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Complex systems such as ecological communities and neuron networks are essential parts of our everyday
lives. These systems are composed of units which interact through intricate networks. The ability to predict
sudden changes in the dynamics of these networks, known as critical transitions, from data is important to
avert disastrous consequences of major disruptions. Predicting such changes is a major challenge as it requires
forecasting the behaviour for parameter ranges for which no data on the system is available. We address this
issue for networks with weak individual interactions and chaotic local dynamics. We do this by building a model
network, termed an effective network, consisting of the underlying local dynamics and a statistical description
of their interactions. We show that behaviour of such networks can be decomposed in terms of an emergent
deterministic component and a fluctuation term. Traditionally, such fluctuations are filtered out. However, as we
show, they are key to accessing the interaction structure. We illustrate this approach on synthetic time-series
of realistic neuronal interaction networks of the cat cerebral cortex and on experimental multivariate data of
optoelectronic oscillators. We reconstruct the community structure by analysing the stochastic fluctuations
generated by the network and predict critical transitions for coupling parameters outside the observed range.

I. INTRODUCTION

We are surrounded by a range of complex networks com-
posed of many units forming an intricate network of inter-
actions. Neuron networks form an important class of ex-
amples where the interaction structure is heterogeneous [1].
Because changes in the interaction can have massive ramifi-
cations on the system as a whole, it is desirable to predict
such disturbances and thus enact precautionary measures to
avert potential disasters. For instance, neurological disorders
such as Parkinson’s disease, schizophrenia, and epilepsy, are
thought to be associated with an anomalous interaction struc-
ture among neurons [2]. As in the case of neuron networks,
it is impossible to directly determine the interaction struc-
ture. Therefore, a major scientific challenge is to develop
techniques using measurements of the time evolution of the
nodes to indirectly recover the network structure and predict
the network behaviour when the interactions change.

The literature on data-based network reconstruction is vast.
Reconstruction methods can be classified into model-free
methods and model-based methods. The former identify the
presence and strength of a connection between two nodes by
measuring the dependence between their time-series in terms
of: correlations [3, 4], mutual information [5], maximum en-
tropy distributions [6, 7], Granger causality, and causation en-
tropy [8, 9]. Such methods alone do not provide information
on the dynamics, which is necessary to predict critical transi-
tions. Model-based methods provide estimates (or assume a
priori knowledge) of the dynamics and interactions, and use
this knowledge to reconstruct the network structure. When
the interactions are strong, the network structure can be recov-
ered [10–12]. For a more extensive account of reconstruction
(model-free and -based) methods see the reviews [10, 13, 14].
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In many applications, the behaviour of isolated nodes is
chaotic and the interaction is weak [1, 15, 16]. The network
structure typically has communities and hierarchical organi-
sations such as the rich-clubs [17]. As the interaction strength
per connection is weak and the statistical behaviour of the
nodes is persistent, the influence of each node on the net-
work corresponds essentially to a random signal. Existing
techniques fail to reconstruct a model from the data, as they
require the interaction to be of the same magnitude as the iso-
lated dynamics. In our setting, only the cumulative contribu-
tion of many links matter and the network signals decompose
into a deterministic and a fluctuation term. The latter, which
is usually filtered out, turns out to give crucial information on
the network structure and is fundamental to our approach.

In this paper, we introduce the notion of an effective net-
work which aims to model a complex system from observa-
tions of the nodes evolution when the network has a hetero-
geneous structure, the strength of interaction is small and lo-
cal dynamics are highly erratic. This approach starts by re-
constructing the local dynamics from observations of nodes
with relatively few connections, and then recover the interac-
tion function from observations of the highly connected nodes
whose dynamics are the most affected by the interactions as
a result of the multitude of connections they receive from the
rest of the network [18, 19]. A key achievement is that this re-
construction enables us to identify community structures also
when the coupling is only weak. Moreover, it recovers enough
information to forecast and anticipate the network behaviour,
even in situations where the parameters of the system change
into ranges that have not been previously encountered.

A. Complex networks of nonlinear systems

We consider networks with N nodes with chaotic isolated
dynamics and pairwise interactions. The network is described
by its adjacency matrixA, whose entry Aij equals 1 if node i
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receives a connection from j and equals 0 otherwise. The time
evolution of the state xi(t) of node i at time t is expressed as

xi(t+ 1) = Fi(xi(t)) + α

N∑
j=1

AijH(xi(t),xj(t)). (1)

When performing reconstruction, the isolated local dynamics
Fi : M → M , the coupling function H , the coupling param-
eter α (that is small), the adjacency matrix A, and even the
dimension k is the degree of the space M , are assumed to be
unknown. These equations model important complex systems
such as neuron networks [20], smart grids[21, 22], supercon-
ductors [23], and cardiac pacemaker cells [24].

B. Main assumptions

Our three assumptions are: (a) the local dynamics are
close to some unknown ergodic and chaotic map F (that
is, ‖F − Fi‖ ≤ δ, which is often the case in applications
[25, 26]). (b) The network connectivity is heterogeneous,
which means that the number of incoming connections at a
node i (given by its degree ki =

∑
j Aij) varies widely across

the network. ki is large for a few nodes called hubs. (c) α
is such that, denoting by ∆ = maxi ki the maximum num-
ber of connections α∆ is of the same magnitude of DF .
Assumptions (a) and (c) imply that only the cumulative ef-
fect of the coupling is important. A prime example is the cat
cerebral cortex which possesses inter-connected regions split
into communities with a hierarchical organization as well as
modular and disassortative rich-clubs. This network has het-
erogeneous connectivity, chaotic motion and weak coupling
[27–29]. Other examples include the drosophila optic lobe
network [30, 31]. For a given dataset, our effective network
first tests whether the underlying system satisfies assumptions
(a)− (c), and, if so, reconstructs the model.

We assume the availability of a time series of observations

yi(t) = φ(xi(t))

where φ is a projection to a variable on which unit interactions
depend. This situation occurs frequently in applications; as
with measurements of membrane potentials in neurons.

II. EFFECTIVE NETWORKS RECOVER STRUCTURE
AND DYNAMICS

To obtain an effective (reconstruction of the) network
from observations, we combine statistical analysis, machine-
learning techniques, and dynamical systems theory for net-
works. An effective network provides: local evolution laws
and averaged interactions for each unit that, in combination,
closely approximate the unit dynamics; a network with the
same degree distribution and community structures as the
original system. We use the term “effective” because it gath-
ers sufficient data to reproduce the behaviour of the original
network and predict its critical transitions.

Using our assumptions for the network and local dynam-
ics, we can show that the evolution at each node will have
low-dimensional excursions over finite time scales. More pre-
cisely, the evolution rule at node i is given by

Gi(xi) = Fi(xi) + βiV (xi(t))

where Fi ≈ F is the isolated dynamics,

βi = αki

is the rescaled degree, and

V (x) =

∫
H(x,y)dµ(y)

where µ is physical measure of the isolated dynamics. V takes
into account the cumulative effect of interactions on node i.
The true dynamics

xi(t+ 1) = Gi(xi(t)) + ξi(t)

is influenced by a fluctuation term ξi(t) that is small for an
interval of time which is exponentially large and depends on
the state of neighbours of the ith node. This low-dimensional
reduction has been rigorously established in test cases (see
[19]). See Appendix for further information.

The approximation described above applies to the measured
state variable yi(t). First of all we pre-process the data ac-
cording to the system under study (see Appendix E). The pro-
cessed variable is still referred to as yi(t). Takens reconstruc-
tion tells us that yi(t+ 1) is a nonlinear function of k+ 1 past
points yi(t), . . . yi(t − k), for a given number k provided by
the approach. Here, we focus on the case when k = 1, which
occurs in many real-world examples, and discuss cases with
k ≥ 2 in Appendix E. This means that

yi(t+ 1) = gi(y(t)) + ξi(t) (2)

where gi = fi(yi(t)) +βiv(yi(t)), and v is the corresponding
projection of effective coupling V .

A. Reconstruction procedure

An effective network is obtained in three main steps:
Step 1: Reduced dynamics. We employ Takens recon-

struction. If the time series is high dimensional, we discard
it. Otherwise, once we are in the appropriate dimension,
we estimate and learn the rule gi. We decompose gi as a
linear combination of basis functions, tailored to the appli-
cation. The parameters of the basis functions are obtained
by performing a 10-fold cross-validation with 90% training
and 10% test [32, 33] (see Appendix A). As the dynamics is
low-dimensional other techniques such as compressive sens-
ing [34, 35] or embedding [36] can be also employed.

Step 2: Isolated dynamics and effective coupling. We run
a model-free estimation that coarsely classify nodes according
to their degree by assigning to every pair of yi and yj a Pear-
son distance sij ≥ 0 such that sij ≈ 0 if the attractors of i
and j are similar and sij ≈ 1 if they are distinguishable. The
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higher the number of nodes with behaviour different from i,
the larger the intensity Si =

∑
j sij . Low degree nodes have

typically small Si while for hubs this quantity is large. Notice
that for the low-degree nodes, αkiv is negligible and the dy-
namics at the low-degree nodes are close to f . Therefore we
use gi at the identified low degree nodes to obtain an approx-
imation for f ≈ gi, while gi at hub nodes allows to estimate
βiv ≈ gi − f . We estimate βi by Bayesian inference.

Step 3: Network structure and communities. Since
βi = αki, we can recover the network’s degree distribution
from βi. Then, having the local rules gi, we can decompose
the time series in terms of a low-dimensional deterministic
part and the fluctuation term ξi, and use this last term to re-
cover community structures. If nodes i and j interact with
the same nodes, they are subject to the same inputs and the
correlation Cor(ξj , ξi) is high. If not, Cor(ξi, ξj) is nearly
zero due to the decay of correlations in the deterministic part.
Thus, Cor(ξj , ξi) is high when nodes i and j have high match-
ing index (high fraction of common connections), and are
likely to belong to the same cluster. Given the matrix ρij =
Cor(ξi, ξj), we estimate the adjacency matrix A by thresh-
olding the correlation matrix as Aij = Θ(ρij > τ), where
Θ is a Heaviside step function and the value of the threshold
τ between 0.3 and 0.6. We then apply the modularity-based
Louvain method [37] onA to detect communities.

That Cor(ξj , ξi) is high when nodes i and j have high
matching index, is true for generic coupling as shown by the
following argument. In general, the coupling function is a sum
of terms h(x, y) = u(x)v(y). This leads to noise terms

ξi(t) = u(xi)

 1

∆

∑
j

Aijv(yj)− ki
∫
v(y)dµ(y)


where µ is the physical measure of the local dynamics. Given
i and j the sum can be split into common connections to i and
j and to the independent connections:

ξi = u(xi)[ζi(t) + w(t)] and ξj = u(xj)[ζj(t) + w(t)]

where w is the noise due to the common connections (notice
that w has zero mean), and ζi, ζj depend on different coor-
dinates and can be assumed to be uncorrelated. Omitting the
time index t, the covariance of ξi and ξj is

Cov(ξi, ξj) ≈ E[(u(xi)w)(u(xj)w)].

After some manipulations, we obtain

Cov(ξi, ξj) ≈ 〈u〉2Var(w) (3)

so, if
∫
u(x)dµ(x) = 0, the correlation between the noise

will vanish even though they have a common term. Thus, the
above scheme is able to recover communities if 〈v〉 6= 0. If
this condition is not met, the network reconstruction via the
gi’s is not possible. We remark that 〈v〉 = 0 is a special condi-
tion on the coupling that is destroyed by small perturbations.

It is crucial that the correlation analysis is restricted to fluc-
tuations ξi. Since the variance of the deterministic part of
yi is larger than that of the small fluctuations ξi, performing
a direct correlation analysis between yi and yj hides all the

contributions coming from the covariance between ξi and ξj .
Consequently, the correlation of the deterministic part is close
to zero due to the chaotic dynamics, as shown in Appendix
A.

B. Benchmark model for the isolated dynamics

We present the effective network methodology applied to
networks of neurons. We use synthetic time-series where each
neuron is simulated using the Rulkov model, which has two
variables, u and w, evolving at different time scales as de-
scribed by F (x) = (F1(u,w), F2(u,w)) with

F1(u,w) =
β

1 + u2
+ w and F2(u,w) = w − νu− σ.

The fast variable u describes the membrane potential and is
the state variable measured by the observed time series yi(t),
while w describes the slow currents. Different combinations
of parameters σ and β give rise to different dynamical states of
the neuron, such as resting, tonic spiking, and chaotic bursts.
To test our procedure we considered two cases: σ = ν =
0.001 and β = 5.9, which correspond to tonic spiking, and
β = 4.4 which correspond to bursting. As for the coupling,
we consider chemical synaptic coupling, that is,H(xi,xj) =
(h(ui, uj), 0) with h(ui, uj) = (ui − Vs)Γ(uj), where

Γ(uj) = 1/(1 + exp{λ(uj −Θs)}),

and electrical synaptic coupling, H(xi,xj) = (h(ui, uj), 0)
with h(ui, uj) = uj − ui. In the chemical coupling, Vs is
a parameter called reverse potential. Choosing Vs > ui(t),
the synaptic connection is excitatory. We take Vs = 20,
Θs = −0.25, and λ = 10. In addition to Rulkov maps,
we show in the Appendix E that the approach performs well
on a wide range of nonlinear local dynamics such as: doubling
maps, logistic maps, Spiking Neurons, Henon maps. We also
provide performance analysis for Rössler oscillators in Sec-
tion III of the Supplementary Material.

III. REVEALING COMMUNITY STRUCTURE: THE
RICH-CLUB MOTIF

We focus on the network structure of the cat cerebral cortex
[29]. The network contains 53 meso-regions arranged in four
communities that follow functional subdivisions; visual (16
nodes), auditory (7 nodes), somatomotor (16 nodes) and fron-
tolimbic (14 nodes), as shown in Fig 1 (a). Some cortical areas
(hubs) form a hidden layer called a rich-club and are densely
connected to each other and the communities. A set of nodes
form a rich-club if their level of connectivity exceeds what
would be expected by chance alone. The maximum number
of connections in this network is ∆ = 37.

The regions and their connections were discovered by using
datasets from tract-tracing experiments [27, 28]. The network
obtained is weighted. For simplicity and to improve the per-
formance in detecting communities, we turn the network into
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FIG. 1. Effective network of the cat cerebral cortex. We use the local dynamics as a spiking neuron coupled via electric synapses. (a) The cat
cerebral cortex network with nodes colour coded according to the four functional modules. Rich-club members are indicated by red encircled
nodes. (b) The covariance matrix of the data cannot detect communities. (c) The covariance matrix of the fluctuations can distinguish clusters.
This matrix has entries color coded according to the key on the right with red entries corresponding to couple of nodes sharing a large numbers
of nearest neighbours in the network, while blue nodes correspond to couple of nodes that share a small number of common neighbours. (d)
A model in the cat cortex constructed via the effective network approach. From the matrix in (c) we can recover a representative effective
network. The reconstructed network represents the actual network in (a) with good accuracy.

an undirected simple graph [29]. We simulate each mesore-
gion as a neuron interacting via electrical synapses and ob-
tain a multivariate data {y1(t), y2(t), . . . , yN (t)} for a time
T = 5000. For simplicity, we will denote yi = {yi(t)}Tt=0.

A. Comparison with previous approaches

For comparison, we recover the network using two widely
employed approaches: functional networks [38–40], and
sparse recovery techniques [10, 34]. The intuition behind
the functional network approach is that nodes with similar
time series have similar characteristics. The functional net-
work can be constructed by the matrix of similarities between
nodes via statistical analysis [41, 42]. As a measure of simi-
larity, we employ a covariance analysis between the time se-
ries. The functional network cannot detect communities in
this case since the time-series at different nodes are essentially
uncorrelated (Fig. 1 (b)). Other similarity measures give no
significative improvement. See Appendix B for the details.

The key idea in sparse recovery techniques is to write the
dynamics as a linear combination of basis functions with
unknown coefficients, and the presence of a link is deter-
mined when any coefficient of the corresponding interaction
is nonzero. Thus a link is present if the estimated coefficient
corresponding to the link is above a given threshold σ.

We implemented the sparse recovery method to our bench-

mark model when the strength of each connection is of or-
der α ≈ 0.015. Hence we have chosen values of σ close to
this value. The reconstructed network does not identity the
clusters correctly as can be seen by comparing the blue and
red markers in Figure 2. In the cases that we are studying

0 10 20 30 40 50
node index

0

10

20

30

40

50

no
de

 in
de

x

σ=0.015 σ=0.01

0 10 20 30 40 50
node index

σ=0.011

0 10 20 30 40 50
node index

FIG. 2. Sparse recovery method on on cat cerebral cortex. Sparse
recovery is applied to the data generated by bursting neurons elec-
trically coupled on the cat cerebral cortex. Selecting the threshold
parameter σ in the method changes the reconstructed network. Here
we show the results of sparse recovery method for different enforced
sparsity σ. The nonzero entries of the original network’s adjacency
matrix are in blue. The red filled circles represent the nonzero entries
in the adjacency matrix of the network reconstructed with the sparse
recovery method. As each connection is small in comparison with
the isolated dynamics, the sparse recovery tends to neglect them.

here each individual link provides a negligible contribution
and only the cumulative effect of many links is relevant. The
coefficients to be recovered are close to zero, and cannot be
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distinguished from zero terms. A discussion on sparse recov-
ery can be found in Section I of Supplementary Materials.

B. Community structure via effective networks

Remarkably, the effective network is able to recover the
community structures (Fig. 1 (c)). Using Step 1, 2, and 3
we obtain a model for the isolated dynamics, coupling func-
tion, distribution of degrees, and correlations Cor(ξi, ξj). To
apply the method of community detection in [37], we thresh-
old the matrix of correlations, Fig. 1 (c), considering nodes
i and j linked only when the correlations were greater than
0.5. We test threshold values ranging from 0.3 to 0.6 and ob-
tained the similar results as the distribution of the entries of
the matrix of correlations is unimodal and has a peak near 0.5.
We use the algorithm in [43] to compute the rich-club coef-
ficients for each node. The coefficient depends on the degree
and is a number between 0 and 1. We assigned to the rich-club
the nodes with coefficient at least 0.8. As shown by Figure 1
(d), the effective network methodology is able to classify the
nodes in the network according to their function.

Notice that our model predicts the presence of a link be-
tween two nodes i and j when Cor(ξi, ξj) is high. Since every
node makes most of its interactions within a cluster, two nodes
with highly correlated fluctuations ξ(t) are likely to belong to
the same community, and this can be enforced in the effective
network by adding a connection between them.

C. Performance of the communities reconstruction

To quantify the effectiveness of community reconstruction,
we compute PE = m

N , where N is the total number of nodes
and m is the number of nodes assigned to the wrong commu-
nity. We compute PE for ∆α between 0.05 and 0.4. For each
value of α, we considered 50 different simulations by choos-
ing different initial conditions. The figure shows the plot of
the mean of PE and a shaded region corresponding to the
standard deviation. For ∆α values larger than 0.4, the recon-
struction procedure cannot identify the communities correctly
as synchronization rich club which appears.

In the Appendix E, we analyzed synthetic networks with
100 nodes which are undirected and have a rich-club struc-
ture. We used them as benchmark to evaluate the success of
the reconstruction. The ability of the reconstruction procedure
to recover the community structure was tested for various cou-
pling functions and isolated dynamics.

IV. PREDICTING CRITICAL TRANSITIONS IN
RICH-CLUBS

The ability to reconstruct the network and dynamics from
data can be exploited to predict critical transitions that may
occur when the coupling strength varies. This is crucial for
applications. For example in the cat brain, a transition to col-

PE
 (%

)

Δα

FIG. 3. Prediction error for misidentification of communities in
the reconstructed cat cerebral cortex from synthetic data. For
each realisation, the chosen parameters are the same as in Figure 1
and only the overall coupling is changed. Mean and standard devia-
tion of prediction error (PE) computed for the network over 50 real-
izations for each value of α. If ∆α > 0.42, the system synchronizes
and the procedure cannot reconstruct the community structures.

lective dynamics in the rich-club has drastic repercussions for
the functionality of the network [29, 44].

The goal is to obtain and predict the onset of collective mo-
tion in the rich-club from data recorded when the network is
far from a collective dynamics. The effective network can
predict the onset of such collective dynamics based on a sin-
gle multivariate time series for fixed coupling strength in a
regime far from the synchronized state. We analyze time-
series obtained simulating the dynamics for ∆α = 0.3, and
reconstruct the network structure and the isolated dynamics.

Transitions to synchronization between the scale variable is
possible while the fast spikes remain out of synchrony [45].
Notice that the slow variable w changes on a scale 1/µ. In the
present setting we have 1/µ = 103 which is about number of
points we need to apply the approach. Thus, for such short
time series we can neglect the slow scale. This is also an ad-
vantage of this present approach. To estimate the transition to
burst synchronization, we obtain the slow variable as a filter
over the membrane potential (fast variable). Since we mea-
sure the membrane potential yi(t) = ui(t), the slow variable
is given as zi(t) = µ

∑t
k=1(yi(k)−σ) and for a choice µ and

σ this can be identified with the slow variable of the model w.
In Appendix C, we derive the following equation for the slow
variable of a node in the rich club:

z(t+ 1) = (λ−∆α)z(t) + µ

t∑
n=0

z(n)

where λ = 1.42 is estimated from the data. The equation can
be used to analyze the effect of the network connectivity on
the dynamics. We can use the data on the network and the
dynamics recovered from the time-series recorded at ∆α =
0.3 to predict that at the value ∆α ≈ 0.42 the rich-club will
develop a burst synchronization (details in Appendix C).

To capture a transition to a synchronized state, we introduce
a phase θj(t) for the slow variable. To define θj(t), we first
smooth the time series [46]. Then, we find the time tn of local
maxima as the nth maximum point of the slow variable. We
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FIG. 4. Prediction of critical transitions in the rich-club of the cat
cerebral cortex. The level of synchronization r of the rich-club is
shown for different values of the coupling strength. Insets show time
series of neuronal dynamics of four rich-club members and color of
time series matches with the color of nodes in Fig. 1. For values
in the grey shaded region, r is increasing towards close to one and
the rich-club exhibits collective behavior. We can predict the critical
coupling αc (standard deviation in shaded region) by studying the
effective network obtained from a time series measured at ∆α = 0.3.

introduce the phase variable θ as

θj(t) = 2π

(
t− tn

tn+1 − tn
+ tn

)
, tn < t < tn+1

as shown in Ref. [47]. We then compute the order parameter

r(t)eiψ(t) =
1

Nc

Nc∑
j=1

eiθj(t).

A small value of the order parameter, r ≈ 0, means that no
collective state is present, whereas r(t) ≈ 1 means that the
bursts are synchronized. Figure 4 shows that behaviour of r
as a function of the coupling. The rich-club undergoes a tran-
sition to burst synchronization at ∆α ≈ 0.4 that corresponds
to an increase of roughly 40% of the coupling strength and is
close to the predicted value ∆α ≈ 0.42. In Appendix E, we
show other examples where the local dynamics is chaotic.

V. OBTAINING A STATISTICAL DESCRIPTION OF THE
NETWORK

The effective network can provide statistical description of
the network structure. To illustrate this, we reconstruct the
statistical properties of scale-free networks.

A. Scale-free networks of coupled bursting neurons

We consider coupled bursting neurons with excitatory
synapses [45] in scale-free networks. A scale-free network
has degree distribution P (k) = Ck−γ , where γ > 0 is the
characteristic exponent and C is a normalising constant. We
generate a scale-free network with N = 104 nodes such that
the probability of having a node of degree k is proportional to
k−γ , where γ = 2.53. We use a random network model which

is an extension of the Erdös-Rényi model for random graphs
with a general degree distribution. More details are provided
in Appendix D.

For this reconstruction we only need 2000 data points for
each node. Again, to every pair of time series yi and yj we
assign a Pearson distance sij ≥ 0 and the node intensity
Si =

∑
j sij . The empirical distribution of the intensities Si

approximates the degree distribution of the network, see the
second inset of Fig 5(a). In the example here, the estimated
structural exponent from the distribution of Si is γest = 3.1,
which yields a relative error of nearly 25% with respect to
the true value of γ (see the plots in Figure 5 a)). The func-
tional network therefore overestimates γ, which has drastic
consequences for the predicted character of the network. For
example, the number of connections of a hub for a scale-free
network is concentrated at kmax ∼ N1/(γ−1), so the rela-
tive inaccuracy for the estimate kest of the maximal degree is
kmax/kest = N1/γ−1/γest , which is about 500%. Such inac-
curacy has important repercussions for the ability to predict
the emergence of collective behaviour [19, 48].

The statistical measures used for the construction of a func-
tional network typically depend in a nonlinear way on the
degrees, thus causing a distortion in the statistics. We will
discuss the case of Pearson distance. Suppose that the sig-
nals {(yi(t), yi(t+ 1))} are purely deterministic, yi(t+ 1) =
gi(yi(t)). The Pearson distance sij between the signal at i
and j is a number between 0 and 1, depending on how close
these graphs are. This distance depends nonlinearly on the de-
grees ki and kj . Devising another distance s′ij without knowl-
edge of the interaction, in general, still carries the nonlinear
dependence on the degrees. Once fluctuations from the net-
work are included the differences between time-series can be
due to fluctuations rather than differences in the degrees. The
decomposition of the rules in terms of interactions and fluctu-
ations is essential to recover degree distribution accurately.

The effective network provides a better statistical descrip-
tion of the network structure. To compare with the functional
network approach, we constructed an effective network of the
same system tested for the functional network. The estimate
for γ from the effective network is γest = 2.55, which has
an error of only 1% (inset one of Fig. 5 (a)). We repeat the
analysis on a different network with different parameters γ in
the degree distribution. The estimated γest values are shown
in Fig. 5 (c) as a function of the true parameter γ. The relative
error on the estimated exponent is within 2%.

B. Performance of the degree distribution reconstruction

In Appendix E, we present additional simulations showing
how accurate the degree distribution is reconstructed for vari-
ous isolated dynamics. In particular in Figure 3 we show the
results for a) doubling maps with diffusive coupling, b) logis-
tic maps with Kuramoto interactions, c) spiking neurons with
electrical coupling, and d) Hénon maps with the y-component
diffusive coupled with the x-component. Moreover, in Section
III F we show the performance of the reconstruction for a sys-
tem of differential equations coupled on scale-free networks.
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original

FIG. 5. Reconstruction of structural power-law exponents γ
of scale-free networks from data. We estimated γ from the mul-
tivariate time series obtained from the dynamics random scale-free
networks with degree distribution P (k) ∝ k−γ . The plots in panel
(a) compare the functional and effective network approach. We ob-
tain better estimates using the effective network. Panel (b) shows the
degree distribution of the original system (in blue) and that estimated
from an effective model (in red) for the neural network in the optical
lobe of Drosophila melanogaster. We obtained an accuracy of 3% in
the structural exponent γ. Panel (c) shows the true exponent γ versus
γest obtained with an effective network from data for spiking neuron
coupled with chemical synapses. We generated 1000 networks with
distinct γ, from which the γest estimate is within 2% accuracy.

We provide a study on the effects of noise in the reconstruc-
tion. We established that for stochastically stable [49] systems
such that the doubling map if the noise amplitude η0 satisfies
η0 < αkmin, where kmin is the minimal degree the reconstruc-
tion procedure works. When the noise amplitude is of order
αki nodes with degree less than ki cannot be estimated.

C. The optic lobe of D. Melanogaster.

We applied our method to data simulated from the neuronal
network in the Drosophila Melanogaster optic lobe, which
constitutes >50% of the total brain volume and contains 1781
nodes [30]. The degree distribution has a power-law tail [31].
We used spiking neurons with chemical coupling to simulate
the multivariate time series, from which we constructed an ef-
fective model and estimate the degree distribution (Fig. 5 (b)).

D. Experimental data of optoelectronic oscillators

We now apply our effective network to experimental data of
networks of optoelectronic oscillators whose nonlinear com-
ponent is a Mach-Zehnder intensity modulator. This data
was generated in Ref. [50] where the authors studied en-
hancement of synchronization by structural changes in the
network. The the experimental setup can also be found in
Refs. [50, 51]. Each element consists of a clocked optoelec-
tronic feedback loop. Light from a 780 nm continuous-wave
laser is nonlinearly transformed as it passes through the Mach-
Zehnder intensity modulator. Light intensity is converted
into an electrical signal by a photoreceiver and measured by
a field-programmable gate array (FPGA) via an analog-to-
digital converter. The FPGA is clocked at 10 kHz, resulting in
the discrete-time map dynamics of the oscillators. The FPGA
controls a digital-to-analog converter that drives the modula-
tor with a voltage xi(t+1) = βI(xi(t)), closing the feedback
loop. The elements are coupled electronically on the FPGA
according to the desired coupling matrix as described in detail
in Ref. [51]. The system can be modeled as

xi(t+1) = βI(xi(t))+σ

n∑
j=1

Aij [I(xj(t))−I(xi(t))] mod 2π

where t is discrete time, β is the feedback strength, I(x) =
sin2(x + δ) is the normalized intensity output of the Mach-
Zehnder modulator, x represents the normalized voltage ap-
plied to the modulator, and δ is the operating point set to π/4.
The data is acquired for β = 4.5 and 17 elements coupled
through the network presented in Figure 6 left panel. The cou-
pling strength σ varies from 0 to 1 in steps of 0.0325 starting
from 0.015625. For each fixed value of σ, we obtain the ex-
perimental multivariate time series {x1(t), · · · , x17(t)}15385t=1 .

We discard the first 5000 data points for each i = 1, · · · , 17
as a transient. We will provide an analysis for the coupling
σ = 0.03125. First, we perform a functional network analy-
sis by considering a correlation matrix Σx of the multivariate
time series. To obtain a model of the adjacency matrix we
threshold Σx. The value of the threshold 0.02 is chosen such
that the functional network has a mean degree close to the
actual network. The result is shown in Figure 6 in the middle
panel and as observed the functional network does not capture
the actual network structure.

Next we employ the effective network. We start by applying
Step (1) to learn the function gi and Step (2) from where we
obtain the degrees and coupling strength. Once we obtain gi,
we filter the determinist part from xi to obtain the fluctuations
ξi. Next, we compute correlation matrix Σξ for the fluctua-
tions ξi. To turn this matrix into a network, we threshold it.
Again the value of the threshold is fixed such that the mean
degree is closed to the actual network. Here, any threshold
value from 0.07 to 0.1 works. The result is shown in Figure
6, in the right panel, and shows excellent agreement with the
actual network. In fact, only two links are misidentified.

We also performed the analysis for further coupling
strengths σ. For large coupling strengths both functional net-
work and effective network will capture the network misiden-
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tifying on average 4 links. In these cases, the effective net-
work has the advantage that it provides in addition to a model
of the adjacency matrix also a model for the local dynamics.

VI. CONCLUSIONS

We have introduced an effective network obtained from
time-series of a complex network observing the dynamics at
each node. Our method complements the existing ones in two
ways: First of all, it encompasses the case of chaotic local dy-
namics at each node. Secondly it deals with weak coupling
among the nodes. Both cases are commonly found in applica-
tions [1, 15, 16]. Key to the success of the reconstruction is
the heterogeneity of the network which allows us to perform
a multi-level reduction. To recover the community structures,
we use that certain noise terms associated with the time series
at two nodes in the same community are correlated. By col-
lecting data when the network is far from critical transitions,
an effective network enables us to predict a critical transition.

We have compared our procedure with methodologies most
relevant for the systems considered. We have excluded re-
sults tailored to specific setups or dynamics (binary dynamics
[52], and see [10] for a review). We did not consider meth-
ods that rely on measurements obtained by intervening on the
system with controlled inputs [13] and restrict our attention
to time-series recorded under constant conditions. When the
coupling is strong, sparse recovery can be applied [34]. When
the coupling is weak sparse recovery cannot distinguish small
parameters from those that are identically zero thus misiden-
tifying connections between nodes. Also model-free methods
are ill-suited as the influence of a single pairwise interaction
on the time-series is weak and can hardly be detected.

The effective network methodology performs well when the
network is heterogenous and has a few nodes making a large
number of connections while most of the nodes are less con-
nected, and the local dynamics are chaotic and their typical
orbits visit most of the phase space. The effective network ap-
proach did not perform well in two cases. The first is when
most of the observed time-series take values on a very re-
stricted part of the phase space, for example if the local dy-
namics has a singular attractor, as an attracting fixed point, or
if it spends long periods of time in a small region, like around
the fixed points of the classical Lorenz attractor. This means
that we don’t have access to a big portion of phase space,
and no prediction is possible in those regimes of coupling
strength that make these portions accessible. The passage near
a fixed point also suppresses the fluctuations hindering the re-
construction of communities. This is what seems to happen
for example in the bursting dynamics of Rulkov maps, when
the quiescent state is too long. These situations are excluded if
the local dynamics is sufficiently chaotic. The second case is
when the coupling is strong enough to synchronize big parts
of the network. For example, a synchronous rich-club can
send similar forcing to nodes in different communities result-
ing in high correlations between the fluctuations. Therefore
our method would identify these nodes as belonging to the
same community even if they are not.

Appendix A: Effective network representation from data

A summary of the effective network approach is given in
Figure 7. Here we include some details that were omitted for
the sake of presentation in the main text.

In Step 2 of the reconstructing procedure, we identify low
degree nodes by analysing the distribution of Si. More pre-
cisely, we use the top Ntop nodes of the highest intensity
to obtain a proxy for the isolated dynamics. We then aver-
age these rules to get 〈g〉 ≈ f . The choice of Ntop is not
fixed and depends on the number of nodes and the fluctuation
σ2
g = 〈(gi − 〈g〉)2〉. For scale-free (Barabasi-Albert) net-

works the degree of the hubs scales as N1/2, a good heuris-
tic is to choose Ntop satisfying σ2

g/N
1/2
top � 1. The effective

coupling function αkiv can be obtained analysing the family
{gi − 〈g〉}Ni=1 which can yield the shape of v up to a multi-
plicative constant via a nonlinear regression by imposing that
gi−〈g〉 and gj−〈g〉 are linearly dependent. The choice of the
base function for the fitting is supervised (see Appendix E).

In Step 3, after selecting a v that satisfactorily approximates
gi − 〈g〉 up to a multiplicative constant over all indices i, the
parameter βi is estimated using a dynamic Bayesian infer-
ence. Because the fluctuations ξi(t) are close to Gaussian,
we use a Gaussian likelihood function and a Gaussian prior
for the distribution of the values of βi, and hence obtain equa-
tions for the mean and variance. We split the data into epochs
of 200 points and update the mean and variance iteratively.

1. Community structures

Once we obtain the rules gi, we filter the deterministic part
of the time series yi and access the fluctuations ξi (recall Eq.
(2)) and decompose it as ξi = ξci + ξoi where ξci is the fluc-
tuation of the local mean field from nodes in the cluster con-
taining i, and ξoi is the contribution from outside the cluster.
Since a node makes most of its connections within its cluster,
ξci � ξoi with high probability, and thus if i and j belong to
the same cluster Corr(ξi, ξj) = Corr(ξci , ξ

c
j ). The common

noise is generated by the common connections between nodes
i and j. For fixed isolated dynamics and coupling function

Corr(ξci , ξ
c
j ) ∝ µ̂ij .

Corr(ξi, ξj) is related to the matching index [29] of the nodes
i and j. This is a parameter used to quantify the number of
common neighbours of two nodes. Recall that the degree of
node i is ki =

∑N
j Aij and counts the number of neighbours

it has. Consider the neighbourhood of node i, Γ(i) = {j ∈
{1, . . . , N} |Aij = 1}. This is the set of nodes that shares an
edge with the node i. The matching index of nodes i and ` is
the cardinality of the overlap of their neighbourhoods µi` =
|Γ(i) ∩ Γ(`)|. We consider the normalised matching index:

µ̂i` =
|Γ(i) ∩ Γ(`)|
|Γ(i) ∪ Γ(`)|
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a) b) c)

d) e) f)

FIG. 6. Effective network from experimental data of networks of optoelectronic oscillators. We consider multivariate time series of
voltages of a network of 17 weakly coupled optoelectronic oscillators (interaction corresponding to 1% of the oscillator amplitude). In the left
panel, we show the actual network used to coupled the optoelectronic oscillators in Ref. [50] as adjacency matrix in a) and graph representation
in d). In the mid panel, we show the reconstruction of the network by a functional network analysis in terms of its adjacency matrix in b)
and graph representation in e). In the right panel, we show the reconstruction of the network from an analysis of the dynamical fluctuations
by applying the effective network approach as adjacency matrix in c) and graph representation in f). The effective network provide a striking
reconstruction and only two links are misidentified and are indicated in f as red links. In the graph representation, the nodes of the network are
coloured according to the community obtained by a community detection algorithm [37].

Rules

f1

fi

fN

Data Network Representation

fi : isolated dynamics
+

mean interaction
+ 

fluctuations

…
…

…
…

Step 1: 
machine learning techniques & dynamical 
systems theory allows to obtain rules

Step 2: 
heterogeneity in the rules allows 
us to obtain the interaction

Step 3: 
reconstruction of highly chaotic 
oscillator network from data

Local Interactions

FIG. 7. Reconstruction scheme with the effective network. From the time series, we build a model for the local evolution fi at each node.
Under the assumption that such rules change from node to node depending on their connectivity, we estimate the coupling function. Using the
fluctuations of the time series with respect to the low-dimensional rules, we recover the community structures. Gathering all this information,
we obtain an effective network that can be used to predict critical transitions

.

or equivalently in terms of the adjacency matrix

µ̂i` =
(A+A2)i`

ki + k` − (A+A2)i`
.

Clearly µ̂i` = 1 if and only if i and l are connected to exactly
the same nodes,and µ̂i` = 0 if they have no common neigh-
bours. It is well known that in the cat cerebral cortex nodes in
the same community have a high matching index while nodes
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are distinct communities has a low matching index. This tends
to be typically in modular networks [29]. For nodes in distinct
clusters the component ξci ≈ 0, so Corr(ξi, ξj) ≈ 0. We re-
cover the network structure from a noise covariance analysis.

Filtering out the deterministic part plays a major role in re-
covering community structures. Suppose we have two signals
of the form yi(t) = Yi(t) + ζ(t), i = 1, 2, where Yi is inde-
pendent of i and ζ(t) is a common noise term. Yi represents
the superposition of the deterministic chaos and the indepen-
dent fluctuations. For the correlation, we have

Corr(yi, yj) ≈
Cov(ζ, ζ)

σ2
Y1
σ2
Y2

Hence, the large values of the variance of the time series
(σyi ≈ σYi � σζ) suppress the contribution of the common
noise, and an analysis solely based on the the original time
series yi will overlook the common noise contribution.

Appendix B: Functional networks

For networks of chaotic oscillators, building the functional
network from the standard Pearson correlation between time
series gives no meaningful results because of the decay of cor-
relation intrinsic to dynamics. Functional networks are built
using a Pearson distance sij ≥ 0 describing the proximity of
the dynamics at two nodes i and j. To do this, we consider
the time series zi(t) := (yi(t), yi(t + 1)), t = 0, . . . , T − 1
reordered in zlexi (t) according to the lexicon order; that is,
according to the magnitude of the first component of zi(t).
Then, let rij be the Pearson correlation, rij = Cor(zlexi , zlexj ),
so that rij = 1 indicates that the attractors at nodes i and j
agree. Define the Pearson distance sij = 1 − |rij | so that
sij = 0 indicates agreement of the dynamics and sij > 0
measures the difference between the attractors.

The intensity Si =
∑
j sij approximates how many nodes

have a dynamical rule different from i and helps to distinguish
between poorly connected nodes and hubs. Since most of the
network is composed of poorly connected nodes, they exhibit
a smaller Si than high-degree nodes, which are scarcer and
have different dynamics from the low-degree nodes.

Appendix C: Predicting critical transitions

Here we explain how to gather the information for a theo-
retical prediction of the critical transition.
Reduction in the rich-club. Nodes in the rich-club have de-
grees of approximately ∆ and make κ∆ connections inside
the rich-club and (1 − κ)∆ connections to the rest of the
network. Following our reduction scheme, the interactions
within and outside the rich-club can be described by the ex-
pected value of the interactions with respect to the invariant
measure associated with each of them. Let C denote the set
of nodes in the rich-club, then the coupling term is∑
j

AijH(xi,xj) =
∑
j∈C

AijH(xi,xj) +
∑
j 6∈C

AijH(xi,xj)

However,∑
j 6∈C

AijH(xi,xj) = (1− κ)∆

∫
h(xi,y)dµ(y) + ξoi (t)

where µ is the invariant measure for the nodes outside the rich-
club. Hence, for the rich-club we obtain

xi(t+ 1) = qi(xi(t)) +
∑
j∈C

AijH(xi,xj) + ξoi (t),

where

qi(xi(t)) = Fi(xi(t)) + (1− κ)∆α

∫
H(xi,y)dµ(y).

Predicting the transition to collective behaviour. Let us re-
call that when isolated ui(t+ 1) = F1,i(ui(t)) +wi(t) where
F1,i ≈ F1, wi(t+ 1) = wi(t) + µ(wi(t)− 1), and

w(t+ 1) = w0 + µ

t∑
n=0

(u(n)− 1)) (C1)

Using the reduction Eq. (C1), in the network we obtain

ui(t+ 1) = F1,i(ui(t)) + ui(t) + ∆α[〈u〉 − ui(t)] + ξi(t)

where i denotes the ith nodes in the rich-club, 〈u〉 is the mean
in the rich-club and ξi are fluctuations. We fix two nodes yi =
ui and yj = uj in the rich-club and consider

ζ(t) = ui(t)− uj(t)
Using that F1,i ≈ F1 by the mean value theorem we obtain

ζ(t+ 1) = DF1(xi(t))ζ(t) + µ

t∑
n=0

ζ(n)−∆αζ(t)

and introducing a proxy for the dynamics of the slow variables

η(t) =

t∑
n=0

z(n)

and considering
∑t
n=0DF1(xi(n))ζ(n) ≈ λ

∑t
n=0 ζ(n)

where we used that
∑t
n=0 ζ(n) is a slow variable. We obtain

η(t+ 1) = (λ−∆α)η(t) + µ

t∑
n=0

η(n)

For the cat cerebral cortex ∆ = 37. Given the time series {yi}
for ∆α = 0.3, we estimate F1 using our method i as the slow
variables are constants over short time scales, and the obtain
slow variables as a filter over the fast variables. From the data,
we estimate λ = 1.42 and thus we obtain ∆α = 0.42. At this
critical value the slow variables tend the stay together due to
the contraction in the dynamics. This is related to the onset
of synchronization in the bursts, which is captured via a phase
variable through the order parameter.

For estimation of the power-law distribution parameters, we
use the maximum likelihood estimator [53, 54]. After that, we
test the reliability between the data and the power law by using
the goodness-of-fit method. If the resulting p-value is larger
than 0.1, the power-law estimation is an appropriate hypoth-
esis for the data. A complete procedure for the analysis of
power-law data can be found in Ref. [55].
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Appendix D: Dimensional reduction in heterogeneous networks

We present an informal statement of the theoretical results
used in the reconstruction procedure. For a precise statement
see [19]. The theorem has three main assumptions:

1) The local dynamics must increase the distance
between points by a constant factor.

2) The networks are heterogeneous. Most of the nodes
have small degree δ ∼ N

ε
2 , and some nodes are hubs

with degree ∆ ∼ N 1
2+ε.

3) The reduced dynamics must be hyperbolic. The
maps Gj are either expanding or to have a finite
number of attracting periodic orbits. In dimension one,
every map can be perturbed by an arbitrarily small
amount to obtain such an hyperbolic map [56].

Under these assumptions, we have the following result

Theorem 1 ([19]) For every hub node j, the dynamics at the
hub is given by

xj(t+ 1) = Gj(xj(t)) + ξj(t)

where |ξj(t)| < ξ for time T with 1 ≤ T ≤ exp[Cξ2∆],
and a set of initial condition of measure 1 − T/ exp[Cξ2∆],
where C is constant in ∆ and ξ.

Notice that one can pick the time scale T exponentially
large, but such that T/ exp[Cξ2∆] is very small so that, for
large ∆, the approximation result holds for very long time
and for a large set of initial conditions.

Appendix E: The effective network for a variety of chaotic
dynamics and coupling

We tested the performance of the effective network in re-
covering community structure and degree distribution for the
systems listed below. Recovery of community structures was
tested on a network of 100 nodes having five clusters of 20
nodes each. Four of these clusters are modeled as Erdös-
Renyi random graph with connection probability p = 0.3, and
the fifth, the integrating cluster, with p = 0.8. The coupling
strength is α is of the order of 10−4. Recovery of degree dis-
tribution was tested on scale-free networks with 6000 nodes
and characteristic exponent γ varying between 2.4 and 3.6,

and coupling strength at α∆ = 0.5. Details and results of the
simulations can be found in Supplementary Materials.

Doubling maps. Since the dynamics is one dimensional,
we denote x = x and Fi(x) = fi(x) with fi(x) = 2x +
εi sin 2πx mod 1 and where we take εi to be i.i.d. ran-
dom variables uniformly distributed on [0, 10−3]. Likewise
we write H = h with h(xj , xi) = sin 2πxj − sin 2πxi. We
were able to recover all community structures, and the char-
acteristic exponent γ within 0.5% accuracy.

Logistic map. Again, x = x and Fi(x) = fi(x) where
f(x) := 4x(1− x), and we consider h(xj , xi) = sin(2πxj −
2πxi). We were able to recover all community structures, and
the characteristic exponent within 0.5% accuracy.

Spiking neurons with electrical synapses. We use the
same spiking neurons as in the main body of the manuscript
and denoting x = (u,w) the coupling function reads as
H(xi,xj) = E(xj − xi) = (uj − ui, 0). We were able
to recover all community structures and the characteristic ex-
ponent within 2% accuracy.

Bursting neurons with electrical synapses. Our numeri-
cal investigation reveals that when the resting time is not much
larger then the total bursting time the reduced dynamics is ca-
pable of extracting the relevant information of the time series.
Thus, we fixed the neuron parameter β = 4.4 to obtain a burst-
ing dynamics. The coupling is electrical as for the systems
above. We were able to recover all community structures.

Henon Maps. Using the notation x = (u,w), the coupled
Hénon maps we study are given by F (u,w) = (1 − 1.4u2 +
w, 0.3w and H(xi,xj) = (wj − wi, 0). We assume to ob-
serve only the dynamics of the first component y = φ(x) = u.
In this multidimensional case, the reconstruction will start by
determining the dimension of the reduced system. Takens em-
bedding reveals that the dimension is two for large time excur-
sions, hence, we will aim at learning a function

yi(t+ 1) = gi(yi(t), yi(t− 1)) + ξi(t). (E1)

We use polynomial functions for the fitting via a 10-fold cross-
validation. Our theory implies that gi(yi(t), yi(t − 1)) =
f(yi(t), yi(t − 1)) + αkiv(yi(t), yi(t − 1)) where f models
the isolated dynamics and v the coupling. We obtain f from
the low-degree nodes via a similarity analysis. We learn h by
αkiv(yi(t), yi(t− 1)) = gi(yi(t), yi(t− 1))− f(yi(t), yi(t−
1)). We were able to recover all community structures and the
characteristic exponent within 2% accuracy.
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[29] Zamora-López, G., Zhou, C., & Kurths, J. Cortical hubs form
a module for multisensory integration on top of the hierarchy
of cortical networks. Frontiers in Neuroinformatics 4, 1–13
(2010).

[30] Takemura, S., et al. A visual motion detection circuit suggested
by Drosophila connectomics. Nature 500, 175–181 (2013).
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Data Archival

The connection matrices of cat cortex is found at https://
sites.google.com/site/bctnet/datasets. Connec-
tivity of Drosophila Melanogaster is found at https://
neurodata.io/project/connectomes/. The experimental
data on the optoelectronic oscillators from Ref. [50] can be obtained
by contacting Joseph Hart and R. Roy upon reasonable request.
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