

d‖v‖ρv · (Λ,v) = ((d‖v‖ρv)Λ, ed) ∈ (πX
vec)

−1(ed),

and we note that (d‖v‖ρv)Λ = ρv(‖v‖−1/(d−1)Λ). We observe that the K orbit K(d‖v‖ρv)Λ ⊆
(πX

vec)
−1(ed) is independent of the choice of ρv, and we define shape : X (R)→ Sd−1 by

(4.4) shape(Λ,v)
def
= K(d‖v‖ρv)Λ, (Λ,v) ∈ X (R).
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4.2. The space of unimodular lattices with a marked rational hyperplane. As in
[AES16a], we describe an object that extracts more information from a primitive vector v
than we get from Λv by telling us how Λv is completed to Zd. Namely, for v ∈ Zd

prim, we let

w ∈ Zd
prim such that

Λv ⊕wZ = Zd.

We say that w completes Λv in a positive direction if 〈v,w〉 > 0. This data is concisely
recorded by the triple (Zd,v⊥,v) in a natural way, and motivates us to consider

Y(Z) def
=

{

(Zd,v⊥,v) | v ∈ Zd
prim

}

.

As for X (R) and X (Z), we will now describe Y(R) as a homogeneous space that can be
thought of as a natural ambient space containing Y(Z).

We let Xd be the space of unimodular lattices in Rd and we denote by Gr(d − 1, d) the
space of hyperplanes in Rd. For L ∈ Xd we define Gr(d− 1, d)L to be the space of L-rational
hyperplanes, namely

Gr(d− 1, d)L
def
=

{

P ∈ Gr(d− 1, d) | P ∩ L is a rank (d− 1)-discrete group of Rd
}

,

and we define
(4.5)

Y(R) def
=

{

(L,P,v) ∈ Xd ×Gr(d− 1, d) × Rd | P ∈ Gr(d− 1, d)L, P ⊥ v, ‖v‖ = covol(L ∩ P )
}

.

We define a left action of SLd(R) on Xd ×Gr(d− 1, d) × Rd by

(4.6) g · (L,P,v) def
= (gL, gP, θ(g)v) , g ∈ SLd(R).

Lemma 4.3. It holds that Y(R) = SLd(R) ·
(
Zd,SpanR{e1, .., ed−1}, ed

)
.

Proof. It is well known that SLd(R) acts transitively on Xd and that the stabilizer in SLd(R)
of a lattice L acts transitively on Gr(d− 1, d)L. The rest follows by (2.5) and Lemma 2.2. �

We observe that the stabilizer of
(
Zd,SpanR{e1, .., ed−1}, ed

)
is ASLd−1(Z), hence

Y(R) = SLd(R)/ASLd−1(Z).

By restricting the action of SLd(R) to SLd(Z), we obtain the following observation which we
leave the reader to verify.

Lemma 4.4. We have Y(Z) = SLd(Z) ·
(
Zd,SpanZ{e1, .., ed−1}, ed

)
.

4.2.1. The projection to X (R). A natural connection between Y(R) and X (R) is given by the
projection π∩ : Y(R)→ X (R) defined by

(4.7) π∩ ((L,P,w))
def
= (L ∩ P,w) .

We observe that for (Λ,v) ∈ X (R), the fiber π−1
∩ ((Λ,v)) consists of the triples of the form

(

Λ+

(

u+
1

covol(Λ)
v

)

Z,Λ⊗ R,v

)

,

where u ∈ Λ ⊗ R. Namely, the fiber π−1
∩ ((Λ,v)) can be identified with (Λ⊗ R) /Λ ∼=

Rd−1/Zd−1. In terms of coset spaces, we have

(4.8) π∩ (gASLd−1(Z)) = g (ASLd−1(Z)U) ,

which implies that

π−1
∩ (g(ASLd−1(Z)U)) = gASLd−1(Z)U/ASLd−1(Z) ∼= Rd−1/Zd−1.

In particular, π∩ has compact fibers.

Remark. We note that the analogue space to Y(R) for dimensions 3 ≤ k < d − 1 in d-space
was recently considered in [AMW21] which studies a problem similar to the one addressed in
the current paper.
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4.2.2. Y(R) as the space of oriented (d− 1)-grids in Rd. We will now present another descrip-
tion of Y(R) that, in our opinion, is more geometrically transparent. This description more
clearly connects Y(R) to the notion of grid shapes considered in [AES16a] (which actually
motivated us to consider the space Y(R)).

We recall the space of unimodular grids in Rd−1 (translates of unimodular lattices)

Yd−1
def
=

{

Λ+ u | Λ ∈ Xd−1, u ∈ Rd−1
}

.

For a triple (L,P,v) ∈ Y(R) we let w ∈ L such that (L ∩ P )⊕wZ = L and 〈w,v〉 > 0. We
denote by π⊥

P : Rd → P the orthogonal projection. Then

(4.9) π⊥
P ((L ∩ P ) +w) = (L ∩ P ) + π⊥

P (w),

which can be viewed as a grid that sits in the hyperplane P , is independent of the choice of

w. By defining f(L,P,v)
def
= ((L ∩ P ) + π⊥

P (w),v), obtain an identification of Y(R) with
{(Λ + u,v) | Λ ∈ Xd−1,d, u ∈ Λ⊗ R, v ⊥ Λ, ‖v‖ = covol(Λ)} .

Using the above description of Y(R), we see that the projection πY
vec : Y(R)→ Rdr0 defined

by

(4.10) πY
vec ((Λ + u,v))

def
= v,

endows Y(R) with the structure of a fiber bundle with fibers isomorphic to Yd−1.

A quick summary - hierarchy of moduli spaces. We summarize the discussion concerning the
moduli spaces by the following commuting diagram

(4.11) Y(R) π∩ //

πY
vec

::X (R) πX
vec // Rd r 0

and we note that in terms of coset spaces, the following diagram is equivalent to (4.11)

(4.12) SLd(R)/ASLd−1(Z) //
44

SLd(R)/ASLd−1(Z)U // SLd(R)/ASLd−1(R)

where all the maps are the natural projections.

4.3. Moduli level sets, their measures and their isomorphisms. Let Q be as in our
Standing Assumption. For T > 0 we define

(4.13) YT (R) def
=

(
πY
vec

)−1
(HT (R)) , X T (R)

def
=

(
πX
vec

)−1
(HT (R)) ,

namely

XT (R)
def
= {(Λ,v) ∈ X (R) | Q(v) = T} ,

and

YT (R) def
= {(L,P,v) ∈ Y(R) | Q(v) = T} .

We note the following commuting diagram (which follows from (4.11)) that describes the
hierarchy between the above moduli level sets

(4.14) YT (R)
π∩ //

πY
vec

99
XT (R)

πX
vec // HT (R)

Next, we define the integral points lying on the moduli level sets. We consider for N ∈ N

HN,prim(Z)
def
=

{

x ∈ Zd
prim | Q(x) = N

}

,

and we define

XN (Z)
def
= X (Z) ∩ XN (R) = {(Λv,v) | v ∈ HN,prim(Z)} ,
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and

YN (Z)
def
= Y(Z) ∩ YN (R) =

{

(Zd,v⊥,v) | v ∈ HN,prim(Z)
}

.

We also note the following commuting diagram

(4.15) YN (Z) oo
π∩ //

ff
πY
vec

88
XN (Z) oo

πX
vec // HN,prim(Z)

where ←→ denotes bijection.

4.3.1. Maps between level sets. We now define the homeomorphisms πY
Q(

√
Ted)

: YQ(
√
Ted)

(R)→
YQ(ed)(R) and πX

Q(
√

Ted)
: XQ(

√
Ted)

(R)→ XQ(ed)(R), by using a geometrically natural scaling

transformation.
We define πX

Q(
√

Ted)
: XQ(

√
Ted)

(R)→ XQ(ed)(R) by

(4.16) πX
Q(

√
Ted)

(Λ,v)
def
=

(
1

T 1/2(d−1)
Λ,

1√
T
v

)

, (Λ,v) ∈ XQ(
√
Ted)

(R).

We now give an alternative description of (4.16) using the SLd(R) action on X (R). For
v ∈ HQ(

√
Ted)

(R) we define the unique matrix ST,v ∈ SLd(R) that acts by scalar multiplication

of a factor T
− 1

2(d−1) on P = v⊥ and that acts by scalar multiplication of a factor T 1/2 on the
line Rv. Then, it follows for (Λ,v) ∈ XQ(

√
Ted)

(R) that

πX
Q(

√
Ted)

(Λ,v) = ST,v · (Λ,v) =
︸︷︷︸

recalling (4.1)

(ST,vΛ, θ(ST,v)v) .

Next, using the matrices ST,v, v ∈ Rd, T > 0 which were defined above, we define
πY

Q(
√
Ted)

: YQ(
√
Ted)

(R)→ YQ(ed)(R) by

(4.17) πY
Q(

√
Ted)

(L,P,v)
def
= ST,v · (L,P,v), (L,P,v) ∈ YQ(

√
Ted)

(R),

where ST,v · (L,P,v) =
︸︷︷︸

recalling (4.6)

(ST,vL,P, θ(ST,v)v) = (ST,vL,P,
1√
T
v).

Remark. By identifying Y(R) as in Section 4.2.2, we observe that πY
Q(

√
Ted)

: YQ(
√
Ted)

(R)→
YQ(ed)(R) takes the form

(4.18) πY
Q(

√
Ted)

(Λ + u,v)
def
=

(
1

T 1/2(d−1)
(Λ + u) ,

1

T 1/2
v

)

.

It follows that πXT
and πYT

are homeomorphisms for all T > 0, and we conclude the
following commuting diagram

(4.19) YT (R)
π∩ //

πYT

��

XT (R)

πXT

��
YQ(ed)(R)

π∩ // XQ(ed)(R)

4.3.2. Measures on moduli level sets. As Y(R) and X (R) are fiber bundles over Rd r 0,
it follows (by (4.13)) that YQ(ed)(R) and XQ(ed)(R) are fiber bundles over the base space
HQ(ed)(R). We will now define certain measures on YQ(ed)(R) and XQ(ed)(R) by integrating

the natural measures on the fibers of the maps
(
πY
vec

)−1
(v) and

(
πX
vec

)−1
(v), with respect to

the measure on the base space HQ(ed)(R).
For v ∈ HQ(ed)(R) we denote by gv ∈ SLd(R) a matrix satisfying

τ(gv) =
︸︷︷︸

recalling (2.3)

θ(gv)ed = v.
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Then, with the help of diagram (4.12), we observe that
(
πY
vec

)−1
(v) = gvASLd−1(R)/ASLd−1(Z),

and
(
πX
vec

)−1
(v) = gvASLd−1(R)/ASLd−1(Z)U,

which shows us explicitly the identification of the fibers of πY
vec with

Yd−1
def
= ASLd−1(R)/ASLd−1(Z) =

(
πX
vec

)−1
(ed),

and the identification of the fibers of πX
vec with

(4.20) Xd−1
def
= ASLd−1(R)/ASLd−1(Z)U =

(
πX
vec

)−1
(ed).

We need the following technical definition which describes the normalization of the Haar
measures we will be using.

Definition 4.5. LetG be a locally compact second countable group and let Γ ≤ G be a lattice.
Let mG be a left Haar measure on G and let mG/Γ be the unique left G-invariant probability
measure on G/Γ. We say that mG and mG/Γ are Weil normalized if for all f ∈ Cc(G)

∫

G
f(x)dmG(x) =

∫

G/Γ




∑

γ∈Γ
f(xγ)



 dmG/Γ(xΓ).

To define a measure on HQ(ed)(R), we recall that SOQ(R) acts transitively on HQ(ed)(R)
(by Witt’s theorem, since we assume Q(ed) 6= 0) via the right action (2.1), which in turns
implies the identification

HQ(ed)(R)
∼= Hed

(R)\SOQ(R),

where Hed
(R) ≤ SOQ(R) denotes the stabilizer of ed. We let mSOQ(R) and mSOQ(R)/SOQ(Z)

be Weil normalized, and we define the measure µHQ(ed)
(R) on HQ(ed)(R) by

µHQ(ed)
(R)

def
=

(

πHed
(R)

)

∗
mSOQ(R),

where πHed
(R) : SOQ(R) → Hed(R)\SOQ(R) is the natural quotient map (µHQ(ed)

(R) is well

defined since we assume that Hed
(R) is compact).

We now proceed to define the measures on the fibers
(
πY
vec

)−1
(v) and

(
πX
vec

)−1
(v) for

v ∈ HQ(ed)(R). We let mASLd−1(R) and mYd−1
be Weil normalized, and we let mXd−1

the

unique ASLd−1(R) invariant measure on Xd−1. We define for v ∈ HQ(ed)(R) the measure

µ
(πY

vec)
−1

(v)
on

(
πY
vec

)−1
(v) by

µ
(πY

vec)
−1

(v)
(f)

def
=

∫

f(gvx)dmYd−1
(x), ∀f ∈ Cc(

(
πY
vec

)−1
(v))

and similarly, the measure µ(πX
vec)

−1(v) on
(
πX
vec

)−1
(v) by

µ
(πX

vec)
−1(v)

(f)
def
=

∫

f(gvx)dmXd−1
(x), ∀f ∈ Cc(

(
πX
vec

)−1
(v)).

We show now that µ
(πY

vec)
−1

(v)
and µ(πX

vec)
−1(v) are independent of the choice of gv. Indeed,

if one chooses another g̃v ∈ SLd(R) such that τ(g̃v) = v, then τ(g−1
v g̃v) = ed, so that there

exists h ∈ ASLd−1(R), such that g̃v = gvh. Therefore we conclude for M ∈ {Xd−1, Yd−1}
that ∫

f(g̃vx)dmM(x) =

∫

f(gvhx)dmM(x)

=
︸︷︷︸

mM is ASLd−1(R) invariant

∫

f(gvx)dmM(x).
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Finally, using the above, we define the following measures on the spaces YQ(ed)(R) and
XQ(ed)(R) by

(4.21) µY
def
=

∫

µ
(πY

vec)
−1

(v)
dµHQ(ed)

(R)(v), and µX
def
=

∫

µ(πX
vec)

−1(v) dµHQ(ed)
(R)(v).

4.3.3. Pushforwards. We now turn to explain the relation between the measures µY and µX ,
as well as the connection between µX and the natural measure on the space of shapes.

Recall that the map π∩ : YQ(ed)(R)→ XQ(ed)(R) defined in (4.7) has compact fibers, hence
(π∩)∗ µY is a well defined measure on XQ(ed)(R).

Lemma 4.6. It holds that (π∩)∗ µY = µX .

Proof. We notice that for all v ∈ HQ(ed)(R) it holds that π∩(
(
πY
vec

)−1
(v)) =

(
πX
vec

)−1
(v),

which shows that for all v ∈ HQ(ed)(R) the measure (π∩)∗µ(πY
vec)

−1
(v)

is supported on
(
πX
vec

)−1
(v).

Using (4.21), we conclude that it is sufficient to show

(4.22) (π∩)∗µ(πY
vec)

−1
(v)

= µ(πX
vec)

−1(v), ∀v ∈ HQ(ed)(R).

in order to prove (π∩)∗ µY = µX .
We let v ∈ HQ(ed)(R), and we observe that in terms of cosets, the restriction of π∩ to a

fiber
(
πY
vec

)−1
(v) = gvASLd−1(R)/ASLd−1(Z) takes the form

π∩(gvηASLd−1(Z)) = gvηASLd−1(Z)U, η ∈ ASLd−1(R),

(see (4.8)). Since the natural projection ASLd−1(R)/ASLd−1(Z)→ ASLd−1(R)/ASLd−1(Z)U
pushes mYd−1

to mXd−1
, we can deduce (4.22). �

Next, we recall the space of shapes Sd−1
def
= K\Xd−1 (see Section 4.1.1), and we consider

the product space

W def
= Sd−1 ×HQ(ed)(R).

We define the product measure µW
def
= µSd−1

⊗ µHQ(ed)
(R), where µSd−1

is the push-forward of

mXd−1
by a quotient from the left by K.

We define the map (shape× πX
vec) : XQ(ed)(R)→W by

(4.23)
(
shape× πX

vec

)
(Λ,v)

def
= (shape(Λ,v),v) ,

where shape(Λ,v) was defined by (4.4). As above, the map
(
shape× πX

vec

)
has compact fibers.

Lemma 4.7. We have
(
shape × πX

vec

)

∗ µX = µW .

Proof. Similarly to the proof of Lemma 4.6, we observe that it suffices to show that

(4.24) (shape)∗µ(πX
vec)

−1(v) = µSd−1
, ∀v ∈ HQ(ed)(R).

We now describe
(
πX
vec

)−1
(v) in a more convenient way, which makes the description of

shape |(πX
vec)

−1(v) more transparent. Fix v ∈ HQ(ed)(R). We recall the diagonal matrix (see

Section 4.1.1)

d‖v‖
def
=

(

‖v‖−1/(d−1) Id−1 0
0 ‖v‖

)

,

and we let ρv ∈ SOd(R) such that ρ−1
v ed =

1
‖v‖v. We denote

gv
def
= ρ−1

v d−1
‖v‖,

and we observe that

τ(gv) = ρ−1
v d‖v‖ed = ρ−1

v ‖v‖ed = v.
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By using the action of SLd(R) on X (R) (see (4.1)), we get
(
πX
vec

)−1
(v) = gv ·

(
πX
vec

)−1
(ed),

and by recalling (4.4), we see that shape |(πX
vec)

−1(v) takes the form

(4.25) shape(gvΛ,v) =
︸︷︷︸

(4.4)

Kg−1
v gvΛ = KΛ, ∀Λ ⊥ ed such that covol(Λ) = 1.

Finally, by using (4.25), we see that the function fv : Xd−1 → R, defined by

fv(x)
def
= f ◦ shape(gvx), x ∈ Xd−1 =

(
πX
vec

)−1
(ed),

is right K invariant, and by noting that

(shape)∗µ(πX
vec)

−1(v)
(f) =

∫

fv(x)dmXd−1
(x),

we obtain (4.24). �

4.4. Statistics in moduli spaces. We are now able to state our main results for the moduli
spaces.

For N ∈ N and forM ∈ {Y,X}, we define the following measures onMQ(ed)(R) by

νMN
def
=

1

|HN,prim(Z)/SOQ(Z)|
∑

x∈MN (Z)

δπMN
(x),

(to recall πMT
see (4.16) and (4.17)), and we define a measure on W by

νWN
def
=

1

|HN,prim(Z)/SOQ(Z)|
∑

v∈HN,prim(Z)

δ(shape(Λv,v),
1√
N
v).

Our first main theorem is as follows.

Theorem 4.8. Assume that {Tn}∞n=1 ⊆ N such that Tn → ∞ and such that for some fixed
odd prime p0, the (Q, p0) co-isotropic property (to recall see Definition 3.6) holds. Then

lim
n→∞

νMTn
(f) = µM(f),

where M ∈ {Y,X} , and f ∈ Cc(MQ(ed)(R)), or forM =W and f ∈ Cc(W).

Let q ∈ N and recall that ϑq denotes the natural reduction modulo q. For N ∈ N and for
M∈ {Y,X} we define measures onMQ(ed)(R)×Hϑq(T )(Z/(q)) by

νM,q
N =

1

|HN,prim(Z)/SOQ(Z)|
∑

x∈MN (Z)

δ(πMN
(x),ϑq(πM

vec(x)),

and similarly a measure on W ×Hϑq(T )(Z/(q)) by

νW ,q
N

def
=

1

|HN,prim(Z)/SOQ(Z)|
∑

v∈HN,prim(Z)

δ(shape(Λv,v),
1√
N
v,ϑq(v))

.

By adding some further assumptions on the sequence {Tn}∞n=1 appearing in Theorem 4.8, we
are able to obtain the following.

Theorem 4.9. Let q ∈ 2N + 1. In addition to our Standing Assumption on the form Q
assume that Q is non-singular modulo q (see Definition 2.1). Let {Tn}∞n=1 ⊆ N be a sequence
of integers satisfying the (Q, p0) for some odd prime p0 and assume that there is a fixed
a ∈ (Z/(q))× such that for all n ∈ N it holds ϑq (Tn) = a. Then

lim
n→∞

νM,q
Tn

(f) = µM ⊗ µHa(Z/(q)(f),

where M ∈ {Y,X}, and f ∈ Cc(MQ(ed)(R) ×Ha(Z/(q))), or for M = W and f ∈ Cc(W ×
Ha(Z/(q))).
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4.5. Proof of Theorems 1.1 and 1.2. We now prove Theorems 1.1 and 1.2 by validating

the assumptions of Theorems 4.8 and 4.9 for the form Qd(x)
def
= x2d −

∑d−1
i=1 x2i , for d ≥ 4.

Fix d ≥ 4. We observe that the form Qd satisfies our Standing Assumption, since Qd is
clearly non-degenerate, since Qd(ed) = 1 6= 0 and sinceHed

(R) ∼= SOd−1(R) which is compact.
Since the determinant of Qd’s companion matrix is ±1, the form Qd is non-singular modulo

p for any prime p.
We now claim that the sequence N has the (Qd, 5) co-isotropic property. Let Q5 be the

field of 5-adic numbers. We note that
√
−1 ∈ Q5 (by Hensel’s lemma, since 22 = −1 mod 5)

and we observe that the plane

V
def
= SpanQ5

{√
−1e2 + e3, e1 + ed

}
⊆ (Q5)

d,

consists of Qd-isotropic vectors. For N ∈ N and for v ∈ HN (Q), we let v⊥(Qd) be the
orthogonal space to v with respect to Qd. Since v

⊥(Qd)⊗Q5 is a (d−1)-dimensional subspace

of (Q5)
d, we deduce that V ∩

(
v⊥(Qd) ⊗Q5

)
6= {0}. By the remark below Definition 3.6 we

deduce that the sequence N has the (Qd, 5) co-isotropic property.
We now verify that HN,prim(Z) 6= ∅ for all N ∈ N. We recall that there exists u ∈ Z3

prim

such that

(4.26) u21 + u22 + u23 = m,

for all positive integersm 6= 0, 4, 7 modulo 8 (see e.g. [Gro85]). Since a square modulo 8 attains
the residues 0, 1, 4, for we deduce that all N ∈ N there exists x4 ∈ Z such that x24 − N > 0
and such that x24 − N 6= 0, 4, 7, which implies by (4.26) that there exists x ∈ Z4

prim ⊆ Zd
prim

such that

x24 − x21 − x22 − x23 = N.

5. The results for Z imply the results for Y
Our goal in this section is to use Theorems 3.7 - 3.8 to deduce Theorems 4.8 - 4.9. We

divide this section into two parts as follows.

• Section 5.1 proves Theorems 4.8 - 4.9 for Y. This is the main difficulty in proving
Theorems 4.8 - 4.9.
• Section 5.2 gives the proof for Theorems 4.8 - 4.9 for X andW, which relies on Section
4.3.3 and Theorems 4.8 - 4.9 forM = Y.

5.1. Proof of Theorems 4.8 - 4.9 for Y. We now outline our method for proving Theorems
4.8 - 4.9 forM = Y which is based on the result of Theorems 3.7 - 3.8.

We claim that for all T > 0 it holds that

(5.1) YT (R) ∼= ZT (R)/ASLd−1(Z),

Indeed, we recall that SLd(R)/ASLd−1(Z) identifies with Y(R) by the orbit map

(5.2) τY(gASLd−1(Z))
def
= (gZd,SpanR{ge1, .., ged−1}, τ(g)), g ∈ SLd(R),

(see Section 4.2), and we observe that

(5.3)

τ−1
Y (YT (R)) =

︸︷︷︸

recalling (4.13)

{gASLd−1(Z) ∈ SLd(R)/ASLd−1(Z) | τ(g) ∈ HT (R)}

=
︸︷︷︸

recalling (4.13)

ZT (R)/ASLd−1(Z).

Similarly, we obtain for all N ∈ N that

(5.4) YN (Z) ∼= ZN (Z)/ASLd−1(Z).

Using (5.1), we can relate the measure µY on YQ(ed)(R) to the measure µZ on ZQ(ed)(R) by

using “unfolding”, as we will now explain. For f ∈ Cc(ZQ(ed)(R)) we obtain f̄ ∈ Cc(YQ(ed)(R))
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by defining

(5.5) f̄(gASLd−1(Z))
def
=

∑

γ∈ASLd−1(Z)

f(gγ),

and, as we show in Section 5.1.1, it holds that the map f 7→ f̄ is onto Cc(YQ(ed)(R)) and that

µZ(f) = µY(f̄) for all f ∈ Cc(ZQ(ed)(R)).
Next, recall that πZT

: ZT (R) → ZQ(ed)(R) (defined in (3.16)), is right ASLd−1(R) equi-
variant, namely

(5.6) πZT
(gη) = πZT

(g)η, ∀g ∈ ZT (R), η ∈ ASLd−1(R).

Using the equivariance of πZT
and using (5.1) we define πQ

YT
: YT (R)→ YQ(ed)(R) by

(5.7) πQ
YT

(zASLd−1(Z))
def
= πZT

(z)ASLd−1(Z).

The main reason for introducing πQ
YT

is that by assuming the asymptotics of the form

∑

g∈ZN (Z)

f(πZN
(g)) ∼ c(T )µZ(f), as N →∞,

we are able to obtain the asymptotics
∑

y∈YN (Z)

f̄(πQ
YN

(y)) ∼ c(T )µY(f̄), as N →∞,

by observing that
∑

g∈ZN (Z)

f(πZN
(g)) =

∑

gASLd−1(Z)∈ZN (Z)/ASLd−1(Z)

∑

γ∈ASLd−1(Z)

f(πZN
(gγ))

=
︸︷︷︸

(5.6)

∑

gASLd−1(Z)∈ZN (Z)/ASLd−1(Z)

∑

γ∈ASLd−1(Z)

f(πZN
(g)γ)

=
︸︷︷︸

(5.4)

∑

y∈YN (Z)

f̄(πQ
YN

(y)),

and by using that µZ(f) = µY(f̄).
However, we are interested in proving Theorems 4.8 - 4.9 for M = Y which concern the

asymptotics of averages of the form
∑

y∈YN (Z)

f̄(πYN
(y)), as N →∞,

where πYT
: YT (R)→ YQ(ed)(R) was defined in (4.18). Fortunately, it turns out that πQ

YT
and

πYT
differ asymptotically uniformly by a fixed map that preserves the measure µY , allowing

us to prove Theorems 4.8 - 4.9.

Remark. Observe that the right SOQ(R)-actions on YQ(ed)(R) and on YT (R) given by

(L,P,v) · ρ def
=

(
θ(ρ−1)L, θ(ρ−1)P, ρ−1v

)
, (L,P,v) ∈ Ys(R), ρ ∈ SOQ(R),

are equivariant with respect to the map πQ
T . Yet, as we will see in Section 5.1.2, this statement

is wrong in general for πYT
.

The structure of the rest of the section is as follows:

• Section 5.1.1 relates the measure µY and µZ by “unfolding”.

• Section 5.1.2 compares πQ
YT

and πYT
.

• Section 5.1.3 proves Theorems 4.8 - 4.9 forM = Y.
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5.1.1. Unfolding the measure on YQ(ed)(R). To relate the measure µZ on ZQ(ed)(R) (defined
in Section 3.3) with µY (defined in Section 4.3.2), we now give µZ a different description,
which is conceptually similar to the definition of µY . We observe that τ : ZQ(ed)(R) →
HQ(ed)(R) endows ZQ(ed)(R) with a fiber bundle structure over HQ(ed)(R) with fibers being
right ASLd−1(R) cosets (to recall τ , see (2.3)). As for µY , we define for each v ∈ HQ(ed)(R)

a measure on the fiber τ−1(v) by

µτ−1(v)(f)
def
=

∫

f(gvx)dmASLd−1(R)(x), v ∈ HQ(ed)(R), f ∈ Cc(τ
−1(v)),

where gv ∈ SLd(R) is chosen such that τ(gv) = v. By integrating the measures on the fibers
we define the measure νZ on ZQ(ed)(R) by

(5.8) νZ
def
=

∫

µτ−1(v) dµHQ(ed)
(R)(v).

We obtain the lemma below which we leave the reader to verify.

Lemma 5.1. It holds that νZ = µZ , where µZ was defined in (3.17).

The unfolding relation between µY and µZ is given by the following lemma.

Lemma 5.2. For all f ∈ Cc(ZQ(ed)(R)) it holds that µZ(f) = µY(f̄), where f̄ is given by
(5.5).

Proof. Using Lemma 5.1 and by recalling the definition of µY in (4.21), we see that it is
sufficient to prove that µτ−1(v)(f) = µ

(πY
vec)

−1
(v)

(f̄) for all v ∈ HQ(ed)(R). Let gv ∈ SLd(R)

such that τ(gv) = v, and recall that mASLd−1(R) and mYd−1
are Weil normalized (see Definition

4.5). Then,

µ
(πY

vec)
−1

(v)
(f̄) =

∫



∑

γ∈ASLd−1(Z)

f(gvxγ)



 dmYd−1
(xASLd−1(Z))

=

∫

f(gvx)dmASLd−1(R)(x)

=µτ−1(v)(f).

�

We now turn to show that for all T > 0 the map ∗̄ : Cc(ZT (R)) → Cc(YT (R)) defined by
f 7→ f̄ is onto (to recall f̄ see (5.5)). To prove the latter, we note the following general lemma.

Lemma 5.3. Let G be a locally compact, second countable group, K ≤ G be compact, and
Γ ≤ G be discrete. Then the map

∗̄ : Cc(K\G)→ Cc(K\G/Γ)

defined by f̄(KgΓ)
def
=

∑

γ∈Γ f(Kgγ) is onto.

Proof. We let πK : G/Γ → K\G/Γ be the natural map. Since K is compact, for ϕ ∈
Cc(K\G/Γ) it holds that ϕ ◦ πK ∈ Cc(G/Γ). We recall that [Fol15, Proposition 2.50] tells us

there exists f̃ ∈ Cc(G) such that

ϕ ◦ πK(gΓ) =
∑

γ∈Γ
f̃(gγ).



22 MICHAEL BERSUDSKY AND URI SHAPIRA

We let mK be the Haar probability measure on K and we observe that

ϕ ◦ πK(gΓ) =

∫

ϕ ◦ πK(kgΓ)dmK(k)

=

∫



∑

γ∈Γ
f̃(kgγ)



 dmK(k)

=
∑

γ∈Γ

∫

f̃(kgγ)dmK(k).

where in the last line we used that for all g ∈ G, the sum
∑

γ∈Γ f̃(kgγ) is a finite sum,

where the number of summands is bounded uniformly in k ∈ K (this follows by Lemma

A.4). The proof is complete by denoting f(Kg)
def
=

∫
f̃(kg)dmK(k) and by observing that

f ∈ Cc(K\G). �

Let G
def
= (SOQ × ASLd−1)(R), K

def
= H which was defined in (3.14), and Γ

def
= {e} ×

ASLd−1(Z) ≤ (SOQ × ASLd−1)(R). Lemma 5.4 below shows that YT (R) ∼= K\G/Γ. Since
ZT (R) ∼= K\G, the proof that ∗̄ : Cc(ZT (R)) → Cc(YT (R)) is onto will be done by Lemma
5.3 and Lemma 5.4.

Lemma 5.4. For all T > 0, H\(SOQ×ASLd−1)(R)/ASLd−1(Z) is homeomorphic to YQ(
√
Ted)

(R),

by the map
Φ̃(H(ρ, η)ASLd−1(Z)) = τY

(
θ(ρ−1)aT ηASLd−1(Z)

)
,

where τY is given by (5.2) and aT ∈ SLd(R) is given by Definition 3.4.

Proof. We recall that ZQ(
√
Ted)

(R) is identified with H\(SOQ ×ASLd−1)(R) by the map

Φ(H(ρ, η)) = θ(ρ−1)aT η,

(to recall, see (3.14) defining H, and see below (3.15)) which shows that

ZQ(
√
Ted)

(R)/ASLd−1(Z) ∼= H\(SOQ ×ASLd−1)(R)/ASLd−1(Z)

by the map
Φ̃(H(ρ, η)ASLd−1(Z)) = θ(ρ−1)aT ηASLd−1(Z).

Because YT (R) is identified with ZT (R)/ASLd−1(Z) for all T > 0 via τY (see below (5.1)),
the proof is complete. �

5.1.2. Comparing of πYT
and πQ

YT
. We will now discuss the difference between πYT

and πQ
YT

with the goal of showing that it converges as T →∞ in a certain uniform way to a fixed map
that preserves the measure on YQ(ed)(R).

We recall that for T > 0 and (L,P,v) ∈ YQ(
√
Ted)

(R),

(5.9) πY
Q(

√
Ted)

(L,P,v) = (ST,vL,P,
1√
T
v),

where ST,v ∈ SLd(R) acts by scalar multiplication of a factor T
− 1

2(d−1) on P = v⊥ and acts

on the line Rv by scalar multiplication by a factor T 1/2 (see Section 4.3.1).

Next, we describe πQ
YT

in a manner similar to (5.9).

Definition 5.5. Recall the form Q∗ defined in (3.11). For v ∈ Rd r 0 such that Q(v) > 0,
we denote by vQ ∈ Rd r 0 the unique vector orthogonal with respect to the form Q∗ to the

hyperplane v⊥, having the normalization

vQ = v + v̂Q,

where v̂Q ∈ v⊥. We define SQ
T,v ∈ SLd(R) which acts by scalar multiplication of a factor

T
− 1

2(d−1) on the hyperplane v⊥ and which acts on RvQ (the orthogonal line to the hyperplane

v⊥ with respect to the form Q∗) by scalar multiplication of a factor T 1/2.
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Remark. We observe that vQ = 1
Q(v)Mv, where M is the companion matrix of the form Q.

This implies that the map v 7→ vQ is continuous.

Lemma 5.6. For all T > 0 it holds that

(5.10) πQ
Y
Q(

√
Ted)

(L,P,v)
def
= (SQ

T,vL,P,
1√
T
v), ∀(L,P,v) ∈ YQ(

√
Ted)

(R).

Proof. Let (L,v⊥,v) ∈ YQ(
√
Ted)

(R). By using the identification (5.1), we take g ∈ ZT (R)

such that (L,v⊥,v) = τY(gASLd−1(Z)).
Using (3.15), we take (ρ, η) ∈ (SOQ ×ASLd−1)(R) such that

g = θ(ρ−1)aT η,

and we observe that

(5.11)

πQ
Y
Q(

√
Ted)

(L,v⊥,v) =
︸︷︷︸

recalling (5.7)

τY(πZ
Q(

√
Ted)

(g)ASLd−1(Z))

=
︸︷︷︸

recalling (3.16)

τY(θ(ρ
−1)a−1

T θ(ρ)gASLd−1(Z)).

By recalling that θ(ρ−1) ∈ SOQ∗(R) (see Lemma 3.3) and by recalling the definition of aT
(see Definition 3.4), we deduce that

θ(ρ−1)a−1
T θ(ρ) = SQ

T,v,

where SQ
T,v was given in Definition 5.5. Then by (5.11),

πQ
Y
Q(

√
Ted)

(L,v⊥,v) =
︸︷︷︸

recalling (5.2)

(SQ
T,vL,S

Q
T,vv

⊥, θ(SQ
T,v)v)

=(SQ
T,vL,v

⊥,
1√
T
v).

�

Lemma 5.7. Let (L,P,v) ∈ YQ(ed)(R), and consider the unipotent matrix uQv which satisfies

that uQvv = vQ and acts as identity on v⊥. Let

(5.12) uQT,v
def
=

(

SQ
T,v

)

S−1
T,v,

then
lim
T→∞

(
uQv

)−1
uQT,v = Id,

and the convergence is uniform when v is restricted to a compact subset of Rd r 0.

Proof. It is easy to verify that
(

SQ
T,v

)

S−1
T,v acts as identity on v⊥, namely

(

SQ
T,v

)

S−1
T,v and

uQv agree on v⊥. Next,

(

SQ
T,v

)

S−1
T,vv =SQ

T,v

(
1√
T
v

)

=
1√
T
SQ
T,v (vQ − v̂Q)

=vQ − T
− d

2(d−1) v̂Q,

namely
(

uQv −
(

SQ
T,v

)

S−1
T,v

)

v = −T− d
2(d−1) v̂Q.

By multiplying both sides of the preceding equality by
(

uQv

)−1
, and by recalling (3.4), we get

(

Id −
(
uQv

)−1
uQT,v

)

v = −T− d
2(d−1) v̂Q.
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Since the map v 7→ vQ is continuous (see remark below Definition 5.5), we deduce that

limT→∞
(

uQv
)−1

uQT,v = Id converges uniformly when v varies in a compact set of Rd r0. �

Now let uQ : YQ(ed)(R)→ YQ(ed)(R) be defined by uQ(L,P,v)
def
= (uQvL,P,v).

Lemma 5.8. The map uQ preserves the measure µY on YQ(ed)(R).

Proof. Let f ∈ Cc(YQ(ed)(R)). By recalling the definition of µY in (4.21), it is sufficient to

prove that µ
(πY

vec)
−1

(v)
(f ◦ uQ) = µ

(πY
vec)

−1
(v)

(f) for all v ∈ HQ(ed)(R). Let v ∈ HQ(ed)(R)

and let gv ∈ SLd(R) such that τ(gv) = v. Then

µ
(πY

vec)
−1

(v)
(f ◦ uQ) =

∫

f(uQv gvx)dmYd−1
(x)

=

∫

f(gv(g
−1
v uQv gv)x)dmYd−1

(x).

As the reader may verify, it follows that g−1
v uQv gv ∈ ASLd−1(R), and by recalling that mYd−1

is left ASLd−1(R) invariant, the proof is done. �

Consider δQT : YQ(ed)(R)→ YQ(ed)(R) defined by δQT
def
=

(
uQ

)−1 ◦ πQ
YT
◦ π−1

YT
. Using Lemma

5.7, we obtain that δQT converges to the identity transformation on YQ(ed)(R) as T → ∞ in
the following uniform manner.

Corollary 5.9. Assume that yn → y0 in YQ(ed)(R) and let {Tn}∞n=1 ⊆ R>0 such that Tn →∞.

Then δQTn
(yn)→ y0 and

(

δQTn

)−1
(yn)→ y0.

Proof. We write yn = (Ln, Pn,vn) and y0 = (L0, P0,v0), and we observe that yn → y0 implies
that Ln → L0 and vn → v0 in the usual topology of Xd and Rd correspondingly.

Let for Tn > 0 and vn ∈ Rd r 0, let ITn,vn ∈ SLd(R) be defined by

ITn,vn

def
=

(
uQvn

)−1
(

SQ
T,vn

)

S−1
T,vn

,

and observe that
δQTn

(Ln, Pn,vn) = (ITn,vnLn, Pn,vn).

Since Ln → L0, since vn → v0 and since ITn,vn → Id uniformly when v is restricted to a

compact subset of Rd r 0 (by Lemma 5.7), we conclude that ITn,vnLn → L0, which shows

δQTn
(yn)→ y0.
Similarly, we have that

(

δQTn

)−1
(Ln, Pn,vn) = (I−1

Tn,vn
Ln, Pn,vn),

and since I−1
Tn,vn

→ Id converges uniformly when v is restricted to a compact subset of Rdr0

(which follows by Lemma 5.7), we also obtain that
(

δQTn

)−1
(yn)→ y0. �

Lemma 5.10. Let X be a manifold and assume that {ϕT }T∈R>0
is a family of bijections ϕT :

X → X such that for any sequence {xn} ⊆ X with limn→∞ xn = x0 and any {Tn}∞n=1 ⊆ R>0

such that Tn →∞ it holds that limn→∞ ϕTn(xn) = x0 and limn→∞ ϕ−1
Tn

(xn) = x0 . Then for
all f ∈ Cc(X), f ◦ ϕT converges to f uniformly. Namely, for all f ∈ Cc(X) and all ǫ > 0
there is T0 > 0 such that

|f ◦ ϕT (x)− f(x)| < ǫ, ∀T > T0, ∀x ∈ X.

Proof. Let f ∈ Cc(X) and assume for contradiction that f ◦ ϕT doesn’t converge uniformly
to f . Then there exists a δ > 0, a sequence Tn → ∞ and a sequence {xn} ⊆ X such that

|f ◦ ϕTn(xn)− f(xn)| > δ for all n ∈ N. Let K
def
= supp(f) and observe by the preceding

inequality that either ϕTn(xn) ∈ K infinitely often or xn ∈ K infinitely often. Assume that
ϕTn(xn) ∈ K infinitely often. By sequential compactness we may assume that ϕTn(xn)→ x0
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which implies by assumption on ϕ−1
T that xn = ϕ−1

Tn
(ϕTn(xn))→ x0. We reach a contradiction

since

|f ◦ ϕTn(xn)− f(xn)| ≤ |f ◦ ϕTn(xn)− f(x0)|+ |f(x0)− f(xn)| ,
and since the continuity of f implies |f ◦ ϕTn(xn)− f(x0)| → 0 and |f(x0)− f(xn)| → 0.

In a manner similar to the preceding, we obtain a contradiction when assuming that xn ∈ K
infinitely often. �

Corollary 5.11. Let f ∈ Cc(YQ(ed)(R) × Ha(Z/(q))), let ǫ > 0 and let K ) Supp(f) be an
open precompact set. Then, there exists T0 > 0 such that for all T > T0 the following hold

(1)
∣
∣
∣f((uQ)−1 ◦ πQ

YT
(y),v) − f(πYT

(y),v)
∣
∣
∣ < ǫ, ∀ (y,v) ∈ YT (R)×Ha(Z/(q)).

(2) if ((uQ)−1 ◦ πQ
YT

(y),v) /∈ K, then (πYT
(y),v) /∈ Supp(f).

Proof. Let f ∈ Cc(YQ(ed)(R)×Ha(Z/(q))) and let ǫ ∈ (0, 1). Using Corollary 5.9 and Lemma
5.10 with the fact that Ha(Z/(q)) is a finite set, we obtain T1 > 0 such that for all T > T1 it
holds

∣
∣
∣f

(

δQT (y
′),v)

)

− f
(
y′,v)

)
∣
∣
∣ < ǫ, ∀

(
y′,v

)
∈ YQ(ed)(R)×Ha(Z/(q)).

Then, by substituting y′ = πYT
(y), we obtain for all T > T1 that

∣
∣
∣f

(

((uQ)−1 ◦ πQ
YT

(y),v)
)

− f ((πYT
(y),v))

∣
∣
∣ < ǫ, ∀ (y,v) ∈ YT (R)×Ha(Z/(q)).

Let K ) Supp(f) be an open precompact set. By Urysohn’s lemma there exists ϕ :
Cc(YQ(ed)(R)×Ha(Z/(q)))→ [0, 1] such that

ϕ(y,v)
def
=

{

0 (y,v) /∈ K
1 (y,v) ∈ Supp(f).

As above, there exists T2 > 0 such that for all T > T2

(5.13)
∣
∣
∣ϕ((uQ)−1 ◦ πQ

YT
(y),v) − ϕ(πYT

(y),v)
∣
∣
∣ < ǫ, ∀(y,v) ∈ YT (R)×Ha(Z/(q)).

Assuming ((uQ)−1◦πQ
YT

(y),v) /∈ K, we see by (5.13) and by the definition of ϕ that ϕ(πYT
(y),v) =

0, which implies that (πYT
(y),v) /∈ Supp(f).

By defining T0
def
= max{T1, T2} the proof of the statements of Corollary 5.11 is done. �

Fix q ∈ N and let {Tn}∞n=1 ⊆ N be an unbounded sequence such that ϑq(Tn) = a, where
a ∈ Z/(q) is fixed. We consider the following measure on YQ(ed)(R)×Ha(Z/(q)) defined by

(5.14) νY ,Q,q
Tn

def
=

1

|HTn,prim(Z)/SOQ(Z)|
∑

y∈YTn (Z)

δ
(πQ

YTn
(y),ϑq(π

Y
vec(y)))

Corollary 5.12. For all f ∈ Cc(YQ(ed)(R)×Ha(Z/(q))) it holds that

(5.15) lim
n→∞

νY ,Q,q
Tn

(f ◦
(
uQ

)−1
)− νY ,q

Tn
(f) = 0,

where we recall that

νY ,q
T =

1

|HT,prim(Z)/SOQ(Z)|
∑

y∈YT (Z)

δ(πYT
(y),ϑq(π

Y
vec(y))

.

Proof. We let f ∈ Cc(YQ(ed)(R)×Ha(Z/(q))) and we denote

φT (y)
def
= f((uQ)−1 ◦ πQ

YT
(y), ϑq(π

Y
vec(y))− f(πYT

(y), ϑq(π
Y
vec(y)), y ∈ YT (Z).

Then
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νY ,Q,q
Tn

(

f ◦
(
uQ

)−1
)

− νY ,q
Tn

(f) =
1

|HT,prim(Z)/SOQ(Z)|
∑

y∈YT (Z)

φT (y)

=
1

|HT,prim(Z)/SOQ(Z)|
∑

ySOQ(Z)∈YT (Z)/SOQ(Z)

∑

γ∈SOQ(Z)

φT (y · γ)(5.16)

Let ǫ > 0 and let K ) Supp(f) be an open precompact set. We fix T0 > 0 such that Corollary
5.11 holds. By Corollary 5.11,(1) it holds for all T > T0

(5.17) |φT (y)| ≤ ǫ, ∀y ∈ YT (Z).
We now claim that there exists a constant c = c(f) > 0 such that for all ySOQ(Z) ∈
YT (Z)/SOQ(Z) it holds that

(5.18) |{γ ∈ SOQ(Z) | y · γ ∈ Supp(φT )}| ≤ c.

By Lemma A.4 (for G = (SOQ ×ASLd−1) (R), K = H, Γ = (SOQ × ASLd−1)(Z) and Γ̃ =
{e}×ASLd−1(Z)), we obtain that for any precompact set C ⊆ YQ(ed)(R) there exists a uniform
constant c > 0 such that for all y0 ∈ YQ(ed)(R)

(5.19) |{γ ∈ SOQ(Z) | y0 · γ ∈ C}| ≤ c.

We recall that πQ
YT

is SOQ(Z) equivariant, so that

(uQ)−1 ◦ πQ
YT

(y · γ) = (uQ)−1(πQ
YT

(y) · γ).
By Corollary 5.11,(2), for all T > T0 and for γ ∈ SOQ(Z) such that

(πQ
YT

(y) · γ, ϑq(π
Y
vec(y · γ))) /∈ uQ(K),

we have |φT (y · γ)| = 0, namely Supp(φT ) ⊆ uQ(K), which shows

|{γ ∈ SOQ(Z) | y · γ ∈ Supp(φT )}| ≤
∣
∣
∣

{

γ ∈ SOQ(Z) | (πQ
YT

(y) · γ, ϑq(π
Y
vec(y · γ))) ∈ uQ(K)

}∣
∣
∣

Consider the natural map π∞ : YQ(ed)(R) × Ha(Z/(q)) → YQ(ed)(R). Since uQ is a home-
omorphism, and as K is precompact, by (5.19) there is a constant c > 0 such that for all
y ∈ YT (Z)

∣
∣
∣

{

γ ∈ SOQ(Z) | πQ
YT

(y) · γ ∈ π∞(uQ(K))
}∣
∣
∣ ≤ c,

which shows (5.18). Finally, by (5.16), (5.17) and (5.18) we obtain for all T > T0

∣
∣
∣ν

Y ,Q,q
Tn

(

f ◦
(
uQ

)−1
)

− νY ,q
Tn

(f)
∣
∣
∣ ≤ |YT (Z)/SOQ(Z)|
|HT,prim(Z)/SOQ(Z)|

ǫc.

Now the map πY
vec : YT (Z) → HT,prim(Z) is a bijection which is equivariant with respect to

the right SOQ(Z) action, which shows that

|YT (Z)/SOQ(Z)|
|HT,prim(Z)/SOQ(Z)|

= 1,

and completes our proof. �

5.1.3. Concluding the proof that the results for Z imply the results for Y. We now give a
detailed proof that Theorem 3.8 implies Theorem 4.9 for M = Y. The proof that Theorem
3.7 implies Theorem 4.8 follows along the same lines, and is left for the reader.

In the following we fix q ∈ 2N+ 1 and we let a ∈ (Z/(q))×.
Let f ∈ Cc(YQ(ed)(R) × Ha(Z/(q))), and consider ϕ̄f ∈ Cc(YQ(ed)(R) × Ha(Z/(q))) given

by

ϕ̄f
def
= f ◦ (uQ)−1,

where we abuse notations with f ◦ (uQ)−1(y,v) = f
(
(uQ)−1(y),v

)
.
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By Lemma 5.3, there exists ϕf ∈ Cc(ZQ(ed)(R)×Ha(Z/(q)) such that

ϕ̄f (zASLd−1(Z),v) =
∑

γ∈ASLd−1(Z)

ϕf (zγ,v).

Let ϕτ
f ∈ Cc(ZQ(ed)(R)×Za(Z/(q)) be defined by ϕτ

f (z, g)
def
= ϕf (z, τ(g)) (where τ defined in

(2.3)) We claim that

νZ,q
T (ϕτ

f ) = νY ,Q,q
T (ϕ̄f ),

where νZ,q
T defined in (3.19) and νY ,Q,q

T defined in (5.14). We have

νZ,q
T (ϕτ

f ) =
1

|HT,prim(Z)/SOQ(Z)|
∑

z∈ZT (Z)

ϕτ
f (πZT

(z), ϑq(z))

=
1

|HT,prim(Z)/SOQ(Z)|
∑

z∈ZT (Z)

ϕf (πZT
(z), ϑq(τ(z)))

=
1

|HT,prim(Z)/SOQ(Z)|
∑

zASLd−1(Z)∈ZT (Z)/ASLd−1(Z)

∑

γ∈ASLd−1(Z)

ϕf (πZT
(zγ), ϑq(τ(zγ)))

=
1

|HT,prim(Z)/SOQ(Z)|
∑

zASLd−1(Z)∈ZT (Z)/ASLd−1(Z)

∑

γ∈ASLd−1(Z)

ϕf (πZT
(z)γ, ϑq(τ(z)))

=
1

|HT,prim(Z)/SOQ(Z)|
∑

y∈YT (Z)

ϕ̄f (π
Q
YT

(y), ϑq(π
Y
vec(y))

=νY ,Q,q
T (ϕ̄f ).

Assume that Q is non-singular modulo q ∈ 2N + 1. Let {Tn}∞n=1 ⊆ N be an unbounded
sequence of integers satisfying the (Q, p0) co-isotropic property for some p0 and assume that
ϑq (Tn) = a, ∀n ∈ N. Then by assuming Theorem 3.8, we get

lim
n→∞

νY ,Q,q
Tn

(ϕ̄f ) = lim
n→∞

νZ,q
Tn

(ϕτ
f ) = µZ ⊗ µZa(Z/(q)(ϕ

τ
f ).

We recall by the proof of Corollary 3.1 that τ(Za(Z/(q)) = Ha(Z/(q)) and we observe that

µZ ⊗ µZa(Z/(q))(ϕ
τ
f ) = µZ ⊗ τ∗µZa(Z/(q))(ϕf ) = µZ ⊗ µHa(Z/(q))(ϕf ).

By Lemma 5.2

µZ ⊗ µHa(Z/(q)(ϕf ) = µY ⊗ µHa(Z/(q)(ϕ̄f ),

which implies in turn that

(5.20) lim
n→∞

νY ,Q,q
Tn

(ϕ̄f ) = µY ⊗ µHa(Z/(q)(ϕ̄f ).

Our goal now is to show that (5.20) implies

(5.21) lim
n→∞

νY ,q
Tn

(f) = µY ⊗ µHa(Z/(q)(f),

which is the statement of Theorem 4.9.
We have by definition of ϕ̄f

(5.22)

lim
n→∞

νY ,Q,q
Tn

(f ◦ (uQ)−1) = lim
n→∞

νY ,Q,q
Tn

(ϕ̄f )

= lim
n→∞

µY ⊗ µHa(Z/(q)(ϕ̄f )

= lim
n→∞

µY ⊗ µHa(Z/(q)(f ◦ (uQ)−1).

By Corollary 5.12 and by (5.22) we obtain that

lim
n→∞

νY ,q
Tn

(f) = µY ⊗ µHa(Z/(q)(f ◦ (uQ)−1),

and finally, since uQ preserves µY (see Lemma 5.8) we obtain (5.21).
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5.2. The results for Y imply the results for X and W. In the following we show that
Theorems 4.8 - 4.9 forM = Y imply Theorems 4.8 - 4.9 forM∈ {X ,W} . It may be helpful
for the reader to recall Section 4.3.3.

We fix T ∈ N and we note the following commuting diagram (which follows from (4.19)),

YT (Z)� _

πYT

��

oo π∩ //
ww

πY
vec

''
XT (Z)� _

πXT

��

oo
πX
vec // HT,prim(Z)

YQ(ed)(R)
π∩ // XQ(ed)(R)

which shows that

νX ,q
T =

1

|HT,prim(Z)/SOQ(Z)|
∑

x∈XT (Z)

δ(πXT
(x),ϑq(πX

vec(x))

=
1

|HT,prim(Z)/SOQ(Z)|
∑

y∈YT (Z)

δ(π∩◦πYT
(y),ϑq(π

Y
vec(y))

=(π∩ × id)∗ ν
Y ,q
T .

By Lemma 4.6 we have (π∩)∗ µY = µX , hence we obtain the limits for X from the limits of
Y.

Next, we observe that

νW ,q
T =

1

|HT,prim(Z)/SOQ(Z)|
∑

v∈HT,prim(Z)

δ(
shape(Λv),

1√
T
v,ϑq(v)

)

=
1

|HT,prim(Z)/SOQ(Z)|
∑

x∈XT (Z)

δ((shape×πX
vec)(πXT

(x)),ϑq(πX
vec(x)))

=
(
(shape× πX

vec)× id
)

∗ ν
X ,q
T ,

and by Lemma 4.7, we have
(
πX
vec × shape

)

∗ µX = µW , which shows that the limits for W
follow from the limits of X .

6. Some technicalities

This section discusses several technical facts about quadratic forms that will be used in the
rest of the paper (mainly in Section 7).

For a prime p we denote by Zp the ring of p-adic integers and by Qp the field of p-adic
numbers.

Lemma 6.1. Let Q be an integral form which is non-singular modulo q (see Definition 2.1)
for q ∈ 2N + 1 and let Sq be the set of primes appearing in the prime decomposition of q.
Then the following hold:

(1) The reduction map ϑpk : SOQ(Zp)→ SOQ(Z/(p
k)) is onto for all p ∈ Sq and k ≥ 1.

(2) Q is isotropic over Qp for all p ∈ Sq.

Proof. (1) Fix p ∈ Sq. To prove that ϑpk : SOQ(Zp)→ SOQ(Z/(p
k)) is onto, we will prove

that the natural projection

πk : SOQ(Z/(p
k+1))→ SOQ(Z/(p

k))

is onto for all k ≥ 1. We let ḡ ∈ SOQ(Z/(p
k)) and we take F ∈ Md(Zp) such that

ϑpk(F ) = ḡ. Since det(ḡ) = 1, it follows that det (F ) ∈ Z×
p , which implies that

F ∈ GLd(Zp). Fix a symmetric matrix M ∈Md(Z) such that

Q(x) = xtMx
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Since Q is non-singular modulo q it follows that det(M) ∈ Z×
p for all p ∈ Sq, namely

M ∈ GLd(Zp) for all p ∈ Sq. We may now define S ∈Md(Zp) by

(6.1) S
def
=

1

2

(

M−1
(
F t

)−1
M − F

)

.

By noting that ϑpk(F
tMF ) = ϑpk(M) we obtain that ϑpk(S) = 0, so that in particular

ϑpk(F + S) = ḡ. To finish the proof, it is sufficient to show that ϑpk+1(F + S) ∈
SOQ(Z/(p

k+1)). We observe that

(6.2) (F + S)tM(F + S) = F tMF + F tMS + StMF + StMS.

We treat each of the terms appearing in (6.2) separately.
(a) The term F tMS. By substituting (6.1) in S, we obtain that

F tMS =
1

2
F tM

(

M−1
(
F−1

)t
M − F

)

=
1

2
M − 1

2
F tMF.

(b) The term StMF . By substituting (6.1) in St, we obtain that

StMF =
1

2

(

M tF−1
(
M t

)−1 − F t
)

MF =
︸︷︷︸

M t=M

1

2
M − 1

2
F tMF.

Hence we deduce by the above that

(F + S)tM(F + S) = M + StMS,

Since ϑpk(S) = 0, we obtain that ϑp2k(S
tMS) = 0. Namely ϑpk+1

(
(F + S)tM(F + S)

)
=

ϑpk+1(M), which completes the proof.
(2) Let M be the companion matrix of Q. By definition of non-singularity modulo q (see

Definition 2.1) we have that |det(M)|p = 1 for all p ∈ Sq, where |·|p denotes the p-adic
valuation. Fix p ∈ Sq. By [Cas78, Chapter 8, Theorem 3.1] there exists g ∈ GLd(Zp)
such that

gtMg =






a1
. . .

ad




 ,

where a1, ..., ad ∈ Zp. Now

|a1|p · ... · |ad|p =
∣
∣det(gtMg)

∣
∣
p
= |det(M)|p = 1.

Hence |a1|p = ... = |ad|p = 1, and by [Cas78, Chapter 3, Lemma 1.7] we get that
Q(gx) = a1x

2
1 + ...+ adx

2
d has an isotropic vector over Qp.

�

For g ∈ SLd(Z) and γ ∈ SLd−1(Q) we define a quadratic form ϕγ
g : Qd−1 → Q, by

(6.3) ϕγ
g (u)

def
= Q∗ ◦ g ◦ γ(u)

(see definition of Q∗ in (3.11)), where we identify Qd−1 with Qd−1 × {0}. We will denote

ϕg
def
= ϕ

Id−1
g .

Let ĝ ∈Md×d−1(R) be the matrix formed by the first d− 1 columns of g. Then the matrix

(6.4) Mϕγ
g

def
= γtĝtM−1ĝγ

is a companion matrix for the form ϕγ
g .

Lemma 6.2. It holds that det
(

Mϕγ
g

)

= 1
det(M)Q(τ(g)).

Proof. First, by the multiplicativity of the determinant, we get that det
(

Mϕγ
g

)

= det
(
Mϕg

)
.

Next, we observe that
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Q(τ(g)) =
〈(

gt
)−1

ed,M
(
gt
)−1

ed

〉

=
〈

ed,
(
gtM−1g

)−1
ed

〉

,

which is the d, d entry of the matrix
(
gtM−1g

)−1
. Now

(
gtM−1g

)−1
=

1

det(gtM−1g)
adj

(
gtM−1g

)

=det(M) · adj
(
gtM−1g

)
.

We note that the d, d entry of adj
(
gtM−1g

)
is given by the minor det

(
ĝtM−1ĝ

)
= det

(
Mϕg

)
,

which proves our claim. �

Consider the natural map
πSLd−1

: ASLd−1 → SLd−1,

given by (
m ∗

1

)

7→ m.

Lemma 6.3. We have

γ−1πSLd−1

(
g−1θ

(
Hτ(g)(R)

)
g
)
γ = SOϕγ

g
(R).

Proof. We recall by Lemma 3.3 that θ
(
Hτ(g)(R)

)
is the subgroup of SOQ∗(R) that preserves

the hyperplane SpanR{g1, ...,gd−1}, where gi denotes the i’th column of g. Therefore group
g−1θ

(
Hτ(g)(R)

)
g is the subgroup of SOQ∗◦g(R) which preserves the hyperplane Rd−1 × {0}

by the left linear action. Hence πSLd−1

(
g−1θ

(
Hτ(g)(R)

)
g
)
is the restriction of SOQ∗◦g(R) to

the hyperplane Rd−1 × {0}, which shows πSLd−1

(
g−1θ

(
Hτ(g)(R)

)
g
)
= SOϕg(R). Finally we

note that
γ−1SOϕg (R)γ = SOϕγ

g
(R).

�

Lemma 6.4. Let A ∈ Md(Z) ∩ GLd(Q). Then for any g ∈ SLd(Z), the g.c.d of the entries
of the integral matrix

Ag
def
= ĝtAĝ

where ĝ is the matrix formed by the first d− 1 columns of g, is at-most detA.

Proof. To prove our claim it is sufficient to show that there exist two integral vectors b,a ∈
Zd−1 such that

btAga = α,

for α ∈ Z satisfying that α | det(A). This will be done by a variation on the geometric

argument given in the proof of [AES16a, Lemma 3.2]. Let u1 ∈ Zd
prim

⋂
(Agd)

⊥⋂
ĝQd−1

where gd
def
= ged (such a vector exists since (Agd)

⊥⋂
ĝQd−1 is the intersection of two rational

hyperplanes). Namely, we choose u1 ∈ Zd
prim such that

u1 = ĝa, a ∈ Zd−1,

(the entries of a are integral since the columns of g form a Z basis for Zd) and

(6.5) 0 = (Agd)
t u1 = gt

dAu1.

Let α ∈ N be the g.c.d. of the entries of Au1. Since u1 ∈ Zd
prim, we may use [Cas97, Chapter

1, Theorem 1.B] to deduce that α | det(A). Let ũ2 ∈ Zd such that

(6.6) ũt
2 (Au1) = α.

Since g1, ...,gd form a Z-basis for Zd, we may write

ũ2 = ĝb+ bdgd, b ∈ Zd−1, bd ∈ Z,
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then by (6.5) and (6.6) we obtain

α = (ĝb)t (Aĝa) = btAga,

which completes the proof. �

7. A revisit to the S-arithemetic theorem of [AES16a]

The purpose of this section is to prove Theorem 7.1 below, which concerns the equidistri-
bution of a sequence of compact orbits in an S-arithemetic space. We note that Theorem 7.1
generalizes Theorem 3.1 of [AES16a] by taking into account more general quadratic forms and
by also taking into account more than one prime. Yet, we note that our proof of Theorem 7.1
strongly relies on the ideas and methods which already appear in the proof of Theorem 3.1 of
[AES16a].

In the following we consider algebraic groups defined over Q, and we follow the notations
and conventions as in [PR94], Chapter 2.

To ease the notation, we introduce

G1
def
= SOQ, G2

def
= ASLd−1, G

def
= G1 ×G2,

where we recall that Q is as in our Standing Assumption. For a finite set of primes S, we

denote by QS
def
=

∏

p∈S Qp, where Qp is the field of p-adic numbers, by ZS
def
=

∏

p∈S Zp, where

Zp is the ring of p-adic integers, and by Z
[
S−1

] def
= Z

[
1
p ; p ∈ S

]

.

We consider

G(R×QS)
def
= G(R)×G(QS),

we define G
(
Z
[
S−1

])
≤ G(R×QS) by

G
(
Z
[
S−1

]) def
=

{
(γ1, γ2, γ1, γ2) | γi ∈ Gi(Z

[
S−1

]
)
}
,

we recall that G(Z
[
S−1

]
) is a lattice in G(R×QS) (see [PR94], Chapter 5), and we define

YS def
= G(R×QS)/G

(
Z
[
S−1

])

(we use the above notation in this section only. Note not to be confused with the notation Y
for the space of oriented grids). Let g ∈ SLd(Z) such that Q(τ(g)) > 0. Using the transitivity
of the G(R)-action on ZQ(τ(g))(R) (see Corollary 3.1), we choose tg =

(
(tg)1 , (tg)2

)
∈ G(R)

such that

(7.1) g = aQ(τ(g)) · tg =
︸︷︷︸

definition of the G action on SLd

θ
(

(tg)
−1
1

)

aQ(τ(g)) (tg)2 ,

where aQ(τ(g)) ∈ ZQ(τ(g))(R) was defined in Definition 3.4.
We define the twisted orbit

(7.2) Og,S
def
= (tg, eS)Lg(R×QS)G(Z

[
S−1

]
),

where Lg ≤ G is the stabilizer of g (see Lemma 3.2).
We observe that Lg(R) is a compact group since by assuming that Q(τ(g)) > 0, it fol-

lows that Q(τ(g)) = TQ(ed) for T > 0 implying that Hτ(g)(R) (which is isomorphic to
Lg(R)) is conjugate to Hed

(R) (the action of SOQ(R) is transitive on HQ(
√
Ted)

(R)), which

is compact by our Standing Assumption. Then by [PR94, Theorem 5.7] we obtain that
Lg(R×QS)G

(
Z
[
S−1

])
⊆ YS is a compact orbit, and we define

(7.3) µg,S
def
= (tg, eS)∗ µLg(R×QS)G(Z[S−1])

where µLg(R×QS)G(Z[S−1]) is the Lg(R×QS)-invariant probability measure supported on Lg(R×
QS)G

(
Z
[
S−1

])
.
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Theorem 7.1. Assume that S is a finite set of odd primes such that Q is isotropic over
Qp for all p ∈ S. Let {gn}∞n=1 ⊆ SLd(Z) such that Q(τ(gn)) > 0 for all n ∈ N, such that
Q(τ(gn)) → ∞, and such that there exists p0 ∈ S for which τ(gn) is (Q, p0) co-isotropic for
all n ∈ N (see Definition 3.6). Then,

µgn,S
weak *−→ µYS

,

where µYS
is the G(R×QS)-invariant probability measure on YS.

7.1. Proof of Theorem 7.1. The key input for the proof of Theorem 7.1 is [GO11, Theorem
4.6], which we state in a simplified form in Theorem 7.2 below.

For the rest of the section, we will denote the simply connected covering of a semi-simple
algebraic group L defined over Q by L̃ and the universal covering map by π : L̃→ L (for more
details see e.g. [PR94, Section 2.1.13]).

Theorem 7.2. Let G be a connected semi-simple algebraic group defined over Q, let S be a
finite set of primes and let Ln, n ∈ N, be a sequence of connected semi-simple Q-subgroups of

G. Consider a sequence {tn}∞n=1 ⊆ G(R×QS) and let νn
def
= (tn)∗ µπ(L̃n(R×QS))G(Z[S−1]), where

µπ(L̃n(R×QS))G(Z[S−1]) is the unique π
(

L̃n (R×QS)
)

-invariant probability measure supported

on π
(

L̃n (R×QS)
)

G
(
Z
[
S−1

])
.

$1: Assume that there exists p ∈ S such that for all n ∈ N and all connected non-
trivial normal Qp-subgroups N P Ln it holds that N(Qp) is non-compact (in terms
of [GO11], S is strongly isotropic).

Let ν be a probability measure on G(R×QS)/G(Z
[
S−1

]
) which is a weak-star limit of {νn}∞n=1.

Then:

(1) There exists a connected Q-algebraic subgroup M ≤ G such that ν = (t0)∗µMG(Z[S−1])

where M is a closed finite index subgroup of M(R × QS), t0 ∈ G(R × QS) and
µMG(Z[S−1]) is the left M -invariant probability measure supported on MG(Z

[
S−1

]
).

(2) There exists a sequence {γn}∞n=1 ⊆ G(Z
[
S−1

]
), such that for all large enough n it

holds that

γ−1
n Lnγn ⊆M.

(3) There exists a sequence {ln}∞n=1 ⊆ π(L̃n(R ×QS)) such that

lim
n→∞

tnlnγn = t0.

In addition,

$2: assume that for all n ∈ N the centralizer of Ln in G is Q-anisotropic.

Then the sequence of measures {νn}∞n=1 is relatively compact in the space of probability mea-
sures on G(R×QS)/G(Z

[
S−1

]
), and the group M above is semi-simple.

For the rest of this section, we fix a finite set of odd primes S and a sequence {gn}∞n=1 ⊆
SLd(Z) which meets the assumptions of Theorem 7.1.

Recall that our goal is to find the limit of the measures µgn,S (defined in (7.3)), but note
that Theorem 7.2 applies for a sequence of measures of the form (xn)∗ µπ(L̃gn(R×QS))G(Z[S−1]).

As we will see in Section 7.1.1, the subgroup π
(

L̃gn(R×QS)
)

≤ Lgn(R × QS) has a fixed

finite index for all n ∈ N . Using this fact, we will partition the orbits Ogn,S (defined in
(7.2)) into finitely many pieces Ogn,S,i (defined in (7.8) below), and we will be able to apply
Theorem 7.2 to the sequence of natural measures µgn,S,i (see (7.10)) supported on Ogn,S,i. By
finding the limiting measure of the sequence of µgn,S,i for each choice of i, we will obtain limit
of the measures µgn,S (see Section 7.1.2).
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7.1.1. The universal covering of Lg and of G1. In the following we will recall some facts
concerning the Spin group which is the universal covering of an orthogonal group of a quadratic

form, and then we will be able to describe the subgroup π
(

L̃gn(R×QS)
)

in a useful way.

Assume that m ≥ 3 and let ϕ be a non-degenerate rational quadratic form in m variables.
We denote by SOϕ its special orthogonal group, and for a field F ⊇ Q we consider the spinor
norm φ : SOϕ(F)→ F×/(F×)2 (see e.g. [Cas78, Chapter 10] for more details). We recall that
the spin group Spinϕ is the simply connected covering of SOϕ (see [Cas78, Chapter 10], or
[PR94, Section 2.3.2] for more details) and we note the following exact sequences (see [EV08,
Lemma 1]). For an odd prime p it holds

(7.4) Spinϕ(Qp)
π→ SOϕ(Qp)

φ→ Q×
p /

(
Q×

p

)2 → 0,

for a positive definite ϕ we have

(7.5) Spinϕ(R)
π→ SOϕ(R)

φ→ 0,

and for an indefinite ϕ it holds

(7.6) Spinϕ(R)
π→ SOϕ(R)

φ→ {±1} → 0.

We also note that π(Spinϕ(R)) equals to the connected component of SOϕ(R).

Returning to our case, we let τ(gn)
⊥(Q) be the hyperplane orthogonal to τ(gn) with respect

to the form Q. We observe that SpinQ|
τ(gn)⊥(Q)

(F) naturally identifies with H̃τ(gn)(F) (see

[EV08, Section 2.4, footnote 6]). Since we assume that Hτ(gn)(R) is compact, it follows that
Q |τ(gn)⊥(Q) is positive definite. Therefore we may conclude by (7.5) that

(7.7) π
(

L̃gn(R×QS)
)

= Lgn(R)× π
(

L̃gn(QS)
)

.

For i ∈ ∏

p∈S Q
×
p /

(
Q×

p

)2
we pick h

(i)
gn ∈ Hτ(gn)(QS) such that φ(h

(i)
gn ) = i. By (7.4) and (7.7)

we deduce that
(

e1,∞, e2,∞, h
(i)
gn , g

−1
n θ

(

h
(i)
gn

)

gn

)

, i ∈ ∏

p∈S Q×
p /

(
Q×

p

)2
is a complete set of

representatives of π
(

L̃gn(R×QS)
)

cosets in Lgn(R ×QS). We define

(7.8) Ogn,S,i
def
= l(i)gnπ

(

L̃gn(R×QS)
)

G(Z
[
S−1

]
),

where

(7.9) l(i)gn
def
=

(

tgn , h
(i)
gn , g

−1
n θ

(

h(i)gn

)

gn

)

,

(to recall tg, see (7.1)) and we let

(7.10) µgn,S,i
def
=

(

l(i)gn

)

∗
µπ(L̃gn(R×QS))G(Z[S−1]),

where µπ(L̃gn(R×QS))G(Z[S−1]) is the left π
(

L̃gn(R×QS)
)

-invariant probability measure on the

orbit π
(

L̃gn(R×QS)
)

G(Z
[
S−1

]
) .

7.1.2. A reduction - The limit of µgn,S,i implies Theorem 7.1. We recall the following lemma
from [AES16a].

Lemma 7.3. Let N E K ≤ G be locally compact groups such that N is of index k ∈ N in K.
Assume that Γ ≤ G is a lattice, let KxΓ be a finite volume orbit and denote its K-invariant
probability measure by µKxΓ. Then

µKxΓ =
1

k

k∑

i=1

µkiNxΓ,

where k1, ..., kN is a complete list of representatives for N cosets in K and µkiNxΓ is the
N -invariant probability measure on kiNxΓ = NkixΓ.
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An immediate corollary from Lemma 7.3 is that

(7.11) µgn,S =
1

kS

∑

i

µgn,S,i,

where kS =
∣
∣
∣
∏

p∈S Q×
p /

(
Q×

p

)2
∣
∣
∣.

Next, for each i ∈ ∏

p∈S Q×
p /

(
Q×

p

)2
we choose ρ

(i)
S ∈ SOQ(QS) such that φ(ρ

(i)
S ) = i, and

we denote

YS,i def
= (e1,∞, e2,∞, ρ

(i)
S , e2,S)π

(

G̃(R×QS)
)

G(Z
[
S−1

]
).

We claim that

(7.12) π
(

G̃(R×QS)
)

G(Z
[
S−1

]
) =

(

G(R)× π(G̃(QS))
)

G(Z
[
S−1

]
).

Indeed, recall that G2 is simply connected, so that

(7.13) π
(

G̃(R ×QS)
)

G(Z
[
S−1

]
) =

(

π(G̃1(R))×G2(R)× π(G̃(QS))
)

G(Z
[
S−1

]
),

hence to prove (7.12) it is sufficient by (7.13) to show that

π(G̃1(R))G1(Z
[
S−1

]
) = G1(R)G1(Z

[
S−1

]
).

If Q is positive definite then we deduce by (7.5) that π(G̃1(R)) = G1(R). If on the other-hand

Q is indefinite, we note that there exists γ ∈ G1(Z) with φ(γ) = −R×/ (R×)2 (there are inte-
gral vectors v+ and v− such that Q(v±) ∈ ±R×. The orthogonal transformation γ obtained

by the composition of the associated reflections γ = τv+ ◦τv− has φ(γ) = −R×/ (R×)2), which
shows that

π(G̃1(R))G1(Z
[
S−1

]
) =

(

π(G̃1(R))
⋃

π(G̃1(R))γ
)

G1(Z
[
S−1

]
)

=
︸︷︷︸

(7.6)

G1(R)G1(Z
[
S−1

]
).

We let

µYS,i

def
= (e1,∞, e2,∞, ρ

(i)
S , e2,S)∗µG(R)×π(G̃(QS))G(Z[S−1]),

where µG(R)×π(G̃(QS))G(Z[S−1]) is the G(R)×π(G̃(QS)) invariant probability measure supported

on π
(

G̃(R×QS)
)

G(Z
[
S−1

]
).

Running over i ∈ ∏

p∈S Q
×
p /

(
Q×

p

)2
we obtain by (7.4) that (e1,∞, e2,∞, ρ

(i)
S , e2,S) is a com-

plete list of representatives of G(R) × π(G̃(QS)) cosets in G(R × QS), and we conclude by
Lemma 7.3 that

(7.14) µYS
=

1

kS

∑

i

µYS,i
.

We note that for each i ∈ ∏

p∈S Q
×
p /

(
Q×

p

)2
we have Ogn,S,i ⊆ YS,i, and our goal in the

following will be to prove that

(7.15) µgn,S,i → YS,i,

which by (7.11) and (7.14) will imply Theorem 7.1.

For the rest of the proof we fix i ∈ ∏

p∈S Q
×
p /

(
Q×

p

)2
. We now proceed to prove (7.15),

which will be done in two steps.
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7.1.3. First step - the limit of µ
gn,S,i

. We cannot apply Theorem 7.2 as is because YS is not

a quotient of a semi-simple group. Therefore in our first step below we project to a smaller
space in which we can apply Theorem 7.2.

Denote G2
def
= SLd−1, and define G

def
= G1 ×G2. Consider the natural map

πG2
: G2 → G2,

given by
(

m ∗
0 1

)

7→ m,

and let πG : G→ G be defined by πG(ρ, η)
def
= (ρ, πG2

(η)), ∀ (ρ, η) ∈ G.
We define

Lg
def
= πG(Lg) =

{(
h, πG2

(
g−1θ (h) g

))
| h ∈ Hτ(g)

}
.

The following lemma has essentially the same content as [AES16a, Lemma 3.4 ] (the proof
is also essentially the same).

Lemma 7.4. Let g ∈ SLd(Z) such that Q(τ(g)) > 0. Then:

(1) Hτ(g)(R) (resp. πG2
(g−1θ(Hτ(g)(R))g)) is maximal among connected algebraic sub-

groups of G1(R) (resp. G2(R)).
(2) Assumption $2 of Theorem 7.2 holds for Lg.

(3) Let p be an odd prime, and assume that there exists u ∈ Qp ⊗ τ(g)⊥(Q) such that

Q(u) = 0. Then assumption $1 of Theorem 7.2 is valid for Lg(Qp) and for Lg(Qp)
def
=

{(h, πG2
(g−1θ(h)g)) | h ∈Hτ(g)}.

Proof. To obtain (1) we recall by [Dyn52] that the stabilizer of a non-isotropic vector in a
special orthogonal group of a non-degenerate quadratic form is a maximal connected Lie sub-
group of G1, hence it follows thatHτ(g)(R) is maximal among connected algebraic subgroups of

G1(R). Next, by Lemma 6.3, πG2
(g−1θ(Hτ(g)(R))g)) is the stabilizer of a non-degenerate qua-

dratic form in d−1 variables, and sinceHτ(g)(R) is compact, we have πG2
(g−1θ(Hτ(g)(R))g)) ∼=

SOd−1(R), which is a well known maximal Lie subgroup of G2(R). Next, to prove (2), it is
sufficient to prove that the centralizer of Hτ(g)(R) (resp. πG2

(g−1θ(Hτ(g)(R))g)) in G1(R)
(resp. G2(R)) is finite. In fact, if not, we would obtain a proper connected algebraic subgroup
containing Hτ(g)(R) (resp. πG2

(g−1θ(Hτ(g)(R))g), which is a contradiction to (1). Finally, if

we assume that there exists u ∈ Qp ⊗ τ(g)⊥(Q) for an odd prime p such that Q(u) = 0, then
by the proof of [AES16a, Lemma 3.4] we get that assumption $1 of Theorem 7.2 is valid for
Hτ(g)(Qp). Since Hτ(g)(Qp) ∼= Lg(Qp) ∼= Lg(Qp), assumption $1 of Theorem 7.2 is valid for
Lg(Qp) and Lg(Qp). �

Consider ϑG : G(R×QS)/G(Z
[
S−1

]
)→ G(R×QS)/G(Z

[
S−1

]
) be the map induced by πG,

and note that ϑG has compact fibers. We define XS,i
def
= ϑG(YS,i), and Og,S,i

def
= ϑG (Og,S,i),

which are equivalently described by

XS,i
def
= π

(

G̃(R×QS)
)

(e1,∞, e2,∞, ρ
(i)
S , e2,S)G

(
Z
[
S−1

])
,

Og,S,i
def
= l(i)gnπ

(

L̃gn(R×QS)
)

G(Z
[
S−1

]
),

where l
(i)
gn

def
= πG(l

(i)
gn ) (see (7.9) for the definition of l

(i)
gn ).

Let µgn,S,i
def
=

(
ϑG

)

∗ µgn,S,i, and we note that

µgn,S,i = (l(i)gn)∗µπ(L̃gn
(R×QS))G(Z[S−1]),

where µπ(L̃gn
(R×QS))G(Z[S−1]) is the π

(

L̃gn(R×QS)
)

-invariant probability measure supported

on π
(

L̃gn(R×QS)
)

G(Z
[
S−1

]
).
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Let ν be a weak star limit of a subsequence µ
gn,S,i

, n ∈ C1 ⊆ N. Then by Lemma 7.4,(2) and

Theorem 7.2, ν is a probability measure and there exists a semi-simple connected Q-algebraic
subgroup M ≤ G such that

(7.16) ν = (t0)∗ µMG(Z[S−1]),

where M is a closed finite index subgroup of M(R×QS) and t0 ∈ G(R×QS).
For the rest of this section, our goal will be to prove that M = G, and as we now show,

this will prove that

(7.17) ν = µXS,i

def
=

(
ϑG

)

∗ µYS,i
,

which is the unique π
(

G̃(R ×QS)
)

-invariant probability measure on XS,i.

So assume that M ≤ G is of finite index. We now show that

(7.18) π(G̃(R×QS)) ⊆M.

Since π(G̃(R))× {eS} is the connected component of G(R)× {eS}, we get

(7.19) π(G̃(R))× {eS} ⊆M ∩ (G(R)× {eS}) .
Let G+(QS) the group generated by unipotent elements of G(QS). By Corollary 6.7 of [BT73],
any subgroup of finite index contains the group G+(QS). Since M ∩ ({e∞} ×G(QS)) ≤
{e∞} ×G(QS) is of finite index, we deduce

(7.20) {e∞} ×G+(QS) ⊆M ∩ ({e∞} ×G(QS)) .

Since we assume that Q is isotropic for all p ∈ S, by Lemma 1 of [EV08] we have that

G+
1 (QS) = π(G̃1(QS)), and it is well known that G+

2 (QS) = G2(QS) = π
(

G̃2(QS)
)

. Thus we

conclude that

(7.21) G+(QS) = π(G̃(QS)),

and by (7.19), (7.20), and (7.21) we deduce that (7.18) holds. Since for all n, the measure
µgn,S,i is supported on Og,S,i ⊆ XS,i, we deduce that t0MG(Z

[
S−1

]
) ⊆ XS,i, and by (7.18) we

conclude that t0MG(Z
[
S−1

]
) ⊇ XS,i, which shows the implication M = G =⇒ (7.17).

Now assume for contradiction that M � G. Let

π1 : G→ G1, π2 : G→ G2,

be the natural maps. Since M is semi-simple and since G1 and G2 have no isomorphic simple
Lie factors (due to ambient dimensions, accidental isomorphisms play no role), it follows that
π1 (M) � G1 or π2 (M) � G2.

By Theorem 7.2, we let {γgn}∞n=1 ⊆ G(Z
[
S−1

]
) and a further subsequence C2 ⊆ C1 such

that |C1 r C2| <∞, which satisfies

(7.22) γ−1
gn Lgnγgn ⊆M, ∀n ∈ C2,

and we let {ln}∞n=1 ⊆ π(L̃gn(R ×QS)) such that

(7.23) (l(i)gn)lgnγgn → t0.

In case π1 (M) � G1. Let δgn
def
= π1(γgn) ∈ G1(Z

[
S−1

]
). Since π1 (M) is a strict, connected,

semi-simple Q subgroup of G1, we obtain that π1(M(R)) � G1(R), and by maximality of the
subgroups Hτ(gn)(R), (see Lemma 7.4,(1)) we obtain that for all i, j ∈ C2

δ−1
gi Hτ(gi)(R)δgi = δ−1

gj Hτ(gj)(R)δgj = π1(M(R)),

which implies that

(7.24) Hδ−1
gi

τ(gi)
(R) = Hδ−1

gj
τ(gj)

(R).

We fix i ∈ C2, and by (7.24) we may deduce that for each j ∈ C2 there exists 0 6= αj ∈ Z
[
S−1

]

such that

(7.25) δ−1
gi τ(gi) = αjδ

−1
gj τ(gj).
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We will now show that {αj}j∈C2
is bounded and bounded away from 0, which will be a

contradiction since Q(τ(gj))→∞, since i is fixed, and since by (7.25) we have

Q (τ(gi)) = Q
(
δ−1
gi τ(gi)

)
= α2

jQ (τ(gj)) .

By recalling that {τ(gj)}j∈C2
is a sequence of primitive integral vectors, we deduce that

{

δ−1
gj τ(gj)

}

j∈C2

are primitive vectors in Z
[
S−1

]d
considered as a Z

[
S−1

]
module. This

implies that αj ∈ Z
[
S−1

]×
where

Z
[
S−1

]×
=







∏

p∈S
pnp | np ∈ Z






.

By (7.23) we obtain a sequence
{
hgj

}

j∈C2
with hgj ∈ π

(

H̃τ(gj)(QS)
)

such that

h(i)gj hgjδgj → π1,S(t0),

where π1,S : G(R×QS)→ G1(QS) is the natural map and t0 is given in (7.16). By multiplying

both sides of (7.25) with h
(i)
gj hgjδgj , we obtain that

(7.26) lim
C2∋j→∞

αjτ(gj) = π1,S(t0)δ
−1
gi τ(gi).

Since τ(gj) is a primitive integral vector, ‖τ(gj)‖p (the maximum of the p-adic valuations

of the entries) is constant in j for all p ∈ S. Thus, by (7.26), the p-adic valuation of αj is

bounded, and since αj ∈ Z
[
S−1

]×
, we conclude that {αj}j∈C2

is bounded and bounded away

from 0.

In case π2 (M) � G2. We will obtain a contradiction in a similar way as we had in the case that

π1 (M) � G2. We denote ηgn
def
= π2(γgn) ∈ G2(Z

[
S−1

]
). Since π2 (M) is a strict, connected

semi-simple Q subgroup of G2, we obtain by maximality (see Lemma 7.4,(1)) and by recalling
(7.22), that for all i, j ∈ C2

(7.27) η−1
gi πG2

(
g−1
i θ

(
Hτ(gi) (R)

)
g
i

)
ηgi = η−1

gj πG2

(

g−1
j θ

(

Hτ(gj)(R)
)

gj

)

ηgj .

By Lemma 6.3, we find that (7.27) can be rewritten by

SO
ϕ
ηgj
gj

(R) = SO
ϕ
ηgi
gi

(R),

where the quadratic form ϕγ
g is a given by (6.3). By recalling Lemma 3.3 of [AES16a], we find

that there exists αj ∈ Q× such that

(7.28) αjϕ
ηgj
gj = ϕ

ηgi
gi ,

where we fix i and let j ∈ C2 vary. Our plan now is to show that {αj}j∈C2 is bounded and
bounded away from 0. This will be a contradiction since we assume that Q(τ(gj))→∞ and

since by Lemma 6.2 we have that disc(ϕ
ηgj
gj ) = 1

disc(Q)Q(τ(gj)), where disc(ϕ) denotes the

determinant of the companion matrix of a quadratic form ϕ.
We recall that (see (6.4))

ϕη
g(u) = ut

(
ηtĝtM−1ĝη

)
u,

where ĝ is the matrix formed by the first d− 1 columns of g and where M is the companion
matrix of Q. Therefore, by (7.28) we deduce

αj(η
t
j ĝj

tM−1ĝjηj) = ηti ĝi
tM−1ĝiηi,

which in turn implies that

(7.29) αj(η
t
j ĝj

tadj(M)ĝjηj) = ηti ĝi
tadj(M)ĝiηi,

where adj(M) is the matrix adjugate of M , which has integral entries as M is integral. We
denote

M̄ϕη
g

def
= ηtĝtadj(M)ĝη,
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and for l ∈ C2 we let ql ∈ N be defined by

ql
def
= g.c.d(ĝl

tadj(M)ĝl).

We rewrite (7.29) to

(7.30)
αjqj
qi

(
1

qj
M̄

ϕ
ηj
gj

)

=
1

qi
M̄ϕ

ηi
gi
,

and by noting that 1
ql
ĝl

tadj(M)ĝl has co-primes entries, we may deduce that
αjqj
qi
∈
(
Z
[
S−1

])×
.

By (7.23) there exists a sequence
{
kgj

}

j∈C2
with kgj ∈ SOϕgj

(QS) such that

(7.31) k(i)gj kgjηgj → π2,S (t0) ,

where k
(i)
gj

def
= πG2

(

g−1
j θ

(

h
(i)
gj

)

gj

)

∈ SOϕgj
(QS), π2,S : G(R × QS) → G2(QS) is the natural

map and t0 is given in (7.16). We conclude by denoting M̄ϕgj
= M̄ϕe

gj
, and by noting that

M̄ϕgj
is a multiple of the companion matrix of the quadratic form ϕgj , that

((

k(i)gj kgjηgj

)t
)−1

M̄
ϕ
ηgj
gj

(

k(i)gj kgjηgj

)−1
=

((

k(i)gj kgj

)−1
)t

M̄ϕgj

(

k(i)gj kgj

)−1
(7.32)

=M̄ϕgj
.

To simplify notation, we denote the fixed matrix 1
qi
M̄

ϕ
ηgi
gi

by B and we deduce by (7.30) and

(7.32) that

(7.33)
αjqj
qi

(
1

qj
M̄gj

)

=

((

k(i)gj kgjηgj

)t
)−1

B
((

k(i)gj kgjηgj

))−1
.

We conclude by (7.31) and (7.33) that the p-adic norm of
αjqj
qi

(
1
qj
M̄gj

)

is bounded for all

p ∈ S, and since 1
qj
M̄gj is a primitive integral matrix, the p-adic norm of

αjqj
qi

(
1
qj
M̄gj

)

equals

to the p-adic valuation
∣
∣
∣
αjqj
qi

∣
∣
∣
p
for all p ∈ S. Since

{
αjqj
qi

}

j∈C2

⊆
(
Z
[
S−1

])×
, we conclude

that
{

αjqj
qi

}

j∈C2

is bounded in absolute value from above and away from 0.

Finally, using Lemma 6.4 we deduce that qj is uniformly bounded in j ∈ C2 from above
and below, which implies in turn that αj is bounded in j ∈ C2 from above and away from 0.

7.1.4. Second step - Upgrading to G. In a summary of the first step, it holds that

(7.34)
(
ϑG

)

∗ µgn,S,i = µgn,S,i,

and it holds that µgn,S,i → µXS,i
, where

(7.35)
(
ϑG

)

∗ µYS,i
= µXS,i

.

Let ν be a weak-star limit of a subsequence {µgn,S,i}n∈C1
, for C1 ⊆ N. Using (7.34) and

(7.35), we deduce that ν is a probability measure.
In order to prove that ν = µYS,i

, we will apply Theorem 7.2 in the ambient space

G′(R ×QS)/G
′(Z

[
S−1

]
),

where G′ def= G1 × SLd.
By Theorem 7.2 and Lemma 7.4,(3) there exists a connected Q-algebraic subgroup M ≤ G′

such that

(7.36) ν = (t0) ∗µMG′(Z[S−1]),

where M ≤M(R×QS) is a closed finite index subgroup and t0 ∈ G′(R ×QS).



LINNIK’S PROBLEM IN FIBER BUNDLES OVER QUADRATIC HOMOGENEOUS VARIETIES 39

As explained in [AES16a] (see below equation (4.5) in [AES16a]), it follows that M ≤ G,
that t0 ∈ G(R × QS), that there exists a sequence {γgn}n∈C2

⊆ G(Z
[
S−1

]
), where C2 ⊆ C1,

|C1 rC2| <∞ such that

(7.37) γ−1
gn Lgnγgn ⊆M,

and that either M = G or M = G1 × SLt

d−1 where

SLt

d−1
def
= ctι (SLd−1) c

−1
t

, ct
def
=

(
Id−1 t
0 1

)

, t ∈ Qd−1,

and ι : SLd−1 → ASLd−1 is the natural embedding which maps m 7→
(

m 0
0 1

)

. As in

Section 7.1.3 (by the same argument), the proof will be done once we show that M = G.
Assume by contradiction that M = G1 × SLt

d−1. We let π2 : G → G2 be the coordinate

map, and we denote ηg
def
= π2(γg). By definition of SLt

d−1 and by (7.37) we obtain ∀n ∈ C2

that

(7.38) c−1
t

η−1
gn g−1

n θ
(
Hτ(gn)

)
gnηgnct ⊆ ι (SLd−1) .

We fix N ∈ N such that Nt ∈ Zd−1
prim . By using that ι (SLd−1) fixes ed and by using (7.38) we

conclude that

(7.39) ṽn
def
= (gnηgnct) (Ned) ,

is fixed by the left linear action of θ
(
Hτ(gn)

)
. By Lemma 3.3, the group θ(Hτ(gn)) is the

stabilizer subgroup of the non-isotropic vector Mτ(gn) under the left linear action of SOQ∗ .
The space of fixed vectors for such groups is one-dimensional, hence there exists αgn ∈ Q such
that

(7.40) αgn (Mτ(gn)) = ṽn.

Again as above, we will show that {αgn}n∈C2
is bounded and bounded away from 0.

Before continuing, we will now explain why the boundedness of {αgn}n∈C2
yields a contra-

diction. By definition of ṽn in (7.39), we may express ṽn by

ṽn =

d−1∑

i=1

ai (gnei) +N (gned) ,

where a1, ..., ad−1 ∈ Q. We now observe that

αgnQ(τ(gn)) =αgnτ(gn)
tMτ(gn) =

︸︷︷︸

(7.40)

τ(gn)
tṽn

=

d−1∑

i=1

ai 〈τ(gn), gnei〉
︸ ︷︷ ︸

=0

+N 〈τ(gn), gned〉
︸ ︷︷ ︸

=1

=N,

and since Q(τ(gn))→∞ and N is fixed, this will be a contradiction.
We now proceed to show the boundedness of {αgn}n∈C2

. We denote for n ∈ N by qgn the

g.c.d of Mτ(gn), and we rewrite (7.40) by

(αgnqgn)

(
1

qgn
Mτ(gn)

)

= gnηgn(Ncted)

Using that 1
qgn

Mτ(gn) and Ncted are primitive integral vectors, we deduce by the preceding

equality that αgnqgn ∈ Z
[
S−1

]×
. By Theorem 7.2,(3) there exists a sequence {hgn}n∈C2

with

hgn ∈ π
(

H̃τ(g)(QS)
)

such that

h(i)gnhgnδgn → π1,S (t0) ,
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where δgn
def
= π1 (γgn), π1,S : G(R × QS) → G1(QS) is the natural map, t0 is given in (7.36),

and

(7.41) g−1
n θ

(

h(i)gnhgn

)

gnηgn → π2,S (t0) ,

where ηgn
def
= π2 (γgn), π2,S : G(R × QS) → G2(QS) is the natural map. We obtain by (7.40)

and by recalling that θ(h
(i)
gnhgn) stabilizes Mτ(gn) (see Lemma 3.3), that

(7.42)

αgnMτ(gn) =θ(h(i)gnhgn)ṽn

=
︸︷︷︸

recalling (7.39)

gn

(

g−1
n θ(h(i)gnhgn)gnηgn

)

ct (Ned) .

Since gn ∈ SLd(Z), we get for any p ∈ S that
∥
∥
∥gn

(

g−1
n θ(h(i)gnhgn)pgnηgn

)

ct (Ned)
∥
∥
∥
p
=

∥
∥
∥

(

g−1
n θ(h(i)gnhgn)pgnηgn

)

ct (Ned)
∥
∥
∥
p
,

where ‖·‖p is the maximum of p-adic valuations of the entries, and θ(h
(i)
gnhgn)p is the p’th

component of θ(h
(i)
gnhgn) ∈ G(QS). By (7.41) and (7.42) we deduce for all p ∈ S that the

p-adic valuation of ‖αgnMτ(gn)‖p is bounded. Since 1
qgn

Mτ(gn) is a primitive integral vector,

we get that
∥
∥
∥
∥
αgnqgn

(
1

qgn
Mτ(gn)

)∥
∥
∥
∥
p

= |αgnqgn |p ,

which implies in turn that |αgnqgn |p is bounded in n ∈ N, for all p ∈ S. By recalling that

αgnqgn ∈ (Z
[
S−1

]
)×, we conclude that {αgnqgn}n∈C2

is bounded and bounded away from 0.

Finally, since MZd ⊆ Zd and since Mτ(gn) ∈ MZd is a primitive vector in the lattice MZd,
we get by [Cas97], Chapter 1, Theorem 1,B. that qgn ≤ det(M), which completes the proof.

8. Equivalence classes of integral points and their relation to the

S-arithmetic orbits

In this section we define for each T > 0 an equivalence relation on ZT (Z) for which there are
finitely many equivalence classes Eg1

⊔
...
⊔

EgN = ZT (Z), see Section 8.1. The motivation for
this equivalence relation is a connection established in Section 8.3 between each equivalence
class Eg and the orbit Og,S (the main result is Corollary 8.4).

Outline for the rest of the paper. The current section may be viewed as a prelude to Section
9 in which we use the aforementioned connection (Corollary 8.4) and Theorem 7.1 to prove
Theorem 9.1, which gives the limiting distribution of the normalized counting measures on

the subsets
{

(πZQ(τ(g))
(x), ϑq(x)) | x ∈ Eg

}

⊆ ZQ(ed)(R)×Za(Z/(q)), as Q(τ(g))→∞.

In Section 10 we achieve our main goal of proving Theorems 3.7 - 3.8 concerning the limit
of the normalized counting measures supported on {(πZT

(x), ϑq(x)) | x ∈ ZT (Z)}, T ∈ N,
by rewriting the counting measures on {(πZT

(x), ϑq(x)) | x ∈ ZT (Z)} as an average of the
counting measures on {(πZT

(x), ϑq(x)) | x ∈ Eg} and by employing Theorem 8.1.

8.1. The equivalence relation. A natural way to “generate” integral points on ZT (Z) from
a given g ∈ ZT (Z) is to view g as a point in ZT (QS) and to consider the intersection of orbits

(8.1) Eg
def
= g ·G(Z

[
S−1

]
)
⋂

g ·G(ZS)

(to recall the definition of the right action of G on ZT see (3.6)). We define our equivalence
relation on ZT (Z) by g ∼ g′ ⇐⇒ Eg = Eg′ . Clearly, the equivalence class of each g ∈ ZT (Z)
is given by Eg.

Lemma 8.1. For each T > 0, it holds that each equivalence class Eg is composed of finitely
many G(Z) orbits, and it holds that there are finitely many equivalence classes.
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Proof. Note that each equivalence class is G(Z) invariant, hence each equivalence class is
composed of G(Z) orbits. There are finitely many G(Z) orbits in ZT (Z) by Corollary 3.1, (3),
which proves our claim. �

8.2. A decomposition of the orbits Og,S. For the rest of this section we fix a finite set of
primes S, and we take g ∈ SLd(Z) such that Q(τ(g)) > 0.

The goal of this section is to deduce the decomposition (8.8), which is a technical fact that
we will need in Section 8.3 to relate the orbit Og,S with Eg.

We recall the definition of Og,S and we rewrite it as follows

Og,S =(tg, eS)Lg(R×QS)G(Z
[
S−1

]
)(8.2)

=
(
tgLg(R)t

−1
g × Lg(QS)

)
(tg, eS)G(Z

[
S−1

]
),

where tg is defined in (7.1). By Lemma 3.5 we deduce that tgLg(R)t
−1
g = H (where H =

LId(R)) and by (8.2) we deduce that

(8.3) Og,S = H × Lg(QS)(tg, eS)G(Z
[
S−1

]
).

We have that Lg is a Q-group, hence we obtain

(8.4) Lg(QS) =
⊔

h∈M
Lg(ZS)hLg(Z

[
S−1

]
),

where M = M(g) is a finite set of representatives of the double coset space (see [PR94,
Chapter 5]). Using (8.3) and (8.4) we obtain the decomposition

(8.5) Og,S =
⊔

h∈M
Og,S,h,

where

(8.6) Og,S,h
def
= (H × Lg(ZS)) (tg, h)G

(
Z
[
S−1

])
.

8.2.1. Intersection with the principle genus. We will be actually interested in the intersection
Og,S ∩ US , where US ⊆ G(R × QS)/G(Z

[
S−1

]
) is the clopen orbit of the clopen subgroup

G(R× ZS) passing through the identity coset G(Z
[
S−1

]
), namely

(8.7) US def
= G(R× ZS)G(Z

[
S−1

]
).

Since G(Z) ≤ G(R× ZS), where G(Z) ⊆ G(R× ZS) is diagonally embedded, is the stabilizer
subgroup stabilizing G(Z

[
S−1

]
) by the natural left action, we conclude that US is naturally

identified with G(R × ZS)/G(Z), where each element (g∞, gS)G(Z
[
S−1

]
) ∈ US viewed as

a point in G(R × QS)/G(Z
[
S−1

]
) identifies with

(
g∞γ−1, gSγ

−1
)
G(Z) ∈ G(R × ZS)/G(Z),

where γ ∈ G(Z
[
S−1

]
) is an arbitrary element which gives that gSγ

−1 ∈ G(ZS).
We observe that Og,S,h ∩ US 6= ∅ if and only if Og,S,h ⊆ US, which shows that

(8.8) Og,S ∩ US =
⊔

h∈M0

Og,S,h,

where M0 = M0(g) ⊆M(g) is a finite subset.
For all h ∈ M0, since Og,S,h ⊆ US , we obtain that h ∈ Lg(QS) ∩ G(R × ZS)G(Z

[
S−1

]
).

Namely there are c ∈ G(ZS) and γ ∈ G(Z
[
S−1

]
) such that

(8.9) h = cγ−1.

Then, for h ∈M0, we get that the orbit Og,S,h (defined in (8.13)) is identified by

(8.10) Og,S,h = (H × Lg(ZS))(tgγ, c)G(Z).



42 MICHAEL BERSUDSKY AND URI SHAPIRA

8.3. A duality principle relating Eg with Og,S ∩ US. The main idea that stands behind
the relation of Eg with Og,S can be roughly described as a “duality” principle by which
we transfer a left (H × Lg(ZS))-orbit (8.10) in G(R × ZS)/G(Z) to a right G(Z)-orbit in
(H × Lg(ZS))\G(R × ZS) via the following diagram of natural maps

(8.11) G(R× ZS)

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

uu❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

(H × Lg(ZS))\G(R × ZS) G(R× ZS)/G(Z)

Namely, by (8.11), we transfer an orbit (8.10) to a G(Z)-orbit Qg,S,h ⊆ (H ×Lg(ZS))\G(R×
ZS) passing through the base point (H ×Lg(ZS))(tgγ, c). By using the right action of G(R×
ZS) on ZQ(ed)(R)×ZQ(τ(g))(ZS), and by recalling that H ×Lg(ZS) is the stabilizer of (Id, g),
we may identify Qg,S,h with (where we abuse notations)

(8.12) Qg,S,h = (Id · (tgγ), g · c) ·G(Z) ⊆ ZQ(ed)(R)×ZQ(τ(g))(ZS).

To relax notations, we denote the homeomorphism πZT
: ZT (R) → ZQ(ed)(R) (defined in

(3.16)) by πZ . The lemma below gives the key correspondence between Og,S ∩ US and Eg.

Lemma 8.2. It holds that
⊔

h∈M0
Qg,S,h = {(πZ(x), x) | x ∈ Eg}, and that |M0| = |Eg/G(Z)|.

Proof. Let us first show that for each h ∈M0 it holds that Qg,S,h ⊆ {(πZ(x), x) | x ∈ Eg}. By
writing h = cγ−1 for c ∈ G(ZS) and γ ∈ G(Z

[
S−1

]
) and by noting that g = g · h = g · (cγ−1),

we obtain that g · γ = g · c. Then, g′ defined by

g′
def
= g · γ = g · c.

is in Eg. By definition of tg (see (7.1)) we have

g′ = g · γ = aQ(τ(g)) · (tgγ),

and by using the equivariance of the map πZ , we get

πZ(g
′) = πZ(g · γ) = πZ(aQ(τ(g)) · (tgγ)) =

︸︷︷︸

recalling (3.16)

Id · (tgγ).

We may now conclude that

(πZ(g
′), g′) ·G(Z) = Qg,S,h,

and by using equivariance of πZ , we deduce that

(πZ(g
′), g′) ·G(Z) =

{
(πZ(g

′ · γ), g′ · γ) | γ ∈ G(Z)
}
⊆ {(πZ(x), x) | x ∈ Eg}.

We will now prove the inclusion in the opposite direction. We let g′ ∈ Eg and we note that,
according to the definition of Eg (see (8.1)), there are c ∈ G(ZS) and γ ∈ G(Z

[
S−1

]
) such

that

g′ = g · γ = g · c.

We can deduce from the preceding equality that h
def
= cγ−1 is an element of Lg(QS) ∩ G(R×

ZS)G(Z
[
S−1

]
), and we conclude by the preceding paragraph that (πZ(g′), g′) ∈ Qg,S,h.

Finally, since Og,S,h, h ∈M0, are disjoint (H×Lg(ZS))-orbits in G(R×ZS)/G(Z), it follows
that Qg,S,h, h ∈ M0, are disjoint G(Z)-orbits in (H × Lg(ZS))\G(R × ZS). As {(πZ(x), x) |
x ∈ Eg}/G(Z) is in bijection with Eg/G(Z), it follows that M0 = |Eg/G(Z)|. �

We are actually interested in the set {(πZ(x), ϑq(x)) | x ∈ Eg}, and in order to relate it to
the orbits Og,S,h we will consider the projection modulo q in the following subsection.



LINNIK’S PROBLEM IN FIBER BUNDLES OVER QUADRATIC HOMOGENEOUS VARIETIES 43

8.3.1. Taking the residue modulo q. We note that the natural ring homomorphism

ϑpk : Zp → Zp/p
kZp
∼= Z/(pk),

induces a homomorphism ϑpk : G(Zp) → G(Z/(pk)). Let q ∈ N and assume that S includes
the primes Sq appearing in the prime decomposition of q. The Chinese remainder theorem
yields the identification

∏

pi∈S′,

G(Z/pkii Z) ∼= G(Z/(q)),

and so we obtain the map ϑq : G(ZS) → G(Z/(q)) in the obvious way. We also note that
ϑq(Lg(ZS)) ⊆ Lϑq(g)(Z/(q)).

We consider the map (id∞ × ϑq) : G(R× ZS)→ G(R× Z/(q)) given by

(id∞ × ϑq) (g∞, gS)
def
= (g∞, ϑq(gS)),

and we upgrade Diagram (8.11) to the following diagram

G(R× ZS)

))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐

(H × Lg(ZS))\G(R × ZS)

(id∞×ϑq)

��

G(R× ZS)/G(Z)

(id∞×ϑq)

��
(H × Lϑq(g)(Z/(q)))\G(R × Z/(q)) G(R× Z/(q))/G(q)(Z)

where

G(q)(Z)
def
= {(u, ϑq (u)) | u ∈ G(Z)} ≤ G (R× Z/(q)) .

We let

(8.13)
Og,q,h

def
= (id∞ × ϑq) ◦Og,S,h

=(H × ϑq(Lg(ZS)))(tgγ, ϑq(c))G(q)(Z)

and we let

(8.14) Qg,q,h
def
= (id∞ × ϑq) (Qg,S,h)

where Qg,q,h is the right G(q)(Z)-orbit passing through (H × Lϑq(g)(Z/(q)))(tgγ, ϑq(c)).

Lemma 8.3. Let h, h′ ∈M0 be two different elements and let γ, γ′ ∈ G(Z
[
S−1

]
) which appear

in a decomposition (8.9) of h, h′ correspondingly. Then HtgγG(Z) ∩Htgγ
′G(Z) = ∅.

Proof. Assume for contradiction that HtgγG(Z) ∩Htgγ
′G(Z) 6= ∅. Then there exists κ ∈ H

and u ∈ G(Z) such that

(8.15) t−1
g κtgγu = γ′.

This gives that

(8.16)
(
t−1
g κtg

)
h−1

(
cuc′−1

)
= h′−1,

where c, c′ ∈ G(ZS) appear in the decomposition (8.9) of h, h′ correspondingly. By the
definition of tg and by (8.15) we conclude that t−1

g κtg ∈ Lg(R) ∩ G(Z
[
S−1

]
) = Lg(Z

[
S−1

]
),

and by (8.16) we get
(
cuc′−1

)
∈ Lg(QS)∩G(ZS) = Lg(ZS). Hence (8.16) shows that h and h′

are equivalent, which is a contradiction since h, h′ are representatives for two different cosets
in the space Lg(ZS)\Lg(QS)/Lg(Z

[
S−1

]
). �

From Lemma 8.2, we obtain the following corollary, which is the main conclusion of our
discussion in this section.

Corollary 8.4. It holds that
⊔

h∈M0
Qg,q,h = {(πZ(x), ϑq(x)) | x ∈ Eg}, and that M0 =

|Eg/G(Z)|.
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Proof. By Lemma 8.3 it follows that
⊔

h∈M0
Qg,q,h is indeed a disjoint union, and by using

Lemma 8.2 we obtain that

⊔

h∈M0

Qg,q,h =(id∞ × ϑq)




⊔

h∈M0

Qg,S,h





=(id∞ × ϑq) ({(πZ(x), x) | x ∈ Eg})
={(πZ(x), ϑq(x)) | x ∈ Eg}.

�

9. Statistics of the equivalence classes Eg

We are now ready to study the statistics of Eg as Q(τ(g)) → ∞ by using the limiting
distribution of the orbits Og,S (Theorem 7.1), and by exploiting the connection between the
equivalence classes Eg and the orbits Og,S (Corollary 8.4).

We now list the assumptions that will hold throughout this section, which will allow us to
employ Theorem 7.1.

• Q is a form as in our Standing Assumption and q ∈ 2N + 1 is such that Q is non-
singular modulo q.
• {gn}∞n=1 ⊆ SLd(Z) satisfy that Q(τ(gn))→∞ and for all n ∈ N

– Q(τ(gn)) > 0
– there is a prime p0 for which τ(gn) is (Q, p0) co-isotropic (see Definition 3.6),
– The reduction mod q is fixed in n, namely ϑq(gn) = ḡ, for all n ∈ N.

• Sq denotes the set of primes decomposing q and S
def
= Sq ∪ {p0}.

By Lemma 6.1(2), we deduce that the assumptions of Theorem 7.1 indeed hold for S and the
sequence {gn}∞n=1.

We denote a
def
= Q(τ(ḡ)) ∈ Z/(q) and consider the measures on ZQ(ed)(R)×Za(Z/(q)) given

by

νqgn
def
=

1

|Egn/G(Z)|
∑

x∈Egn

δ(πZ(x),ϑq(x)), n ∈ N.

Our main goal in this section is to prove the following theorem.

Theorem 9.1. Consider Oḡ ⊆ Za(Z/(q)) defined by

Oḡ
def
= ḡ ·G(Z/(q)),

and let µOḡ be the normalized counting measure on Oḡ. Then for all f ∈ Cc(ZQ(ed)(R) ×
Za(Z/(q))) it holds that

lim
n→∞

νqgn(f) = µZ ⊗ µOḡ(f).

9.1. Outline of proof for Theorem 9.1. We now outline the method we will use in the
proof of Theorem 9.1, building on Theorem 7.1 and the link between the equivalence classes
Egn and the orbits Ogn,S .

We denote

(9.1) G
def
= G(R× Z/(q)), K

def
= (H × Lḡ(Z/(q))), Γ = G(q)(Z),

and we consider the following diagram of natural maps

K\G
πΓ

$$■
■■

■■
■■

■■
G/Γ

πK

zz✉✉
✉✉
✉✉
✉✉
✉

K\G/Γ

where πK and πΓ denote the natural quotient map.
We recall that

⊔

h∈M0
Og,q,h is a disjoint union of finitely many (H × ϑq(Lgn(ZS)))-orbits

and we recall that (H × ϑq(Lgn(ZS))) ⊆ K. Hence Rgn,q ⊆ K\G/Γ defined by
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(9.2) Rgn,q
def
= πK(

⊔

h∈M0

Og,q,h),

is a finite set, and by Lemma 8.3 we obtain that |Rgn,q| = |M0| = |Egn/G(Z)|. In Section
9.2, we will prove, by relying on Theorem 7.1, that the uniform probability counting measures
λgn,q on Rgn,q equidistribute towards the natural probability measure µK\G/Γ on K\G/Γ.

To deduce the limit of our counting measures that are supported on {(πZ(x), ϑq(x)) | x ∈
Egn} by the equidistribution of {λgn,q}∞n=1 we observe that Rgn,q can be also described by

(9.3) Rgn,q
def
= πΓ(

⊔

h∈M0

Qg,q,h) = πΓ({(πZ(x), ϑq(x)) | x ∈ Eg}),

and we use “unfolding” technique (similarly to Section 5.1.1) to lift the measure λgn,q for
n ∈ N to the counting measure on K\G supported on {(πZ(x), ϑq(x)) | x ∈ Eg}.
9.1.1. Unfolding. We now discuss the “unfolding” process mentioned above which lifts an
equidistribution result in K\G/Γ to an equidistribution result in K\G.

Let mG, mG/Γ, be G-invariant measures on G, G/Γ respectively, such that mG/Γ is a
probability measure and all the measures are Weil normalized (a notion introduced in Section
4.3.2), namely such that for all ϕ ∈ Cc(G)

(9.4)

∫

G
ϕ(g)dmG(g) =

∫

G/Γ




∑

γ∈Γ
ϕ(gγ)



 dmG/Γ(gΓ).

We define a measure on K\G by µK\G
def
= (πK)∗mG, and a measure on K\G/Γ by

µK\G/Γ
def
= (πK)∗ mG/Γ (which is well defined, since we assume that K is compact).

Assume that Sn ⊆ K\G/Γ is a finite set, and consider the measures ν̄n supported on K\G
defined by

ν̄n
def
=

1

|Sn|
∑

x∈(πΓ)
−1(Sn)

δx.

Let

(9.5)
F def

= {KgΓ | |StabΓ(Kg)| > 1}
=
{
KgΓ |

∣
∣g−1Kg ∩ Γ

∣
∣ > 1

}
.

Lemma 9.2. Assume that Sn ⊆ K\G/Γ, n ∈ N, are finite sets such that the probability
counting measures supported on Sn converge weakly to µK\G/Γ, and that

(9.6)
|F ∩ Sn|
|Sn|

→ 0.

Then for every f ∈ Cc(K\G), it holds that ν̄n(f)→ µK\G(f).

The proof of Lemma 9.2 involves elementary tools, hence we decided to include the complete
details in the appendix.

Our goal in the following section is to verify the assumptions of Lemma 9.2 for Sn = Rgn,q,
which will prove Theorem 9.1.

9.2. Equidistribution in K\G/Γ. Let η̃gn,S be the measure supported on Ogn,S ∩US, given
by

(9.7) η̃gn,S
def
= µgn,S |US

,

where US = G(R×ZS)G(Z
[
S−1

]
) ∼= G(R×ZS)/G(Z) and µgn,S defined in (7.3) is the natural

probability measure supported on Ogn,S. We consider the following probability measure ηgn,q
on K\G/Γ supported on Rgn,q (by Corollary 8.4) defined by

ηgn,q
def
= (πK ◦ (id∞ × ϑq))∗η̃gn,S.
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We obtain the following corollary which follows by Theorem 7.1.

Corollary 9.3. It holds that

(9.8) ηgn,q → µK\G/Γ,

where µK\G/Γ is the push-forward by the natural quotient map πK of the unique G-invariant
probability measure on G/Γ.

Proof. Since US ⊆ G(R×QS)/G(Z
[
S−1

]
) is a clopen set, we get by Theorem 7.1 that

(9.9) η̃gn,S
weak *−→ µUS

,

where µUS
is the unique G(R× ZS) invariant probability on

US ∼= G(R× ZS)/G(Z).

By Lemma 6.1,(1), by the Chinese remainder theorem, and by noting that ϑq (ASLd−1(ZS)) =
ASLd−1(Z/(q)), we conclude that

ϑq (G(ZS)) = G(Z/(q)).

Hence (id∞ × ϑq) : G(R× ZS)/G(Z)→ G/Γ is onto. It now follows that

ηgn,q = (πK ◦ (id∞ × ϑq))∗η̃gn,S →(πK)∗(id∞ × ϑq)∗µUS

=(πK)∗µG/Γ

=µK\G/Γ.

�

9.2.1. Weights of the measures ηgn,q. In the following we study the weights of the atoms of
the measures ηgn,q which are supported on the finite sets Rgn,q.

We express ηgn,q by

(9.10) ηgn,q =
∑

h∈M0

α
(n)
h δπK(Ogn,q,h),

and by recalling (9.7) and the decomposition (8.8) of Ogn,S ∩ US , we conclude that

α
(n)
h = η̃gn,S

(
(πK ◦ (id∞ × ϑq))

−1 (Ogn,q,h)
)

=
︸︷︷︸

Lemma 8.3

η̃gn,S(Ogn,S,h).

It follows that

(9.11) α
(n)
h = η̃gn,S(Ogn,S,h) =

α(n)

∣
∣stabH×Lgn (ZS) ((tgnγ, c)G(Z))

∣
∣
,

where c ∈ G(ZS), γ ∈ G(Z
[
S−1

]
) decompose h as in (8.9), where stabH×Lgn (ZS) (x) for

x ∈ G(R× ZS)/G(Z) is the stabilizer of x under the natural left action of H × Lgn(ZS), and

where α(n) ∈ R>0 is a normalizing factor which turns ηgn,q to a probability measure.

Lemma 9.4. Let g ∈ {gn}∞n=1, and let h ∈ M0 be such that h = cγ−1, for γ ∈ G
(
Z
[
S−1

])

and c ∈ G(ZS). Then
∣
∣stabH×Lgn (ZS) ((tgγ, c)G(Z))

∣
∣ ≤

∣
∣Hτ(Id·(tgγ))(R) ∩G1(Z)

∣
∣ .

Proof. We have that

stabH×Lg(ZS ) ((tgγ, c)G(Z)) = (H × Lg(ZS)) ∩ xg,hG(Z)x−1
g,h.

where xg,h = (tgγ, c). We recall that H × Lg(ZS) is a graph of a function f : Hed
(R) ×

Hτ(g)(ZS)→ G(R)×G(Z
[
S−1

]
), (see Lemma 3.2), which gives

∣
∣
∣(H × Lg(ZS)) ∩ xg,hG(Z)x−1

g,h

∣
∣
∣ ≤

∣
∣
(
Hed

(R)×Hτ(g)(ZS)
)
∩ π1(xg,h)G1(Z)π1(xg,h)

−1
∣
∣ ,

where π1 : G → G1 is the natural projection, and π1(xg,h) = (π1(tgγ), π1(c)). We observe
that
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∣
∣
∣

(
Hed

(R)×Hτ(g)(ZS)
)⋂

π1(xg,h)G1(Z)π1(xg,h)
−1

∣
∣
∣

=
∣
∣π1(xg,h)

−1
(
Hed

(R)×Hτ(g)(ZS)
)
π1(xg,h)

⋂

G1(Z)
∣
∣
∣

≤
︸︷︷︸

G1(Z) is diagonally embedded

∣
∣
∣π1(tgγ)

−1Hed
(R)π1(tgγ)

⋂

G1(Z)
∣
∣
∣ .

We conclude that
∣
∣stabH×Lg(ZS) ((tgγ, c)G(Z))

∣
∣ ≤

∣
∣
∣π1(tgγ)

−1Hed
(R)π1(tgγ)

⋂

G1(Z)
∣
∣
∣ ,

and we note that we may finish the proof by verifying that

(9.12) π1(tgγ)
−1Hed

(R)π1(tgγ) = Hτ(Id·(tgγ))(R).

To prove the latter equality we recall that the right SOQ(R) actions on SLd(R) and on Rdr{0}
are equivariant with respect to τ : SLd(R)→ Rdr {0} (to recall, see (3.5)), which shows that

ed · π1(tgγ) = τ(Id · (tgγ)),
and which in turn implies (9.12). �

For g∞ ∈ G(R), η ∈ H and u ∈ G(Z) we note that
∣
∣Hτ(Id·g∞)(R) ∩G1(Z)

∣
∣ =

∣
∣Hτ(Id·(ηg∞u))(R) ∩G1(Z)

∣
∣ ,

and we define E ⊆ K\G/Γ by

(9.13) E def
=

{
(H × Lḡ(Z/(q))) (g∞, g(q))G(q)(Z) |

∣
∣Hτ(Id·g∞)(R) ∩G1(Z)

∣
∣ > 1

}
.

Lemma 9.5. We denote α
(n)
max = maxh∈M0{α

(n)
h }, where α

(n)
h are the weights of the atoms of

ηgn,q (see (9.10)). Then there exists m > 0 such that α
(n)
max

m ≤ α
(n)
h ≤ α

(n)
max, ∀n ∈ N. Moreover,

for all h ∈M0 such that πK (Ogn,q,h) /∈ E , it holds that α
(n)
h = α

(n)
max.

Proof. It follows by Lemma 9.4 and by (9.11) that

(9.14)
α(n)

∣
∣Hτ(Id·(tgnγ))(R) ∩G1(Z)

∣
∣
≤ α

(n)
h ≤ α(n).

We recall that

πK (Ogn,q,h) = K (tgnγ, ϑq (c)) Γ,

and we conclude by (9.13) and (9.14) that

α
(n)
h = α(n)

max = α(n) ⇐= πK (Ogn,q,h) /∈ E .
Finally, we show that

∣
∣Hτ(Id·(tgnγ))(R) ∩G1(Z)

∣
∣ is uniformly bounded from above. Indeed,

since Hτ(Id·(tgnγ))(R) is compact (being a conjugate of Hed
(R), which is compact by our

Standing Assumption), we obtain that the subgroup Hτ(Id·(tgnγ))(R) ∩ G(Z) ≤ GLd(Z) is
finite. For a fixed d ∈ N, the size of finite subgroups of GLd(Z) is uniformly bounded (see for

example [Fri97]), which implies that there exists m > 0 such that α
(n)
max
m ≤ α

(n)
h . �

Lemma 9.6. It holds that
|Rgn,q∩E|
|Rgn,q| → 0 as n→∞.

Proof. We claim that in order to prove limn→∞
|Rgn,q∩E|
|Rgn,q| = 0, it is sufficient to show that

E ⊆ K\G/Γ is closed and that

(9.15) µK\G/Γ(E) = 0.

Indeed, by assuming the preceding limit, the proof will be complete since
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0 =µK\G/Γ(E) ≥
︸︷︷︸

Corollary 9.3

lim sup
n→∞

ηgn,q(E)

= lim sup
n→∞

ηgn,q(E ∩Rgn,q)

ηgn,q (Rgn,q)
≥

︸︷︷︸

Lemma 9.5

lim sup
n→∞

α
(n)
max
m |Rgn,q ∩ E|
α
(n)
max|Rgn,q|

.

We will now proceed to prove (9.15). Consider the natural projection

p : (H × Lḡ(Z/(q))) \G(R × Z/(q))/G(q)(Z)→ Hed
(R)\G1(R)/G1(Z),

and note that

p(E) =
{
Hed

(R)ρG1(Z) | ρ−1Hed
(R)ρ ∩G1(Z) 6= {e}

}
.

We now recall some basic facts concerning orbifolds (we follow [Bor92]). Since Hed
(R) is

compact, it follows that Hed
(R)\G1(R)/G1(Z) is an orbifold, and the set p(E) is known as its

singular set (see [Bor92, Definition 25]). The singular set is closed and has empty interior, see
[Bor92, Proposition 26], hence in particular E is closed (as a preimage of a closed set). Now
since Hed

(R) is compact, it is known that there exists a G1(R) right invariant Riemannian
metric on Hed

(R)\G1(R). Hence by [Bor92, Proposition 34], the singular set is locally the
image of a union of finitely many sub-manifolds of Hed

(R)\G1(R) under the natural quotient
map. Therefore

µHed
(R)\G1(R)/G1(Z)(p(E)) = 0,

which implies (9.15). �

Lemma 9.7. It holds that F ⊆ E, where F ⊆ K\G/Γ is given by (9.5).

Proof. We recall that F is given by

F =
{
K(g∞, g(q))Γ |

∣
∣(g∞, g(q))

−1K(g∞, g(q)) ∩ Γ
∣
∣ > 1

}
.

We let K(g∞, g(q))Γ ∈ F , and upon recalling the notations of K, G and Γ in (9.1), we deduce
that there exists u ∈ G(Z)r {e} and h∞ ∈ H such that

g−1
∞ h∞g∞ = u.

By recalling the definition of H (see (3.14)) we obtain that

(9.16) π1(g
−1
∞ h∞g∞) = π1(u) ∈ G1(Z)r {e},

where π1 : G→ G1 is the natural projection. We have that

π1(g
−1
∞ h∞g∞) = π1(g∞)−1π1(h∞)π1(g∞),

and that π1(h∞) ∈ π1(H) = Hed
(R), which implies by (9.16) that

(9.17)
∣
∣π1(g∞)−1Hed

(R)π1(g∞) ∩G1(Z)
∣
∣ > 1.

By (9.17), by observing that

π1(g∞)−1Hed
(R)π1(g∞) = Hed·π1(g∞)(R) =

︸︷︷︸

(3.5)

Hτ(Id·g∞)(R),

and by recalling (9.13) which defines E , we obtain that K(g∞, g(q))Γ ∈ E . �

We now state the key corollary of this section, which verifies the assumptions of Lemma
9.2 and finishes our proof of Theorem 9.1.

Corollary 9.8. It holds that

lim
n→∞

|F ∩ Rgn,q|
|Rgn,q|

= 0,

and it holds that the sequence probability counting measures λgn,q supported on Rgn,q for n ∈ N

converges to µK\G/Γ.
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Proof. By Lemma 9.6 and Lemma 9.7, we deduce that limn→∞
|F∩Rgn,q|
|Rgn,q| = 0. By Corollary

9.5, Lemma 9.6, we obtain

(9.18) ηgn,q − λgn,q → 0,

and by (9.8), we deduce that λgn,q → µK\G/Γ. �

10. Proof of theorems 4.8 and 4.9 for Z
We let Q be as in our Standing Assumption. We consider a sequence {Tn}∞n=1 ⊆ N such

that Tn → ∞, and assume that there is an odd prime p0 for which it holds that Tn has the
(Q, p0) co-isotropic property for all n ∈ N (see Definition 3.6).

For each n ∈ N, let g1,n, .., gm(n),n ∈ ZTn(Z) be a complete set of representatives for the
equivalence relation defined in Section 8, namely

Eg1,n

⊔

...
⊔

Egm(n),n = ZTn(Z).

We claim that each of vector of the list τ(g1,n), .., τ(gm(n),n) is also (Q, p0) co-isotropic (see
Definition 3.6). Indeed, by Witt’s theorem, the action of SOQ(Q) is transitive on HTn(Q),
and if v ∈ HTn(Q) is (Q, p) co-isotropic, then it follows that ρv is (Q, p) co-isotropic, for
ρ ∈ SOQ(Q).

We now fix an arbitrary sequence {gjn,n}∞n=1 for 1 ≤ jn ≤ m(n), we fix q ∈ 2N+1 such that
Q is non-singular modulo q and we let S = Sq ∪ {p0} where Sq is the set of primes appearing
in the prime decomposition of q.

10.1. Proof of Theorem 3.7. We partition the sequence {gjn,n}∞n=1 into finitely many sub-
sequences {gjn,n}n∈C , C ⊆ N such that for all n ∈ C the reduction mod q is fixed, say

ḡ
def
= ϑq(gjn,n), ∀n ∈ C. Then, we may apply Theorem 9.1 to any of those unbounded

subsequences.
We let f ∈ Cc(ZQ(ed)(R)) and we consider f̃ ∈ Cc

(
ZQ(ed)(R)×Za(Z/(q))

)
defined by

f̃(x, y)
def
= f(x), where a

def
= Q(ḡ) ∈ Z/(q). Then, in the notations of Theorem 9.1, we have

lim
C∋n→∞

νqgjn,n
(f̃) = µZ(f),

which implies in turn that for the full sequence (namely, without the assumption that ϑq(gjn,n)
is fixed in n) it holds that

(10.1) lim
n→∞

νqgjn,n
(f̃) = µZ(f).

We recall that

νqgj,n =
1

∣
∣Egj,n/G(Z)

∣
∣

∑

x∈Egj,n

δ(
πZTn

(x),ϑq(x)
),

and that (see (3.19))

νZ,q
Tn

=
1

|ZTn(Z)/G(Z)|
∑

x∈ZTn(Z)

δ(
πZTn

(x),ϑq(x)
).

It follows that

(10.2)

m(n)
∑

j=1




∑

x∈Egj,n

δ(
πZTn

(x),ϑq(x)
)



 =
∑

x∈ZTn(Z)

δ(
πZTn

(x),ϑq(x)
)

.
,

and that

(10.3)

mn∑

j=1

∣
∣Egjn,n

/G(Z)
∣
∣ = |ZTn(Z)/G(Z)| = |HTn,prim(Z)/G1(Z)| .

We now note the following elementary lemma (which we give without a proof).



50 MICHAEL BERSUDSKY AND URI SHAPIRA

Lemma 10.1. Let {ai,n}mn,∞
i=1,n=1 {bi,n}

mn,∞
i=1,n=1 be positive real sequences. Assume ain,n/bin,n →

L, for any sequence {in}∞n=1 such that in ∈ {1, ..,mn}. Then
∑mn

i=1 ai,n
∑mn

i=1 bi,n
→ L.

We may now deduce by Lemma 10.1 and (10.1), (10.2), (10.3) that

νZTn
(f) =

︸︷︷︸

recalling (3.18)

1

|HTn,prim(Z)/G1(Z)|
∑

x∈ZTn (Z)

f(πZTn
(x)) = νZ,q

Tn
(f̃)→ µZ(f),

which proves Theorem 3.7.

10.2. Proof of Theorem 3.8. We assume further that there is a fixed a ∈ (Z/(q))× such
that ϑq (Tn) = a, ∀n ∈ N.

By Corollary 3.1, (2)

Za(Z/(q)) = ϑq(gj,n) ·G(Z/(q)), ∀n ∈ N, ∀j ≤ m(n)

Then, by using Theorem 9.1, and following the same arguments as above, we obtain Theorem
3.8.

Appendix A. Unfolding

In the following we let G be locally compact second countable group, Γ ≤ G be a lattice,
Γ̃ ≤ Γ, and K ≤ G be a compact subgroup. We will discuss in this section a mechanism
which lifts an equidistribution result in K\G/Γ to an equidistribution result in K\G/Γ̃ (see
Corollary A.3).

Let mG, mG/Γ, mG/Γ̃ be G-invariant measures on G, G/Γ, G/Γ̃ respectively, such that

mG/Γ is a probability measure and such that all the measures are Weil normalized (a notion
introduced in Section 4.3.2), namely such that for all ϕ ∈ Cc(G)

(A.1)

∫

G
ϕ(g)dmG(g) =

∫

G/Γ




∑

γ∈Γ
ϕ(gγ)



 dmG/Γ(gΓ) =

∫

G/Γ̃




∑

γ̃∈Γ̃

ϕ(gγ̃)



 dmG/Γ̃(gΓ̃)

(such a normalization exists by Theorem 2.51 in [Fol15]). Let f ∈ Cc(G/Γ̃) and consider

(A.2) f̄(xΓ)
def
=

∑

γΓ̃∈Γ/Γ̃

f(xγΓ̃).

We claim that f̄ ∈ Cc(G/Γ). Indeed, by [Fol15, Proposition 2.50] there exists ϕ ∈ Cc(G) such
that

f(xΓ̃) =
∑

γ̃∈Γ̃

ϕ(xγ̃),

which shows that

(A.3)

f̄(xΓ) =
∑

γΓ̃∈Γ/Γ̃

f(xγΓ̃)

=
∑

γΓ̃∈Γ/Γ̃

∑

γ̃∈Γ̃

ϕ(xγγ̃) =
∑

γ∈Γ
ϕ(xγ),

and we note that
∑

γ∈Γ ϕ(xγ) ∈ Cc(G/Γ).

Lemma A.1. It holds that

(A.4)

∫

G/Γ̃
f(xΓ̃)dmG/Γ̃(gΓ̃) =

∫

G/Γ
f̄(xΓ)dmG/Γ(gΓ),

for all f ∈ Cc(G/Γ̃)
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Proof. Let ϕ ∈ Cc(G), and assume that f(xΓ̃) =
∑

γ̃∈Γ̃ ϕ(xγ̃). Then

∫

G/Γ̃
f(xΓ̃)dmG/Γ̃(gΓ̃) =

∫

G/Γ̃




∑

γ̃∈Γ̃

ϕ(gγ̃)



 dmG/Γ̃(gΓ̃)

=
︸︷︷︸

(A.1)

∫

G
ϕ(g)dmG(g)

=
︸︷︷︸

(A.1)

∫

G/Γ




∑

γ∈Γ
ϕ(gγ)



 dmG/Γ(gΓ)

=

∫

G/Γ




∑

γΓ̃∈Γ/Γ̃




∑

γ̃∈Γ̃

ϕ(gγγ̃)







 dmG/Γ(gΓ)

=

∫

G/Γ




∑

γΓ̃∈Γ/Γ̃

f(xγΓ̃)



 dmG/Γ(gΓ) =
︸︷︷︸

(A.2)

∫

G/Γ
f̄(xΓ)dmG/Γ(gΓ).

�

We denote by πK the natural quotient map πK : G → K\G. We define a measure on

K\G/Γ̃ by µK\G/Γ̃
def
= (πK)∗mG/Γ̃, and on K\G/Γ by µK\G/Γ

def
= (πK)∗mG/Γ (which is well

defined, since we assume that K is compact).

Lemma A.2. Assume that Sn ⊆ K\G/Γ, n ∈ N, are finite sets such that the uniform

probability measures supported on Sn converge weakly to µK\G/Γ. Assume that
{

Kgi,nΓ̃
}

⊆
K\G/Γ̃ are representatives for Sn (namely a choice of one point in the preimage of Kgi,nΓ

under the natural projection for each 1 ≤ i ≤ |Sn|). Then for all f ∈ Cc(K\G/Γ̃) it holds that

lim
n→∞

1

|Sn|

|Sn|∑

i=1

∑

γΓ̃∈Γ/Γ̃

f(Kgi,nγΓ̃) = µK\G/Γ̃(f).

Proof. Let f ∈ Cc(K\G/Γ̃), consider

f̄(KxΓ)
def
=

∑

γΓ̃∈Γ/Γ̃

f(KxγΓ̃),

and note that f̄(KxΓ) ∈ Cc(K\G/Γ) (indeed, since f ◦ πK ∈ Cc(G/Γ̃), it follows that
f̄(KxΓ) = f ◦ πK(xΓ) ∈ Cc(G/Γ) by the discussion above Lemma A.1). By the assump-
tion of the lemma, we have that

(A.5)
1

|Sn|

|Sn|∑

i=1

f̄(Kgi,nΓ)→
∫

K\G/Γ
f(KgΓ)dµK\G/Γ.

The proof is complete by observing that the left hand side of (A.5) may be rewritten by

1

|Sn|

|Sn|∑

i=1

f̄(Kgi,nΓ) =
1

|Sn|

|Sn|∑

i=1

∑

γΓ̃∈Γ/Γ̃

f(Kgi,nγΓ̃),

and the right hand side of (A.5) may be rewritten by
∫

K\G/Γ
f(KgΓ)dmK\G/Γ =

∫

G/Γ

∑

γΓ̃∈Γ/Γ̃

f ◦ πK(xγΓ̃)dmG/Γ =

=
︸︷︷︸

(A.4)

∫

G/Γ̃
f ◦ πK(xΓ̃)dmG/Γ̃ = µK\G/Γ̃(f).
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�

Phrased differently, Lemma A.2 states that for the locally finite atomic measures

νn
def
=

1

|Sn|

|Sn|∑

i=1

∑

γΓ̃∈Γ/Γ̃

δKgi,nγΓ̃
,

it holds that νn(f)→ µK\G/Γ̃(f) for all f ∈ Cc(K\G/Γ̃). We observe that νn are not uniform

measures, namely, some atoms can have different weights. We let πΓ̃ : G/Γ̃ → G/Γ be the
natural map, and we note that the support of νn can be expressed by

supp(νn)
def
=

(

πΓ̃
)−1

(Sn).

We define ν̄n to be the uniform measures supported on supp(νn), namely

ν̄n
def
=

1

|Sn|
∑

x∈(πΓ̃)
−1

(Sn)

δx.

Similarly to Lemma A.2, we would like to show ν̄n(f)→ µK\G/Γ̃(f), for all f ∈ Cc(K\G/Γ̃).

This requires an additional assumption that the points which are counted more then once are
negligible. We define F ⊆ K\G/Γ by

(A.6)
F def

= {KgΓ | |StabΓ(Kg)| > 1}
=
{
KgΓ |

∣
∣g−1Kg ∩ Γ

∣
∣ > 1

}
.

Corollary A.3. Assume that Sn ⊆ K\G/Γ, n ∈ N, are finite sets such that the uniform
probability measures supported on Sn converge weakly to µK\G/Γ, and assume that

(A.7)
|F ∩ Sn|
|Sn|

→ 0.

Then it holds that ν̄n(f)→ µK\G/Γ̃(f), for all f ∈ Cc(K\G/Γ̃).

We require the following basic lemma for the proof of Corollary (A.3).

Lemma A.4. Let U ⊆ K\G/Γ̃ be a set with compact closure. Then there exists mU > 0 such
that for all g ∈ G it holds that

(A.8)
∣
∣
∣

{

γΓ̃ ∈ Γ/Γ̃ | KgγΓ̃ ∈ U
}∣
∣
∣ ≤ mU .

Proof. Let U ⊆ K\G/Γ̃ be a set with compact closure. We let Ũ ⊆ G be a compact set such

that U = KŨ Γ̃ (where U denotes the closure of U), and we observe that
∣
∣
∣

{

γΓ̃ ∈ Γ/Γ̃ | KgγΓ̃ ∈ U
}∣
∣
∣ =

∣
∣
∣

{

γΓ̃ ∈ Γ/Γ̃ | KgγΓ̃ ∈ KŨ Γ̃
}∣
∣
∣ ≤

∣
∣
∣Γ ∩ g−1KŨ

∣
∣
∣ ,

for all g ∈ G. We recall that a lattice subgroup is uniformly discrete, namely, there exists an
open neighborhood of identity N such that |uN ∩ Γ| ≤ 1, ∀u ∈ G. Since KŨ is compact,

there exist u1, ..., umU
∈ G such that u1N ∪ .. ∪ umU

N ⊇ KŨ . This implies that g−1u1N ∪
..∪ g−1umU

N ⊇ g−1KŨ . Since there is at most one point of Γ in each set g−1uiN , it follows

that
∣
∣
∣Γ ∩ g−1KŨ

∣
∣
∣ ≤ mU , which implies (A.8). �

Proof of Corollary A.3. We denote by
{

Kgi,nΓ̃
}|Sn|

i=1
⊆ K\G/Γ̃ a set of representatives for

(

πΓ̃
)−1

(Sn) (a choice of a unique point in each fiber) and we fix a positive function f ∈
Cc(K\G/Γ̃).

By noting that the weights of the atoms of νn are larger then the weights of the atoms of
ν̄n, we find that

ν̄n(f) ≤ νn(f).
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We consider the uniform counting measure ν−n supported on
(

πΓ̃
)−1

(Sn r F) where each

atom has mass 1
|Sn| . We note that for all Kgi,nΓ̃ ∈

(

πΓ̃
)−1

(Sn rF) and for any two distinct

γ1Γ̃, γ2Γ̃ ∈ Γ/Γ̃ it holds that

Kgi,nγ1Γ̃ 6= Kgi,nγ2Γ̃.

Namely, the weights of the atoms of ν−n and of ν̄n are the same on
(

πΓ̃
)−1

(Sn r F), which
implies that

ν−n (f) ≤ ν̄n(f).

We observe that

νn(f)− ν−n (f) =
1

|Sn|
∑

Kgi,nΓ̃∈(πΓ̃)
−1

(F∩Sn)

∑

γΓ̃∈Γ/Γ̃

f(Kgi,nγΓ̃).

We denote by U the support of f , and we obtain by the triangle inequality and by Lemma
A.4 that

νn(f)− ν−n (f) ≤ ‖f‖∞
mU

|Sn|
|SN ∩ F| → 0.

Finally, since Lemma A.2 gives

lim
n→∞

νn(f) = µK\G/Γ̃(f),

then we also get
lim
n→∞

ν̄n(f) = µK\G/Γ̃(f).

�
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