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Abstract

This paper studies transition probabilities from a Borel subset of a Polish

space to a product of two Borel subsets of Polish spaces. For such tran-

sition probabilities it introduces and studies the property of semi-uniform

Feller continuity. This paper provides several equivalent definitions of semi-

uniform Feller continuity and establishes its preservation under integration.

The motivation for this study came from the theory of Markov decision pro-

cesses with incomplete information, and this paper provides fundamental re-

sults useful for this theory.
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1 Introduction

This paper studies continuity properties of stochastic kernels, also called transi-

tion probabilities, from a Borel subset of a Polish space to a product of two Borel

subsets of Polish spaces. The main property we introduce is semi-uniform Feller

continuity, which is a weaker property than continuity in total variation, sometimes

called uniform Feller continuity. This paper provides several equivalent definitions
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of semi-uniform Feller continuity. It also describes the preservation property of

semi-uniform Fellerness under integration.

Our main motivation for studying stochastic kernels from a measurable space

S3 to a measurable space S1×S2, where S1, S2, and S3 are Borel subsets of Polish

spaces, is the use of such kernels in mathematical models of decision making with

incomplete information. For a Markov decision process with incomplete informa-

tion, S1 is an unobservable (or hidden) state space, S2 is the set of observations, and

S3 can be either a product of these two spaces and the space of decisions or a subset

of the product of these three spaces. Such problems can be reduced to problems

with completely observable states by replacing the state space S1 with the space

P(S1) of probability measures on S1, and the new states are called either posterior

probabilities or belief states. This reduction was introduced in [1, 2, 6, 30, 31], and

it holds under general measurability assumptions [23, 33].

However this reduction does not say much about continuity properties of the

transition probability for a new model with the belief state space P(S1). Weak

continuity of this transition probability is essentially necessary for the existence

of optimal policies, validity of optimality equations, and convergence of value it-

erations for models with incomplete information [14, Theorem 3.1]. For models

with finite state, observation, and action sets, the required weak continuity of the

transition probability in the model with belief states takes place [32].

However, weak continuity of the original transition and observation probabil-

ities and even some their stronger properties do not imply weak continuity of the

transition probability in the model with belief states [14, Examples 4.1-4.3]. For

a partially observable Markov decision process called a POMDP2 in this paper

and in [15], which is a popular particular model of Markov decision process with

incomplete information, it was shown in [14, Theorem 3.6] that weak continuity of

transition probabilities and continuity in total of variation of observation probabili-

ties imply weak continuity of transition probabilities in the model with completely

observable belief states to which the original problem is reduced. Another proof of

this fact is provided in [18], where it is also shown that, if the observation probabil-

ities do not depend on controls, then continuity of transition probabilities in total

variation imply weak continuity of the transition probabilities in the reduced model

with completely observable belief states.

The remarkable feature of semi-uniform Feller transition kernels is that this

property holds in the reduced model with complete information if and only if it

holds for the original model, and this fact implies several new and known results

on weak continuity of transition probabilities in the model with completely observ-

able states including all the results described above; see Section 4 below and [15]

for details. This paper provides fundamental results useful for the analysis and

optimization of Markov decision processes with complete and incomplete infor-

2



mation. They are used in [15] for studying Markov decision processes with incom-

plete information. Markov decision processes with semi-uniform Feller transition

probabilities are studied in [15] for problems with expected total costs and in [16]

for problems with average costs per unit time.

For a metric space S = (S, ρS),where ρS is a metric, let τ(S) be the topology of

S (the family of all open subsets of S), and let B(S) be its Borel σ-field, that is, the

σ-field generated by all open subsets of the metric space S. For s ∈ S and δ > 0,we

denote by B(s; δ) := {u ∈ S : ρ(s, u) < δ} and B̄(s; δ) = {u ∈ S : ρ(s, u) ≤ δ}
respectively the open and closed balls in the metric space S of radius δ with the

center s and by S(s; δ) := {u ∈ S : ρ(s, u) = δ} the sphere in S of radius δ with

center s. For a subset S of S let S̄ denote the closure of S, and So is the interior

of S. Then So is open, S̄ is closed, and So ⊂ S ⊂ S̄. Let ∂S := S̄ \ So denote the

boundary of S. We remark that ∂B(s; δ) ⊂ S(s; δ).
We denote by P(S) the set of probability measures on (S,B(S)). A sequence

of probability measures {µ(n)}n=1,2,... from P(S) converges weakly to µ ∈ P(S) if

for any bounded continuous function f on S

∫

S

f(s)µ(n)(ds) →
∫

S

f(s)µ(ds) as n→ ∞.

If this convergence of integrals holds for every bounded Borel function f, then

the sequence {µ(n)}n=1,2,... converges to µ setwise. A sequence of probability

measures {µ(n)}n=1,2,... from P(S) converges in total variation to µ ∈ P(S) if

sup
C∈B(S)

|µ(n)(C)− µ(C)| → 0 as n→ ∞; (1)

see [12, 13, 19] for properties of these types of convergence of probability mea-

sures.

Note that P(S) is a separable metric space with respect to the topology of

weak convergence for probability measures when S is a separable metric space;

[21, Chapter II]. Moreover, according to Bogachev [5, Theorem 8.3.2], if the met-

ric space S is separable, then the topology of weak convergence of probability

measures on (S,B(S)) coincides with the topology generated by the Kantorovich-

Rubinshtein metric

ρP(S)(µ, ν)

:= sup

{
∫

S

f(s)µ(ds)−
∫

S

f(s)ν(ds)
∣

∣

∣
f ∈ Lip1(S), sup

s∈S
|f(s)| ≤ 1

}

,
(2)

µ, ν ∈ P(S), where

Lip1(S) := {f : S 7→ R, |f(s1)− f(s2)| ≤ ρS(s1, s2), ∀s1, s2 ∈ S}.
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For a Borel subset S of a metric space (S, ρS), where ρS is a metric, we al-

ways consider the metric space (S, ρS), where ρS := ρS
∣

∣

S×S
. A subset B of S is

called open (closed) in S if B is open (closed) in (S, ρS). Of course, if S = S,

we omit “in S”. Observe that, in general, an open (closed) set in S may not be

open (closed). For S ∈ B(S) we denote by B(S) the Borel σ-field on (S, ρS).
Observe that B(S) = {S ∩ B : B ∈ B(S)}. For metric spaces S1 and S2,

a (Borel-measurable) stochastic kernel Ψ(ds1|s2) on S1 given S2 is a mapping

Ψ( · | · ) : B(S1) × S2 7→ [0, 1] such that Ψ( · |s2) is a probability measure on S1
for any s2 ∈ S2, and Ψ(B| · ) is a Borel-measurable function on S2 for any Borel

set B ∈ B(S1). Another name for a stochastic kernel is a transition probability. A

stochastic kernel Ψ(ds1|s2) on S1 given S2 defines a Borel measurable mapping

s2 7→ Ψ( · |s2) of S2 to the metric space P(S1) endowed with the topology of weak

convergence. A stochastic kernel Ψ(ds1|s2) on S1 given S2 is called weakly con-

tinuous (setwise continuous, continuous in total variation), if Ψ( · |s(n)) converges

weakly (setwise, in total variation) to Ψ( · |s) whenever s(n) converges to s in S2.

For a singleton {s1} ⊂ S1, we sometimes write Ψ(s1|s2) instead of Ψ({s1}|s2).
Sometimes a weakly continuous stochastic kernel is called Feller, and a stochastic

kernel continuous in total variation is called uniformly Feller [20].

Let S1, S2, and S3 be Borel subsets of Polish spaces (a Polish space is a com-

plete separable metric space), and Ψ on S1 × S2 given S3 be a stochastic kernel.

For A ∈ B(S1), B ∈ B(S2), and s3 ∈ S3, let

Ψ(A,B|s3) := Ψ(A×B|s3). (3)

In particular, we consider marginal stochastic kernels Ψ(S1, · | · ) on S2 given S3
and Ψ( · ,S2| · ) on S1 given S3.

Definition 1 A stochastic kernel Ψ on S1 × S2 given S3 is semi-uniform Feller

if, for each sequence {s(n)3 }n=1,2,... ⊂ S3 that converges to s3 in S3 and for each

bounded continuous function f on S1,

lim
n→∞

sup
B∈B(S2)

∣

∣

∣

∣

∫

S1

f(s1)Ψ(ds1, B|s(n)3 )−
∫

S1

f(s1)Ψ(ds1, B|s3)
∣

∣

∣

∣

= 0. (4)

Definition 1 implies that for each sequence {s(n)3 }n=1,2,... ⊂ S3 that converges

to s3 in S3, for each bounded continuous function f on S1, and for eachB ∈ B(S2),

lim
n→∞

∫

S1

f(s1)Ψ(ds1, B|s(n)3 ) =

∫

S1

f(s1)Ψ(ds1, B|s3),

and, in view of Schäl [29, Theorem 3.7(iii,viii)], this property implies weak conti-

nuity of Ψ on S1 × S2 given S3. Thus, a semi-uniform Feller stochastic kernel Ψ
on S1 × S2 given S3 is weakly continuous.
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The classic definition of weak continuity via convergence of integrals of bounded

continuous functions is also applicable to finite measures. It is obvious that a se-

quence of measures {µ(n)}n=1,2,... on a metric space S converges weakly to a fi-

nite measure µ on S if and only if µ(n)(S) → µ(S) and, if µ(S) > 0, then the

sequence of probability measures {µ(n)(ds)/µ(n)(S)}n=1,2,... converges weakly

to the probability measure µ(ds)/µ(S). In the previous sentence we mean that

µ(n)(ds)/µ(n)(S) is an arbitrary probability measure on S if µ(n)(S) = 0.
We recall that the marginal measure Ψ(ds1, B|s3), s3 ∈ S3, is defined in (3).

As follows from (4), if Ψ is a semi-uniform Feller stochastic kernel on S1 × S2
given S3, then for each B ∈ B(S2) the kernel Ψ(ds1, B|s3) on S1 given S3 is

weakly continuous, that is, if s
(n)
3 → s3 as n → ∞, where s

(n)
3 , s3 ∈ S3 for n =

1, 2, . . . , then sequence of substochastic measures {Ψ(ds1, B|s(n)3 )}∞n=1 converges

weakly to Ψ(ds1, B|s3). The term “semi-uniform” is used in Definition 1 because

the convergence in (4) is uniform only with respect to the second coordinate, and

the function f does not depend on the second coordinate.

This paper describes useful properties of semi-uniform Feller kernels. Sec-

tion 2, whose main results are Theorem 1 and its Corollary 1, examines the preser-

vation of lower semi-equicontinuity by integrals. Section 3 studies properties of

semi-uniform Feller kernelss. Theorem 3 provides several necessary and sufficient

conditions for a stochastic kernel Ψ to be semi-uniform Feller. Theorem 4 es-

tablishes another necessary and sufficient condition for a stochastic kernel to be

semi-uniform Feller. This condition is Assumption 1, whose stronger version was

introduced in [12, Theorem 4.4] as a sufficient condition for weak continuity of

transition probabilities for Markov decision processes with belief states. Theo-

rem 5 describes the preservation of semi-uniform Fellerness under the integration

operation. Section 4 explains the main motivation for this study. Section 5 contains

proofs of Theorems 1, 3, 4, and 5.

2 Preservation of Lower Semi-Equicontinuity by Integrals

This section provides definitions of equicontinuity properties for families of func-

tions used in this paper and introduces Theorem 1 stating that integration of the

elements of a family of lower semi-equicontinuous functions of two variables in

one of these variables preserves lower semi-equicontinuity. Theorem 1 is used in

the proof of Theorem 5.

Let us consider some basic definitions.

Definition 2 Let S be a metric space. A function f : S → R is called

(i) lower semi-continuous (l.s.c.) at a point s ∈ S if lim inf
s′→s

f(s′) ≥ f(s);
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(ii) upper semi-continuous at s ∈ S if −f is lower semi-continuous at s;

(iii) continuous at s ∈ S if f is both lower and upper semi-continuous at s;

(iv) lower / upper semi-continuous (continuous respectively) (on S) if f is lower

/ upper semi-continuous (continuous respectively) at each s ∈ S.

For a metric space S, let F(S),L(S), and C(S) be the spaces of all real-valued func-

tions, all real-valued lower semi-continuous functions, and all real-valued continu-

ous functions respectively defined on the metric space S. The following definitions

are taken from [9].

Definition 3 A set F ⊂ F(S) of real-valued functions on a metric space S is called

(i) lower semi-equicontinuous at a point s ∈ S if lim inf s′→s inff∈F(f(s
′) −

f(s)) ≥ 0;

(ii) upper semi-equicontinuous at a point s ∈ S if the set {−f : f ∈ F} is lower

semi-equicontinuous at s ∈ S;

(iii) equicontinuous at a point s ∈ S, if F is both lower and upper semi-equiconti-

nuous at s ∈ S, that is, lim
s′→s

sup
f∈F

|f(s′)− f(s)| = 0;

(iv) lower / upper semi-equicontinuous (equicontinuous respectively) (on S) if

it is lower / upper semi-equicontinuous (equicontinuous respectively) at all

s ∈ S;

(v) uniformly bounded (on S), if there exists a constant M < +∞ such that

|f(s)| ≤M for all s ∈ S and for all f ∈ F.

Obviously, if a set F ⊂ F(S) is lower semi-equicontinuous, then F ⊂ L(S).
Moreover, if a set F ⊂ F(S) is equicontinuous, then F ⊂ C(S). The following

theorem is the main result of this section.

Theorem 1 Let S1, S2, and S3 be metric spaces, let A ⊂ L(S1 × S2) be a set

of functions which is lower semi-equicontinuous and uniformly bounded, and let a

stochastic kernel Ψ(ds2|s3) on S2 given S3 be weakly continuous. If S2 is separa-

ble, then the set of functions

AΨ :=

{

(s1, s3) 7→
∫

S2

f(s1, s2)Ψ(ds2|s3) : f ∈ A
}

(5)

defined on S1 × S3 is lower semi-equicontinuous and uniformly bounded by the

same constant as the set A.

6



The proof of Theorem 1 is provided in Section 5.

Since A ⊂ L(S1×S2) and A is uniformly bounded in Theorem 1, for each s1 ∈
S1 and f ∈ A, the bounded function s2 7→ f(s1, s2) is lower semi-continuous.

Therefore, it is Borel-measurable and bounded. Thus, the integrals in formula (5)

are well-defined.

Corollary 1 Let S1, S2, and S3 be metric spaces, let A ⊂ C(S1 × S2) be a set

of functions which is equicontinuous and uniformly bounded, and let a stochastic

kernel Ψ(ds2|s3) on S2 given S3 be weakly continuous. If S2 is separable, then

the set of functions AΨ on S1 × S3 defined in (5) is equicontinuous and uniformly

bounded by the same constant as the set A.

Proof. Corollary 1 follows from Theorem 1 applied to the sets of functions A and

{−f : f ∈ A}. �

Remark 1 Corollary 1 is a particular case of [14, Theorem 5.1], where under the

same assumption a more general conclusion is stated, which is incorrect. The dif-

ference is that in [14, Theorem 5.1] the integration in (5) above is taken over an

arbitrary open subset O of S2 rather than over the set S2. However, the proofs in

[14] apply [14, Theorem 5.1] only to the case O = S2, which is stated in Corol-

lary 1.

Theorem 1 can be viewed as an extension from equicontinuity to lower semi-

equicontinuity of D in the following necessary and sufficient condition for weak

convergence of probability measures, whose sufficiency part is obvious by consid-

ering a singleton D.

Theorem 2 (Parthasarathy [21, Theorem II.6.8]) Let S be a separable metric space

and (µ(n))n=1,2,... be any sequence of probability measures on S. Then {µ(n))}n=1,2,...

converges weakly to µ ∈ P(S) if and only if

lim
n→∞

sup
f∈D

∣

∣

∣

∣

∫

S

f(s)µ(n)ds−
∫

S

f(s)µ(ds)

∣

∣

∣

∣

= 0

for every set D ⊂ C(S), which is equicontinuous and uniformly bounded.

3 Properties of Semi-Uniform Feller Stochastic Kernels

This section studies the properties of semi-uniform Feller kernels. In particular,

Theorem 3 provides several necessary and sufficient conditions for semi-uniform

Fellerness. Theorem 4 establishes another necessary and sufficient condition for
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a stochastic kernel to be semi-uniform Feller. This condition is Assumption 1,

whose stronger version was introduced in [12, Theorem 4.4]. Theorem 5 describes

the preservation of semi-uniform Feller continuity under the integration operation.

Let S1, S2, and S3 be Borel subsets of Polish spaces, and let Ψ on S1×S2 given

S3 be a stochastic kernel. For each set A ∈ B(S1) consider the set of functions

F
Ψ
A = {s3 7→ Ψ(A×B|s3) : B ∈ B(S2)} (6)

mapping S3 into [0, 1]. Consider the following type of continuity for stochastic

kernels on S1 × S2 given S3.

Definition 4 A stochastic kernel Ψ on S1×S2 given S3 is called WTV-continuous,

if for each O ∈ τ(S1) the set of functions FΨO is lower semi-equicontinuous on S3.

Definition 3(i) directly implies that the stochastic kernel Ψ on S1 × S2 given S3 is

WTV-continuous if and only if for each O ∈ τ(S1)

lim inf
n→∞

inf
B∈B(S2)\{∅}

(

Ψ(O ×B|s(n)3 )−Ψ(O ×B|s3)
)

≥ 0, (7)

whenever s
(n)
3 converges to s3 in S3. “WTV-continuity” in Definition 4 abbreviates

weak continuity of Ψ in the first variable s1 ∈ S1 and continuity in total variation

of Ψ in the second variable s2 ∈ S2.
Since ∅ ∈ B(S2), (7) holds if and only if

lim
n→∞

inf
B∈B(S2)

(

Ψ(O ×B|s(n)3 )−Ψ(O ×B|s3)
)

= 0. (8)

Similarly to Parthasarathy [21, Theorem II.6.1] and Schäl [29, Theorem 3.7],

where necessary and sufficient conditions for weakly convergent probability mea-

sures were considered, the following theorem provides several useful equivalent

definitions of semi-uniform Feller stochastic kernels.

Theorem 3 For a stochastic kernel Ψ on S1×S2 given S3, the following conditions

are equivalent:

(a) the stochastic kernel Ψ on S1 × S2 given S3 is semi-uniform Feller;

(b) the stochastic kernel Ψ on S1 × S2 given S3 is WTV-continuous;

(c) if s
(n)
3 converges to s3 in S3, then for each closed set C in S1

lim
n→∞

sup
B∈B(S2)

(

Ψ(C ×B|s(n)3 )−Ψ(C ×B|s3)
)

= 0; (9)

8



(d) if s
(n)
3 converges to s3 in S3, then, for eachA ∈ B(S1) such that Ψ(∂A,S2|s3) =

0,

lim
n→∞

sup
B∈B(S2)

|Ψ(A×B|s(n)3 )−Ψ(A×B|s3)| = 0; (10)

(e) if s
(n)
3 converges to s3 in S3, then, for each nonnegative bounded lower semi-

continuous function f on S1,

lim inf
n→∞

inf
B∈B(S2)

(
∫

S1

f(s1)Ψ(ds1, B|s(n)3 )−
∫

S1

f(s1)Ψ(ds1, B|s3)
)

= 0;

(11)

and each of these conditions implies continuity in total variation of the marginal

kernel Ψ(S1, · | · ) on S2 given S3.

The proof of Theorem 3 is provided in Section 5.

Note that, since ∅ ∈ B(S2), (9) holds if and only if

lim sup
n→∞

sup
B∈B(S2)\{∅}

(

Ψ(C ×B|s(n)3 )−Ψ(C ×B|s3)
)

≤ 0, (12)

and similar remarks are applicable to (10) and (11) with the inequality “≥” taking

place in (11).

Let us consider the following assumption. According to Example 1, Assump-

tion 1 is weaker than combined assumptions (i) and (ii) in [12, Theorem 4.4], where

the base τ s3b (S1) is the same for all s3 ∈ S3.

Assumption 1 Let for each s3 ∈ S3 the topology on S1 have a countable base

τ s3b (S1) such that

(i) S1 ∈ τ s3b (S1);

(ii) for each finite intersection O = ∩k
i=1Oi, k = 1, 2, . . . , of sets Oi ∈ τ s3b (S1),

i = 1, 2, . . . , k, the set of functions F
Ψ
O, defined in (6) with A = O, is

equicontinuous at s3.

Note that Assumption 1(ii) holds if and only if for each finite intersection O =
∩k
i=1Oi of sets Oi ∈ τ s3b (S1), i = 1, 2, . . . , k,

lim
n→∞

sup
B∈B(S2)

∣

∣

∣
Ψ(O ×B|s(n)3 )−Ψ(O ×B|s3)

∣

∣

∣
= 0 (13)

if s
(n)
3 converges to s3 in S3.
The following example demonstrates that the version of Assumption 1 with the

same base τb(S1) for all s3 ∈ S3 is stronger than Assumption 1.

9



Example 1 Let S1 = S3 := R, S2 be a singleton, and Ψ(S1|s3) := I{s3 ∈ S1}
for all S1 ∈ B(S1) and s3 ∈ S3.

Let us prove that Assumption 1 holds. Indeed, for a fixed s3 ∈ R let us consider

the countable base τ s3b (R) = {R} ∪ {(a +
√
2, b +

√
2) : a, b ∈ Q, a < b}

for s3 ∈ Q, and τ s3b (R) = {R} ∪ {(a, b) : a, b ∈ Q, a < b} for s3 /∈ Q,
where Q is the set of rational numbers. Note that this base satisfies the following

properties: (a) R ∈ τ s3b (R), (b) O = ∩k
i=1Oi ∈ τ s3b (R) for any k = 1, 2, . . . and

{Oi}ki=1 ⊂ τ s3b (R), and (c) s3 /∈ ∂O for all O ∈ τ s3b (R). Statement (a) implies

that Assumption 1(i) holds. Assumption 1(ii) holds because, according to (b) each

finite intersection O = ∩k
i=1Oi of sets Oi ∈ τ s3b (R), i = 1, 2, . . . , k, belongs to

τ s3b (R), and according to (c) the function s 7→ I{s ∈ O} is continuous at s3. Thus,

Assumption 1 holds.

Assumption 1 does not hold with the same base τb(S1) for all s3 ∈ S3 be-

cause for any nonempty open set O ∈ τ(S1) \ {S1} there exist s∗3 ∈ ∂O and a

sequence {s(n)3 }n=1,2,... ⊂ O such that s
(n)
3 → s∗3 in S3 as n→ ∞, and, therefore,

Ψ(O|s(n)3 ) = I{s(n)3 ∈ O} = 1 6→ 0 = I{s∗3 ∈ O} = Ψ(O|s∗3) as n→ ∞, that is,

the set of functions FΨO is not equicontinuous at s∗3. �

Theorem 4 shows that Assumptions 1 is a necessary and sufficient condition

for semi-uniform Feller continuity.

Theorem 4 A stochastic kernel Ψ on S1 × S2 given S3 is semi-uniform Feller if

and only if it satisfies Assumption 1.

The proof of Theorem 4 is provided in Section 5.

Now let S4 be a Borel subset of a Polish space, and let Ξ be a stochastic kernel

on S1 × S2 given S3 × S4. Consider the stochastic kernel Ξ∫ on S1 × S2 given

P(S3)× S4 defined by

Ξ∫ (A×B|µ, s4) :=
∫

S3

Ξ(A×B|s3, s4)µ(ds3), (14)

A ∈ B(S1), B ∈ B(S2), µ ∈ P(S3), s4 ∈ S4.
Note that Ξ is the integrand for Ξ∫ , which justifies the notation Ξ∫ . The fol-

lowing theorem establishes the preservation of semi-uniform Fellerness under the

integration operation in (14).

Theorem 5 A stochastic kernel Ξ∫ on S1 × S2 given P(S3)× S4 is semi-uniform

Feller if and only if Ξ on S1 × S2 given S3 × S4 is semi-uniform Feller.

The proof of Theorem 5 is provided in Section 5.
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4 Motivation for Studying Semi-Uniform Feller Continu-

ity: Control of Markov Processes with Incomplete In-

formation

Semi-uniform Feller continuity appears naturally in control of stochastic processes

with incomplete information, when a decision maker observes random variables

depending on the states of the process rather than the states themselves. The main

approach to analyzing such problems is to consider a stochastic process whose

states are posterior distributions of the states of the original process; see, e.g., [23,

33]. These posterior distributions are often called beliefs or belief states. The

Bayesian approach to the control of stochastic processes is based on substituting

states of the process with their beliefs.

Let X, Y, and A be Borel subsets of Polish spaces, where X is the set of hidden

states, Y is the set of observations, and A is the sets of controls. Let P be a stochas-

tic kernel on X×Y given X×Y×A. The dynamics of a Markov Decision Process

with Incomplete Information (MDPII) [7, 15] is defined by P (dxt+1, dyt+1|xt, yt, at),
where xt is a hidden state, yt is an observation, and at is a chosen control, t =
0, 1, . . . . It is possible to construct a completely observable Markov Decision Pro-

cess (MDP) whose dynamics is defined by a stochastic kernel q(dzt+1, dyt+1|zt, yt, at),
where zt is a posterior probability distribution of the state xt, t = 0, 1, . . . , and q
can be constructed from P by using the Bayesian arguments [7, 15, 23, 33].

An important question is whether the transition kernel q is weakly continuous,

and weak continuity of kernels is sometimes called Feller continuity. It is known

that weak continuity of P does not imply weak continuity of q [14, Example 4.1],

and finding sufficient conditions for weak continuity of q is an important question.

According to [15, Theorem 6.2], whose proof uses the results of this paper, q is

semi-uniform Feller if and only if P is semi-uniform Feller. Thus, semi-uniform

Feller continuity of P is a natural sufficient condition for weak continuity of q.
Weak continuity of the stochastic kernel q implies weak continuity of its marginal

kernel q̂(dzt+1|zt, yt, at):= q(dzt+1,Y|zt, yt, at). An important particular case of

a MDPII is a Partially Observable Markov Decision Process (POMDP). For a

POMDP the kernel P has a special structure, which is not important here, but

it is important that transition probabilities defined by kernels P do not depend on

observations. This means that the transition probabilities P and q in the case of

an POMDP can be written as P (dxt+1, dyt+1|xt, at), and q̂(dzt+1|zt, at). If cost

functions also do not depend on observations, then the information about observa-

tion is useless for the model with belief states constructed for the POMDP. In this

case, the central question is weak continuity of q̂(dzt+1|zt, at).
In nonlinear filtering theory, weak continuity of q̂(dzt+1|zt, at) is called weak
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continuity of the filter [18]. Sufficient conditions for continuity of nonlinear filters

and a slightly more general problem of weak continuity of the stochastic kernel

q̂(dzt+1|zt, at) for POMDPs were studied recently in [14, 15, 18]. Earlier results

can be found in [17] and [27]. All currently known sufficient conditions for weak

continuity of q̂ assume semi-uniform Feller continuity of the stochastic kernel P ;
see [15, Corollaries 6.10 and 6.11] and [8].

5 Proofs of Theorems 1, 3, 4, and 5

Before proving Theorem 1 we provide additional definitions and establish addi-

tional properties of functions from L(S1 × S2). For a bounded function g de-

fined on a metric space S, let us consider its Pasch-Hausdorff envelope defined

for m = 1, 2, . . . ,

r
(m)
g( · )(s) := inf

s′∈S
[g(s′) +mρS(s, s

′)], s ∈ S; (15)

see Bertsekas and Shreve [4, p. 125], Rockafellar and Wets [24], and Feinberg et

al [10] for properties of functions defined in (15). Formula (16) below defines

a parameterized version of the Pasch-Hausdorff envelope defined for a bounded

function f on S1 × S2, where the variable s1 plays the role of a parameter, and the

variable s2 plays the role of the variable s in (15). For each m = 1, 2, . . . , and

s1 ∈ S1, we set

r
(m)
f(s1, · )

(s2) := inf
s′2∈S2

[f(s1, s
′
2) +mρS2(s2, s

′
2)], s2 ∈ S2. (16)

Let the set of functions A from Theorem 1 be uniformly bounded by a constant

M. According to Bertsekas and Shreve [4, p. 125], for each f ∈ A, m1,m2 =
1, 2, . . . , m1 ≤ m2, s1 ∈ S1, and s2 ∈ S2, the following inequalities hold,

−M ≤ r
(m1)
f(s1, · )

(s2) ≤ r
(m2)
f(s1, · )

(s2) ≤ f(s1, s2). (17)

For each m = 1, 2, . . . we set

C(A,m) := {s2 7→ r
(m)
f(s1, · )

(s2) : f ∈ A, s1 ∈ S1} ⊂ F(S2). (18)

The following lemma establishes basic properties of the sets C(A,m), m = 1, 2, . . . .
It is used in the proofs of Theorems 1 and 3. It describes uniform approximations

of functions in families of lower semi-continuous functions by globally Lipschitz

functions.
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Lemma 1 Let A ⊂ L(S1×S2), where S1 and S2 are metric spaces. The following

statements hold:

(i) if the set A is uniformly bounded by a constant M > 0, then for each m =
1, 2, . . . the set C(A,m) defined in (18) is uniformly bounded by the same

constant M ;

(ii) for each m = 1, 2, . . . the set C(A,m) is equicontinuous;

(iii) if A is lower semi-equicontinuous and uniformly bounded, then, for each

sequence {s(n)1 }n=1,2,... ⊂ S1 that converges to s1 ∈ S1 and for each s2 ∈
S2,

lim inf
m→∞

lim inf
n→∞

inf
f∈A

[r
(m)

f(s
(n)
1 , · )

(s2)− f(s1, s2)] ≥ 0. (19)

Lemma 1(iii) is relevant to Bertsekas and Shreve [4, Lemma 7.14(a)] stating

how a lower semi-continuous function can be approximated from below by con-

tinuous functions. If A consists of one function f ∈ L(S2), which does not de-

pend on s1, then Lemma 1(iii) implies that r
(m)
f (s2) ↑ f(s2) as m → ∞ for

each s2 ∈ S2 because r
(m1)
f (s2) ≤ r

(m2)
f (s2) ≤ f(s2), for each s2 ∈ S2 and

for all m1,m2 = 1, 2, . . . such that m1 ≤ m2. Therefore, (19) transforms to

0 ≤ f(s2) − r
(m)
f (s2) ↓ 0 as m → ∞, which is equivalent to the conclusion

of [4, Lemma 7.14(a)] stating that r
(m)
f (s2) ↑ f(s2) as m→ ∞ for each s2 ∈ S2.

Proof of Lemma 1. (i) According to (17), the set C(A,m), m = 1, 2, . . . , is

uniformly bounded by M whenever the set A is uniformly bounded by M.
(ii) According to Bertsekas and Shreve [4, pp. 125, 126], for eachm = 1, 2, . . . ,

f ∈ A, s1 ∈ S1, and s
(1)
2 , s

(2)
2 ∈ S2,

|r(m)
f(s1, · )

(s
(1)
2 )− r

(m)
f(s1, · )

(s
(2)
2 )| ≤ mρS2(s

(1)
2 , s

(2)
2 ). (20)

Therefore, for each m = 1, 2, . . . the set C(A,m) is equicontinuous.

(iii) Since A is uniformly bounded by a constant M > 0,

sup
f∈A

sup
u1∈S1, u2∈S2

|f(u1, u2)| ≤M. (21)

Let m = 1, 2, . . . , si ∈ Si for i = 1, 2, and let us fix an arbitrary sequence

{s(n)1 }n=1,2,... ⊂ S1 converging to s1. Inequalities (17) and (21) imply that

−∞ < −2M ≤ r
(m)

f(s
(n)
1 , · )

(s2)− f(s1, s2) ≤ 2M <∞ (22)

for each f ∈ A and for an arbitrary integer n ≥ m. Let us take the infimum in

n ≥ m and in f ∈ A of the central expression in (22). Since the infimum in two
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parameters is equal to the double infimum, the definition of an infimum implies the

existence of an integer n(m) ≥ m and a function f (m) ∈ A such that

inf
n=m,m+1,...

inf
f∈A

[r
(m)

f(s
(n)
1 , · )

(s2)− f(s1, s2)]

> r
(m)

f(m)(s
(n(m))
1 , · )

(s2)− f (m)(s1, s2)−
1

m
.

(23)

Note that

s
(n(m))
1 → s1 as m→ ∞. (24)

Statement (i) and formula (21) imply that, for all g ∈ A and u ∈ S1,

|r(m)
g(u, · )(s2)| ≤M. (25)

Therefore, r
(m)

f(m)(s
(n(m))
1 , · )

(s2) is bounded by M, and, in virtue of (16), there exists

s
(m)
2 ∈ S2 such that

r
(m)

f(s
(n(m))
1 , · )

(s2) > f (m)(s
(n(m))
1 , s

(m)
2 ) +mρS2(s2, s

(m)
2 )− 1

m
. (26)

Inequalities (26), (21) and (25) imply ρS2(s2, s
(m)
2 ) ≤ 2M

m
+ 1

m2 . Therefore,

s
(m)
2 → s2 as m→ ∞. (27)

Inequalities (23) and (26) imply

inf
n=m,m+1,...

inf
f∈A

[r
(m)

f(s
(n)
1 , · )

(s2)− f(s1, s2)]

> f (m)(s
(n(m))
1 , s

(m)
2 )− f (m)(s1, s2) +mρS2(s2, s

(m)
2 )− 2

m
.

(28)

Since m = 1, 2, . . . is arbitrary,

lim inf
m→∞

lim inf
n→∞

inf
f∈A

[r
(m)

f(s
(n)
1 , · )

(s2)− f(s1, s2)]

≥ lim inf
m→∞

inf
n=m,m+1,...

inf
f∈A

[r
(m)

f(s
(n)
1 , · )

(s2)− f(s1, s2)]

≥ lim inf
m→∞

[f (m)(s
(n(m))
1 , s

(m)
2 )− f (m)(s1, s2)]

≥ lim inf
m→∞

inf
g∈A

[g(s
(n(m))
1 , s

(m)
2 )− g(s1, s2)] ≥ 0,

where the first inequality holds because the lower limit of a sequence is greater than

or equal to its infimum; the second inequality follows from (28); the third inequality
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holds because {f (m)}m=1,2,... ⊂ A; and the last inequality holds because the set A
is lower semi-equicontinuous and because of (24) and (27). �

Proof of Theorem 1. Since Ψ(ds2|s3) is a stochastic kernel, and since the set

of functions A ⊂ L(S1 × S2) is uniformly bounded, the set of functions AΨ is

uniformly bounded by the same constant as A.

Let us prove that the set of functions AΨ is lower semi-equicontinuous. Fix an

arbitrary sequence {s(n)1 , s
(n)
3 }n=1,2,... ⊂ S1×S3, that converges to some (s1, s3) ∈

S1 × S3, and fix an arbitrary m = 1, 2, . . . . Let us define

I
(m)
1 := lim inf

n→∞
inf
f∈A

(
∫

S2

r
(m)

f(s
(n)
1 , · )

(s2)Ψ(ds2|s(n)3 )−
∫

S2

r
(m)

f(s
(n)
1 , · )

(s2)Ψ(ds2|s3)
)

,

I
(m)
2 := lim inf

n→∞
inf
f∈A

∫

S2

[r
(m)

f(s
(n)
1 , · )

(s2)− f(s1, s2)]Ψ(ds2|s3).

Then

lim inf
n→∞

inf
f∈A

(
∫

S2

f(s
(n)
1 , s2)Ψ(ds2|s(n)3 )−

∫

S2

f(s1, s2)Ψ(ds2|s3)
)

≥ lim inf
n→∞

inf
f∈A

(
∫

S2

r
(m)

f(s
(n)
1 , · )

(s2)Ψ(ds2|s(n)3 )−
∫

S2

f(s1, s2)Ψ(ds2|s3)
)

≥ I
(m)
1 + I

(m)
2 ,

(29)

where the first inequality follows from the last inequality in (17), and the second

inequality follows from the semiadditive properties of infimums and lower limits.

Theorem 2, applied to S := S2, D(m) := {r(m)

f(s
(n)
1 , · )

: f ∈ A, n = 1, 2, . . .},

µ(n)(ds2) := Ψ(ds2|s(n)3 ), n = 1, 2, . . . , and µ(ds2) := Ψ(ds2|s3), implies

I
(m)
1 ≥ 0 (30)

because, according to Lemma 1(i,ii), the set of functions D(m) ⊂ C(S2) is equicon-

tinuous and uniformly bounded.

Since the sets of functions D(m) ⊂ C(S2) and A ⊂ L(S1 × S2) are uniformly

bounded, the function s2 7→ inf
f∈A

[r
(m)

f(s
(n)
1 , · )

(s2) − f(s1, s2)] is bounded, and it is

upper semi-continuous as an infimum of upper semi-continuous functions. Thus,

this function is Borel-measurable. Therefore,

I
(m)
2 ≥ lim inf

n→∞

∫

S2

inf
f∈A

[r
(m)

f(s
(n)
1 , · )

(s2)− f(s1, s2)]Ψ(ds2|s3)

≥
∫

S2

lim inf
n→∞

inf
f∈A

[r
(m)

f(s
(n)
1 , · )

(s2)− f(s1, s2)]Ψ(ds2|s3),
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where the first inequality is obvious, and the second one follows from Fatou’s

lemma because, according to Lemma 1(i), the set of functions

{s2 7→ inf
f∈A

[r
(m)

f(s
(n)
1 , · )

(s2) − f(s1, s2)]}n,m=1,2,... is uniformly bounded. Further-

more,

lim inf
m→∞

I
(m)
2

≥
∫

S2

lim inf
m→∞

lim inf
n→∞

inf
f∈A

[r
(m)

f(s
(n)
1 , · )

(s2)− f(s1, s2)]Ψ(ds2|s3) ≥ 0,

(31)

where the first inequality follows from Fatou’s lemma because the functions to

which Fatou’s lemma is applied are uniformly bounded in view of Lemma 1(i),

and the second inequality follows from Lemma 1(iii). Inequalities (29), (30), and

(31) imply

lim inf
n→∞

inf
f∈A

(
∫

S2

f(s
(n)
1 , s2)Ψ(ds2|s(n)3 )−

∫

S2

f(s1, s2)Ψ(ds2|s3)
)

≥ lim inf
m→∞

(I
(m)
1 + I

(m)
2 ) ≥ lim inf

m→∞
I
(m)
2 ≥ 0,

that is, the set of functions AΨ is lower semi-equicontinuous. �

Proof of Theorem 3. Under each of conditions (a)–(e) the marginal kernel

Ψ(S1, · | · ) on S2 given S3 is continuous in total variation. In particular, under

condition (a) this follows from (4) with f ≡ 1. Under condition (b), continuity in

total variation of the marginal kernel Ψ(S1, · | · ) follows from

lim
n→∞

sup
B∈B(S2)

∣

∣

∣
Ψ(S1 ×B|s(n)3 )−Ψ(S1 ×B|s3)

∣

∣

∣

= lim
n→∞

sup
B∈B(S2)

(

Ψ(S1 ×B|s(n)3 )−Ψ(S1 ×B|s3)
)

= 0,

where the second equality follows from equality (8) with O := S1 and from Ψ(S1×
S2| · ) = 1. Conditions (c) and (d) with C = S1 and A = S1 respectively imply

continuity in total variation of this marginal kernel. In addition, condition (e) with

f(s1) = I{s1 ∈ O}, where O are open subsets of S1, implies condition (b).

The equivalence of conditions (a)–(e) follows the following implications: (a) ⇒
(e) ⇒ (b) ⇔ (c) ⇒ (d) ⇒ (a).

(a) ⇒ (e). Let s
(n)
3 converge to s3 in S3, and let f be a nonnegative bounded

lower semi-continuous function on S1.We shall prove (11). Indeed, for an arbitrary
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fixed m = 1, 2, . . . , in view of (15) and the last inequality in (17),

lim inf
n→∞

inf
B∈B(S2)

(
∫

S1

f(s1)Ψ(ds1, B|s(n)3 )−
∫

S1

f(s1)Ψ(ds1, B|s3)
)

≥ lim inf
n→∞

inf
B∈B(S2)

(
∫

S1

r
(m)
f(·)(s1)Ψ(ds1, B|s(n)3 )

−
∫

S1

f(s1)Ψ(ds1, B|s3)
)

≥ I
(m)
1 + I

(m)
2 ,

(32)

where

I
(m)
1 := lim inf

n→∞
inf

B∈B(S2)

(
∫

S1

r
(m)
f(·)(s1)Ψ(ds1, B|s(n)3 )

−
∫

S1

r
(m)
f(·)(s1)Ψ(ds1, B|s3)

)

= 0,

(33)

I
(m)
2 := inf

B∈B(S2)

(
∫

S1

r
(m)
f(·)(s1)Ψ(ds1, B|s3)−

∫

S1

f(s1)Ψ(ds1, B|s3)
)

=

∫

S1

(

r
(m)
f(·)(s1)− f(s1)

)

Ψ(ds1,S2|s3).
(34)

We note that the last equality in (33) follows from statement (a) because, according

to Lemma 1(i,ii), the function s1 7→ r
(m)
f(·)(s1) is continuous and bounded on S1,

and the last equality in (34) follows from the inequality r
(m)
f(·)(s1) ≤ f(s1) for each

s1 ∈ S1. Finally, (32)–(34) imply that for each m = 1, 2, . . .

lim inf
n→∞

inf
B∈B(S2)

(
∫

S1

f(s1)Ψ(ds1, B|s(n)3 )−
∫

S1

f(s1)Ψ(ds1, B|s3)
)

≥
∫

S1

(

r
(m)
f(·)(s1)− f(s1)

)

Ψ(ds1,S2|s3) → 0, m→ ∞,

where the convergence to zero directly follows from Lebesgue’s dominated conver-

gence theorem because, according to Lemma 1, the sequence {r(m)
f(·)( · )−f( · )}m=1,2,...

is uniformly bounded and converges pointwise to zero. Thus, (11) holds.

(e) ⇒ (b). Let s
(n)
3 converge to s3 in S3, and O ∈ τ(S1). For a nonnegative

bounded lower semi-continuous function f(s1) := I{s1 ∈ O}, s1 ∈ S1, (11)

directly implies (8) and therefore (7).
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(b) ⇔ (c). Let s
(n)
3 converges to s3 in S3. Note that for each S ∈ B(S1)

lim sup
n→∞

sup
B∈B(S2)\{∅}

(

Ψ(S ×B|s(n)3 )−Ψ(S ×B|s3)
)

= lim sup
n→∞

sup
B∈B(S2)\{∅}

(

Ψ(S1 ×B|s(n)3 )−Ψ(S1 ×B|s3)

−Ψ((S1 \ S)×B|s(n)3 ) + Ψ((S1 \ S)×B|s3)
)

≤ lim sup
n→∞

sup
B∈B(S2)\{∅}

∣

∣

∣
Ψ(S1, B|s(n)3 )−Ψ(S1, B|s3)

∣

∣

∣

− lim inf
n→∞

inf
B∈B(S2)\{∅}

(

Ψ((S1 \ S)×B|s(n)3 )−Ψ((S1 \ S)×B|s3)
)

= − lim inf
n→∞

inf
B∈B(S2)\{∅}

(

Ψ((S1 \ S)×B|s(n)3 )−Ψ((S1 \ S)×B|s3)
)

,

where the first equality holds because {S,S1 \S} is a partition of S1, the inequality

follows from the sub-additive properties of upper limits and supremums, and the

last equality holds because the marginal kernel Ψ(S1, · | · ) on S2 given S3 is con-

tinuous in total variation. So, inequality (7) for arbitrary open set O ⊂ S1 follows

from inequality (12) for a closed set C = S1 \ O. Vice versa, inequality (12) for

arbitrary closed set O ⊂ S1 follows from inequality (7) for an open set O = S1\C.
That is, (b) ⇔ (c).

(c) ⇒ (d). Let s
(n)
3 converge to s3 in S3, and let A ∈ B(S1) be such that

Ψ(∂A,S2|s3) = 0. We shall prove (10). Indeed, since Ψ((Ā \ Ao) × S2|s3) =
Ψ(∂A×S2|s3) = 0, we have that Ψ(Ao×B|s3) = Ψ(A×B|s3) = Ψ(Ā×B|s3)
for each B ∈ B(S2). Moreover, since Ao ⊂ A ⊂ Ā and (b) ⇔ (c), then inequality

(7) applied to O = Ao and inequality (12) applied to C = Ā imply

0 ≤ lim inf
n→∞

inf
B∈B(S2)\{∅}

(

Ψ(Ao ×B|s(n)3 )−Ψ(Ao ×B|s3)
)

≤ lim inf
n→∞

inf
B∈B(S2)\{∅}

(

Ψ(A×B|s(n)3 )−Ψ(A×B|s3)
)

≤ lim sup
n→∞

sup
B∈B(S2)\{∅}

(

Ψ(A×B|s(n)3 )−Ψ(A×B|s3)
)

≤ lim sup
n→∞

sup
B∈B(S2)\{∅}

(

Ψ(Ā×B|s(n)3 )−Ψ(Ā×B|s3)
)

≤ 0,

that is, (10) holds because Ψ(S × ∅|s) = 0 for each S ∈ B(S1) and s ∈ S3.

(d) ⇒ (a). Let (d) hold. Let s
(n)
3 converge to s3 in S3, and let f be a bounded

continuous function on S1.We shall prove (4). Indeed, similarly to Parthasarathy [21,
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pp. 41-42], let us set

Ψf (S,S2|s3) := Ψ({s1 ∈ S1 : f(s1) ∈ S},S2|s3), S ∈ B(R).

Since f is a bounded function, there exists a bounded interval (a, b) such that a <
f(s1) < b for each s1 ∈ S1, and Ψf ( · ,S2|s3) is concentrated on (a, b). Moreover,

the set {s ∈ R : Ψf ({s},S2|s3) > 0} is countable or finite. Therefore, for a fixed

ε > 0 there exist Nε = 1, 2, . . . and t
(0)
ε = a < t

(1)
ε < t

(2)
ε < . . . < t

(Nε)
ε = b

such that t
(i)
ε − t

(i−1)
ε < ε and Ψf ({s1 ∈ S1 : f(s1) = t

(i)
ε },S2|s3) = 0 for each

i = 1, 2, . . . , Nε.

Consider the family of disjoint sets {A(i) := {s1 ∈ S1 : t
(i−1)
ε ≤ f(s1) <

t
(i)
ε }}Nε

i=1. Note that S1 = ∪Nε

i=1A
(i). Moreover, since ∂A(i) ⊂ {s1 ∈ S1 : f(s1) =

t
(i−1)
ε } ∪ {s1 ∈ S1 : f(s1) = t

(i)
ε }, we have that Ψ(∂A(i),S2|s3) = 0, and

therefore (10) holds with A = A(i) for each i = 1, 2, . . . , Nε. Consequently, for

fε(s1) :=
∑Nε

i=1 ti−1I{s1 ∈ A(i)}, s1 ∈ S1, and for each n = 1, 2, . . . ,

sup
B∈B(S2)

∣

∣

∣

∣

∫

S1

f(s1)Ψ(ds1, B|s(n)3 )−
∫

S1

f(s1)Ψ(ds1, B|s3)
∣

∣

∣

∣

≤I(n,ε)1 + I
(n,ε)
2 + I

(n,ε)
3

≤2ε+

Nε
∑

i=1

|t(i−1)
ε | sup

B∈B(S2)
|Ψ(A(i) ×B|s(n)3 )−Ψ(A(i) ×B|s3)|,

(35)

where

I
(n,ε)
1 := sup

B∈B(S2)

∫

S1

|f(s1)− fε(s1)|Ψ(ds1, B|s(n)3 ),

I
(n,ε)
2 := sup

B∈B(S2)

∫

S1

|f(s1)− fε(s1)|Ψ(ds1, B|s3)

I
(n,ε)
3 := sup

B∈B(S2)

∣

∣

∣

∣

∫

S1

fε(s1)Ψ(ds1, B|s(n)3 )−
∫

S1

fε(s1)Ψ(ds1, B|s3)
∣

∣

∣

∣

,

and the second inequality in (35) holds because |f(s1) − fε(s1)| < ε for each

s1 ∈ S1. Letting n→ ∞,

lim sup
n→∞

sup
B∈B(S2)

∣

∣

∣

∣

∫

S1

f(s1)Ψ(ds1, B|s(n)3 )−
∫

S1

f(s1)Ψ(ds1, B|s3)
∣

∣

∣

∣

≤ 2ε

because (10) holds with A = A(i), i = 1, 2, . . . , Nε. Since ε > 0 is an arbitrary,

(4) holds. �
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Before the proof of Theorem 4 we provide an auxiliary lemma. This lemma is

a version of Lemma 5.2 from Feinberg et al. [14] for the class of stochastic kernels

satisfying Assumption 1.

Lemma 2 Let Assumption 1 hold, and let an arbitrary s3 ∈ S3 be fixed. Then for

each Õ ∈ τ s3b (S1) and for each finite union O = ∪k
i=1Oi, k = 1, 2, . . . , of sets

Oi ∈ τ s3b (S1), i = 1, 2, . . . , k, the set of functions FΨ
Õ\O

is equicontinuous at s3.

Proof. Let Ak := {∩k
m=1Ojm : 1 ≤ j1 ≤ j2 ≤ . . . ≤ jk ≤ k}, k = 1, 2, . . . , be the

finite set of all possible intersections of the elements of the tuple {O1,O2, . . . ,Ok},
and let Âk := Ak ∪ {S1} be the finite set obtained by adding the single element S1
to Ak. Assumption 1(ii) imply that the sets of functions FΨ

Õ\O
is equicontinuous at

s3 because

sup
B∈B(S2)

|Ψ((Õ \ O)×B|s′3)−Ψ((Õ \ O)×B|s3)|

≤ sup
B∈B(S2)

|Ψ(Õ ×B|s′3)−Ψ(Õ ×B|s3)|

+ sup
B∈B(S2)

|Ψ((Õ ∩ O)×B|s′3)−Ψ((Õ ∩ O)×B|s3)|

≤
∑

D∈Âk

sup
B∈B(S2)

|Ψ((Õ ∩D)×B|s′3)−Ψ((Õ ∩D)×B|s3)| → 0,

as s′3 → s3, where the first inequality holds because Õ = (Õ \ O) ∪ (Õ ∩ O) and

(Õ \ O) ∩ (Õ ∩ O) = ∅, and the second inequality follows from the principle of

inclusion-exclusion applied to the set O. �

Proof of Theorem 4. In view of Theorem 3(a,b), it is sufficient to prove that

Assumption 1 holds if and only if the stochastic kernel Ψ on S1 × S2 given S3 is

WTV-continuous.

Necessity. Fix an arbitrary s3 ∈ S3. For the topology on S1, let us construct its

countable base τ s3b (S1) satisfying conditions (i) and (ii) from Assumption 1. For

this purpose we firstly note that every open ball B(o; δ), where δ > 0 and o ∈ S1,
contains open balls B(o;△δ

o(i)), 0 < △δ
o(i) ≤ δ, i = 1, 2, . . . , such that

△δ
o(i) ↑ δ as i→ ∞, (36)

and

Ψ((B̄(o;△δ
o(i)) \B(o;△δ

o(i)))× S2|s3) = Ψ(S(o;△δ
o(i))× S2|s3) = 0, (37)

that is,B(o;△δ
o(i)) is a continuity set for the probability measure Ψ( · |s3) for each

i = 1, 2, . . . ; Parthasarathy [21, p. 50].
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Secondly, we set O := ∩k
j=1B(oj ;△δj

oj (ij)) and Õ := ∩k
j=1B̄(oj ;△δj

oj (ij))
for a some natural number k = 1, 2, . . . , for a finite sequence of natural numbers

i1, i2, . . . , ik for a finite sequence of points o1, o2, . . . , ok from S1, and for a finite

sequence of positive constants δ1, δ2, . . . , δk. We observe that ∂O = Õ \O. Let us

prove that the set of functions F
Ψ
O, defined in (6) with A = O, is equicontinuous

at s3. Indeed, since the stochastic kernel Ψ on S1 × S2 given S3 is uniform semi-

Feller, equality (13) follows from Theorem 3(a,d) because

0 ≤ Ψ((Õ \ O)×B|s3) ≤ Ψ((Õ \ O)× S2|s3) = 0

for each B ∈ B(S2), where the second inequality holds because (Õ \ O) × B ⊂
(Õ \ O) × S2 for each B ∈ B(S2), and the equality holds because (Õ \ O) ×
S2 ⊂ (∪k

j=1S(oj ;△
δj
oj (ij))) × S2 and Ψ(S(oj ;△δj

oj (ij)) × S2|s3) = 0 for all j =
1, 2, . . . , k.

Finally, according to Rudin [26, Exercise 2.11], since the metric space S1 is

separable, there exists a sequence {s(j)}j=1,2,... ⊂ O such that the set {B(s(j); δ) :
δ ∈ Q>0, j = 1, 2, . . .} is a countable base of the topology on S1, where Q>0 is

the set of positive rational numbers. The set τ s3b (S1) := {B(s(j);△δ(i)

s(j)
) : δ ∈

Q>0, i, j = 1, 2, . . .} ∪ {S1} is a countable base of the topology on S1 because,

according to (36), B(s(j); δ) = ∪
i=1,2,...

B(s(j);△δ
s(j)

(i)) for each j = 1, 2, . . .

and δ ∈ Q>0. Moreover, for each finite intersection Ô = ∩k
i=1Oi of sets Oi ∈

τ s3b (S1), i = 1, 2, . . . , k, the set of functions FΨ
Ô

is equicontinuous at s3, where set

of functions FΨS1 is equicontinuous at s3 because the marginal kernel Ψ(S1, · | · ) on

S2 given S3 is continuous in total variation, that is, Assumption 1 holds.

Sufficiency. Assumption 1 implies that the marginal kernel Ψ(S1, · | · ) on S2
given S3 is continuous in total variation because, by the definition, equicontinuity

of the set FΨS1 at a point s3 ∈ S3 is equivalent to the continuity in total variation of

the marginal kernel Ψ(S1, · | · ) on S2 given S3 at the point s3.
Let us prove the WTV-continuity of the stochastic kernel Ψ on S1×S2 given S3.

For this purpose we fix an arbitrary element s3 ∈ S3 and a sequence {s(n)3 }n=1,2,... ⊂
S3 such that s

(n)
3 → s3 as n → ∞. Let us prove that (8) holds for an arbi-

trary fixed O ∈ τ(S1). Indeed, Assumption 1(ii) implies the existence of a tu-

ple {O1,O2, . . .} ⊂ τ s3b (S1) such that O = ∪∞
j=1Oj . Setting Ak := ∪k

j=1Oj ,
k = 1, 2, . . . , and A0 := ∅, we note that Lemma 2 implies that the set of functions

F
Ψ
Ok\Ak−1

is equicontinuous at s3 for each k = 1, 2, . . . . Thus,

lim inf
n→∞

inf
B∈B(S2)

(

Ψ(O ×B|s(n)3 )−Ψ(O ×B|s3)
)

= lim inf
n→∞

inf
B∈B(S2)

(

Ψ((∪∞
j=1(Ak \ Ak−1))×B|s(n)3 )
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−Ψ((∪∞
j=1(Ak \ Ak−1))×B|s3)

)

= lim inf
n→∞

inf
B∈B(S2)

∞
∑

k=1

(

Ψ((Ak \ Ak−1)×B|s(n)3 )−Ψ((Ak \ Ak−1)×B|s3)
)

≥ lim inf
n→∞

∞
∑

k=1

inf
B∈B(S2)

(

Ψ((Ak \ Ak−1)×B|s(n)3 )−Ψ((Ak \ Ak−1)×B|s3)
)

≥
∞
∑

k=1

lim inf
n→∞

inf
B∈B(S2)

(

Ψ((Ak \ Ak−1)×B|s(n)3 )−Ψ((Ak \ Ak−1)×B|s3)
)

= 0,

where first two equalities hold because O = ∪∞
j=1Oj = ∪∞

j=1(Ak \ Ak−1) and

(Aj \ Aj−1) ∩ (Ai \ Ai−1) = ∅ for each i 6= j, the first inequality follows from

the basic property of infimums, the second inequality follows from Fatou’s lemma

because each summand is bounded below by −1 since for each k = 1, 2, . . .

inf
n=1,2,...

inf
B∈B(S2)

(

Ψ((Ak \ Ak−1)×B|s(n)3 )−Ψ((Ak \ Ak−1)×B|s3)
)

≥ −Ψ((Ak \ Ak−1)× S2|s3),
and

∑∞
k=1Ψ((Ak \Ak−1)×S2|s3) = 1, and the last equality holds because the set

of functions FΨ
Ak\Ak−1

= F
Ψ
Ok\Ak−1

is equicontinuous at s3 for each k = 1, 2, . . . .

Therefore, inequality (8) holds for each O ∈ τ(S1), that is, the stochastic kernel Ψ
on S1 × S2 given S3 is WTV-continuous. �

Proof of Theorem 5. Sufficiency. Let (s
(n)
3 , s

(n)
4 ) → (s3, s4) in S3 × S4 as

n → ∞. Consider the sequence of probability measures {µ(n), µ}n=1,2,... such

that µ(n)(C) = I{s(n)3 ∈ C} and µ(C) = I{s3 ∈ C} for each C ∈ B(S3) and

n = 1, 2, . . . . Since (µ(n))n=1,2,... converges weakly to µ, and the stochastic kernel

Ξ∫ on S1 × S2 given P(S3)× S4 is WTV-continuous, we obtain that

lim
n→∞

inf
B∈B(S2)

(

Ξ(O ×B|s(n)3 , s
(n)
4 )− Ξ(O ×B|s3, s4)

)

= 0

for each O ∈ τ(S1), that is, the stochastic kernel Ξ on S1 × S2 given S3 × S4 is

WTV-continuous.

Necessity. Semi-uniform Fellerness of the stochastic kernel Ξ on S1×S2 given

S3 × S4 implies that for each O ∈ τ(S1) the set of functions F
Ξ
O = {(s4, s3) 7→

Ξ(O ×B|s3, s4) : B ∈ B(S2)} is lower semi-equicontinuous. Theorem 1 applied

to S1 := S4, S2 := S3, S3 := P(S3), A := F
Ξ
O, and ψ( · |µ) := µ( · ) for µ ∈ S3,

implies that the set of functions {(µ, s4) 7→ Ξ∫ (O × B|µ, s4) : B ∈ B(S2)}
is lower semi-equicontinuous because the stochastic kernel ψ on S2 given S3 is

weakly continuous. Since O ∈ τ(S1) is an arbitrary, the stochastic kernel Ξ∫ on

S1 × S2 given P(S3)× S4 is semi-uniform Feller. �
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