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Abstract

We consider the discrete defocusing nonlinear Schrödinger equation in its integrable version,
which is called defocusing Ablowitz-Ladik lattice. We consider periodic boundary conditions with
period N and initial data sample according to the Generalized Gibbs ensemble. In this setting, the
Lax matrix of the Ablowitz-Ladik lattice is a random CMV-periodic matrix and it is related to the
Killip-Nenciu Circular β-ensemble at high-temperature. We obtain the generalized free energy of
the Ablowitz-Ladik lattice and the density of states of the random Lax matrix by establishing a
mapping to the one-dimensional log-gas. For the Gibbs measure related to the Hamiltonian of the
Ablowitz-Ladik flow, we obtain the density of states via a particular solution of the double-confluent
Heun equation.

1 Introduction
The defocusing Ablowitz–Ladik (AL) lattice for the complex functions αjptq, j P Z and t P R, is the
system of nonlinear equations

i 9αj “ ´pαj`1 ` αj´1 ´ 2αjq ` |αj |
2pαj´1 ` αj`1q , (1.1)

where 9αj “
dαj
dt

. We assume N -periodic boundary conditions αj`N “ αj , for all j P Z. The AL lattice
was introduced by Ablowitz and Ladik [1, 2] as the spatial integrable discretization of the defocusing
cubic nonlinear Schrödinger Equation (NLS) for the complex function ψpx, tq, x P S1 and t P R:

iBtψpx, tq “ ´B
2
xψpx, tq ` 2|ψpx, tq|2ψpx, tq.

The cubic NLS equation was proved to be integrable by Zakharov and Shabat [70].
It is straightforward to verify that the quantity

Kp0q :“
N
ź

j“1

`

1´ |αj |
2
˘

,

is a constant of motion for the AL lattice, namely
d

dt
Kp0q “ 0. This implies that if |αjp0q| ă 1 for all

j P Z, then |αjptq| ă 1 for all t ą 0. We chose the N -dimensional disc DN as the phase space of the AL
lattice, here D “ tz P C | |z| ă 1u. On DN we introduce the symplectic form [23,30]

ω “ i
N
ÿ

j“1

1

ρ2
j

dαj ^ dαj , ρj “
b

1´ |αj |2. (1.2)
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The corresponding Poisson bracket is defined for functions f, g P C8pDN q as

tf, gu “ i
N
ÿ

j“1

ρ2
j

ˆ

Bf

Bαj

Bg

Bαj
´
Bf

Bαj

Bg

Bαj

˙

.

The phase shift αjptq Ñ e´2itαjptq transforms the AL lattice into the equation

i 9αj “ ´ρ
2
j pαj`1 ` αj´1q, ρj “

b

1´ |αj |2, (1.3)

which we call the reduced AL equation. We remark that the quantity ´2 lnpKp0qq is the generator of the
shift αjptq Ñ e´2itαjptq, while H1 “ Kp1q `Kp1q with

Kp1q :“ ´
N
ÿ

j“1

αjαj`1,

generates the flow (1.3). The AL equations (1.1) have the Hamiltonian structure

9αj “ tαj , HALu, HALpαj , αjq “ ´2 lnpKp0qq `Kp1q `Kp1q. (1.4)

Integrability. As we have already said, the AL lattice was discovered by Ablowitz and Ladik by
discretizing the 2 ˆ 2 Zakharov-Shabat Lax pair [1] of the cubic nonlinear Schrödinger equation. For a
comprehensive review see [3]. The integrability of the Ablowitz–Ladik system has also been proved by
constructing a bi-Hamiltonian structure [9, 23]. A techniques to calculate the τ -function correlators has
been introduced in [15].

Using the connection between orthogonal polynomials on the unit circle and the AL lattice, Nenciu
and Simon [54, 59] constructed a new Lax pair for the AL lattice that sometimes is referred to as
the big Lax pair and which put the AL equation on the same foot as the Toda lattice. The link
between orthogonal and biorthogonal polynomials on the unit circle and the Ablowitz–Ladik hierarchy
(see also [4], [43]) is the analogue of the celebrated link between the Toda hierarchy and orthogonal
polynomials on the real line (see e.g. [19]). This link was also generalized to the non-commutative
case [14] (see also [16]). Generalization of this construction to other integrable equations has been
considered in [55].

To construct the big Lax pair, we follow [54,59] and we double the size of the chain according to the
periodic boundary conditions, thus we consider a chain of 2N particles α1, . . . , α2N such that αj “ αj`N
for j “ 1, . . . , N . Define the 2ˆ 2 unitary matrix Ξj

Ξj “

ˆ

αj ρj
ρj ´αj

˙

, j “ 1, . . . , 2N ,

and the 2N ˆ 2N matrices

M “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´α2N ρ2N

Ξ2

Ξ4

. . .
Ξ2N´2

ρ2N α2N

˛

‹

‹

‹

‹

‹

‹

‹

‚

, L “

¨

˚

˚

˚

˝

Ξ1

Ξ3

. . .
Ξ2N´1

˛

‹

‹

‹

‚

.

Now let us define the unitary Lax matrix
E “ LM , (1.5)

that has the structure of a 5-band diagonal matrix
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

. . . . . .
˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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The matrix E is a periodic CMV matrix (after Cantero Morales and Velsquez [17]). The N -periodic
reduced AL equation (1.3) is equivalent to the following Lax equation for the matrix E :

9E “ i
“

E , E` ` pE`q:
‰

, (1.6)

where : stands for hermitian conjugate and

E`j,k “

$

’

&

’

%

1
2Ej,j j “ k

Ej,k k “ j ` 1 mod 2N or k “ j ` 2 mod 2N

0 otherwise.

We observe that pE`q: ` pE:q` “ E: and rE , E:s “ 0 because E is unitary. Therefore, one can write the
equation (1.6) in the equivalent form

9E “ i
“

E , E` ´ pE:q`
‰

.

The formulation (1.6) implies that the quantities

Kp`q “
Tr

`

E`
˘

2
, ` “ 1, . . . , N ´ 1, (1.7)

are constants of motion for the defocusing AL system. For example

Kp1q “ ´
N
ÿ

j“1

αjαj`1, Kp2q “
N
ÿ

j“1

rpαjαj`1q
2 ´ 2αjαj`2ρ

2
j`1s .

Furthermore, Kp0q,Kp1q, . . . ,KpN´1q are functionally independent and in involution, showing that the
N -periodic AL system is integrable [1, 3, 54].

Remark 1.1. The quantity 2<pKp1qq generates the reduces AL equation (1.3), while the quantity ´2=pKp1qq
generates the flow

9αj “ p1´ |αj |
2qpαj`1 ´ αjq,

which is called Schur flow. The Schur flow emerges in [2] as a spatial discretization of the defocusing
modified Korteweg–de Vries equation

Btf ´ 6fBxf ` B
3
xf “ 0.

For the integration of the Schur flow and its relation to orthogonal polynomial on the unit circle see
[32,60].

Generalized Gibbs Ensemble for the Ablowitz–Ladik Lattice. The symplectic form ω in (1.2)

induces on DN the volume form dvol “
1

Kp0q
d2α, with d2α “

śN
j“1pidαj ^ dαj q. We observe that

ş

DN dvol “ 8, however, we can define the Gibbs measure with respect to the Hamiltonian HAL in (1.4):

1

Zβ
e´

β
2HALdvol “

1

Zβ
eβ<pK

p1q
q

N
ź

j“1

p1´ |αj |
2qβ´1d2α, β ą 0, (1.8)

where Zβ “
ş

DN e
β<pKp1qqśN

j“1p1´|αj |
2qβ´1d2α ă 8 is the normalizing constant. The above probability

measure is clearly invariant under the Hamiltonian flow αjp0q Ñ αjptq associated to the Ablowitz–Ladik
equation (1.1).

Since the Ablowitz–Ladik lattice posses several conserved quantities (1.7), one can introduce a Gen-
eralized Gibbs Ensemble on the phase space DN in the following way. Fix N Q κ ď N ´ 1 and let us
define

V pzq “
κ
ÿ

m“1

ηm<pzmq , (1.9)

where ηm P R are called chemical potentials. Then

Tr pV pEqq “
κ
ÿ

m“1

ηmpK
pmq `Kpmqq,
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where Kpmq are the AL conserved quantities (1.7). The finite volume Generalized Gibbs measure can be
written as:

dPALpα1, . . . , αN q “
1

ZALN pV, βq

N
ź

j“1

`

1´ |αj |
2
˘β´1

exp p´Tr pV pEqqqd2α , (1.10)

where ZALN pV, βq is the partition function of the system:

ZALN pV, βq “

ż

DN

N
ź

j“1

`

1´ |αj |
2
˘β´1

exp p´Tr pV pEqqq d2α . (1.11)

Choosing the initial data of the Ablowitz–Ladik lattice according to the Generalized Gibbs measure
(1.10), the Lax matrix E turns into a random matrix. In [51] Mendl and Sphon study the dynamic of the
Ablowitz–Ladik lattice at non-zero temperature. They study numerically correlation functions and in
particular, introducing the density δj “ <pαj`1αjq, they study the density-density correlation function

E rδjptqδ1p0qs ´E rδjptqsE rδ1p0qs ,

where E r¨s is the expectation with respect to Gibbs measure (1.8). They showed numerically that
density-density time correlations in thermal equilibrium have symmetrically located peaks, which travel
in opposite directions at constant speed, broaden ballistically and decay as 1{tγ when tÑ8, where the
scaling exponent γ is approximately equal to one. This behaviour is believed to be typical of integrable
nonlinear systems.

More quantitative results have been obtained for linear (integrable) systems and for the Toda lattice.
It was shown in [34] that the fastest peaks of the correlation functions of harmonic oscillators with short
range interactions have a Airy type scaling. Regarding nonlinear integrable systems in [61] Spohn was
able to connect the Gibbs ensemble of the Toda lattice to the Dumitriu-Edelman β-ensemble [21]. In this
way, the generalized Gibbs free energy of the Toda chain turns out to be related to the β-ensembles of
random matrix theory in the mean-field regime [7,22]. The behaviour of the correlation functions of the
Toda chains has been derived by applying the theory of generalized hydrodynamic [20,62]. We mention
also the recent work [36], where the authors derive a large deviation principle for the mean density of
states for the Generalized Gibbs measure of the Toda lattice.

2 Statement of the results
In this manuscript we derive the mean density of states µβAL of the random Lax matrix E sampled
according to generalized Gibbs measure (1.10) and we determine the free energy of the AL generalized
Gibbs ensemble

FALpV, βq “ lim
NÑ8

1

N
logZALN pV, βq.

This is achieved by connecting the generalized Gibbs ensemble of the Ablowitz–Ladik lattice to the Killip-
Nenciu [42] matrix Circular β-ensemble at high-temperature investigated by Hardy and Lambert [37].
Further connections between discrete integrable systems with Gibbs measure initial data and classes
of random matrices has been explored in [33]. For connections between integrable PDEs and random
objects see [6].

Let MpTq be the space of probability measures on the torus T “ r´π, πs and for µ P MpTq let us
consider the functional

F pV,βqpµq “ 2

ż

T

V pθqµpθqdθ ´ β

ż ż

TˆT

ln sin

ˆ

|θ ´ φ|

2

˙

µpθqµpφqdθdφ

`

ż

T

ln pµpθqqµpθqdθ ` lnp2πq .

(2.1)

Remark 2.1. Here and below, we make an abuse of notation by denoting the potential V pzq “ V peiθq
simply by V pθq.

For sufficiently regular potential V pθq, the functional (2.1) has a unique minimizer µβHT pdθq “
µβHT pθqdθ, [58], that describes the density of states of the Circular β-ensemble at high-temperature [37].
For finite β and smooth potentials V pθq, it has been shown by Hardy and Lambert in [37] that the
minimizer µβHT pdθq has a smooth density and its support is the whole torus T.
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Theorem 2.2 (First Main theorem). Consider β ą 0 and a smooth potential V as in (1.9) on the unit
circle T. The mean density of states µβALpdθq :“ µβALpθqdθ of the Ablowitz–Ladik Lax matrix E in (1.5)
endowed with the probability (1.10) is absolutely continuous with respect to the Lebesgue measure and
takes the form

µβALpθq “ Bβ

´

βµβHT pθq
¯

a.e.,

where µβHT is the unique minimizer of the functional (2.1).

To prove the above theorem we derive a relation (see Proposition 4.2) between the free energy of the
β-ensembles at high-temperature, namely the minimum value of the minimizer (2.1)

FHT pV, βq :“ F pV,βqpµβHT q,

and the free energy FALpV, βq of the AL lattice:

FALpV, βq “ Bβ pβFHT pV, βqq ` lnp2q.

Such relation is obtained via transfer operator techniques.
The particular case V pθq “ 2η cos θ corresponds to the free energy associated to the AL equation

(1.1), and we show that the minimizer of the functional (2.1) is obtained via a particular solution of the
Double Confluent Heun (DCH) equation.

Theorem 2.3 (Second main theorem). Fix β ą 0 and let V pθq “ η cos θ, where η is a real parameter.
There exists ε ą 0 such that for all η P p´ε, εq, the minimizer µβHT pdθq “ µβHT pθqdθ of the functional
(2.1) takes the form

µβHT pθq “
1

2π
`

1

πβ
<
ˆ

zv1pzq

vpzq

˙

ˇ

ˇz“eiθ
, (2.2)

where vpzq is the unique solution (up to a multiplicative non-zero constant) of the Double Confluent Heun
(DCH) equation

z2v2pzq `
`

´η ` zpβ ` 1q ` ηz2
˘

v1pzq ` ηβpz ` λqvpzq “ 0 (2.3)

analytic for |z| ď r with r ě 1. Such solution is differentiable in the parameter η and β. The parameter
λ “ λpη, βq in (2.3) is determined for η P p´ε, εq by the solution of the equation

λpR1q11 `
η

β ` 1
pR1q21 “ 0,

with the condition λpη “ 0, βq “ 0. In the above expression pR1qjk is the jk entry of the matrix R1 which
is defined by the infinite product

R1 “M1M2 . . .Mk . . . , Mk “

˜

1` λβη
kpk`βq

η2

kpk`β`1q

1 0

¸

.

We remark that the solution of the double confluent Heun equation has generically an essential
singularity at z “ 0 and z “ 8, and one needs to tune the accessory parameter λ to obtain an analytic
solution, for a review see [57]. In our derivation of (2.3) the parameter λ coincides with the first moment
of the measure µpθq, namely λ “

ş

T µpθqe
iθdθ. It is a transcendental function of β and η and it is related

to the Painlevé III equation [24,47].

Remark 2.4. Under the change of variable

vpzq “ exp

ˆ

´
η

2

ˆ

z `
1

z

˙˙

z´
β`1
2 fpzq ,

the DCH equation (2.3) takes the form of a Schrödinger equation

f2pzq ` qpzqfpzq “ 0,

with potential qpzq singular at the origin

qpzq “
1

z2

ˆ

η
β ´ 1

2

ˆ

z `
1

z

˙

´
η2

4

pz2 ´ 1q2

z2
´

1

4
pβ2 ` 4β ` 3q ` ηβλ

˙

.
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Remark 2.5. For the case V “ 0 it was shown in [37] that the minimizer of the functional (3.12) is the
uniform measure on the circle, while for the case V pθq “ βV pθq and β Ñ 8 the minimizer of (2.1) was
considered in [49]. The particular case V pθq Ñ βη cos θ and β Ñ 8 has first been considered by Gross–
Witten [35] and Baik–Deift–Johansson [11]. The measure (2.2) in Theorem 2.3 generalizes the result of
Gross and Witten [35] and Baik–Deift–Johansson [11] to the high-temperature regime (see Remark 5.6).

This manuscript is organized as follows. In section 3 we introduce the Circular β ensemble and its
high-temperature limit. Then we review results in the literature on Circular β ensemble and we derive
some technical results needed to prove our main theorems. In section 4 we prove our first main theorem,
namely Theorem 2.2 and in section 5 we prove Theorem 2.3. Finally, the most technical parts of our
arguments are deferred to the appendices.

3 Circular β Ensemble at high-temperature

The Circular Ensemble at temperature β̃´1 is a system of N identical particles on the one-dimensional
torus T “ r´π, πs with distribution

dPβ̃pθ1, . . . , θN q “
1

ZCβ̃EN

ź

jă`

|eiθ` ´ eiθj |
rβdθ, dθ “ dθ1 . . . dθN , (3.1)

where ZCβ̃EN ą 0 is the norming constant, or partition function of the system. For β̃ “ 1, 2, 4 Dyson
observed that the above measure corresponds to the eigenvalue distribution of circular orthogonal ensem-
ble (COE), circular unitary ensemble (CUE) and circular symplectic ensemble (CSE) of random matrix
ensembles (see e.g. [25, 50]). For general β̃ ą 0, Killip and Nenciu proved that the Circular β Ensemble
can be associated to the eigenvalue distribution of a random sparse matrix, the so-called CMV matrix,
after Cantero, Moral, Velázquez [17]. To state their result, we need the following definition.

Definition 3.1. A complex random variable X with values on the unit disk D is Θν-distributed (ν ą 1)
if

E rfpXqs “
ν ´ 1

2π

ż

D
fpzqp1´ |z|2q

ν´3
2 d2z .

for any measurable function f : DÑ C. When ν “ 1, Θ1 is the uniform distribution on the unit circle
S1.

We recall that for N Q ν ě 2, such measure has the following geometrical interpretation: if u “
pu1, u2, . . . , uν`1q is chosen at random according to the surface measure on the unit sphere Sν in Rν`1,
then u1 ` iu2 is Θν´distributed. We can now state the result of Killip-Nenciu.

Theorem 3.2 (cf. [42] Theorem 1). Consider the block diagonal N ˆN matrices

M “ diag pΞ1,Ξ3,Ξ5 . . . , q and L “ diag pΞ0,Ξ2,Ξ4, . . .q ,

where the block Ξj, j “ 1, . . . , N ´ 1, takes the form

Ξj “

ˆ

αj ρj
ρj ´αj

˙

, ρj “
b

1´ |αj |2,

while Ξ0 “ p1q and ΞN “ pαN q are 1ˆ 1 matrices. Define the N ˆN sparse matrix

E “ LM, (3.2)

and suppose that the entries αj are independent complex random variables with αj „ Θ
rβpN´jq`1 for

1 ď j ď N ´ 1 and αN is uniformly distributed on the unit circle. Then the eigenvalues of E are
distributed according to the Circular Ensemble (3.1) at temperature β̃´1.

We observe that each of the matrices Ξj is unitary, and so are the matrices L and M . As a result,
the eigenvalues of E clearly lie on the unit circle. The matrix E is a 5-diagonal unitary matrix that takes
the form
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E “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ᾱ1 ρ1ᾱ2 ρ1ρ2

ρ1 ´α1ᾱ2 ´α1ρ2

ρ2ᾱ3 ´α2ᾱ3 ρ3ᾱ4 ρ3ρ4

ρ2ρ3 ´α2ρ3 ´α3ᾱ4 ´α3ρ4

. . . . . . . . . . . .
ρN´3ᾱN´2 ´αN´3ᾱN´2 ρN´2ᾱN´1 ρN´2ρN´1

ρN´3ρN´2 ´αN´3ρN´2 ´αN´2ᾱN´1 ´αN´2ρN´1

ᾱNρN´1 ´αN´1ᾱN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

We are interested in the probability distribution (3.1) when

• we add an external field, namely dθi Ñ e´2V pθiqdθi with V : TÑ R a smooth potential;

• we consider the limit rβ Ñ 0 and N Ñ8 in such a way that rβN “ 2β, β ą 0. Since rβ is interpreted
as the inverse of the temperature, such limit is called high-temperature regime.

With the above changes, we arrive to the probability distribution of the Circular ensemble at high-
temperature, and with an external potential:

dPVβ pθ1, . . . , θN q “
1

ZHT
N pV, βq

ź

jă`

|eiθ` ´ eiθj |
2β
N e´2

řN
j“1 V pθjqdθ , (3.3)

where ZHT
N pV, βq is the partition function of the system. Also in this case, we can associate to the above

probability distribution a random CMV matrix. The lemma below has probably already appeared in the
literature, but for completeness we provide the proof.

Lemma 3.3. Let E be the CMV matrix (3.2). Consider the block 2N ˆ 2N matrix

rE “ diagpE,Eq , (3.4)

whose entries are distributed according to

dPpα1, . . . , αN q “
1

ZHTN pV, βq

N´1
ź

j“1

`

1´ |αj |
2
˘βp1´ j

N q´1
e´TrpV p rEqq

N´1
ź

j“1

d2αj
dαN
iαN

. (3.5)

Then the eigenvalues of rE are all double, they lie on the unit circle and are distributed according to (3.3).
Moreover

ZHTN pV, βq “ 21´N
Γ
´

β
N

¯N

Γpβq
ZHT
N pV, βq , (3.6)

where ZHT
N pV, βq is the norming constant of the probability distribution (3.3) and ZHTN pV, βq is the

norming constant of the probability distribution (3.5).

Proof. First, we notice that the eigenvalues of rE are all double, since it is a block diagonal matrix with
two identical blocks.

We consider the change of variables αN Ñ eiϕ, thus (3.5) becomes:

dPpα1, . . . , αN´1, ϕq “

śN´1
j“1

`

1´ |αj |
2
˘βp1´ j

N q´1
e´TrpV p rEqq

śN´1
j“1 d2αjdϕ

ZHTN pV, βq
. (3.7)

Now, let eiθ1 , . . . , eiθN be the eigenvalues of the CMV matrix E endowed with probability (3.5), and
let q1, . . . , qN be the entries of the first row of the unitary matrix Q such that Q:ΘQ “ E where
Θ “ Diagpeiθ1 , . . . , eiθN q and

řN
k“1 |qk|

2 “ 1. We introduce the variable γj “ |qj |2 for j “ 1, . . . , N , then
from [42] (Lemma 4.1, and relation (4.14) in Proposition 4.2) we have

|∆peiθq|2
N
ź

j“1

γj “
N´1
ź

j“1

`

1´ |αj |
2
˘pN´jq

, (3.8)

ˇ

ˇ

ˇ

ˇ

B pα1, . . . , αN´1, ϕq

Bpθ,γq

ˇ

ˇ

ˇ

ˇ

“ 21´N

śN´1
j“1

`

1´ |αj |
2
˘

śN
j“1 γj

, (3.9)



3 CIRCULAR β ENSEMBLE AT HIGH-TEMPERATURE 8

here γ “ pγ1, . . . , γN´1q, and ∆peiθq “
ś

jă`

`

eiθj ´ eiθ`
˘

. Applying the previous equalities to (3.7) we
derive

dPpα1, . . . , αN´1, ϕqq “
e´TrpV p rEqq

ZHTN pV, βq
dϕ

N´1
ź

j“1

`

1´ |αj |
2
˘βp1´ j

N q´1
dαjdαj

(3.9)
“

1

ZHTN pV, βq

21´N

śN
j“1 γj

N´1
ź

j“1

`

1´ |αj |
2
˘βp1´ j

N q e´2
řN
j“1 V pe

iθj qdθdγ

(3.8)
“

1

ZHTN pV, βq
21´N |∆peiθq|

2β
N

N
ź

j“1

γ
β
N´1
j e´2

ř

j V pe
iθj qdθdγ .

Thus, we deduce the relation

ZHTN pV, βq “ 21´NZHT
N pV, βq

ż

∆

N
ź

j“1

γ
β
N´1
j dγ1 . . . dγN´1 ,

here ∆ is the simplex
řN
j“1 γj “ 1. The above integral is a well-known Dirichlet integral that can be

computed explicitly (see [42, Lemma 4.4])

ż

∆

N
ź

j“1

γ
β
N´1dγ1 . . . dγN´1 “

Γ
´

β
N

¯N

Γpβq
,

proving (3.6).

Let eiθ1 , . . . , eiθN be the double eigenvalues of the CMV Matrix Ẽ in (3.4), whose entries are dis-
tributed according to (3.7). The empirical measure is the random probability measure

µN “
1

N

N
ÿ

j“1

δeiθj . (3.10)

The mean density of state µβHT is defined as the non-random probability measure such that
ż

T
fpθqµβHT pdθq “ lim

NÑ8
E

„
ż

T
fpθqµN pdθq



, (3.11)

for all continuous function f on the torus T, and the expected value is taken with respect to (3.5). In
order to discuss the large N limit of µN we have to introduce several quantities. Let MpTq be the set
of probability measures on the one-dimensional torus T and for µ P MpTq we consider the logarithmic
energy [58]

E pµq :“

ż ż

TˆT

ln

ˇ

ˇ

ˇ

ˇ

sin

ˆ

θ ´ φ

2

˙
ˇ

ˇ

ˇ

ˇ

´1

µpdθqµpdφq .

We define the relative entropy Kpµ|µ0q of µ with respect to µ0pdθq “
dθ

2π
as

Kpµ|µ0q :“

ż

T
log

ˆ

µ

µ0

˙

µpdθq,

when µ is absolutely continuous with respect to µ0 and otherwise Kpµ|µ0q :“ `8. The relevant func-
tional is

F pV,βqpµq :“ βE pµq `Kpµ|µ0q ` 2

ż

T
V pθqµpdθq.

When F pV,βqpµq is finite, it follows that µ is absolutely continuous with respect to the Lebesgue measure
µ0 and we can write µpdθq “ µpθqdθ. We denote by Cn,1pTq with n “ 0, 1, 2, . . . the space of n-times
differentiable functions whose n-derivative is also Lipschitz continuous.

The following result describes the limiting measure µβHT in (3.11) for the circular β-ensembles at high
temperature.
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Theorem 3.4. (cf. [37, Proposition 2.1 and 2.5]) Let MpTq be the set of probability measures on the
one-dimensional torus and V : T Ñ R be a measurable and bounded function. For any β ą 0 consider
the functional F pV,βq : MpTq Ñ r0,8s

F pV,βqpµq “ 2

ż

T
V pθqµpθqdθ ` βE pµq `

ż

T
ln pµpθqqµpθqdθ ` lnp2πq . (3.12)

Then

(a) the functional F pV,βqpµq has a unique minimizer µβHT pdθq “ µβHT pθqdθ in MpTq;

(b) µβHT is absolutely continuous with respect to the Lebesgue measure and there is 0 ă δ ă 1 such that

δ ď
µβHT pθq

2π
ď δ´1, a.e. ;

(c) if V “ 0, then µβHT pdθq “
1

2πdθ;

(d) if V P Cm,1pTq, then µβHT P Cm,1pTq;

(d) the empirical measure µN in (3.10) converges weakly and almost surely to the measure µβHT as
N Ñ8.

From the above theorem when the potential V is at least C2,1pTq the minimizer of the functional
F pV,βq is characterized by the Euler-Lagrange equations

δF pV,βq

δµ
“ 2V pθq ´ 2β

ż

T
ln sin

ˆ

|θ ´ φ|

2

˙

µpφqdφ` lnµpθq ` 1 “ CpV, βq (3.13)

where CpV, βq is a constant in θ. Below we derive further properties of the minimizer µβHT following [36].

Lemma 3.5. For any V pzq as in (1.9), any β ą 0 the following holds

a) The map β Ñ inf
`

F pV,βqpµq
˘

is Lipschitz;

b) The maps tÑ inf
`

F pV`t<pzmq,βqpµq
˘

, tÑ inf
`

F pV`t=pzmq,βqpµq
˘

are Lipschitz;

c) Let D be the distance on MpTq given by

Dpµ, µ1q “

ˆ

´

ż ż

ln

ˇ

ˇ

ˇ

ˇ

sin

ˆ

θ ´ φ

2

˙
ˇ

ˇ

ˇ

ˇ

pµ´ µ1qpdθqpµ´ µ1qpdφq

˙1{2

“

d

ÿ

kě1

1

k
|pµk ´ pµ1k|

2
,

(3.14)

where pµk “
ş

T e
ikθµpdθq, and we recall that {logp|x|q “

ř

kě1 k
´1 in distributional sense.

Then for any ε ą 0 there exists a finite constant Cε such that for all β, β1 ą ε

DpµβHT , µ
β1

HT q ď Cε
ˇ

ˇβ ´ β1
ˇ

ˇ . (3.15)

Remark 3.6. For a real valued function f P L2pTq with derivative in L2pTq we define ||f || 1
2
“

b

ř

kě1 k|
pfk|2 ă 8. So, for any measure ν with zero mass we deduce that

ˇ

ˇ

ˇ

ˇ

ż

T
fpθqνpdθq

ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k‰0

pfkpνk

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k‰0

a

|k| pfk
pνk

a

|k|

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k‰0

|k|| pfk|
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k‰0

|pνk|
2

|k|

ˇ

ˇ

ˇ

ˇ

ˇ

ď 4||f ||21
2
Dpν, 0q2

(3.16)

where in the first inequality we use Cauchy-Schwartz inequality and in the second one we plug in (3.14).
Combining (3.15) and (3.16) we conclude that for any real valued function f with finite ||f || 1

2
norm,

the map β Ñ
ş

T fdµβHT pdθq is Lipschitz for β ą 0. As a consequence, the moments of µβHT are almost
surely differentiable with respect to β.
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Proof of Lemma 3.5. The proof follows the lines of the corresponding one in [36]. To prove points a)
and b) we exploit the same ideas, thus we restrict to point a).

For all β ą β1 ą 0 we have

F pV,βqpµβHT q ď F pV,βqpµβ
1

HT q “ F pV,β
1
qpµβ

1

HT q ` pβ ´ β
1qE pµβ

1

HT q

and
F pV,β

1
qpµβ

1

HT q ď F pV,β
1
qpµβHT q “ F pV,βqpµβHT q ` pβ

1 ´ βqE pµβHT q ,

so that
pβ ´ β1qE pµβHT q ď F pV,βqpµβHT q ´ F pV,β

1
qpµβ

1

HT q ď pβ ´ β
1qE pµβ

1

HT q .

Since E pµβHT q, and E pµβ
1

HT q are finite we obtain the claim.
We now move to the proof of point cq. Setting ∆µ “ µβHT ´ µ

β1

HT we deduce that

0 ě F pβ,V qpµβHT q ´ F pβ,V qpµβ
1

HT q

“ 2

ż

T
V pθq∆µpdθq ´ 2β

ż

TˆT
ln

ˇ

ˇ

ˇ

ˇ

sin

ˆ

θ ´ φ

2

˙
ˇ

ˇ

ˇ

ˇ

µβ
1

HT pdθq∆µpdφq

´ β

ż

TˆT
ln

ˇ

ˇ

ˇ

ˇ

sin

ˆ

θ ´ φ

2

˙
ˇ

ˇ

ˇ

ˇ

∆µpdθq∆µpdφq `

ż

T
lnpµβHT pθqqµ

β
HT pdθq

´

ż

T
lnpµβ

1

HT pθqqµ
β1

HT pdθq

“

ż

T
ln

˜

µβHT pθq

µβ
1

HT pθq

¸

µβHT pdθq ` 2pβ1 ´ βq

ż

TˆT
ln

ˇ

ˇ

ˇ

ˇ

sin

ˆ

θ ´ φ

2

˙
ˇ

ˇ

ˇ

ˇ

µβ
1

HT pdθq∆µpdφq

´ β

ż

TˆT
ln

ˇ

ˇ

ˇ

ˇ

sin

ˆ

θ ´ φ

2

˙
ˇ

ˇ

ˇ

ˇ

∆µpdθq∆µpdφq ,

where in the second identity we used (3.13). Since
ş

T ln

ˆ

µβHT pθq

µβ
1

HT pθq

˙

µβHT pdθq ď 0 by Jensen’s inequality,

we deduce that

βD
´

µβHT , µ
β1

HT

¯2

ď 2pβ ´ β1q

ż

TˆT
ln

ˇ

ˇ

ˇ

ˇ

sin

ˆ

θ ´ φ

2

˙
ˇ

ˇ

ˇ

ˇ

µβ
1

HT pdθq∆µpdφq .

Following [36], we introduce a new probability measure ν PMpTq in the previous expression, so that

βD
´

µβ
1

HT , µ
β1

HT

¯2

ď 2pβ ´ β1q

ż

TˆT
ln

ˇ

ˇ

ˇ

ˇ

sin

ˆ

θ ´ φ

2

˙
ˇ

ˇ

ˇ

ˇ

´

µβ
1

HT ´ ν
¯

pdθq∆µpdφq

` 2pβ ´ β1q

ż

TˆT
ln

ˇ

ˇ

ˇ

ˇ

sin

ˆ

θ ´ φ

2

˙
ˇ

ˇ

ˇ

ˇ

νpdθq∆µpdφq .

(3.17)

We chose ν in such a way that the function gνpφq “
ş

T ln
ˇ

ˇ

ˇ
sin

´

θ´φ
2

¯
ˇ

ˇ

ˇ
νpdθq is in L2pTq with derivative in

L2pTq. With this choice of ν and applying (3.16) we conclude that there exists a constant c such that
ˇ

ˇ

ˇ

ˇ

ż

TˆT
ln

ˇ

ˇ

ˇ

ˇ

sin

ˆ

θ ´ φ

2

˙ˇ

ˇ

ˇ

ˇ

νpdθq∆µpdφq

ˇ

ˇ

ˇ

ˇ

ď cDpµβHT , µ
β1

HT q . (3.18)

Next, taking the Fourier transform and apply again the Cauchy-Schwartz inequality as in (3.16) we
obtain

ˇ

ˇ

ˇ

ˇ

ż

TˆT
ln

ˇ

ˇ

ˇ

ˇ

sin

ˆ

θ ´ φ

2

˙
ˇ

ˇ

ˇ

ˇ

´

µβ
1

HT ´ ν
¯

pdθq∆µpdφq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kě1

1

k

{

´

µβ
1

HT ´ ν
¯

k

z∆µk

ˇ

ˇ

ˇ

ˇ

ˇ

ď Dpµβ
1

HT , νqDpµ
β1

HT , µ
β
HT q ,

(3.19)

since Dpµβ
1

HT , νq is bounded. Combining (3.17), (3.18) and (3.19) we conclude that there exists a constant
c0 such that

DpµβHT , µ
β1

HT q ď
c0
β
pβ ´ β1q ,

from which (3.15) follows.
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For convenience, we define FHT pV, βq as the value of the functional at the minimizer, namely

FHT pV, βq :“ F pV,βqpµβHT q.

The quantity FHT pV, βq is referred to as free energy of the Circular β ensemble at high-temperature. It
is a standard result that (see e.g. [29])

FHT pV, βq “ ´ lim
NÑ8

1

N
logZHT

N pV, βq , (3.20)

where the partition function ZHT
N pV, βq of the Circular β ensemble at high-temperature is defined in

(3.3).

Remark 3.7. We notice that from (3.6) and (3.20) we can also obtain the free energy FHT pV, βq from
the partition function ZHTN pV, βq of the CMV matrix ensemble (3.5), namely:

FHT pV, βq “ ´ lim
NÑ8

lnpZHTN pV, βqq

N
´ lnp2q .

The literature related to the high-temperature regime of the classical β-ensembles is quite broad.
For completeness, we mention some of the results in the field. In [7, 8, 22, 27, 37, 65, 66] the authors
explicitly computed the mean density of states for the classical Gaussian, Laguerre, Jacobi, and Circular
β ensemble at high-temperature. In [7, 8, 27, 37] the densities of states are computed as a solution of
some particular ordinary differential equations. On the other hand, in [22,65,66] the density of states is
constructing from the moment generating functions. Several authors [12, 45, 52, 53, 67] investigated the
local fluctuations of the eigenvalues, and they observed that in this regime they are described by a Poisson
process. In particular, in [45] Lambert studied the local fluctuations for general Gibbs ensembles on N -
dimensional manifolds, moreover he also studied the asymptotic behaviour of the maximum eigenvalue for
the classical β ensembles at high-temperature. In [26,27] the loop equations for the classical β-ensembles
at high-temperature are studied, in particular in [26] a duality between high and low temperature is
uncovered. There are also results for a Coulomb gas at high temperature in two dimensions [5]. It is
worth mentioning also the work [48], where some new tridiagonal random matrix ensembles related to
the classical β one at high-temperature are defined.

4 Proof of Theorem 2.2
The probability distribution (1.10) of generalized Gibbs ensemble of the Ablowitz–Ladik lattice is very
close to the probability distribution (3.5) of the Circular β ensemble at high-temperature with an external
source. Indeed, the only difference between the two ensembles is the exponent of the terms p1´ |αj |q in
the probability distributions (1.10) and (3.5) and the fact that the random matrix of the Ablowitz–Ladik
lattice is a rank 2 perturbation of the random matrix of the circular β-ensemble. Our first main result
contained in Theorem 2.2 relates the mean density of states of the random Lax matrix E of the Ablowitz–
Ladik lattice to the mean density of states of the random matrix E from the Circular β ensemble at
high-temperature.

To prove the result, we use the moment matching technique and the following lemma.

Lemma 4.1. ( [10, Lemma B.1 - B.2]) Let dσ, dσ1 be two measures defined on T, with the same moment
sequence tup`qu`ě0. If

lim
`Ñ8

inf
pup2`qq

1
2`

`
ă 8 ,

then dσ “ dσ1.

Next we define the free energy of the generalized Gibbs ensemble of the Ablowitz–Ladik lattice at
temperature β´1 and in an external field V as:

FALpV, βq “ ´ lim
NÑ8

1

N
lnZALN pV, βq , (4.1)

where the partition function ZALN pV, βq is defined in (1.11). The next proposition shows that the free
energy FALpV, βq of the Generalized Gibbs ensemble of the Ablowitz–Ladik lattice and the free energy
FHT pV, βq in (3.20) of the Circular β ensemble at high-temperature are related. This fact allows us to
calculate the moments of the mean density of states of the CMV matrix E in (3.2) and of the Lax matrix
E in (1.5).
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Proposition 4.2. The free energy FALpV, βq in (4.1) of the AL lattice and the free energy FHT pV, βq in
(3.20) of the Circular β ensemble at high-temperature are analytic with respect to β ą 0, and are related
by

Bβ pβFHT pV, βqq ` lnp2q “ FALpV, βq. (4.2)

The moments of the density of states µβAL of the Lax matrix E in (1.5) endowed with the probability
measure (1.10) and the moments of the density of states µHT of the Circular β ensemble in the high-
temperature regime (3.5) are related to the free energies FALpV, βq and FHT pV, βq by

<
ż

T
eiθmµβALpdθq “ BtFAL

ˆ

V `
t

2
<pzmq, β

˙

|t“0

,

<
ż

T
eiθmµβHT pdθq “ BtFHT

ˆ

V `
t

2
<pzmq, β

˙

|t“0

,

(4.3)

and analogously for the imaginary part of the moments taking care of using the potential V ` t
2=pz

mq.

Since the proof of this proposition is rather technical, we postpone it to Appendix A. We are now
ready to prove the first main Theorem 2.2.

Proof of Theorem 2.2. First, we define cnpβq :“
ş

eiθnµβALpdθq,

dnpβq :“
ş

eiθnµβHT pdθq. Since the eigenvalues of E lie on the unit circle, we deduce the following chain
of inequalities:

|cnpβq| “ lim
NÑ8

|E rTrpEnqs|
2N

ď lim
NÑ8

E r|TrpEnq|s
2N

ď 1 ,

where the expectation in made according to the Gibbs measure. Thus, from Lemma 4.1, we obtain that
the measure µβALpdθq is uniquely characterized by its moments.

Next, from Proposition 4.2 and Remark 3.6 we obtain the relation

cnpβq “ Bβ pβdnpβqq a.e (4.4)

between the moments of the measures µβALpθq and µ
β
HT pθq respectively.

This, together with (4.4) and Remark 3.6 implies

µβALpθq “ Bβ

´

βµβHT pθq
¯

a.e. .

Our next main result provides an explicit expression of the mean density of states µHT pθq for the
potential V pzq “ η<pzq. This generalizes the result by Gross and Witten [35] and Baik-Deift-Johansson
[11] obtained for finite temperature to the high-temperature regime.

5 Proof of Theorem 2.3
The proof of Theorem 2.3 consists of mainly two parts: we first derive from the variational equations
with respect to the functional F pV,βq, the double confluent Heun equation (2.3). Then we show that
such equation admits an analytic solution in any compact sets of the complex plane containing the
origin. From Theorem 3.4 we know that the density µβHT is characterized as the unique minimizer of
the functional (3.12). We follow the ideas developed in [7, 8, 18,27] to find this minimizer explicitly. We
consider the Euler-Lagrange equation of the functional (3.12), namely

δF pV,βq

δµ
“ 2V pθq ´ 2β

ż

T
ln sin

ˆ

|θ ´ φ|

2

˙

µpφqdφ` lnµpθq “ CpV, βq , a.e. (5.1)

where the equation holds almost everywhere, CpV, βq is a constant depending on the potential and β,
but not on the variable θ. Differentiating the Euler-Lagrange equation (5.1) at the minimizer µβHT pθq
with respect to θ we obtain the following integral equation (see [37, Proposition 2.5]):

Bθµ
β
HT pθq ` µ

β
HT pθqr2BθpV pθqq ` βHµ

β
HT pθqs “ 0 , (5.2)
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where H is the Hilbert transform defined on L2pTq as

HµβHT pθq “ ´p.v.
ż

T
cot

ˆ

θ ´ φ

2

˙

µβHT pφqdφ

and p.v. is the Cauchy principal value, that is the limit as εÑ 0 of the integral on the torus T restricted
to the domain |eiθ ´ eiφ| ą ε. We notice that the Hilbert transform H is diagonal on the bases of
exponential teinθunPZ, meaning that

H einθ “ 2πisgnpnqeinθ ,

where sgnp¨q is the sign function with the convention that sgnp0q “ 0.

Setting eiθ “ z and eiφ “ w, we recognize the Riesz–Herglotz kernel
z ` w

z ´ w
expressed as

z ` w

z ´ w
“ ´i cot

ˆ

θ ´ φ

2

˙

.

Therefore
ż

T
cot

ˆ

θ ´ φ

2

˙

µpφqdφ “ i` 2

ż

S1

µpφq|eiφ“wdw

z ´ w
,

where S1 is the anticlockwise oriented circle, and we used the normalization condition
ş

T µpφqdφ “ 1. In
the following, in order to simplify the notation, we indicate µpφq|eiφ“w just as µpwq. We can recast (5.2)
in the form

zBzµpzq ` µpzq

„

2zBzV pzq ´ β ` 2iβp.v.
ż

S1

µpwq
dw

z ´ w



“ 0 . (5.3)

For z P CzS1 let us define

Gpzq :“

ż

S1

µpwq
dw

w ´ z
“
i

2
´

1

2

ż

T
cot

ˆ

θ ´ φ

2

˙

µpφqdφ ,

and for z P S1 let G˘pzq “ lim
rzÑz Gprzq for rz inside and outside the unit circle respectively. Then by

(5.3)

G˘pzq “ ˘πiµpzq ` p.v.
ż

S1

µpwq
dw

w ´ z

“ ˘πiµpzq `
i

2
´

2izBzV pzq

2β
´
izBzµpzq

2βµpzq
.

This implies that for z P S1 one has

G`pzq `G´pzq “ i´
2izBzV pzq

β
´
izBzµpzq

βµpzq
,

G`pzq ´G´pzq “ 2πiµpzq .

Multiplying the two previous expressions, one obtains:

G`pzq
2 ´G´pzq

2 “ 2πiµpzq

ˆ

i´
2izBzV pzq

β
´
ziBzµpzq

βµpzq

˙

.

In order to proceed we have to specify the potential V pzq, in our case we will consider

V pzq “
η

2

ˆ

z `
1

z

˙

.

Applying the Sokhtoski-Plemelj formula [28] to the above boundary value problem, one obtains

G2pzq “ i

ż

S1

µpwq

w ´ z
dw ´

iη

β

ż

S1

pw ´ wqµpwq

w ´ z
dw ´

i

β

ż

S1

wBwµpwq

w ´ z
dw . (5.4)
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The second term in the r.h.s. of the above expression gives
ż

S1

pw ´ wqµpwq

w ´ z
dw “

ż

S1

w ˘ z

w ´ z
µpwqdw `

1

z

ż

S1

µpwq

ˆ

´
1

w ´ z
`

1

w

˙

dw

“

ˆ

zGpzq ` iλ´
Gpzq

z
`
i

z

˙

,

where we have defined
λ :“ ´i

ż

S1

µpwqdw, λ P R. (5.5)

The third term in the r.h.s. of (5.4) gives
ż

S1

wBwµpwq

w ´ z
dw “

ż

S1

Bwµpwqdw ` z

ż

S1

Bwµpwq

w ´ z
dw

“ z

ż

S1

µpwq

pw ´ zq2
dw “ zBzGpzq,

where in these last relations we use the results of Theorem 3.4 about the regularity of µ. Now we can
rewrite (5.4) as

G2pzq “ iGpzq ´
iη

β

ˆ

zGpzq ` iλ´
Gpzq

z
`
i

z

˙

´
izBzGpzq

β
. (5.6)

Remark 5.1. In the above ODE, the parameter λ “ λpη, βq depends via (5.5) implicitly on the function
Gpzq. Our strategy to solve the above equation is to consider λ as a free parameter that is uniquely fixed
by the analytic properties of the function Gpzq.

We can now turn the non-linear first order ODE (5.6) into a linear second order ODE through the
substitution

Gpzq “ i`
izv1pzq

βvpzq
, (5.7)

getting:
z2v2pzq `

`

´η ` zpβ ` 1q ` ηz2
˘

v1pzq ` ηβpz ` λqvpzq “ 0 , (5.8)

which is the DCH equation in (2.3). The solutions to this equation have generically essential singularities
at z “ 0 and z “ 8 and the local description near the singularities depends on the parameter η and β.
Indeed we have that the two fundamental solutions near z “ 0 have the following asymptotic behaviour

v
p0q
1 pzq “ eηpz`

1
z qz1´βκ1pη, β, λ; zq, ´

3π

2
ă argpηzq ă

3π

2
, (5.9)

v
p0q
2 pzq “ κ2pη, β, λ, zq, ´

π

2
ă argpηzq ă

5π

2
, (5.10)

where κjpη, β, λ; zq, j “ 1, 2, are asymptotic series in a neighbourhood of z “ 0. The quantity λ is
usually referred to as accessory parameter. Since Gpzq is analytic in the unit disk, continuous up to the
boundary, and Gp0q “ i, we deduce that

vpzq “ v0 exp

„

´i

ż z

0

β
Gpsq ´ i

s
ds



, v0 ‰ 0,

has to be analytic in the unit disk. For this reason we seek for a solution vpzq of the DCH equation that
is analytic in the unit disk and such that vpzq ÝÝÝÑ

zÑ0
v0, where v0 is a nonzero constant.

Construction of the analytic solution of equation (5.8). Of the fundamental solutions (5.9) and
(5.10) of equation (5.8) only the solution (5.10) has a chance of being analytic near z “ 0. This occurs
if we are able to make the asymptotic series defined by κ2pη, β, λ, zq, into a convergent series. We look
for a solution of (5.8) in the form of a convergent power series

vpzq “
8
ÿ

k“0

akz
k, (5.11)
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where ak “ akpη, β, λq. This implies the following recurrence relations for the coefficients takukPN

ηpa0λβ ´ a1q “ 0 , (5.12)

akpk
2 ` kβ ` λβηq ` ηpk ´ 1` βqak´1 ´ ηpk ` 1qak`1 “ 0 , k ą 0 , (5.13)

where we have the freedom to chose λ and a0. Generically, the above recurrence relation for the co-
efficients takukPN gives a divergent series in (5.11). To obtain a convergent series, we follow the ideas
in [13,64].

We start by considering the 2ˆ 2 matrices Rpsqk defined as

R
psq
k “MkMk`1 . . .Ms, s ě k, Mk “

˜

1` λβη
kpk`βq

η2

kpk`β`1q

1 0

¸

, (5.14)

which satisfy the recurrence relation Rpsqk “ R
ps´1q
k Ms. The next lemma shows that the limit of Rpsqk as

sÑ8 exists.

Lemma 5.2. Let Rpsqk be the matrix defined in (5.14). Then the limit of Rpsqk as sÑ8 exists and

Rk :“ lim
sÑ8

R
psq
k . (5.15)

The matrices Rk, k ě 1 satisfy the descending recurrence relation:

Rk “MkRk`1 k ě 1 . (5.16)

Furthermore each entry of the matrix Rk “ Rkpβ, η, λq is differentiable with respect to the parameters
β, η, and λ.

Since the proof of this lemma is rather technical, we defer it to appendix B. Further, let us define the
following function:

ξpη, β, λq :“
`

λ η
β`1

˘

R1

ˆ

1
0

˙

. (5.17)

We are now ready to prove the following result that will give us a necessary condition to fix the value of
λ.

Proposition 5.3. For the values of λ such that

ξpη, β, λq “ 0, (5.18)

where ξpη, β, λq is defined in (5.17), the Double Confluent Heun equation (5.8) admits a non-zero solution
v “ vpz, η, βq defined by the series (5.11) that is uniformly convergent in |z| ď r with r ě 1. The
corresponding coefficients takukPN of the Taylor expansion (5.11) are given by the relation

a0 “
1

β

`

1 0
˘

R1

ˆ

1
0

˙

, (5.19)

ak “ p´1qk
ηk

k!pk ` βq

`

0 1
˘

Rk

ˆ

1
0

˙

, k ě 1 , (5.20)

where the matrices Rk are defined in (5.15). For each λ satisfying (5.18), the solution vpzq of the DCH
equation (5.8), analytic at zero is unique up to a multiplicative factor.

Proof. First, we show that choosing ak according to (5.19)-(5.20) we obtain a solution of the recurrence
(5.13). We notice that due to the recurrence relation for the matrices Rk (5.16), we have that:

`

0 1
˘

Rk

ˆ

1
0

˙

“
`

1 0
˘

Rk`1

ˆ

1
0

˙

.

Thus, applying the previous equation and (5.19)-(5.20), we can recast (5.13) as:
„

p´1qk´1 ηk

pk ´ 1q!

`

1 0
˘

Rk ` p´ηq
k kpk ` βq ` ηλβ

k!pk ` βq

`

1 0
˘

Rk`1

`p´1qk
ηk`2

k!pk ` 1` βq

`

0 1
˘

Rk`1

ˆ

1
0

˙

“
p´ηqk

pk ´ 1q!

”

´
`

1 0
˘

Rk `
´

1` λβη
kpk`βq

η2

kpk`1`βq

¯

Rk`1

ı

ˆ

1
0

˙

“ 0 ,
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where in the last equality we have enforced (5.16). Next we can rewrite (5.12) in terms of the matrix R1

exploiting (5.19)-(5.20), namely

0 “
`

λ η
β`1

˘

R1

ˆ

1
0

˙

“ ξpη, β, λq ,

which is exactly (5.17). Since the entries of the matrices Rk are uniformly bounded, the solution vpzq “
ř

kě0 akz
k with ak as in (5.20), defines a uniformly convergent Taylor series in |z| ă r for any r ě 0 and

in particular for any r ą 1.
To show that the solution analytic at z “ 0 is unique up to a constant, we consider the Wronkstian

W pv, ṽqpzq of two independent solution v and ṽ of the Double Confluent Heun equation (5.8), namely

W pv, rvqpzq “ e´ηpz`
1
z qz´pβ`1qpv1pzqṽpzq ´ vpzqṽ1pzqq.

Since W 1pv, rvqpzq “ 0, it follows that W pv, rvqpzq “ C a constant. If by contradiction we suppose that
there are two analytic solutions at z “ 0, then from the above relation we obtain

e´ηzpv1pzqṽpzq ´ vpzqṽ1pzqq “ Ce
η
z zβ`1 .

When η ‰ 0 the left-hand side of the above equation is analytic and the right-hand side is not, that is
clearly a contradiction. When η “ 0 then (5.8) becomes:

z2v2pzq ` zpβ ` 1qv1pzq “ 0 .

The above equation has two independent solutions, one is the constant solution, which is analytic, the
other one is vpzq “ Cz´β which is not analytic since β ą 0.

Remark 5.4. We observe that the equation (5.18) does not uniquely determine λ. Indeed, as it is shown
in Figure 1 the function ξpη, β, λq may have several zeros for given η and β.

Figure 1: Plots of ξpη, β, λq for various values of η, β

Choice of the parameter λ. We will now prove that the parameter λ is uniquely determined in
a neighbourhood of η “ 0 by requiring that the solution v “ vpz, η, βq depends continuously on the
parameter η.

Lemma 5.5. There exists an ε ą 0 such that for all η P p´ε, εq and β ą 0 there is a unique λ “ λpη, βq
such that ξpη, β, λpη, βqq “ 0.
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Proof. When η “ 0 the matrix Rj “

ˆ

1 0
1 0

˙

so that the only solution of the equation (5.18) ξpη “

0, β, λq “ 0 is λ “ 0. To show the existence of the solution (5.18) for λ “ λpη, βq near η “ 0, we use the
implicit function theorem. We have to show that Bλξpη, β, λq|p0,β,0q ‰ 0. For this purpose, we need to
evaluate

Bλ pMkqpη“0,λ“0q “

ˆ

0 0
0 0

˙

,

where Mk is defined in (5.15). This equation implies that

Bλpξpη, β, λqq|p0,β,0q “
`

1 0
˘

ˆ

1 0
1 0

˙ˆ

1
0

˙

“ 1.

Thus we can apply the implicit function theorem, and we obtain the claim.

We conclude the proof of Theorem 2.3. When η “ 0 the only analytic solution of DCH equation
is vpzq “ c, c P Czt0u. In this case, in principle λ is undetermined. However, from Theorem 3.4 the
minimizer µβHT of (3.12) is the uniform measure on the circle and therefore from equation 5.5 one has
λ “ 0. From Lemma 5.5 when η P p´ε, εq, there exists a unique λpη, βq that satisfies equation (5.18) and
such that λpη “ 0, βq “ 0 and therefore by Proposition 5.3 we obtain for η P p´ε, εq, the unique solution
vpz, η, βq of the DCH equation analytic in any compact set |z| ď r, with r ą 0 and in particular when
r “ 1. Because of lemma 5.2 the solution vpz, η, βq is differentiable with respect to the parameters η and
β.

We remark that vpzq ‰ 0 on the unit disc D because of the relation (5.7) between the analytic function
Gpzq and vpzq and the uniqueness of the minimizer µβHT and of the analytic solution vpzq of (5.8).

To complete our proof of Theorem 2.3 we recover the explicit expression of µβHT pθq from Gpzq and
vpzq using the Poisson representation formula (see for example [59, Chapter 1]):

µβHT pθq “ ´
1

2π
´

<piGpeiθqq
πβ

“
1

2π
`

1

πβ
<
ˆ

zv1pzq

vpzq

ˇ

ˇ

ˇ

ˇ

z“eiθ

˙

.

Figure 2: The mean density of states µβHT for different parameters.

In Figure 2 we plotted the density of states of the Circular β ensemble in the high-temperature regime
with potential V pzq “ η<pzq. To produce this picture and Figure 1, we used extensively the NumPy [38],
and matplotlib [39] libraries.

Remark 5.6. The Gross-Witten [35] and Baik-Deift-Johannson [11] solution is obtained by making the
substitution η Ñ βη and β Ñ8 in equation (3.12) which gives the functional

F pηqpµq :“

ż ż

TˆT

ln

ˇ

ˇ

ˇ

ˇ

sin

ˆ

θ ´ φ

2

˙
ˇ

ˇ

ˇ

ˇ

´1

µpdθqµpdφq ` 2η

ż

T
cospθqµpdθq.

The minimizer is µpθq “ 1
2π p1´ 2η cos θq with 0 ď 2η ď 1. In this case the first moment λ “ ´η.
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Appendices
A Proof of Proposition 4.2
First, we prove the relation between the free energies (4.2) namely:

BβpβFHT pV, βqq ` lnp2q “ FALpV, βq , (A.1)

and we show that FHT pV, βq is analytic with respect to β ą 0.
From Remark 3.7, the above expression is equivalent to:

Bβ

ˆ

β lim
NÑ8

lnpZHTN pV, βqq

N

˙

“ lim
NÑ8

lnpZALN pV, βqq

N
.

To prove this relation, we will use the so-called transfer operator technique [41,44,56]. We are considering
a potential of the form TrpV pEqq as in (1.9) which is of finite range K, meaning that it can be expressed
as a sum of local quantities, i.e. depending on a finite number 2K of variables, with K independent of
N [54]. For example, if V pzq “ <pzq, then TrpEq “ ´2

řN
j“1 <pαjαj`1q and in this case the range is

K “ 1. Let N “ KM ` L with M,L P N and L ă K. We split the coordinates pα1, . . . , αN q into M
blocks of length K and a reminder of length L, and we define the vector rαj of length K as

rαj “ pαKpj´1q`1, αKpj´1q`2, . . . , αKjq.

In this notation,

pα1, . . . , αN q “ p

KM
hkkkkkkikkkkkkj

rα1, . . . , rαM ,

L
hkkkkkkkkkikkkkkkkkkj

αKM`1, . . . , αN q,

TrpV pEqq “
M´1
ÿ

`“1

W prα`, rα``1q `W prαM ,

L
hkkkkkkkkkkkkikkkkkkkkkkkkj

αKM`1, . . . , αKM`L,

K´L
hkkkkkkkikkkkkkkj

α1, . . . , αK´Lq

`W1p

L
hkkkkkkkkkkkkikkkkkkkkkkkkj

αKM`1, . . . , αKM`L, rα1q,

where W : DK ˆ DK Ñ R and W1 : DL ˆ DK Ñ R are continuous functions. The last two terms
in the above expression are different from the others since we may have an off-set of length L, due to
periodicity. In the case V pzq “ <pzq, then W pα1, α2q “ ´2<pα1α2q, there is no off-set and W1 “ 0.

For convenience, we define

rαM`1 “ pαKM`1, . . . , αKM`L, α1, . . . , αK´Lq.

We can now rewrite ZALN pV, βq in (1.11) as

ZALN pV, βq “

ż

DN

N
ź

j“1

`

1´ |αj |
2
˘β´1

ˆ exp

˜

´

M
ÿ

`“1

W prα`, rα``1q´W1pαKM`1, . . . , αKM`L, rα1q

¸

d2α .

(A.2)

We are now in position to apply the transfer operator technique to compute this partition function. On
L2pDKq we introduce the scalar product

pf, gq “

ż

DK
fpzqgpzqdz ,

where z “ pz1, . . . , zKq. This scalar product induces a norm on L2pDq and also a norm on bounded
operators T : L2pDKq Ñ L2pDKq as

||T || :“ sup
f : ||f ||2“1

||Tf ||2 ,

where ||f ||2 is the standard L2 norm.
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Let ζ “ pζ1, . . . , . . . ζ2Kq with ζK`j “ ζj ą 0 for j “ 1, . . . ,K. We define the continuous family of
transfer operators Tζ : L2pDKq Ñ L2pDKq as

pTζfqprα2q “

ż

DK
fprα1q

2K
ź

j“1

`

1´ |αj |
2
˘

ζj´1

2 exp p´W prα1, rα2qqd2
rα1 . (A.3)

We observe that Tζ is an integral operator whose kernel
ś2K
j“1

`

1´ |αj |
2
˘

ζj´1

2 exp p´W prα1, rα2qq belongs
to L2pDK ˆ DKq, and therefore Tζ is an Hilbert-Schimdt operator. We conclude that there exists a
complete set of normalized eigenfunctions tψjujě1 with eigenvalues tλjujě1 numbered so that t|λj |ujě1

is a non-increasing sequence such that:

pTζψjqpz, V, ζq “ λjpV, ζqψjpz, V, ζq , (A.4)
8
ÿ

n“1

ψnpz, V, ζqψnpz
1, V, ζq “ δzpz

1q , (A.5)

where δzp¨q is the Dirac delta function at z P DK .
For clearness, we collect a series of properties that the operator Tζ fulfils:

a)
ř8

j“1 |λjpV, ζq|
2 ă 8 and Tζ is compact, since it is Hilbert-Schimdt (see [40, Chapter V.2.4]);

b) The eigenvalue λ1pζ, V q is simple, positive and λ1pζ, V q ą |λnpζ, V q| for all n ě 2 (see [69, Theorem
137.4]);

c) The eigenvalue λ1pζ, V q and its eigenfunction ψ1pz, ζ, V q are analytic functions of the parameters
ζ, and for any real polynomial P there exists an ε ą 0 such that the maps t Ñ λ1pζ, V ` tP q,
tÑ ψ1pz, ζ, V ` tP q are analytic for |t| ă ε (see [40, Chapter VII, Theorem 1.8]).

We artificially rewrite ZALN pV, βq in (A.2) as

ZALN pV, βq “

ż

DN`K

δ
rα1
pγq

K
ź

`“1

“`

1´ |γ`|
2
˘ `

1´ |α`|
2
˘‰

β´1
2

N
ź

`“K`1

`

1´ |α`|
2
˘β´1

ˆ exp

˜

´

M´1
ÿ

`“1

W prα`, rα``1q ´W prαM , αKM`1, . . . , αN , γ1, . . . , γK´Lq

¸

ˆ exp p´W1pαKM`1, . . . , αKM`L,γqq
N
ź

j“1

d2αjd
2γ ,

where γ “ pγ1, . . . , γKq and γ P DK .
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We can use (A.5) with ζ “ β “

2K
hkkkkikkkkj

pβ, . . . , βq to rewrite the previous equation as:

ZALN pV, βq “

ż

DN`K

8
ÿ

n“1

ψnpγ, V,βqψnprα1, V,βq

ˆ

K
ź

`“1

“`

1´ |γ`|
2
˘ `

1´ |α`|
2
˘‰

β´1
2

N
ź

`“K`1

`

1´ |α`|
2
˘β´1

ˆ exp

˜

´

M´1
ÿ

`“1

W prα`, rα``1q ´W prαM , αKM`1, . . . , αN , γ1, . . . , γK´Lq

¸

ˆ exp p´W1pαKM`1, . . . , αKM`L,γqqd2αd2γ

“

8
ÿ

n“1

ż

DN
ψnpγ, V,βqpTβψnqprα2q

2K
ź

`“K`1

`

1´ |α`|
2
˘

β´1
2

N
ź

`“2K`1

`

1´ |α`|
2
˘β´1

ˆ exp

˜

´

M´1
ÿ

`“2

W prα`, rα``1q ´W prαM , αKM`1, . . . , αN , γ1, . . . , γK´Lq

¸

ˆ exp p´W1pαKM`1, . . . , αKM`L,γqq
K
ź

`“1

d2γ`
`

1´ |γ`|
2
˘

β´1
2

N
ź

`“K`1

d2α`

“

8
ÿ

n“1

λnpV,βq

ż

DN
ψnpγ, V,βqψnprα2, V,βq

2K
ź

`“K`1

`

1´ |α`|
2
˘

β´1
2

N
ź

`“2K`1

`

1´ |α`|
2
˘β´1

exp

˜

´

M´1
ÿ

`“2

W prα`, rα``1q

¸

ˆ exp p´W prαM , αKM`1, . . . , αN , γ1, . . . , γK´Lqq

ˆ exp p´W1pαKM`1, . . . , αKM`L,γqq
K
ź

`“1

d2γ`
`

1´ |γ`|
2
˘

β´1
2

N
ź

`“K`1

d2α` .

In the above integral, from the first to the second relation we identify the integral operator Tβ where

β “

2K
hkkkkikkkkj

pβ, . . . , βq. We repeatedly apply Tβ and (A.4) another M ´ 2 times to the above integral, to obtain:

ZALN pV, βq “
8
ÿ

n“1

pλnpV,βqq
M´1Rn, (A.6)

Rn “

ż

D2K`L

ψnpγ, V,βqψnprαM , V,βq
K
ź

`“1

d2γ`
`

1´ |γ`|
2
˘

β´1
2 (A.7)

MK
ź

`“pM´1qK`1

`

1´ |α`|
2
˘

β´1
2

N
ź

`“MK`1

`

1´ |α`|
2
˘β´1

ˆ exp p´W prαM , αKM`1, . . . , αN , γ1, . . . , γK´Lqq

ˆ exp p´W1pαKM`1, . . . , αKM`L,γqq
N
ź

`“pM´1qK`1

d2α`.

The modulus of the reminder |Rn| in (A.7) can be easily bounded from above and below by two
constants C1, C2 ą 0 independent of N , therefore we conclude from (A.6) that

FALpV, βq “ ´ lim
NÑ8

1

N
ln
`

ZALN pV, βq
˘

“ ´
1

K
ln pλ1pV,βqq . (A.8)

Since λ1pV,βq is analytic for β ą 0, see [40, Chapter VII, Theorem 1.8], and strictly positive, see [69,
Theorem 137.4], we conclude that FALpV, βq is analytic with respect to β.
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We can apply the same procedure to the partition function ZHTN pV, βq in (3.5). Also in this case the
potential TrpV p rEqq with V as in (1.9) and the matrix rE as in (3.4) is of finite range K, meaning that it
can be expressed as a sum of local quantities [54]. More precisely, assuming N “ KM ` L with L ă K
and M,N,L P N we have

TrpV p rEqq “
M´1
ÿ

`“1

W prα`, rα``1q `W p

K´1
hkkikkj

0, . . . , 0,´1, rα1q

`W prαM , αKM`1, . . . , αN
looooooooomooooooooon

L

, 0, . . . , 0
loomoon

K´L

q .
(A.9)

For example for V pzq “ z2 ` z̄2 one has K “ 2 and N “ 2M ` L where L “ 0, 1, depending on the
parity of N . The vector rα` takes the form rα` “ pα2`´1, α2`q for ` “ 1, . . . ,M . In this notation, we can
rewrite the potential as

TrpV p rEqq “
M´1
ÿ

`“1

W prα`, rα``1q `W prαM , δL,1αN , 0q ` 2<pα2
1 ` 2ᾱ2ρ

2
1q

looooooooomooooooooon

“W p0,´1,α1,α2q

,

where in this case

W prα`, rα``1q “ 2<
1
ÿ

s“0

pα2`´1`sᾱ2``sq
2 ´ 4<

1
ÿ

s“0

α2`´1`sᾱ2``1`sρ
2
2``s

and δL,1 is equal to zero for L ‰ 1.
Using (A.9) the partition function can be written in the form

ZHTN pV, βq “

ż

DN´1ˆS1

dαN
iαN

N´1
ź

j“1

d2αj
`

1´ |αj |
2
˘βp1´ j

N q´1

ˆ exp

¨

˝´

M´1
ÿ

`“1

W prα`, rα``1q ´W prαM , αKM`1, . . . , αN ,

K´L
hkkikkj

0, . . . , 0q

˛

‚

ˆ exp

¨

˝´W p

K´1
hkkikkj

0, . . . , 0,´1, rα1q

˛

‚ .

(A.10)

We want to apply the same technique as in the previous case, but we have to pay attention to one
important detail: in this situation, the eigenvalues and the eigenfunctions of the transfer operators will
be dependent on the block number. Indeed, in this case, the exponents of p1 ´ |αj |2q are not identical,
but they depend on the index j as in (A.10).
For this reason, we define

ζp1q “ β

2K
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

ˆ

1´
1

N
, 1´

2

N
. . . , 1´

K

N
, 1´

1

N
, 1´

2

N
, . . . , 1´

K

N

˙

,

and
ζpjq “ ζp1q ´ β

j ´ 1

N
K, j “ 1, . . . ,M ´ 1 ,

where the vector K has entries Kj “ K for j “ 1, . . . , 2K. For K integer and K ă N we introduce the
multiplication operator MK : L2pDKq Ñ L2pDKq defined as

pMKfqpαq “
K
ź

j“1

`

1´ |αj |
2
˘´

Kβ
2N fpαq.

Remark A.1. We notice that, for β P R, K P N and N P N big enough, the function
śK
j“1

`

1´ |αj |
2
˘´

Kβ
2N P

L2pDKq. Since we are considering the limit N Ñ 8, and β,K independent from N , we always assume
that this condition holds.
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We observe that M´K “ pMKq
´1 and the operators Tζpjq : L2pDKq Ñ L2pDKq defined in (A.3)

satisfy the relation
Tζpj`1q “MKTζpjqMK , j “ 1, . . . ,M ´ 1. (A.11)

We recall that the operators Tζpjq are compact, furthermore, we notice that MKTζpjq is also compact
since it is Hilbert–Schmidt [40].
Let us define the KpM ´ 1q-dimensional vector ζM “ pζpM´1q, . . . , ζp1qq and the operator rTM,ζM :
L2pDKq Ñ L2pDKq as

rTM,ζM “MKTζpM´1qMKTζpM´2qMK ¨ ¨ ¨MKTζp1q , (A.12)

we notice that it is a compact operator, since all MKTζpjq are Hilbert–Schmidt.
We will now prove the following technical result:

Proposition A.2. Let rTM,ζM as in (A.12) and ZHTN as in (A.10) then:

lim
NÑ8

1

N
ln

˜

ZHTN

TrprTM,ζM q

¸

“ 0 , (A.13)

here by TrprTM,ζM q we indicate the standard trace on L2.

Proof. We will estimate both ZHTN , and TrprTM,ζM q from above and below, then combining these estimates
we will obtain (A.13). We start with ZHTN .

ZHTN “

ż

DN´1ˆS1

dαN
iαN

«

N´1
ź

j“1

d2αj
`

1´ |αj |
2
˘βp1´ j

N q´1

ff

ˆ exp

¨

˝´

M´1
ÿ

`“1

W prα`, rα``1q ´W prαM , αKM`1, . . . , αN ,

K´L
hkkikkj

0, . . . , 0q

˛

‚

ˆ exp

¨

˝´W p

K´1
hkkikkj

0, . . . , 0,´1, rα1q

˛

‚ .

We can bound the first and the last three terms in the above exponential with two positive constants
CpV, βq and cpV, βq, independent of N , such that

cpV, βq ď exp

¨

˝´W prα1, rα2q ´W prαM´1, rαM q ´W prαM , αKM`1, . . . , αN ,

K´L
hkkikkj

0, . . . , 0q

˛

‚

ˆ exp

¨

˝´W p

K´1
hkkikkj

0, . . . , 0,´1, rα1q

˛

‚ď CpV, βq

where in the exponents each αj P D. From the previous inequalities, we deduce that the integral

ż

DN´1ˆS1

dαN
iαN

«

N´1
ź

j“1

d2αj
`

1´ |αj |
2
˘βp1´ j

N q´1

ff

exp

˜

´

M´2
ÿ

`“2

W prα`, rα``1q

¸

is bounded from above by ZHTN {cpV, βq and from below by ZHTN {CpV, βq. We can explicitly integrate in
αj for j “ 1, . . . ,K and j “ pM ´ 1qK ` 1, . . . , N using the formula

ż

D

`

1´ |z|2
˘t´1

d2z “ πt´1 , (A.14)

obtaining that there are two constants C1pV, βq and c1pV, βq depending on V, β,K and L but not on N ,
such that
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ZHTN ď C1pV, βqN
K`L´1

ż

DpM´2qK

»

–

pM´1qK
ź

j“K`1

d2αj
`

1´ |αj |
2
˘βp1´ j

N q´1

fi

fl

ˆ exp

˜

´

M´2
ÿ

`“2

W prα`, rα``1q

¸

,

(A.15)

and

ZHTN ě c1pV, βqN
K`L´1

ż

DpM´2qK

»

–

pM´1qK
ź

j“K`1

d2αj
`

1´ |αj |
2
˘βp1´ j

N q´1

fi

fl

ˆ exp

˜

´

M´2
ÿ

`“2

W prα`, rα``1q

¸

.

(A.16)

We can proceed analogously to estimate the trace of rTM,ζM :

TrprTM,ζM q “

ż

DpM´1qK

K
ź

j“1

`

1´ |αj |
2
˘

β
2 p1´

j
N q´

1
2

K
ź

j“1

`

1´ |αj |
2
˘

β
2 p1´

pM´1qK`j
N q´ 1

2

ˆ

pM´1qK
ź

j“K`1

`

1´ |αj |
2
˘βp1´ j

N q´1

ˆ exp

˜

´

M´2
ÿ

j“1

W prαj , rαj`1q ´W prαM´1, rα1q

¸

ˆ

pM´1qK
ź

j“1

d2αj .

As before, we notice that there exist two positive constants rCpV, βq, and rcpV, βq, independent of N , such
that

rcpV, βq ă exp p´W prα1, rα2q ´W prαM´1, rα1qq ă rCpV, βq

when α1,α2,αM´1 P DK . From these inequalities, we deduce that the integral
ż

DpM´1qK

K
ź

j“1

`

1´ |αj |
2
˘

β
2 p1´

j
N q´

1
2

K
ź

j“1

`

1´ |αj |
2
˘

β
2 p1´

pM´1qK`j
N q´ 1

2

ˆ

pM´1qK
ź

j“K`1

`

1´ |αj |
2
˘βp1´ j

N q´1
exp

˜

´

M´2
ÿ

j“2

W prαj , rαj`1q

¸

pM´1qK
ź

j“1

d2αj

is bounded from above by TrprTM,ζM q{rcpV, βq and from below by TrprTM,ζM q{
rCpV, βq. Using (A.14) we

can now explicitly integrate in αj for j “ 1, . . . ,K the above integral obtaining the following inequalities

TrprTM,ζM q ď
rC1pV, βq

ż

DpM´2qK

»

–

pM´1qK
ź

j“K`1

d2αj
`

1´ |αj |
2
˘βp1´ j

N q´1

fi

fl

ˆ exp

˜

´

M´2
ÿ

`“2

W prα`, rα``1q

¸

,

(A.17)

TrprTM,ζM q ě rc1pV, βq

ż

DpM´2qK

»

–

pM´1qK
ź

j“K`1

d2αj
`

1´ |αj |
2
˘βp1´ j

N q´1

fi

fl

ˆ exp

˜

´

M´2
ÿ

`“2

W prα`, rα``1q

¸

,

(A.18)

where rC1pV, βq, and rc1pV, βq are positive constants depending on V, β,K and L but not on N . Combining
(A.15)-(A.16)-(A.17)-(A.18) we deduce (A.13).
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Applying the previous proposition, we can express the Free energy of the Circular β ensemble in the
high-temperature regime in terms of TrprTM q:

FHT pV, βq “ ´ lim
NÑ8

1

N
ln
`

ZHTN
˘

“ ´ lim
NÑ8

1

N

˜

ln

˜

ZHTN

TrprTM,ζM q

¸

` lnpTrprTM,ζM qq

¸

“ ´ lim
NÑ8

lnpTrprTM,ζM qq

N
,

(A.19)

where in the last equality we used Proposition A.2.
As a final step, we have to understand the behaviour of TrprTM,ζM q, and for this purpose we need to

carefully analyse the compact operators Tζpjq .
Let tψnpz, V, ζpjqquně1 be the eigenfunctions of Tζpjq with corresponding eigenvalues tλnpV, ζpjqquně1

and |λ1pV, ζ
pjq
q| ě |λ2pV, ζ

pjq
q| ě . . . . From a generalized version of Jentzsch’s Theorem (see [69,

Theorem 137.4]), we deduce that |λnpV, ζpjqq| ă λ1pV, ζ
pjq
q for all n ě 2.

We are now in the position to prove the following proposition.

Proposition A.3. Let tψnpz, V, ζpjqqu8n“1 be the eigenfunctions of the operator Tζpjq in (A.3) with corre-
sponding eigenvalues tλnpV, ζpjqqu8n“1. Consider the operator rTM,ζM in (A.12), then there are constants
d, aj , cj, j “ 1, . . . ,M ´ 1 uniformly bounded in N , and so in M , such that :

´

ψ1pz, V, ζ
p1q
q, rTM,ζMψ1pz, V, ζ

p1q
q

¯

“

M´1
ź

j“1

λ1pV, ζ
pjq
q

ˆ

1`
aj
N
`O

ˆ

1

N2

˙˙

, (A.20)

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

`ě2

´

ψ`pz, V, ζ
p1q
q, rTM,ζMψ`pz, V, ζ

p1q
q

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď d

M´1
ź

j“3

λ1pV, ζ
pjq
q

ˆ

1`
cj
N
`O

ˆ

1

N2

˙˙

(A.21)

Proof. To simplify the notation, we will drop the V dependence of the eigenvalues λnpV, ζpjqq, and of
the eigenfunctions ψnpz, V, ζpjqq.

We will prove (A.20) by induction on M . For M “ 2, we have that rTM,ζM “ MKTζp1q , so we have
to compute:

ˆ

ψ1pz, ζ
p1q
q,MKTζp1qψ1pz, ζ

p1q
q

˙

“ λ1pζ
p1q
q

´

ψ1pz, ζ
p1q
q,MKψ1pz, ζ

p1q
q

¯

“ λ1pζ
p1q
q

˜

ψ1pz, ζ
p1q
q,

K
ź

j“1

p1´ |zj |
2q´

Kβ
2N ψ1pz, ζ

p1q
q

¸

“ λ1pζ
p1q
q

ˆ

ψ1pz, ζ
p1q
q,

ˆ

1`
ra1pzq

N
`O

ˆ

1

N2

˙˙

ψ1pz, ζ
p1q
q

˙

“ λ1pζ
p1q
q

ˆ

1`
a1

N
`O

ˆ

1

N2

˙˙

,

where the function ra1pzq is the first term of the expansion of
śK
j“1p1´ |zj |

2q´
Kβ
2N in powers of 1{N and

the constant a1 “

´

ψ1pz, ζ
p1q
q,ra1pzqψ1pz, ζ

p1q
q

¯

is uniformly bounded in N . So the first inductive step
is proved.
For general M , we define the vector ζM´1 “ pζ

pM´1q, . . . , ζp2qq so that

rTM,ζM “
rTM´1,ζM´1

MKTζp1q .

Using the above relation we obtain
´

ψ1pz, ζ
p1q
q, rTM,ζMψ1pz, ζ

p1q
q

¯

“

´

ψ1pz, ζ
p1q
q, rTM´1,ζM´1

MKTζp1qψ1pz, ζ
p1q
q

¯

“ λ1pζ
p1q
q

´

ψ1pz, ζ
p1q
q, rTM´1,ζM´1

MKψ1pz, ζ
p1q
q

¯

.
(A.22)
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Thanks to [40, Chapter VII, Theorem 1.8], we know that the eigenfunctions ψ1pz, ζ
pjq
q and the eigenvalues

λ1pζ
pjq
q are analytic functions of the parameter ζpjq, so, for N big enough, there exists a function

ξ1pzq P L
2pDKq independent of N such that:

ψ1pz, ζ
p1q
q “ ψ1pz, ζ

p2q
q

ˆ

1`
ξ1pzq

N
`O

ˆ

1

N2

˙˙

(A.23)

and a constant cj such that

λ1pζ
pj`1q

q “ λ1pζ
pjq
q

ˆ

1`
cj
N
`O

ˆ

1

N2

˙˙

. (A.24)

Using (A.23) and the expansion of the function defining the operator MK we can expand (A.22) as:

´

ψ1pz, ζ
p1q
q, rTM´1,ζM´1

MKTζp1qψ1pz, ζ
p1q
q

¯

“ λ1pζ
p1q
q

´

ψ1pz, ζ
p2q
q, TM´1,ζM´1

ψ1pz, ζ
p2q
q

¯

`
λ1pζ

p1q
q

N

˜

ψ1pz, ζ
p2q
q, rTM´1,ζM´1

ψ1pz, ζ
p2q
q

ˆ

ra1pzq ` ξ1pzq `O

ˆ

1

N

˙˙

¸

`
λ1pζ

p1q
q

N

˜

ψ1pz, ζ
p2q
q

ˆ

ξ1pzq `O

ˆ

1

N

˙˙

, rTM´1,ζM´1
ψ1pz, ζ

p2q
q

¸

.

(A.25)

To bound the last two terms in the above relation, we use (A.11) and (A.24) so that

ˇ

ˇ

ˇ

ˇMKTζpjq
ˇ

ˇ

ˇ

ˇ “
ˇ

ˇ

ˇ

ˇTζpj`1qM´1
K

ˇ

ˇ

ˇ

ˇ ď λ1pζ
pj`1q

q “ λ1pζ
pjq
q

ˆ

1`
cj
N
`O

ˆ

1

N2

˙˙

(A.26)

for j “ 2, . . . ,M ´ 1, here in the first inequality we use the fact that ||M´1
K || “ 1.

Using (A.26) we can bound the second term in the r.h.s of (A.25) by
ˇ

ˇ

ˇ

ˇ

ˆ

ψ1pz, ζ
p2q
q,MKTζpM´1qMK . . .MKTζp2qψ1pz, ζ

p2q
q

ˆ

ra1pzq ` ξ1pzq `O

ˆ

1

N

˙˙˙
ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ψ1pz, ζ

p2q
q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ψ1pz, ζ
p2q
q

ˆ

ra1pzq ` ξ1pzq `O

ˆ

1

N

˙˙
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

ˆ
ˇ

ˇ

ˇ

ˇMKTζpM´1qMK . . .MKTζp2q
ˇ

ˇ

ˇ

ˇ

ď c

M´1
ź

j“2

ˇ

ˇ

ˇ

ˇMKTζpjq
ˇ

ˇ

ˇ

ˇ ď c

M
ź

j“3

λ1pζ
pjq
q ď c

M´1
ź

j“2

λ1pζ
pjq
q

ˆ

1`
cj
N
`O

ˆ

1

N2

˙˙

,

(A.27)

for some constant c uniformly bounded in N . An analogous inequality can be obtained for the second
term in (A.25). Thus, applying the induction to the first term in the r.h.s. of (A.25), we deduce (A.20).

We move to the proof of (A.21). Applying (A.20), we can estimate (A.21) as
ˇ

ˇ

ˇ

ˇ

ÿ

`ě2

ˆ

ψ`pz, ζ
p1q
q, rTM,ζMψ`pz, ζ

p1q
q

˙
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

`ě2

´

ψ`pz, ζ
p1q
q, rTM,ζMψ`pz, ζ

p1q
q

¯

˘

´

ψ1pz, ζ
p1q
q, rTM,ζMψ1pz, ζ

p1q
q

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď

M´1
ź

j“1

λ1pζ
pjq
q

ˆ

1`
aj
N
`O

ˆ

1

N2

˙˙

` |TrprTM,ζM q| .

Regarding the second term in the r.h.s of the above expression we claim that there exists a constant c
such that

|TrprTM,ζM q| ď c
M´1
ź

j“3

λ1pζ
pjq
q

ˆ

1`
cj
N
`O

ˆ

1

N2

˙˙

.



A PROOF OF PROPOSITION 4.2 26

To derive the above inequality first, we consider the operator T2,1 “MKTζp2qMKTζp1q , it is a compact
operator and it is trace class since it is the composition of two different Hilbert–Schmidt operators. Let
trλnuně1 be its eigenvalues numbered in such a way that t|rλn|uně1 is a non increasing sequence and let
tϕnpzquně1 be the corresponding eigenfunctions. Then

|TrprTM,ζM q| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ně1

`

ϕn,MKTζpM´1q . . .MKTζp3qT2,1ϕn
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

ně1

|rλn|
ˇ

ˇ

`

ϕn,MKTζpM´1q . . .MKTζp3qϕn
˘
ˇ

ˇ

ď
ˇ

ˇ

ˇ

ˇMKTζpM´1qMK . . .MKTζp3q
ˇ

ˇ

ˇ

ˇ

ÿ

ně1

|rλn| .

Since T2,1 is trace class, it is a classical result that [31]
ÿ

ně1

|rλn| ď
ÿ

ně1

sn :“ ||T2,1||Trace ,

where tsnuně1 are the singular values of the operator T2,1. Furthermore, since T2,1 is the composition of
two Hilbert–Schmidt operators, we have the following inequality

||T2,1||Trace ď ||MKTζp2q ||HS||MKTζp1q ||HS ď rc ,

where || ¨ ||HS is the Hilbert–Schmidt norm and rc is a positive constant uniformly bounded in N . Thus,
applying the previous chain of inequalities and the same argument as in (A.27), we deduce that

|TrprTM,ζM q| ď c
M´1
ź

j“3

λ1pζ
pjq
q

ˆ

1`
cj
N
`O

ˆ

1

N2

˙˙

,

so we conclude our proof.

Applying Proposition (A.3) to (A.19) we obtain that:

FHT pV, βq “ ´ lim
NÑ8

1

N
ln
´

TrprTM,ζM q

¯

“

´ lim
NÑ8

1

N
ln

˜

ÿ

ně1

´

ψnpz, V, ζ
p1q
q, rTM,ζMψnpz, V, ζ

p1q
q

¯

¸

“ ´ lim
NÑ8

«

1

N
ln

˜

M´1
ź

j“1

λ1pV, ζ
pjq
q

ˆ

1`
aj
N
`O

ˆ

1

N2

˙˙

¸

`
1

N
ln

¨

˝1`

ř

`ě2

´

ψ`pz, V, ζ
p1q
q, rTM,ζMψ`pz, V, ζ

p1q
q

¯

śM´1
j“1 λ1pV, ζ

pjq
q
`

1`
aj
N `O

`

1
N2

˘˘

˛

‚

ff

,

(A.28)

applying the inequality (A.21) of Proposition (A.3), we deduce that the last term in the above relation
goes to zero as N Ñ8 and we obtain that

FHT pV, βq “ ´ lim
NÑ8

1

N
ln

˜

M´1
ź

j“1

λ1pV, ζ
pjq
q

¸

.

Since λ1pV, ζ
pjq
q is positive and an analytic function of the parameter ζpjq, we approximate the vector ζpjq

with the vector p1 ´ jK
N q

2K
hkkkkkikkkkkj

pβ, β, . . . βq “ p1 ´ jK
N qβ and deduce that λ1pV, ζ

pjq
q “ λ1

´

V,β
´

1´ jK
N

¯¯

`

OpN´1q. Therefore, we can rewrite (A.28) as
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FHT pV, βq “ ´ lim
NÑ8

1

N

M´1
ÿ

j“1

ln

ˆ

λ1

ˆ

V,β

ˆ

1´
jK

N

˙˙˙

“

´
1

K

ż 1

0

ln pλ1 pV,βxqqdx .

This, combined with (A.8), leads to (A.1). Moreover, as a consequence of the last relation, we deduce
that FHT pV, βq is analytic in β for β ą 0.

We notice that the proof of Proposition 4.2 is heavily based on the assumption that the potential V
that we are considering is of finite range, otherwise our approach would not work.

We now prove the moments relations (4.3). For this purpose we have to prove the relations
ż

T
cospθmqµβHT pdθq “ BtFHT

ˆ

V `
t

2
<pzmq, β

˙

|t“0

, (A.29)

ż

T
cospθmqµβALpdθq “ BtFAL

ˆ

V `
t

2
<pzmq, β

˙

|t“0

. (A.30)

Analogous relation can be written for the imaginary part of the moments. We focus on (A.29). From
Remark 3.7, we know that FHT pV, βq “ F pV ;βqpµβHT pθqq, where the functional F pV,βq is defined in (3.12)
and µβHT pθq is the density of states of the Circular β ensemble at high-temperature. We write the
Euler-Lagrange equation for this functional, getting that µβHT pθq satisfies:

2V pθq ´ 2β

ż

T
ln

ˆ

sin

ˆ

|θ ´ γ|

2

˙˙

µβHT pγqdγ ` lnpµβHT pθqq ` CpV, βq “ 0 , (A.31)

where CpV, βq is a constant not depending on θ.
Now let us consider the functional corresponding to the potential rV pθq “ V pθq ` t

2 cospmθq:

FpV pθq`
t
2 cospmθq,βqpµq “ 2

ż

T
V pθqµpθqdθ ` t

ż

T
cospmθqµpθqdθ

`

ż

T
ln pµpθqqµpθqdθ

´ β

ż ż

TˆT
ln sin

ˆ

|θ ´ γ|

2

˙

µpθqµpγqdθdγ ` lnp2πq .

Also this functional has a unique minimizer that we denote by µptqpθq, with µp0qpθq “ µβHT pθq. Evaluating
the above functional at µptqpθq, and computing its derivative at t “ 0, we deduce the following relation:

BtFpV pθq`
t
2 cospmθq,βqpµptqq|t“0

“ 2

ż

T
V pθqBtµ

ptqpθq|t“0
dθ `

ż

T
cospmθqµβHT pθqdθ

´ 2β

ż ż

TˆT
ln sin

ˆ

|θ ´ γ|

2

˙

µβHT pγqBtµ
ptqpθq|t“0

dθdγ

`

ż

T
ln
´

µβHT pθq
¯

Btµ
ptqpθq|t“0

dθ .

(A.32)

Testing (A.31) against Btµptqpθq|t“0
we obtain

2

ż

T
V pθqBtµ

ptqpθq|t“0
dθ ´ 2β

ż ż

TˆT
ln sin

ˆ

|θ ´ γ|

2

˙

µβHT pγqBtµ
ptqpθq|t“0

dθdγ

`

ż

T
ln
´

µβHT pθq
¯

Btµ
ptqpθq|t“0

dθ “ 0 ,

where we have used
ş

T Btµ
ptqpθqdθ “ 0. Thus, we can simplify (A.32) as :

BtFpV pθq`
t
2 cospmθq,βqpµq|t“0

“

ż

T
cospmθqµβHT pθqdθ ,
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which is equivalent to (A.29).
To complete the proof of Proposition 4.2 we have to show that (A.30) holds. From the definition of

mean density of states (3.11) we obtain that:

ż

T
cospmθqµβALpdθq “ lim

NÑ8

E r<pTrpEmqqs
2N

“ ´ lim
NÑ8

Bt

´

Z
pALq
N

`

V ` t
2<pz

mq, β
˘

¯

|t“0

NZ
pALq
N pV, βq

,

(A.33)

where the expected value is taken with respect to the generalized Gibbs ensemble of the Ablowitz–Ladik
lattice. A similar equation holds for the imaginary part of the moment.

Let’s focus on the numerator, first we notice that we can assume that <pzmq and V to have the same
range K. The more general case can be treated in the same way. Differentiating the partition function
we obtain

Bt

ˆ

Z
pALq
N

ˆ

V `
t

2
<pzmq, β

˙˙

|t“0

“
1

2

ż

DN
<pTrpEmqq

N
ź

j“1

`

1´ |αj |
2
˘β´1

ˆ exp

˜

´

M
ÿ

`“1

W prα`, rα``1q´W1pαKM`1, . . . , αKM`L, rα1q

¸

d2α .

Due to the structure of the measure and of the Lax matrix E , we deduce that there exist two smooth
functions g : DK ˆ DK Ñ R and g1 : DL ˆ DK Ñ R such that

Bt

ˆ

Z
pALq
N

ˆ

V `
t

2
<pzmq, β

˙˙

|t“0

“

ż

DN
d2α

N
ź

j“1

`

1´ |αj |
2
˘β´1

ˆ

«

M
ÿ

`“1

gprα`, rα``1q ` g1pαKM`1, . . . , αKM`L, rα1q

ff

ˆ exp

˜

´

M
ÿ

`“1

W prα`, rα``1q´W1pαKM`1, . . . , αKM`L, rα1q

¸

d2α .

(A.34)

Proceeding as in the proof of Proposition A.34, defining the operator T ptqβ as

T ptqβ “ TβetgpαM´1,αM q ,

for N big enough, (A.34) is asymptotic to

Bt

ˆ

Z
pALq
N

ˆ

V `
t

2
<pzmq, β

˙˙

|t“0

„MTr
´

BtpT ptqβ q|t“0
T M´2
β

¯

.

Following the same reasoning as in the previous proof, in view of the analyticity of λ1pV,βq, we deduce
that the previous equation is asymptotic to

Bt

ˆ

Z
pALq
N

ˆ

V `
t

2
<pzmq, β

˙˙

|t“0

„Mλ1pV,βq
M´2Btλ1pV ` t{2<pzmq,βq|t“0

. (A.35)

Exploiting (A.6)-(A.8) and (A.35), we can rewrite (A.33) as:
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lim
NÑ8

Bt

´

Z
pALq
N

`

V ` t
2<pz

mq, β
˘

¯

|t“0

NZ
pALq
N pV, βq

“ lim
NÑ8

Mλ1pV,βq
M´2Btλ1

`

V ` t
2<pz

mq,β
˘

|t“0

N
ř8

`“1 λ
M´1
` pV, βq

“
Btλ1

``

V ` t
2<pz

mq, β
˘˘

|t“0

Kλ1pV, βq

“ ´Bt

ˆ

FAL

ˆ

V `
t

2
<pzmq, β

˙˙

|t“0

.

Thus, we have completed the proof of Proposition 4.2.

B Proof of lemma 5.5
We prove (5.15) for k “ 1 and the cases k ą 1 easily follow. For convenience we consider the more
general case of pλ, η, βq P Cˆ Cˆ tz P C|< z ą 0u.

Let us define Rpsq1 “

ˆ

fs hs
ps qs

˙

where s ě 1. If follows from (5.14) that

ˆ

fs hs
ps qs

˙

“

ˆ

fs´1 hs´1

ps´1 qs´1

˙

˜

1` λβη
sps`βq

η2

sps`β`1q

1 0

¸

, s ą 1.

Note that in the case η “ 0 the lemma is trivially satisfied. We will show that all the sequences
tfs, hs, ps, qsusě1 converge as sÑ8, moreover hs, qs

sÑ8
ÝÝÝÑ 0. First of all, we notice that hs “

η2fs´1

sps`β`1q

and qs “
η2ps´1

sps`β`1q , thus the convergence to zero of these two sequences follows from the convergence of
ps and fs as sÑ8. Moreover, the terms of the sequences tfs, psusě1 obey to the 3-terms recurrence:

fs “

ˆ

1`
λβη

sps` βq

˙

fs´1 `
η2

ps´ 1qps` βq
fs´2 , (B.1)

and the same holds for ps in place of fs. Thus, we have just to prove that the sequence tfsusě1 converges.
We assume that pλ, η, βq P Ω where Ω Ă CˆCˆtz P C|< z ą 0u is a compact set. With this assumption
we can give a bound to |fs| from above as:

|fs| ď

ˆ

1`
2η2 ` |λβη|

sps` βq

˙

max p|fs´1|, |fs´2|q .

Inductively, we deduce that there exists a constant C “ CpΩq such that:

|fs| ď C
s
ź

`“1

ˆ

1`
2η2 ` |λβη|

`p`` βq

˙

ď C
8
ź

`“1

ˆ

1`
2η2 ` |λβη|

`p`` βq

˙

. (B.2)

Furthermore, the infinite product on the right-hand side of (B.2) is convergent by a classical result, see
for example [46, Chapter XIII, Lemma 1], this implies that the sequence tfsusě1 is uniformly bounded.
Moreover, we have that:

|fs`1 ´ fs| ď
|fsλβη|

ps` 1qps` 1` βq
`

η2|fs´1|

sps´ 1` βq
ď rC

η2 ` |λβη|

sps´ 1` βq
,

for some constant C̃ ą 0 that depends on the compact set Ω. This last equation implies that the sequence
tfsusě1 is a Cauchy sequence, thus it is convergent. So we get the claim (5.14). The claim (5.16) easily
follows from (5.14).

Regarding the differentiability in the parameters λ, η and β, it follows from (B.1) that fs “ fspλ, η, βq
is analytic in Ω. Since fspλ, η, βq Ñ fpλ, η, βq as s Ñ 8 uniformly, then by Weierstrasse convergence
theorem, fpλ, η, βq is analytic in Ω.
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