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Analytic weakly mixing diffeomorphisms on odd

dimensional spheres

Gerard Farré

Abstract

We present an approximation by conjugation scheme to obtain analytic diffeomorphisms

of odd dimensional spheres that are weakly mixing with respect to the volume.

Keywords. Analytic diffeomorphisms, weak mixing, approximation by conjugation method.

1 Introduction

This paper is devoted to the study of the phase space dependence of topological and measurable

properties of dynamical systems, which aims at identifying the class of manifolds that allow a

map of a certain regularity to exhibit a given topological or ergodic property. In particular we

present a constructive method to prove the existence of weakly mixing and analytic diffeomor-

phisms with respect to the volume on odd dimensional spheres. The type of methods that we use

appeared first in [1], where the authors proved that any compact, connected and smooth mani-

fold supporting a non trivial free S1-action admits smooth and weakly mixing diffeomorphisms.

These constructions, which are usually referred to as Anosov-Katok or approximation by conju-

gation (AbC) schemes, are performed using an iterative procedure starting with a simple function

coming from the free S1-action, and the maps obtained at the end can be chosen to lie arbitrarily

close to this initial map in the smooth topology. For particular manifolds these results have been

extended to the analytic category. In the case of unique ergodicity specific constructions were

carried out in [8] for the two torus and in [4] for odd dimensional spheres. We also refer the

reader to [7], [2] for other related results involving constructions of analytic diffeomorphisms on

d-dimensional tori (d ≥ 2) and to [4] for a discussion on the difficulties of extending the method

for analytic maps. Whether or not AbC methods can be used to obtain analytic weakly mixing
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diffeomorphisms on odd dimensional spheres becomes then a natural question. Before enter-

ing into details, let us recall how the Anosov-Katok method works. For a complete and modern

review on the method and some of its applications, we refer again the reader to [3].

Given a connected, compact and smooth manifold M (equipped with a smooth measure µ)

admitting a non trivial smooth free S1-action {St}t∈T, one constructs a sequence of µ-preserving

diffeomorphisms Hn : M → M and {αn} ⊂ Q in such a way that

F = lim
n→∞

Fn, Fn = H−1
n ◦ Sαn+1

◦Hn (1.1)

satisfies the ergodic property of interest. It is due to an appropriate inductive choice of “wild”

conjugacies Hn and a fast converging sequence {αn} that one can induce the desired ergodic

behaviour for the limit map while ensuring the convergence of {Fn}. On the other hand the

sequence {Sαn
} also tends to Sα̃ for some α̃ ∈ T. Thus {Hn} cannot converge, since otherwise

F would be conjugate to Sα̃ and the construction would become trivial. Nevertheless F lies in

the closure of the space of maps conjugate to Sα̃,

Aα̃(M) = {H−1 ◦ Sα̃ ◦H | H ∈ Diffµ(M)},

where we have denoted by Diffµ(M) the space of diffeomorphisms of M preserving µ. Thus the

Anosov-Katok method can be used to obtain maps with ergodic properties lying on the closure of

a space of integrable maps. An illustrative example of this fact can be found in [5], where smooth

area preserving weakly mixing maps of the disc F ∈ Aα̃(D) were built with α̃ an arbitrary

Liouville number. Recall that given a measure space (M,B, µ), a µ-preserving map F : M →
M is said to be weakly mixing if for all A,B ∈ B we have

lim
n→∞

1

n

n−1
∑

j=0

|µ(F−j(A) ∩ B)− µ(A)µ(B)| = 0,

or equivalently if F possesses no nonconstant eigenfunctions. We will use instead, as it was done

in [5], the following characterization of weak mixing (see [9]).

Definition 1.1 (Weak mixing). A µ-preserving diffeomorphism F : M → M is weakly mixing

if there exists an increasing sequence {mn}n ⊂ N such that for any pair of measurable sets

A,B ∈ B
lim
n→∞

µ(A ∩ F−mn(B)) = µ(A)µ(B). (1.2)

In our case M = S3 and µ is the volume. We identify S3 as a subset of C2 and then define, for

any α ∈ T, the map ϕα : S3 → S3,

ϕα(z1, z2) = (e2πiαz1, e
2πiαz2). (1.3)

The result that we prove is the following.
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Theorem A. For any ∆ > 1, ε > 0 and α ∈ T, there exists a volume preserving and weakly

mixing F ∈ Diffω∆(S
3)) such that |F − ϕα|∆ < ε.

Remark 1.2. The result holds as well for the case of any odd dimensional sphere excluding S1.

The necessary changes in the proof for higher dimensional spheres are explained in Section 7.

A precise definition of Diffω∆(S
3) and the analytic topology are given in Section 1.2. In our con-

struction Sα̃ = ϕα̃ for some irrational number α̃ ∈ T that we can choose arbitrarily close to α,

but we have no control over its arithmetic properties. The proof requires that α̃ is well approx-

imated by rational numbers in such a way that the necessary conditions for the convergence of

Fn are satisfied, so we cannot guarantee α̃ to be any arbitrarily chosen Liouville number. This

problem already appeared in [1] and was later solved in [5], where the authors proved that α̃

could be any Liouville number by using more accurate estimates. The specific scheme that we

use to prove Theorem A builds on the construction in [4]. In that case a finite sequence of tran-

sitive actions on the sphere are used to build the conjugacies Hn for the Anosov-Katok scheme

in such a way that the limit map is uniquely ergodic with respect to the volume. Our goal is to

show that their construction can be modified in order to obtain weakly mixing diffeomorphisms

on odd dimensional spheres.

1.1 Plan of the paper

This work is divided in seven sections with the following content:

i) In Section 1.2 there is the necessary information concerning the topology of the space

of maps that we consider, as well as the expression of the volume on the three sphere in

appropriate coordinates.

In Section 1.3 we define two different types of decompositions into measurable subsets of

the 3-sphere which are used to verify that the approximating maps {Fn} in (1.1) satisfy the

properties that will lead to the limit map F being weakly mixing.

ii) Section 2.1 contains the definitions of approximate ergodicity and approximate mixing.

Section 2.2 contains a lemma stating that if the maps of the sequence {Fn} are approxi-

mately mixing and the sequence converges sufficiently fast, then the limit map is weakly

mixing (see Lemma 2.7).

iii) In Section 3 we explain the modification of the Anosov-Katok scheme in [4] and give the

explicit expressions of the maps involved. We also clarify why our modification is expected

to yield the result claimed in Theorem A.
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iv) Section 4 contains the proof of Theorem A, as well as the statement of the inductive propo-

sition used to prove it, that is Proposition 4.2.

v) In Section 5 stretching properties needed for the proof of Proposition 4.2 are defined and

verified for certain maps used in our construction. Namely, we are referring to the map

defined in equation (3.5) and it is verified in Lemma 5.3.

vi) Section 6 contains the proof of Proposition 4.2.

vii) Section 7 contains an indication on how to extend the proof to higher dimensional cases.

1.2 Preliminaries and notation

As mentioned above, for the sake of simplicity we will restrict our study to the case of S3,

although the proof can be extended to the case of any higher odd dimensional sphere up to

minor modifications. In this section we introduce the basic properties that we use throughout the

paper regarding the topology for the space of functions that we consider and the measure on the

3-sphere.

Analytic topology: Let us consider S3 embedded in R4 and the standard complexification of

R4 ⊂ C4. Consider f : S3 → S3 such that each of its components is analytic. If the compo-

nents of f can be extended to bounded holomorphic functions on the complex ball B∆ = {z ∈
C4 | ‖z‖ < ∆} for a fixed ∆ > 1 we write f ∈ Cω

∆(S
3). We will be considering the space of

diffeomorphisms Diffω∆(S
3) ⊂ Cω

∆(S
3), defined as the invertible maps in Cω

∆(S
3) such that their

inverses also belong to Cω
∆(S

3). In this space we can define the distance between f, g ∈ Cω
∆(S

3)

to be

|f − g|∆ = max

{

sup
z∈B∆

‖f(z)− g(z)‖, sup
z∈B∆

‖f−1(z)− g−1(z)‖
}

,

which makes Diffω∆(S
3) into a complete metric space. In case the components of such a function

f and its inverse can be extended to holomorphic functions in C4, we write f ∈ Diffω∞(S3). For

any U ⊂ C4, we define also

‖Df‖U = sup
x∈U

{max{‖Dfx‖, ‖Df−1
x ‖}}, (1.4)

where the norms on the right hand side are the usual operator norms

‖Dfx‖ = sup{‖Dfxv‖ | v ∈ C4, ‖v‖ ≤ 1},
‖Df−1

x ‖ = sup{‖Df−1
x v‖ | v ∈ C4, ‖v‖ ≤ 1}.

Volume in Hopf coordinates: We can identify S3 as a subset of C2, and write all points of the

3-sphere in polar coordinates as (z1, z2) = (r1e
2πiθ1 , r2e

2πiθ2), where the moduli for z1 and z2
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satisfy the relation r21 + r22 = 1, 0 ≤ r1, r2 ≤ 1. When using this notation it is convenient to

parametrize S3 in Hopf coordinates,

z1 = sin(ξ)e2πiθ1 ,

z2 = cos(ξ)e2πiθ2,

where (θ1, θ2, ξ) ∈ T2× [0, π/2] and so r1 = sin(ξ), r2 = cos(ξ). Let us denote the parametriza-

tion of the 3-sphere with such coordinates by ψ. Then a set B ⊂ S3 is defined to be mea-

surable if ψ−1(B) is Lebesgue measurable in T2 × [0, π/2], and we denote the induced σ-

algebra on S3 by B. The volume form induced by the standard euclidean metric in R4 is

dV = 4π2 sin(ξ) cos(ξ) dθ1 ∧ dθ2 ∧ dξ, and hence the volume of any measurable set B ∈ B
can be computed as

µ(B) = 4π2

∫

ψ−1(B)

sin(ξ) cos(ξ) dθ1 dθ2 dξ.

Notice as well that we can compute the measure of any set B ⊂ S3 such that

ψ−1(B) = B1 ×B2 ⊂ T2 × [0, π/2]

with B1 and B2 Lebesgue measurable as

µ(B) = λ̄(B1) · µr(B2), where µr(B2) := 4π2

∫

B2

sin(ξ) cos(ξ) dξ (1.5)

and λ̄ denotes the Lebesgue measure on T2. For any Lebesgue measurable setB ⊂ T2× [0, π/2],

we will denote (if the projection is measurable)

λi(B) := λ(ΠθiB), i = 1, 2

where λ is the Lebesgue measure onT. Finally we denote by Diffω∞(S3, µ) the subset of Diffω∞(S3)

consisting of volume preserving maps.

1.3 Decompositions into points

The criterion that we use to obtain weak mixing, Lemma 2.7, relies on the use of decompositions

into points of the sphere. Let us fix from this moment on that whenever we write q ∈ N it satisfies

q ≥ 16, and for any rational number α = p/q, p and q are coprime and q ≥ 16 as well.

Definition 1.3. For each n ∈ N, consider a collection of disjoint sets ηn on S3. We say that

{ηn} converges to the decomposition into points (we also denote this by ηn → ε) if for any

B ∈ B, for any n there exists Bn ∈ B, which is a union of elements in ηn and such that

limn→∞ µ(B∆Bn) = 0 (here ∆ denotes the symmetric difference).
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In a slight abuse of notation we will from now on work with sets on S3 in Hopf coordinates

without making explicit reference to the parametrization. Let us introduce the two types of

decompositions into points that we use for (S3,B, µ).

Definition 1.4. Given q ∈ N, q ≥ 16, define the collection of sets Cq := {Bk,l,m
q }k,l,m given by

Bk,l,m
q := {(θ1, θ2, ξ) ∈ T2 × [0, π/2] | θ1 ∈ (kq−1, (k + 1)q−1), θ2 ∈ (lq−1, (l + 1)q−1),

sin(ξ) ∈ (
√
m q−1/2,

√

(m+ 1) q−1/2)}

for k, l,m ∈ {1, . . . , q − 2}.

It follows from (1.5) that any set B ∈ Cq satisfies µ(B) = 2π2q−3, hence given any increasing

sequence {qn} ⊂ N,

C = {Cqn}n∈N (1.6)

is a decomposition into points.

We will need yet another type of decomposition into points that we describe next. First, for any

q ∈ N, q ≥ 16 and c ∈ [0, 1), let us define the subsets

Nq,c :=
{

(θ1, θ2) ∈ T2, θ2 = −(1− q−1)θ1 + c, θ1 ∈ [0, 1)
}

(1.7)

and

Fq := {ξ ∈ [0, π/2] | sin(ξ) ∈ [q−1, 1− q−1]}. (1.8)

Definition 1.5. For any q ∈ N, we say that ηq is a partial q-decomposition if

ηq := {I × {ξ} ∈ η̃q,c ×Fq, c ∈ [0, 1)}, (1.9)

where η̃q,c = {Ii}i∈σ(q,c) with Ii ⊂ Nq,c ∀i ∈ σ(q, c) and σ(q, c) a finite index set such that all

Ii ∈ η̃q,c are connected, Ii ∩ Ij = ∅ for any i, j ∈ σ(q, c) with i 6= j and

∑

i∈σ(q,c)

λ1(Ii) ≥ 1− 3/
√
q, (1.10)

λ1(Ii) ≤ q−3, ∀i ∈ σ(q, c). (1.11)

It follows from the definition above that for any sequence qn → ∞, {ηqn} with ηqn a partial qn-

decomposition satisfies ηqn → ε. Using a more specific type of decomposition into points of this

type will be later required, whose specific form will be defined in Section 5. We will motivate in

that section the additional properties that the partial qn-decompositions ηqn need to satisfy.
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2 Weak Mixing

2.1 Approximate ergodicity and mixing

In order to describe how to obtain weak mixing by using an AbC method, it will be useful
to introduce definitions that reflect the idea of being approximately ergodic and approximately

mixing with respect to the decompositions into points described in Section 1.3. For q ≥ 16 and

Cq as in Definition 1.4 let us define first, for every set Bk.l,m
q ∈ Cq, k, l,m ∈ {1, . . . , q − 2} and

0 < ε < 1, the two sets with ε-sized margins Bk,l,m
q,±ε contained and containing Bk.l,m

q , formally

defined by

Bk,l,m
q,±ε := {(θ1,θ2, ξ) ∈ T2 × [0, π/2] | θ1 ∈ (kq−1 ∓ εq−1/16, (k + 1)q−1 ± εq−1/16),

θ2 ∈ (lq−1 ∓ εq−1/16, (l + 1)q−1 ± εq−1/16),

sin(ξ) ∈ (
√

m/q ∓
√

ε/(16q),
√

(m+ 1)/q ±
√

ε/(16q) )}.

For the sake of simplicity we will rename the sets above, for any B = Bk,l,m
q ∈ Cq , simply as

Bε := Bk,l,m
q,ε . The reason why we introduce these sets is explained in Remark 2.6. Let us state

some useful inequalities in the form of the following lemma.

Lemma 2.1. There exists a constant γ > 0 such that for all q ∈ N and ε > 0 sufficiently small,

for any B ∈ Cq, the sets B±ε satisfy the following inequalities:

µ(Bε∆B−ε) < 2εµ(B), (2.1)

µ(B∆B±ε) < εµ(B), (2.2)

dist(∂B−ε, ∂B) ≥ γ
ε

q3/2
, (2.3)

dist(∂B, ∂Bε) ≥ γ
ε

q3/2
. (2.4)

Proof. The proof follows by using simple estimates to bound the distance and measure using

(1.5).

Definition 2.2 (Approximate ergodicity). Given ε > 0, N ∈ N, we say that a µ-preserving map

f is (q, ε, N)-ergodic if for every B ∈ Cq , n ≥ N and x ∈ S3

∣

∣

∣

∣

1

n

n−1
∑

k=0

1B±ε
(fk(x))− µ(B±ε)

∣

∣

∣

∣

< 3εµ(B). (2.5)

Given ηq′ a partial q′-decomposition with q′ > q, q′ ∈ N we can also define an analogous concept

for weak mixing.

Definition 2.3 (Approximate mixing). Given H ∈ Diffω∞(S3, µ), ε > 0 and m ∈ N, a µ-

preserving map F is (q, q′, ε,m,H)-mixing if for every B ∈ Cq and I ∈ ηq′
∣

∣

∣

∣

λ1(I ∩H(F−m(B±ε)))

λ1(I)
− µ(B±ε)

∣

∣

∣

∣

≤ 30εµ(B). (2.6)
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Remark 2.4. It would be more intuitive to refer to the two properties above as approximate

unique ergodicity and approximate weak mixing. We did not do this only in order to keep the

notation short.

2.2 Criterion for weak mixing

Assume from now on that ∆ > 1 is fixed. In this section we present the proof of the criterion

to prove weak mixing, that is Lemma 2.7. In the statements we fix a decomposition into points

{ηn}, where ηn = ηq′n is a partial q′n-decomposition and {q′n} ⊂ N is such that q′n → ∞. We also

fix C = {Cn}n∈N with Cn = Cqn as in (1.6), also with {qn} ⊂ N such that qn → ∞.

Lemma 2.5. Consider {ηn} and C as described above. Assume that we have a µ-preserving

map F ∈ Cω
∆(S

3) and a sequence {Hn} ⊂ Diffω∞(S3, µ) such that νn = {H−1
n (I), I ∈ ηn} is a

decomposition into points. If there exists an increasing sequence {mn} ⊂ N such that for every

ε > 0, for n large enough we have that for all Γ ∈ νn and B ∈ Cn
|λn(Γ ∩ F−mn(B))− λn(Γ)µ(B)| ≤ ελn(Γ)µ(B), (2.7)

where λn(Γ) := λ1(Hn(Γ)), then F is weakly mixing.

Proof. For a fixed ε′ > 0, choose n large enough so that we can approximate any measurable

sets A,B ∈ B by B′ a finite union of elements of Cn with µ(B′∆B) < ε′/8 and

A′ =
⋃

c∈[0,1)
ξ∈Fq′n

⋃

i∈σ(ξ,c)

Γi,

where σ(ξ, c) is a finite index set such that for all i ∈ σ(ξ, c), Hn(Γi) = Ii ∈ η̃q′n,c × {ξ} ⊂
η̃q′n × Fq′n = ηq′n and µ(A′∆A) < ε′/8. It follows that

|µ(A ∩ F−mn(B))− µ(A)µ(B)| ≤ µ((A∆A′) ∩ F−mn(B))

+ µ(A ∩ F−mn(B∆B′))

+ |µ(A′ ∩ F−mn(B′))− µ(A′)µ(B′)|
+ µ(A)µ(B∆B′) + µ(B′)µ(A∆A′)

≤ |µ(A′ ∩ F−mn(B′))− µ(A′)µ(B′)|+ ε′/2. (2.8)

Therefore due to the assumptions of the lemma, for ε = ε′/(8π4) we can consider n ≥ N

sufficiently large such that (2.7) and (2.8) hold. It can then be seen, using the volume preserving

change of variables defined by






θ1 = θ′1,

θ2 = θ′2 − (1− q′−1
n )θ′1,

ξ = ξ′,
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which essentially sends the elements in ηq′n to horizontal segments, that

|µ(A′ ∩ F−mn(B′))− µ(A′)µ(B′)|
= |µ(Hn(A

′) ∩Hn(F
−mn(B′)))− µ(Hn(A

′))µ(B′)|

=

∣

∣

∣

∣

∫

ξ′∈Fq′n

∫

θ′2∈[0,1)

∑

i∈σ(ξ′,θ′2)

(λ1(Ii ∩Hn(F
−mn(B′)))− λ1(Ii)µ(B

′)) dθ′2 dµr

∣

∣

∣

∣

≤
∫

ξ′∈Fq′n

∫

θ′2∈[0,1)

∑

i∈σ(ξ′,θ′2)

|λn(Γi ∩ F−mn(B′))− λn(Γi)µ(B
′)| dθ′2 dµr

≤
∫

ξ′∈Fq′n

∫

θ′
2
∈[0,1)

∑

i∈σ(ξ′,θ′
2
)

ελn(Γi)µ(B
′) dθ′2 dµr = εµ(A′)µ(B′) < ε′/2,

which together with (2.8) finishes the proof.

Remark 2.6. Since the Anosov-Katok scheme does not give an explicit expression for the limit

map F , we need to find a similar criterion to the one in Lemma 2.5 which can be verified instead

for the approximating maps {Fn} and the sets B±ε. This allows us to recover, if {Fn} converges

sufficiently fast, the original assumption in Lemma 2.5. It will suffice that the approximating

maps converge sufficiently fast and are approximately mixing in the sense of Definition 2.3.

Consider γ > 0 as given by Lemma 2.1.

Lemma 2.7 (Criterion for weak mixing). Consider {ηn} and C as described at the beginning of

the section. Suppose that F is the limit diffeomorphism of {Fn} ⊂ Diffω∆(S
3) and that there are

sequences εn → 0 and mn → ∞ such that for all n ∈ N the map Fn is (qn, q
′
n, εn, mn, Hn)-

mixing, where {Hn} ⊂ Diffω∞(S3, µ) is such that the collections of sets νn = {H−1
n (I), I ∈ ηn}

converge to the decomposition into points. If for all n sufficiently large

|Fmn − Fmn

n |∆ < γεnq
−3/2
n , (2.9)

then F is weakly mixing.

Proof. We only need to see that the assumptions of Lemma 2.7 imply the assumptions of

Lemma 2.5. Fix ε > 0. We can consider n big enough so that εn ≤ ε/90 and the map Fn

is (qn, q
′
n, εn, mn, Hn)-mixing. It follows from Lemma 2.1 that for any B ∈ Cn, we have

µ(B∆B±εn) ≤ εnµ(B). (2.10)

According to (2.3), (2.4) and (2.9) we obtain, for any Γ ∈ νn,

Γ ∩ F−mn

n (B−εn) ⊂ Γ ∩ F−mn(B) ⊂ Γ ∩ F−mn

n (Bεn).
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Hence, since

λn(Γ ∩ F−mn

n (B±εn)) = λ1(I ∩Hn(F
−mn

n (B±εn)))

and

λn(Γ) = λ1(Hn(Γ)) = λ1(I),

it follows from (2.6) that

λn(Γ)µ(B−εn)− ε/3λn(Γ)µ(B) ≤ λn(Γ ∩ F−mn(B)) ≤ (1 + ε/3)λn(Γ)µ(Bεn),

which due to (2.10) implies

|λn(Γ ∩ F−mn(B))− λn(Γ)µ(B)| ≤ ελn(Γ)µ(B).

This finishes the proof.

3 Construction of the map

The Anosov-Katok scheme that we use can be understood as a modification of the scheme used

in [4]. The main result in [4] (see Theorem 1) states that for any β ∈ T there exists a uniquely

ergodic and volume preserving diffeomorphism f ∈ Diffω∆(S
3), arbitrarily close to ϕβ in the

analytic topology, which is obtained as the limit of a sequence {fl} with f−1 = ϕβ0 and for l ≥ 0

fl = H−1
l ◦ ϕβl+1

◦Hl,

with Hl ∈ Diffω∞(S3, µ) defined inductively as H−1 = id,

Hl = hl ◦Hl−1, hl ◦ ϕβl = ϕβl ◦ hl

for appropriate sequences {βl}l≥0 ⊂ Q and {hl}l≥0 ⊂ Diffω∞(S3, µ). We can then reformulate

their conclusion in the form of the following proposition.

Proposition 3.1. For any β ∈ T, ε > 0 and ∆ > 1 there exist sequences {βl}l≥0 ⊂ Q and

{hl}l≥0 ⊂ Diffω∞(S3, µ) such that

i) h−1
l ◦ ϕβl ◦ hl = ϕβl , for any l ≥ 0.

ii) For fl := h−1
0 ◦ . . . ◦ h−1

l ◦ ϕβl+1
◦ hl ◦ . . . ◦ h0, the map f := liml→∞ fl ∈ Diffω∆(S

3) is a

uniquely ergodic volume preserving map and |f − ϕβ|∆ < ε.

Remark 3.2. The result in Proposition 3.1 holds for odd dimensional spheres of dimension

greater or equal to three.
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Let us introduce the specific form of the map that we will use to modify the construction in

Proposition 3.1. For any q ∈ N and s ∈ T, we define first ζsq : S
3 → S3 by

ζsq (z) := (e2πisz1, e
2πi(1+q−1)sz2), (3.1)

and χq : S
3 → R by

χq(z) := Re(z
q(q+1)
1 )Re(zq

2

2 ) + Im(z
q(q+1)
1 )Im(zq

2

2 ) (3.2)

= r
q(q+1)
1 rq

2

2 cos(2πq2[θ1(1 + q−1)− θ2]).

Notice that χq is entire in (x1, y1, x2, y2). This is so because the functions in (3.2) are polynomials

in the variables x1, y1, x2, y2, (where z1 = x1 + iy1 and z2 = x2 + iy2), and thus they are real

entire. The maps that we use to modify the construction of Proposition 3.1 are of the form

gq,A(z) = ζAχq(z)
q (z), A > 0. (3.3)

Since χq is real entire, it follows from (3.1) that gq,A is also entire. The map gq,A is expressed in

Hopf coordinates as

gq,A(θ1, θ2, ξ) = (θ1 + Ar
q(q+1)
1 rq

2

2 cos(2πq2[θ1(1 + q−1)− θ2]),

θ2 + (1 + q−1)Ar
q(q+1)
1 rq

2

2 cos(2πq2[θ1(1 + q−1)− θ2]), ξ). (3.4)

It follows from a computation that det(Dgq,A) = 1 and since gq,A is the identity on the third

coordinate, it preserves µ. Notice also that g−1
q,A = gq,−A and thus gq,A ∈ Diffω∞(S3, µ), and also

that gq,A ◦ ϕp/q = ϕp/q ◦ gq,A (this commuting property is essential, as we will see later, for the

conjugacies in AbC constructions). Let us define, for any α̃ ∈ T, q ∈ N and A > 0, the map

Φq,A,α̃ = g−1
q,A ◦ ϕα̃ ◦ gq,A. (3.5)

In the next section we show how Φq,A,α̃ plays a key role in the modification of the scheme in [4],

by explaining the idea for one step of our construction.

3.1 Plan for one step of the construction

Assume that we are given a volume preserving map F = V −1 ◦ ϕα ◦ V , V ∈ Diffω∞(S3, µ),

α = p/q ∈ Q. Let us explain how to use Proposition 3.1 to obtain an approximately mixing map

lying arbitrarily close to F .

1) For an arbitrary ε > 0, since the limit map f in Proposition 3.1 is uniquely ergodic,

there exists l big enough such that fl = H−1
l ◦ ϕβl+1

◦ Hl with βl+1 = pl+1/ql+1 and
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Hl = hl ◦ . . . ◦ h0 is “approximately ergodic” in the following sense: for a sufficiently

large number of iterations the orbits of the map fl are uniformly distributed among the

elements of Cq with an “ε-precision” (recall Definition 2.2 for a formal description). Since

the map V is volume preserving, we can also assume that this is the case for the conjugate

map f ′
l := V −1 ◦ H−1

l ◦ ϕβl+1
◦ Hl ◦ V , which can be assumed to be arbitrarily close to

V −1 ◦ ϕβ0 ◦ V . By choosing β0 to be very close to our original α, the distance between

the initial F and f ′
l can then be made arbitrarily small. Notice next that for any x ∈ S3,

y := V −1 ◦H−1
l (x) satisfies that the set Oy = {ϕnβl+1

(Hl ◦ V (y))}∞n=0 is 1/ql+1-dense in

the set

Dξ,c := {θ2 = θ1 + c, θ1 ∈ T} × {ξ}

for some 0 ≤ c < 1, ξ ∈ [0, π/2], and it follows from the approximate ergodicity of f ′
l that

the map V −1 ◦H−1
l must distribute uniformly the points of Oy among the sets in Cq with

an “ε-precision”.

2) In order to use the previous step to obtain approximate weak mixing, we introduce the

map gql+1,A defined in (3.3) as we describe next. We prove in Proposition 5.3 that it is

possible to find constants A > 0, m ∈ N, α̃ ∈ Q and a partial ql+1-decomposition ηql+1

such that the mth iterate of the map Φql+1,A,α̃ = g−1
ql+1,A

◦ϕα̃ ◦ gql+1,A stretches all I ∈ ηql+1

uniformly in measure (in a sense that will be made precise later in Definition 5.1) onto

a curve lying close to Dξ,c for some c ∈ [0, 1), ξ ∈ [0, π/2]. This means that for any

Γ ∈ V −1 ◦H−1
l (ηql+1

)

Φmql+1,A,α̃
◦Hl ◦ V (Γ) ∼ Dξ,c (3.6)

for some 0 ≤ c < 1, ξ ∈ [0, π/2]. As a consequence, in the same way as the points of the

set Oy ⊂ Dξ,c were distributed uniformly among the sets in Cq when applying V −1 ◦H−1
l ,

now the mth iteration of the map

F̄ := V −1 ◦H−1
l ◦ Φql+1,A,α̃ ◦Hl ◦ V

will distribute the measure of every segment Γ ∈ V −1 ◦ H−1
l (ηql+1

) among the sets in Cq
proportionally to their measure again with an “ε-precision”, or more formally, it will be

(q, ql+1, ε,m,Hl ◦ V )-mixing. At the same time, an appropriate choice of the constants

can be made so that the distance between F̄ and F remains small.

By iterating the two steps above we can construct a sequence of maps {Fn} with each Fn being

approximately mixing and converging sufficiently fast so that the limit is weakly mixing by

Lemma 2.7.



13

4 Proof of Theorem A

In this section we finish the proof of Theorem A. Before doing this, we will need a couple of

preliminary results.

Lemma 4.1. Let ε > 0, q ∈ N and K ∈ Diffω∞(S3, µ) be fixed. For any integer q′ > q sufficiently

large, for any partial q′-decomposition ηq′ , νq′ := {K−1(I) | I ∈ ηq′} satisfies that for any

B ∈ Cq there exists {Γi}i∈σ ⊂ νq′ with µ(B∆ ∪i∈σ Γi) < ε.

Proof. Consider the collection of sets K(B), B ∈ Cq. Since {ηq′} converges to the decompo-

sition into points as q′ → ∞, there exists q′ sufficiently large such that for any B ∈ Cq there

exists a collection {Ii}i∈σ ⊂ ηq′ with µ(K(B)∆ ∪i∈σ Ii) < ε. Since K is a volume preserving

diffeomorphism, this finishes the proof.

The following proposition is the core of the iterative scheme needed for the proof of Theorem A.

Proposition 4.2 (Inductive step). Given V ∈ Diffω∞(S3, µ), α = p/q ∈ Q, ε > 0 and m ∈ N,

there exists H ∈ Diffω∞(S3, µ) such that for any L > 0 there are m < m̃ ∈ N, A > 0, α̃ = p̃/q̃ ∈
Q, q < q′ < q̃ with

q′ > q + L (4.1)

and a partial q′-decomposition ηq′ such that

F := V −1 ◦H−1 ◦ Φq′,A,α̃ ◦H ◦ V

with Φq′,A,α̃ defined by (3.5) satisfies:

i) |F j − V −1 ◦ ϕjα ◦ V |∆ < ε, 0 < j ≤ m,

ii) F is (q, q′, ε, m̃, H ◦ V )-mixing.

Let postpone the proof of Proposition 4.2 to Section 6 and focus now instead on the proof of

Theorem A.

Proof of Theorem A. Recall that, for a fixed ∆ > 1, ε̄ > 0 and ᾱ ∈ T we want to prove

that there exists a volume preserving map F ∈ Diffω∆(S
3) which is weakly mixing and satisfies

|F − ϕᾱ|∆ < ε̄. We claim that F can be found as the limit of a sequence {Fn}n≥0 ⊂ Diffω∆(S
3)

of the form, for n ≥ 1,

Fn = H−1
n−1 ◦ Φq′n−1,An−1,αn

◦Hn−1, with Hn−1 ∈ Diffω∞(S3, µ) (4.2)

for an appropriate choice of parameters. Let us show that such a sequence can be built by

induction. Consider first α0 = p0/q0 ∈ Q with

|ϕᾱ − ϕα0
|∆ < ε̄/4, (4.3)
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and let F0 := ϕα0
. We apply Proposition 4.2 for V = Id, α = α0, ε = ε0 = min{ε̄/4, γε̄/4}

and m = 1 to obtain H0 := H such that, for L0(ε0, q0, H0) sufficiently large for the conclusion

of Lemma 4.1 (for fixed ε = ε0/#Cq0 , q = q0, K = H0) to be satisfied for any

q′ > q0 + L0(ε0, q0, H0),

we have

A0 := A, m0 := m̃, α1 = p1/q1 := α̃, q0 + L0(ε0, q0, H0) < q′0 < q1

and a partial q′0-decomposition ηq′
0

such that

|F1 − F0|∆ < ε0 (4.4)

and F1 is (q0, q
′
0, ε0, m0, H0)-mixing.

For n ≥ 2 we can apply again Proposition 4.2 for V = gq′n−2, An−2
◦ Hn−2 ◦ . . . ◦ gq′0, A0

◦ H0,

α = αn−1,

εn−1 = 2−1q
−3/2
n−2 min {εn−2, γεn−2} (4.5)

and m = mn−2 to obtain H such that, for L(εn−1, qn−1, H ◦ V ) sufficiently large for the conclu-

sion of Lemma 4.1 (for fixed ε = εn−1/#Cqn−1
, q = qn−1, K = Hn−1 := H ◦ V ) to be satisfied

for any

q′ > qn−1 + Ln−1(εn−1, qn−1, H ◦ V ),

we have

An−1 := A, mn−1 := m̃, αn := α̃, qn−1 + Ln−1(εn−1, qn−1, H ◦ V ) < q′n−1 < qn,

and a partial q′n−1-decomposition ηq′n−1
such that

|F j
n − F j

n−1|∆ < εn−1, for all 0 ≤ j ≤ mn−2 (4.6)

and Fn is (qn−1, q
′
n−1, εn−1, mn−1, Hn−1)-mixing. This finishes the construction of the sequence.

Notice that it follows from Proposition 4.2 that the sequence {mn} is strictly increasing. Let us

now justify that the limit of {Fn+1}n≥1 exists and satisfies the conclusions of Theorem A. It is

clear from (4.5) and (4.6) that {Fn+1}n≥1 is a Cauchy sequence, and hence F = limn→∞ Fn ∈
Diffω∆(S

3). Also F is volume preserving as it is the limit of volume preserving maps.

As a consequence of our choice of the constants Ln−1(εn−1, qn−1, H ◦ V ) for n ≥ 1 and Lemma

4.1 we have that the union of elements in νn−1 = {H−1
n−1(I) | I ∈ ηq′n−1

} can approximate up

to an εn−1 error in measure any union of elements in Cqn−1
. Since εn−1 → 0 and Cqn−1

→ ε, it
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follows that νn−1 converges to the decomposition into points as well.

It follows from (4.5) that for all n ≥ 1

|Fmn−1 − Fmn−1

n |∆ ≤ γεn−1q
−3/2
n−1 . (4.7)

Thus the sequence {Fn+1}n≥1 satisfies equation (2.9) for every n ≥ 1. Since clearly εn → 0

and {mn} is strictly increasing the assumptions of Lemma 2.7 are satisfied and thus F is weakly

mixing. Finally due to (4.3), (4.4), (4.6) and (4.5) we obtain that |F −ϕᾱ|∆ < ε̄ and this finishes

the proof.

5 Uniform stretching

Before continuing with the proof of Proposition 4.2, we need to introduce the definition of uni-

form stretching.

Definition 5.1 (Uniform stretching). Given ε > 0 and k > 0, we say that a real continuous

function f on an interval I ⊂ R is (ε, k)-uniformly stretching on I if for J = [ infI f, supI f ]

λ(J) ≥ k

and for any interval J̃ ⊂ J we have

∣

∣

∣

∣

λ(I ∩ f−1(J̃))

λ(I)
− λ(J̃)

λ(J)

∣

∣

∣

∣

≤ ε
λ(J̃)

λ(J)
.

The main idea behind uniform stretching is that the interval I is stretched “almost linearly” in

measure. The following lemma, which can be found in [6] (see Lemma 2), provides a criterion

for a function to be uniformly stretching.

Lemma 5.2. If f ∈ C2(R) is monotonic on an interval I ⊂ R and

λ(J) ≥ k,

supI |f ′′(x)|λ(I) ≤ εinfI |f ′(x)|,

where J = [infI f, supI f ], then f is (ε, k)-uniformly stretching on I .

Let us define the set, for q ≥ 16 and 0 ≤ c < 1,

Mq,c =

4q2
⋃

k=1

[

k

4q2
− 1

4q5/2
+
c

2
,
k

4q2
+

1

4q5/2
+
c

2

]

⊂ T. (5.1)

The criterion in Lemma 5.2 allows us to prove the following result.
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Lemma 5.3. Given ρ, δ > 0, ω = p/q ∈ Q, l ∈ N and U ∈ Diffω∞(S3) there exist l < m̃ ∈ N,

ω̃ = p̃/q̃ ∈ Q, A > 0 and a partial q-decomposition ηq such that for all I ∈ ηq

i) λ2(Φm̃q,A,ω̃(I)) = 1,

ii) if I ∈ η̃q,c × {ξ} ⊂ ηq then Πθ1I /∈Mq,c ,

iii) for any interval J ⊂ Φm̃q,A,ω̃(I) we have

∣

∣

∣

∣

λ1(I ∩ Φ−m̃
q,A,ω̃(J))

λ1(I)
− λ2(J)

∣

∣

∣

∣

≤ ρλ2(J), (5.2)

iv) |U−1 ◦ Φiq,A,ω̃ ◦ U − U−1 ◦ ϕiω ◦ U |∆ < δ, 1 < i ≤ l.

Proof. Let us first write explicitly, for any m ∈ N, the mth iterate of the map Φq,A,ω̃ restricted to

the first two coordinates of a connected set I ⊂ Nq,c × {ξ}, for any ξ ∈ Fq, c ∈ [0, 1). It follows

from a computation that, for any m ∈ N

Φmq,A,ω̃
∣

∣

I
= (θ1 +mω̃, θ2 +mω̃)

+Ar
q(q+1)
1 rq

2

2 (cos(2πq2(2θ1 − c)), (1 + q−1) cos(2πq2(2θ1 − c)))

−Ar
q(q+1)
1 rq

2

2 (cos(2π(q2(2θ1 − c) + qmω̃)), (1 + q−1) cos(2π(q2(2θ1 − c) + qmω̃))).

Let us define (we assume without loss of generality q not to be a factor of q̃)

m̃ := min

{

q̃ ≤ m ≤ 2q̃ s.t. inf
k∈Z

∣

∣

∣

∣

qmω̃ − 1

2
+ k

∣

∣

∣

∣

≤ 1

q̃

}

. (5.3)

For this particular iterate we obtain Φm̃q,A,ω̃
∣

∣

I
(θ1, θ2) = (f1(θ1) mod 1, f2(θ1) mod 1), with

f1(θ1) = θ1 + m̃ω̃ + 2Ar
q(q+1)
1 rq

2

2 (cos(2πq2(2θ1 − c))− σ(θ1)/2), (5.4)

f2(θ1) = (q−1 − 1)θ1 + c+ m̃ω̃ + 2(1 + q−1)Ar
q(q+1)
1 rq

2

2 (cos(2πq2(2θ1 − c))− σ(θ1)/2),
(5.5)

where

σ(θ1) := cos(2π(q2(2θ1 − c) + qm̃ω̃)) + cos(2πq2(2θ1 − c)).

By the mean value theorem and assuming q̃ to be sufficiently large w.r.t. A and q, we can assume

without loss of generality that

4Ar
q(q+1)
1 rq

2

2 |σ′| ≤ 1, 4Ar
q(q+1)
1 rq

2

2 |σ′′| ≤ 1. (5.6)

Consider a connected set I ⊂ Nq,c × {ξ} such that Πθ1I ⊂ T \ Mq,c. Assume also that

λ2(Φm̃q,A,ω̃(I)) = 1. Since f2 is a monotonic function on the connected sets of T \ Mq,c, the
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latter assumption can always be satisfied if it does not imply that the size of Πθ1I is larger than

the size of the connected components in T \Mq,c. That this is not the case can be ensured if the

derivative of f2 is uniformly sufficiently large w.r.t. q, something that we will see one can assume

by considering A to be sufficiently large.

It follows from (1.8) that the term r
q(q+1)
1 rq

2

2 is uniformly bounded away from zero (with a lower

bound depending on q) for ξ ∈ Fq and

|sin(2πq2(2θ1 − c))| ≥ q−
1
2 (5.7)

on T \Mq,c. The latter inequalities together with the assumption (5.6) lead to the estimates, for

A sufficiently large with respect to q,

inf
T\Mq,c

|f ′
2(θ1)| ≥ AC1(q), (5.8)

sup
T\Mq,c

|f ′′
2 (θ1)| ≤ AC2(q) (5.9)

for some positive constants C1(q) and C2(q) depending on q. We have already seen that since

Πθ1I ⊂ T \Mq,c, I is connected and the function f2 is monotonic on Πθ1I , if λ(f2(Πθ1I)) = 1

is satisfied we necessarily have that

λ1(I) ≤ 1/ inf
T\Mq,c

|f ′
2(θ1)|. (5.10)

In particular if A is sufficiently large w.r.t. q then

λ1(I) ≤ q−3 (5.11)

by (5.10) and so I satisfies (1.11). It follows from equations (5.8), (5.9) that there existsC(q) > 0

such that if A ≥ C(q)/ρ then

supθ1∈Πθ1
I |f ′′

2 (θ1)|λ1(I)
infθ1∈Πθ1

|f ′
2(θ1)|

≤ C(q)/A ≤ ρ. (5.12)

Therefore choosing A ≥ C(q)/ρ and sufficiently large so that (5.11) is satisfied, according to

Lemma 5.2 f2 is (ρ, 1)-uniformly stretching on the interval Πθ1I . This implies (5.2). Notice that

the assumptions above require that we assume that A is sufficiently large w.r.t q and ρ, and that q̃

is sufficiently large w.r.t. q, ρ and A.

In short, so far we have proved that there exists a choice of A, ω̃ = p̃/q̃ and m̃ for which for

any 0 ≤ c < 1 and ξ ∈ Fq , any connected set I ⊂ Nq,c × {ξ} with Πθ1I ⊂ T \ Mq,c and
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λ(f2(Πθ1I)) = 1 satisfies that λ1(I) < q−3 and that f2 is (ρ, 1)-uniformly stretching on Πθ1I .

Let us now justify that we can define a partial q-decomposition ηq with all I ∈ ηq satisfying the

conditions i), ii) and iii). It follows from combining the estimate (5.11) and the fact that the set

Mq,c has a small measure, namely λ(Mq,c) = 2/
√
q, that we can indeed choose a collection of

connected sets in η̃q,c×{ξ} for every 0 ≤ c < 1 and ξ ∈ Fq as above in such a way that equation

(1.10) is satisfied (so that their union is large in measure). Condition (1.11) follows directly from

(5.11). Thus according to Definition 1.5 such a collection of sets is a partial q-decomposition.

Assume that we have restricted the choice of parameters A, ω̃ and m̃ in such a way that they

satisfy the relations above, and notice that we can assume without loss of generality that q̃ is

arbitrarily large. We can thus assume that ω̃ = p̃/q̃ was chosen with q̃ sufficiently large w.r.t. l, q

and A in such a way that ‖Dgq,A ◦ U‖BR
l |ω̃ − ω| < δ, where R > 0 is sufficiently large so that

gq,A ◦ U(B∆) ⊂ BR. Then we have

|U−1 ◦ g−1
q,A ◦ ϕiω̃ ◦ gq,A ◦ U − U−1 ◦ ϕiω ◦ U |∆

= |U−1 ◦ g−1
q,A ◦ ϕiω̃ ◦ gq,A ◦ U − U−1 ◦ g−1

q,A ◦ ϕiω ◦ gq,A ◦ U |∆ < ‖Dgq,A ◦ U‖BR
l |ω̃ − ω| < δ

for 1 < i ≤ l. This implies iv). At the same time, requiring q̃ to be even larger if needed also

allows us to fulfil the requirement l < m̃, because it follows from (5.3) that m̃ → ∞ as q̃ → ∞.

This finishes the proof.

6 Proof of the inductive proposition

In this section we complete the proof of Theorem A by proving Proposition 4.2. We will need

a couple of preliminary lemmas. Let us show first that Proposition 3.1 implies that for any

ε > 0, α = p/q ∈ T and N ∈ N sufficiently large, we can find a (q, ε, N)-ergodic map arbitrarily

close to ϕα in the analytic topology. This is a particular case of the following statement.

Lemma 6.1. For any a = p/q ∈ Q, e,k > 0, U ∈ Diffω∞(S3, µ) and m ∈ N there exist

a

′ = p′/q′ ∈ Q and H ∈ Diffω∞(S3, µ) such that

f := U

−1 ◦H−1 ◦ ϕ
a

′ ◦H ◦U (6.1)

is (q, e, q′)-ergodic and |f i−U−1 ◦ϕi
a

◦U|∆ < k, 0 < i ≤m. Furthermore, q′ can be assumed

to be arbitrarily large independently of a, e,k,U,m and H.

Proof. It follows from Proposition 3.1 that we can find a sequence of maps

Hj = hj ◦ . . . ◦ h0 ⊂ Diffω∞(S3, µ),
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h−1 = id and a sequence {βj} = {pj/qj} ⊂ Q with β0 = a such that

lim
j→∞

H−1
j−1 ◦ ϕβj ◦Hj−1

is uniquely ergodic. Thus

f̃ := lim
j→∞

fj = lim
j→∞

U

−1 ◦H−1
j−1 ◦ ϕβj ◦Hj−1 ◦U

is also uniquely ergodic with respect to µ, because U is assumed to be volume preserving. For

any fixed j ∈ N, consider a ball BRj
such that Hj ◦U(B∆) ⊂ BRj

. We can assume without loss

of generality that the sequence {βj}∞j=0 satisfies

|βj+1 − βj | <
1

2j+1
min

{

(m‖D(Hj ◦U)‖BRj
)−1

k, (qj‖D(Hj ◦U)‖BRj
)−1γeq

−3/2
j

}

. (6.2)

Then from i) in Proposition 3.1

|f ij+1 − f ij |∆ = |U−1 ◦H−1
j ◦ ϕiβj+1

◦Hj ◦U−U−1 ◦H−1
j ◦ ϕiβj ◦Hj ◦U|∆

≤ ‖D(Hj ◦U)‖BRj
m|βj+1 − βj |, 0 < i ≤m

and

|f ij+1 − f ij |∆ ≤ ‖D(Hj ◦ U)‖BRj
(qj − 1)|βj+1 − βj |, 0 < i ≤ qj − 1.

Therefore due to (6.2) we obtain that for any l ∈ N

|f il −U−1 ◦ ϕi
a

◦U|∆ < k, 0 < i ≤m,

|f̃ i − f il |∆ < γeq
−3/2
l , 0 < i ≤ ql − 1. (6.3)

For all l sufficiently large, due to the fact that f̃ is uniquely ergodic (and so we have uniform

convergence of Birkhoff sums), for all x ∈ S3, B ∈ Cq and any B̄ ∈ {B−2e, B2e, B} we have

∣

∣

∣

∣

1

ql

ql−1
∑

k=0

1B̄ f̃
k(x)− µ(B̄)

∣

∣

∣

∣

<
e

2
µ(B̄).

Therefore for a fixed l large enough so that the inequalities above hold, using (2.3), (2.4) and

(6.3) we obtain

ql−1
∑

k=0

1B−2e
f̃k(x) ≤

ql−1
∑

k=0

1B−e

fkl (x) ≤
ql−1
∑

k=0

1B f̃
k(x) ≤

ql−1
∑

k=0

1B
e

fkl (x) ≤
ql−1
∑

k=0

1B2e
f̃k(x).

Then the inequality |µ(B)− µ(B±2e)| < 2eµ(B) leads to

∣

∣

∣

∣

1

ql

ql−1
∑

k=0

1B±e

fkl (x)− µ(B±e)

∣

∣

∣

∣

< 3eµ(B).
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This implies that f := fl = U

−1 ◦H−1
l−1 ◦ ϕa′ ◦Hl−1 ◦U, with a′ := βl and H := Hl−1 satisfy

the conclusions of the lemma. Since all the inequalities above hold for all l large enough, we can

indeed assume that q′ := ql has been chosen arbitrarily large independently of a, e,k,U,m and

H.

Following the scheme of the construction explained in Section 3.1, we want to prove that we can

go from approximate ergodicity in the sense of Definition 2.2 to approximate mixing in the sense

of Definition 2.3 by composing with the map defined in (3.3). In order to do that, we need some

technical lemmas.

6.1 Choice of a partition

Given ρ, δ > 0, α′ = p′/q′ ∈ Q, l ∈ N and U ∈ Diffω∞(S3), assume that Φm
′

q′,A,α′′ as in (3.5) and a

partial q′-decomposition ηq′ have been chosen to satisfy the conclusions of Lemma 5.3 for some

m′ = m̃, A > 0 and α′′ = ω̃, where ω = α′. Our goal in this section is to define a partition J of

Φm
′

q′,A,α′′(I) for any given I ∈ ηq′ . The properties that these partitions need to satisfy to be able to

conclude the proof of Proposition 4.2 are given by Lemma 6.4, which is the main result of this

section. Recall that Dξ,c̃ = {θ2 = θ1 + c̃, θ1 ∈ T} × {ξ}. The purpose of the following lemma

is to show that, under these assumptions, the image of any I ∈ η̃q′,c × {ξ} ⊂ ηq′ by Φm
′

q′,A,α′′ lies

close to a shifted diagonal Dξ,c̃ for some 0 ≤ c̃ < 1.

Lemma 6.2. Under the assumptions above, for every I ∈ η̃q′,c×{ξ} ⊂ ηq′ there exists 0 ≤ c̃ < 1

and z0 ∈ Dξ,c̃ ∩ Φm
′

q′,A,α′′(I) with

sup
θ1∈Πθ1

I
|f2(θ1)− f1(θ1)− c̃| < 10/

√

q′, (6.4)

where f1 and f2 are as in (5.4) and (5.5).

Proof. The proof follows from considering z0 ∈ Dξ,c̃ ∩ Φm
′

q′,A,α′′(I), which must exist for some

0 ≤ c̃ < 1 and then estimating supT\Mq′,c
|f ′

2(θ1) − f ′
1(θ1)| and λ1(I) from above using equa-

tions (5.4), (5.5) and (5.7). Then by the mean value theorem one obtains the upper bound for

supT\Mq′,c
|f2(θ1)− f1(θ1)− c̃| in (6.4).

Consider now, for I ∈ ηq′ with ηq′ a partial q′-decomposition as above, z0 ∈ Dξ,c̃ ∩ Φm
′

q′,A,α′′(I)

and c̃ as given by Lemma 6.2, the partition J̃ := {J̃k}q
′−1
k=0 of Dξ,c̃ given by

J̃0 =

{

θ2 = θ1 + c̃, θ1 ∈
[

z0 −
1

2q′
, z0 +

1

2q′

)}

, J̃k := ϕkα′(J0), 1 ≤ k ≤ q′ − 1.
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Definition 6.3. We call J the partition of the set Φm
′

q′,A,α′′(I) given by

J :=
{

Jk ⊂ Φm
′

q′,A,α′′(I) | Πθ2(Jk) = Πθ2(J̃k), J̃k ∈ J̃
}

. (6.5)

The new partition J is well defined because f2 is monotone on Πθ1I and λ(f2(I)) = 1 (these

properties hold because I belongs to a partial q′-decomposition ηq′ as given by Lemma 5.3). The

reason behind defining the partition J in this way is that the bound in (6.4) will allow us to

compare the behaviour of its elements to points of the orbit {ϕkα′(z0)}q
′−1
k=0 .

Having introduced the partitions J , we can now proceed to state Lemma 6.4.

Lemma 6.4. Consider m ∈ N and

f = V −1 ◦H−1 ◦ ϕα′ ◦H ◦ V

(q, 2ε, q′)-ergodic for α = p/q, α′ = p′/q′ ∈ Q, ε > 0, H and V ∈ Diffω∞(S3, µ) fixed. There

exists Q(q, ε,H, V ) > 0 such that if q′ > Q(q, ε,H, V ) then for any κ > 0 there exist A > 0,

m′ ∈ N, α′′ = p′′/q′′ ∈ Q and a partial q′-decomposition ηq′ such that:

a) Φq′,A,α′′ and ηq′ satisfy the conclusion of Lemma 5.3 for ρ = εµ(B), δ = κ, ω = α′, l = m,

U = H ◦ V , m̃ = m′ and ω̃ = α′′.

b) For any B ∈ Cq and I ∈ ηq′ the subcollections

JB±ε
:= {Jk ∈ J | V −1 ◦H−1(Jk) ⊂ B±ε},

JBc
±ε

:= {Jk ∈ J | V −1 ◦H−1(Jk) ⊂ Bc
±ε},

with J as in (6.5) satisfy

i)
∣

∣

∑

Jk∈JB±ε
λ2(Jk)− µ(B±ε)

∣

∣ < 9εµ(B),

ii) λ2(Φm
′

q′,A,α′′(I) \ (JB±ε
∪ JBc

±ε
)) < 16εµ(B).

Remark 6.5. Notice that in the lemma above it is essential that ηq′ satisfies the conclusions of

Lemma 5.3, because this is a prerequisite for the partitions J to be well defined. Thus this is not

only an extra feature of Lemma 6.4, the very same statement would not be well defined without

it.

Proof of Lemma 6.4. Let us divide the proofs into part a) and part b).

Proof of a). It follows from Lemma 5.3 that for ρ = εµ(B), δ = κ, ω = α′ = p′/q′, l = m and

U = H ◦ V , we can obtain m′ = m̃, α′′ = ω̃, A > 0 and a partial q′-decomposition ηq′ such that
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Φq′,A,α′′ and ηq′ satisfy the conclusions of Lemma 5.3. This proves a).

Proof of b). It is left to verify that with our choice of parameters when applying Lemma 5.3 as

above, b) is also satisfied. For any I ∈ ηq′ , B ∈ Cq , let us show that the collections of intervals

JB±ε
, JBc

±ε
satisfy i) and ii) if q′ is assumed to be sufficiently large with respect to an appropri-

ately chosen constant Q(q, ε,H, V ) depending on q, ε,H and V .

It follows from the uniform continuity of V −1 ◦H−1 and (6.4) that for q′ big enough with respect

to ε−1, if V −1◦H−1(ϕkα′(z0)) ∈ B−2ε then we have that Jk ∈ JB−ε
, and if V −1◦H−1(ϕkα′(z0)) ∈

Bc
2ε then Jk ∈ JBc

ε
. Let us fix q′ bigger than a constant Q(q, ε,H, V ) such that the latter holds.

This leads to the inequalities

1

q′

q′−1
∑

k=0

1B−2ε
(V −1 ◦H−1(ϕkα′(z0))) ≤

1

q′
#JB±ε

≤ 1

q′

q′−1
∑

k=0

1B2ε
(V −1 ◦H−1(ϕkα′(z0))). (6.6)

Notice also that
∑

Jk∈JB±ε

λ2(Jk) =
1

q′
#JB±ε

.

Therefore using that f is (q, 2ε, q′)-ergodic and Lemma 2.1, we obtain

∣

∣

∑

Jk∈JB±ε

λ2(Jk)− µ(B±ε)
∣

∣ ≤ max
±

∣

∣

∣

∣

1

q′

q′−1
∑

k=0

1B±2ε
V −1 ◦H−1(ϕkα′(z0))− µ(B±2ε)

∣

∣

∣

∣

+ |µ(B∓ε)− µ(B±2ε)| ≤ 9εµ(B),

which proves i). The measure of Φm
′

q′,A,α′′(I) \ (JB±ε
∪ JBc

±ε
) satisfies

λ2(Φm
′

q′,A,α′′(I) \ (JB±ε
∪ JBc

±ε
))

≤ 1

q′

q′−1
∑

k=0

1B2ε
(V −1 ◦H−1(ϕkα′(z0)))− 1B−2ε

(V −1 ◦H−1(ϕkα′(z0)))

≤ µ(B2ε∆B−2ε) + 6εµ(B) + 6εµ(B) ≤ 16εµ(B),

where we have used again Lemma 2.1 and the fact that f is (q, 2ε, q′)-ergodic. This proves ii)

and thus finishes the proof.

6.2 Conclusion of the proof for Proposition 4.2

We are now finally ready to prove Proposition 4.2.
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Proof of Proposition 4.2. We apply Lemma 6.1 for a = α = p/q, e = 2ε,k= ε/2,U = V and

m = m to obtain α′ = a

′ = p′/q′ ∈ Q and H = H ∈ Diffω∞(S3, µ) such that

f = V −1 ◦H−1 ◦ ϕα′ ◦H ◦ V

is (q, 2ε, q′)-ergodic and

|f j − V −1 ◦ ϕjα ◦ V |∆ < ε/2, 0 < j ≤ m. (6.7)

It is clear that now we are in a position in which we can apply Lemma 6.4 to m and f . Also

by Lemma 6.1 we can assume, for q, ε,H and V as above and any L > 0, that q′ > q + L and

q′ > Q(q, ε,H, V ) for Q(q, ε,H, V ) > 0 as in the statement of Lemma 6.4. Therefore when we

apply Lemma 6.4 to m and f as above, we obtain that for

κ = ε/2

there exist A > 0, m̃ := m′ ∈ N, α̃ := α′′ = p′′/q′′ (q′′ > q′) and a partial q′-decomposition ηq′

such that for every B ∈ Cq and I ∈ ηq′ we have collections of intervals JB±ε
, JBc

±ε
satisfying

the conclusions of Lemma 6.4, which in particular imply that Φq′,A,α̃ satisfies the conclusions of

Lemma 5.3 for ω = α′, ω̃ = α̃, ρ = εµ(B), m̃, δ = κ, l = m and U = H ◦ V . Recall that

F = V −1 ◦H−1 ◦ Φq′,A,α̃ ◦H ◦ V.

So far we have clarified our choice of parameters and shown that (4.1) is satisfied. We need to

show that i) and ii) in the statement of Proposition 4.2 hold for our choice of parameters.

Proof of i). Let us define H̃ := gq′,A ◦H . Using that g−1
q′,A ◦ ϕjα′ ◦ gq′,A = ϕjα′ , (6.7) and iv) in

Lemma 5.3, we obtain

|F j − V −1 ◦ ϕjα ◦ V |∆ ≤ |F j − V −1 ◦ H̃−1 ◦ ϕjα′ ◦ H̃ ◦ V |∆ + |f j − V −1 ◦ ϕjα ◦ V |∆
≤ ε/2 + ε/2 = ε,

for 0 < j ≤ m.

Proof of ii). It remains to show that F is (q, q′, ε, m̃, H ◦ V )-mixing, i.e. that for all I ∈ ηq′ and

B ∈ Cq
∣

∣

∣

∣

λ1(I ∩ Φ−m̃(H ◦ V (B±ε)))

λ1(I)
− µ(B±ε)

∣

∣

∣

∣

≤ 30εµ(B), (6.8)

where Φ := Φq′,A,α̃. Consider the subcollections of intervals JB±ε
and JBc

±ε
given by Lemma

6.4. From i) in the same lemma we obtain

∣

∣

∣

∣

λ1(I ∩ Φ−m̃(H ◦ V (B±ε)))

λ1(I)
− µ(B±ε)

∣

∣

∣

∣
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≤
∣

∣

∣

∣

λ1(I ∩Φ−m̃(H ◦ V (B±ε)))

λ1(I)
−

∑

J∈JB±ε

λ2(J)

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

J∈JB±ε

λ2(J)− µ(B±ε)

∣

∣

∣

∣

≤
∣

∣

∣

∣

λ1(I ∩Φ−m̃(H ◦ V (B±ε)))

λ1(I)
−

∑

J∈JB±ε

λ2(J)

∣

∣

∣

∣

+ 9εµ(B). (6.9)

It follows from the definition of the sets JB±ε
and JBc

±ε
in Lemma 6.4 that

⋃

J∈JB±ε

I ∩ Φ−m̃(J) ⊆ I ∩ Φ−m̃(H ◦ V (B±ε)) ⊆
⋃

J∈J\JBc
±ε

I ∩ Φ−m̃(J),

and hence we can conclude from ii) in Lemma 6.4 and (5.2) in Lemma 5.3 that

∣

∣

∣

∣

λ1(I ∩ Φ−m̃(H ◦ V (B±ε)))

λ1(I)
−

∑

J∈JB±ε

λ2(J)

∣

∣

∣

∣

≤ max







∣

∣

∣

∣

1

λ1(I)

∑

J∈JB±ε

λ1(I ∩ Φ−m̃(J)) −
∑

J∈JB±ε

λ2(J)

∣

∣

∣

∣

,

∣

∣

∣

∣

1

λ1(I)

∑

J∈J\JBc
±ε

λ1(I ∩ Φ−m̃(J)) −
∑

J∈JB±ε

λ2(J)

∣

∣

∣

∣











≤ max







∣

∣

∣

∣

1

λ1(I)

∑

J∈JB±ε

λ1(I ∩ Φ−m̃(J)) −
∑

J∈JB±ε

λ2(J)

∣

∣

∣

∣

,

∣

∣

∣

∣

1

λ1(I)

∑

J∈J\JBc
±ε

λ1(I ∩ Φ−m̃(J))) −
∑

J∈J\JBc
±ε

λ2(J)

∣

∣

∣

∣











+ λ2(Φm̃(I) \ (JBc
±ε

∪ JB±ε
)) ≤

∑

J∈J\JBc
±ε

∣

∣

∣

∣

λ1(I ∩ Φ−m̃(J))

λ1(I)
− λ2(J)

∣

∣

∣

∣

+ 16εµ(B) ≤ #(J \ JBc
±ε
)εµ(B)λ2(J) + 16εµ(B) ≤ εµ(B) + 16εµ(B)

≤ 17εµ(B).

Now using (6.9) we finally obtain

∣

∣

∣

∣

λ1(I ∩ Φ−m̃(H ◦ V (B±ε)))

λ1(I)
− µ(B±ε)

∣

∣

∣

∣

≤ 30εµ(B)

and this finishes the proof.
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7 Scheme of the proof for higher dimensional cases

Let us finish by explaining how to modify the setting of the proof to cover the higher dimensional

cases. First of all, one can generalize the Hopf coordinates to parametrize the odd dimensional

sphere S2n−1 ⊂ Cn. In complex coordinates the points (z1, . . . zn) ∈ S2n−1, with zi = xi+ iyi =

rie
2πiθi for i = 1, . . . , n, θ = (θ1, . . . , θn) ∈ Td are such that the moduli r = (r1, . . . , rn) belong

to the subset of the of the n dimensional sphere S+
n := {r ∈ Rn

+ | ∑n
i=1 r

2
i = 1, 0 ≤ ri ≤ 1}.

The moduli variables can then be parametrized in spherical coordinates to obtain the parametriza-

tion

z1 = cos(ξ1)e
2πiθ1 ,

z2 = sin(ξ1) cos(ξ2)e
2πiθ2 ,

...

zn−1 = sin(ξ1) . . . sin(ξn−2) cos(ξn−1)e
2πiθn−1 ,

zn = sin(ξ1) . . . sin(ξn−2) sin(ξn−1)e
2πiθn

with ξi ∈ [0, π/2] for i = 1, . . . , n− 1 and θ = (θ1, . . . , θn) ∈ Tn. It follows from a computation

that in these new variables the volume µ can be expressed (we denote again the parametrization

by ψ ) as

µ(A) =

∫

ψ−1(A)

f(ξ1, . . . , ξn−1) dθ1 . . . dθn dξ1 . . . dξn−1

for some smooth map f : [0, π/2]n−1 → R, and so that for sets A ⊂ S2n−1 with ψ−1(A) =

A1 × A2 ∈ Tn × [0, π/2]n−1 with A1, A2 Lebesgue measurable we have that the volume can be

expressed as

µ(A) = λ̄(A1)× µr(A2), where µr(A2) :=

∫

A2

f(ξ)dξ

and λ̄ denotes the Lebesgue measure on Tn. The map ϕα : S2n−1 → S2n−1 can be analogously

defined as

ϕα(z1, . . . , zn) = (e2πiαz1, . . . , e
2πiαzn).

The maps gq,A can be again defined as

gq,A(z) = ζAχq(z)
q (z), A > 0,

with ζsq (z) = (e2πisz1, e
2πi(1+q−1)sz2, . . . , e

2πi(1+q−1)szn) and χq as in (3.2). Notice that in this

case it is enough that the map χq depends only on z1, z2 in order to obtain stretching in all the
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angle variables. In particular in Lemma 5.3 the stretching happens in all the angle variables with

respect to the first component θ1. The rest of the proof follows as in the case of S3 up to minor

modifications in the technical lemmas, the expression for the decompositions and their specific

constants.
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