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Abstract. Recently, some general relations have been studied in nonequilibrium

mesoscopic systems. In particular, the thermodynamic uncertainty relation (TUR)

provides a universal internal relation among the cumulants of currents and the entropy

production. In this paper, we give a simple derivation of TUR for thermally fluctuating

particle current in a tilted periodic potential from a coarse grained point of view with

the use of the transition probabilities. Also, we explore the condition for the bound of

TUR to monotonically increase with the affinity.

1. Introduction

Recent advances in nano-technology such as the fabrication and manipulation of nano

devices[1, 2, 3] demands new theories for the nonequilibrium mesoscopic systems. The

mesoscopic systems are large compared with the atomic scale but sufficiently small so

that fluctuation substantially affect the dynamics. For example, the fluctuation theorem

focuses on the probability distribution of the entropy production, which satisfies a model

independent symmetry of the large deviation function[4, 5, 6, 7, 8, 9, 10, 11, 12].

Here, our interest lies in another general theory of the stochastic thermodynamics,

i.e., the so-called thermodynamic uncertainty relation (TUR) 〈J2〉c
〈J〉2

≥ 2
〈σ〉

among the

mean 〈J〉 and the variance 〈J2〉c of the current J and the expectation value of the

entropy production 〈σ〉[13, 14]. It implies that the precision 〈J〉2

〈J2〉c
is bounded by the

mean entropy production 〈σ〉, which are independently measurable, and therefore TUR

is of practical importance.

There are several derivations of TUR for examples on the basis of large

deviation theory[14, 15, 19], the information geometry[16], and the Riesz representation

theorem[17]. There are also many generalizations and related works[18, 19, 20, 21, 22].

It is instructive to illustrate the underlying physical insight by a simple model.

One of the simplest models describing the nonequilibrium steady state (NESS) is the

thermal diffusion in a tilted periodic potential[23, 24]. This model plays a role in many

phenomena such as the diffusion of ions on crystal surfaces[25], the phase diffusion of the
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Josephson junction[26], and transports in biophysical systems[24]. In the context of the

stochastic thermodynamics, there is a transparent derivation of TUR for this model[27]

from microscopic point of view in terms of the overdamped Langevin equation with a

microscopic time resolution. TUR bound was rigorously obtained in particular for the

sufficiently small and large tilting regimes.

In this paper, we give another contribution to TUR for the tilted periodic potential

by showing a simple kinetic derivation under a proper coarse graining procedure with a

finite time resolution[28, 29]. We also investigate under which condition the bound for

TUR is tight in terms of the Kramers escape rate[30].

This paper is organized as follows. In Sec. 2, we describe our model. In Sec. 3, we

derive TUR in terms of the Kramers transition rate. Sec. 4 is devoted to a summary.

2. Model

Let us consider the thermal diffusion of a particle on an L-periodic potential V (x+L) =

V (x) dragged by a constant load force F . We assume that the particle satisfies an

overdamped Langevin equation

γ
d

dt
x(t) = −

d

dx
Veff(x) + ξ(t), (1)

where γ and Veff (x) = V (x) − Fx denote the friction coefficient and the effective

potential. And, the thermal noise ξ(t) satisfies the fluctuation-dissipation relation

〈ξ(t)ξ(t′)〉 = 2 γ

β
δ(t− t′). Here, β = 1

kBT
stands for the inverse temperature. In order to

calculate the Kramers escape rate, we explore the probability density. The corresponding

Fokker-Planck equation for the probability density is

∂

∂t
P (x, t) = −

∂

∂x
J(x, t), (2)

with the probability current

J(x, t)

= −
1

γ

dVeff(x)

dx
P (x, t)−

1

βγ

∂

∂x
P (x, t). (3)

We consider (2) under the periodic boundary condition P (x+L, t) = P (x, t). In NESS,

the probability current becomes constant[24]

Jst = N(1 − e−βFL) (4)

with

N =
1

βγ

(

∫ L

0
dx

∫ x+L

x
dyeβ(Veff (y)−Veff (x))

)−1

. (5)

We assume that there exists one minimum xmin and one maximum xmax of effective

potential in each period L, and the noise is weak compared with the barrier height
1
β
≪ ∆Veff = Veff(xmax)− Veff(xmin). Then, the saddle point approximation gives the

following expression of the stationary current

Jst = k+ − k− (6)
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Figure 1. Schematic illustration of the tilted periodic potential. The particle moves

to the right and left with transition probabilities p+ and p− at t = mτ m = 0, 1, 2, ....

in terms of the Kramers escape rates

k+ =
| d2

dx2Veff(xmin)
d2

dx2Veff (xmax)|
1

2

2πγ
e−β∆Veff

k− = k+e
−βFL. (7)

Here, k+ and k− stand for the Kramers escape rates, the probability per unit time for

a particle escape to the right and left minima, respectively. In particular, the local

detailed balance condition is satisfied

k+

k−
= eβFL. (8)

3. Derivation of TUR

In terms of the transition rates, we can take a coarse grained picture for the stochastic

motion of the particle as a biased random walk among the potential minima. Let us

suppose that the particle moves to the right and the left minima with probabilities

p+ ∝ k+ and p− ∝ k− at discrete time t = 0, τ, 2τ, ... with a time step τ . After n

transitions, the probability that the particle moves kL to the right, lL to the left, and

remains in the same minimum m = n− (k + l) times in total is

π(k, l) =
n!

k!l!(n− (k + l))!
pk+p

l
−(1− (p+ + p−))

n−k−l. (9)

First, we calculate the mean of the particle current as

〈J〉

=
∑

k+l+m=n

(k − l)
n!

k!l!m!
pk+p

l
−(1− (p+ + p−))

m

= (p
∂

∂p
− q

∂

∂q
)(p+ q + r)n|p=p+,q=p

−
,r=1−(p++p

−
)
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= n(p+ − p−). (10)

Here, the sum runs all k, l,m ≥ 0 that satisfy k+ l+m = n. Similarly, we can calculate

the variance of the particle current as

〈J2〉c

=
∑

k+l+m=n

(k − l − 〈J〉)2
n!

k!l!m!
pk+p

l
−(1− (p+ + p−))

m

= n(p+ − p2+ + 2p+p− + p− − p2−), (11)

which is proportional to the time duration. This feature of the cumulant is important.

On the other hand, the mean entropy production is calculated from the Joule heat

as

〈σ〉 = n(p+ − p−)βFL. (12)

From (8), the transition probabilities also satisfy the local detailed balance condition

p+

p−
= eβFL. (13)

Therefore, the ratio between the variance and the square of the mean of the current is

given as

〈J2〉c
〈J〉2

=
1

n(p+ − p−)

(

1 + e−βFL

1− e−βFL
− p+(1− e−βFL)

)

. (14)

Let us explore TUR by multiplying 〈σ〉 to (14)

〈J2〉c
〈J〉2

〈σ〉

= βFL

(

1 + e−βFL

1− e−βFL
− p+(1− e−βFL)

)

. (15)

It is straightforward to show that the function in the right hand side of (15)

f(x, p+)

= x

(

1 + e−x

1− e−x
− p+(1− e−x)

)

= 2 + (
1

6
− p+)x

2 +
p+

2
x3 +O(x4) (16)

is positive for p+ ≤ 1 and larger than 2 for all x with p+ being sufficiently small. Fix

the load force F and the temperature, the smallness of p+ corresponds to the choice of

a short time step τ . This implies the TUR for the tilted periodic potential under the

coarse graining.

Fig. 1 shows that the minimum value of (15) min
βFL

〈J2〉c
〈J2〉

〈σ〉 by varying p+. It implies

that for p+ ≪ 1 the minimum of (15) is almost equal to 2. The presence of this plateau

region shows that the TUR bound is tight for short τ as in [27]. In Fig. 2, we illustrated
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Figure 2. The minimum of the ratio between the precision and the mean entropy

production min
βFL

〈J2〉c
〈J〉2

〈σ〉 as a function of p+. For p+ ≪ 1 under a short τ , there is a

plateau where the minimum of the ratio is almost equal to 2.

0 1 2 3 4 5

βFL
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< J2 >c
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Figure 3. We illustrate TUR ratio 〈J2〉c
〈J〉2 〈σ〉 as a function of βFL for p+ ≪ 1 with a

sufficiently short time step τ (shaded region), and p+ = 0.5 (blue) and p+ = 0.7 (red).

〈J2〉c
〈J〉2

〈σ〉 as a function of βFL for p+ ≪ 1 (shaded region), and p+ = 0.5 (blue) and

p+ = 0.7 (red). If either the load force F is sufficiently strong or the time step τ is long

enough then the precision can be large for the intermediate values of βFL, since the

fluctuation of the particle current is suppressed.

4. Summary

We straightforwardly derived TUR for the particle current of the tilted periodic potential

under a coarse graining. The point is that we used the description of a biased random

walk satisfying the local detailed balance condition. In this manner, we can explicitly
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evaluate the mean and the variance of the current, and also calculate the entropy

production from the Joule heat. In particular, the variance of the current is proportional

to the number of time steps owing to the additivity. The local detailed balance condition

is inherited from that of the Kramers escape rates by restricting to the weak noise regime.

We also investigated the ratio between the precision 〈J2〉
〈J2〉c

and the mean entropy

production 〈σ〉, which is almost equal to 2 as in Fig. 1 for p+ ≪ 1 and is monotonically

increasing function of the dimensionless quantity βFL for p+ ≪ 1 shown as shaded

region in Fig. 2. Note that our result is consistent with that of [27], which corresponds

to the short enough time resolution τ and thus p+ ≪ 1. On the other hand, the ratio

has a local minimum for p+ ≫ 1
6
with a sufficiently long time step τ , which connotes

that the precision can be large for the intermediate strength of the affinity βFL. Also,

the ratio is larger than 2 for large enough values of βFL, which is actually realized for

a fixed F by taking β large.
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Appendix A. Cumulants

In Sec. 2, we calculated the mean and the variance of the particle current. Here, we

explore the higher order cumulants. As shown in [29], the characteristic function of

σ = βFLk for the net displacement Lk is given by

log〈e−λσ〉

= log(
n
∑

l=0

n−l
∑

k+l=0

n!

(k + l)!l!(n− l − 2l)!

(

p+

p−

)λk

pk+l
+ pl−(1− (p+ + p−))

n−k−2l)

= n log(1− p+(1− e−λβFL) + p−(e
λβFL − 1)). (A.1)

It is evident that all the cumulants are proportional to the total number of transitions n.

Then, the m-th order cumulant divided by m! in the expansion of (A.1) is negligible for

large m. This point is compatible to TUR given by the lowest two terms −〈σ〉+ 1
2
〈σ2〉c

in the cumulant expansion of (A.1) with λ = 1.

For example, we can reproduce the mean and the variance, and the third order

cumulant is given as

〈(σ − 〈σ〉)3〉

= n(p+ − p− − 3(p2+ − p2−) + 2(p3+ − p3−)− 6p+p−(p+ − p−)). (A.2)

The higher order cumulants can be calculated as well.
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