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Abstract  
The collision frequencies of electron-neutral-particle in the weakly ionized complex plasmas with 
the non-Maxwellian velocity distributions are studied.  The average collision frequencies of 
electron-neutral-particle in the plasmas are derived accurately. We find that these collision 
frequencies are significantly dependent on the power-law spectral indices of non-Maxwellian 
distribution functions and so they are generally different from the collision frequencies in the 
plasmas with a Maxwellian velocity distribution, which will affect the transport properties of the 
charged particles in the plasmas. Numerically analyses are made to show the roles of the spectral 
indices in the average collision frequencies respectively.  
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1. Introduction 
Since many physical properties of plasmas depend on collision and collision frequency [1,2], 

the research on the influence of collision and collision frequency on plasma properties has 
attracted a large number of scientific researchers, such as  Faussurier et al studied the plasma 
collision frequencies and the related plasma physics [3-5], Tsytovich et al. have discussed the 
effect of collisions between dust particles on low-frequency modes and instability in dusty plasma 
[6], You et al. made the measurement and analysis of the electron-neutral collision frequency in 
the calibration cut-off probe [7], Pecseli et al. analyzed the influence of neutral collision on the 
instability of current-driven electrostatic ion cyclotron [8], and Hahn et al. have modeled the 
collision process in the q-distributed plasma [9].  In addition, Khrapak derived the effective ion 
-neutral collision frequency in flowing plasma [10], Abbasi et al. calculated the collision time 
between plasma and the superthermal particles [11], Wang et al studied collision frequencies of 
particles in the plasma with power-law q-distribution in nonextensive statistics [12],  Sun et al 
presented the average collision frequency of electron-neutral particle in the weakly ionized plasma 
with the power-law q-distribution [23] and Kuri et al. used mathematical model to simulate the 
impact of electron-ion collisions on the Weibel stability in the kappa-distributed unmagnetized 
plasma [13]. 

The research on the average collision frequency of plasma systems has always been one of 

the hot issues in plasma physics. The collision phenomenon is one of the most basic characteristics 

of gas kinetics in plasmas, Transport phenomenon in plasmas is usually related to collision effects 

[14-23], such as the diffusion, the heat conduction and migration and the particle drift in a 

magnetic field, etc. According to the degree of ionization in a plasma system, it can be divided 

into weakly ionized plasma, partially ionized plasma and fully ionized plasma. In a fully ionized 
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plasma system, usually we think that electrons and ions are completely separated out and so the 

collisions of the plasma system are mainly taken place between the charged particles [14]. In a 

weakly ionized plasma system [15-23], there are neutral particles, ions and electrons, so there are 

electron-neutral particle collisions, ion-neutral particle collisions, and extremely few charged 

particle collisions such as electron-ion collisions and electron-electron collisions and ion-ion 

collisions. Since the collisions between electrons and neutral particles are the main kinetic 

mechanism for the weakly ionized plasma, it is of great significance to study the average collision 

frequency of electron-neutral particle collisions [7].  

In nonextensive statistical mechanics, the particle velocity distribution function is the 

non-Maxwellian distribution or the power-law q-distribution, which describes the complex plasma 

being in a non-equilibrium state [24-27]. In many situations for astrophysical and space plasmas, 

the velocity distributions appear reasonably Maxwellian at low energies but have a 

‘‘superthermal’’ power-law tail at high energies. In 1968, Vasyliunas introduced a non-Maxwellian 

empirical function to simulate the velocity distribution of high-energy electrons in the plasma 

magnetic sheath, which is the so-called kappa-distribution (or Vasyliunas distribution) [42]. The 

spacecraft measurements of the plasma velocity distribution in the solar wind, planetary 

magnetosphere and magnet field have showed that non-Maxwellian distributions are very 

common. In physics, astronomy, chemistry, biology and even social systems, non-Maxwellian 

distributions or power-law distributions are ubiquitous [28-30]. Therefore, the theoretical and 

experimental works of these distributions and their applications have attracted great attention in 

various of fields such as astronomy and astrophysics [31-35], plasmas and space physics 

[21,28,29,36-38], and reaction rate theory in chemistry [39-41], etc.  

There are many space plasma phenomena, such as interstellar medium, thermo-ionosphere 

ionosphere, solar wind and planetary magnetosphere and magnet field, which reveal the 

universality of non-Maxwellian velocity distribution functions [42-45]. In 1995, Cairns et al. 

introduced a non-thermal velocity distribution function for electrons (or called the Carins 

distribution function) to characterize the existence of cavitons observed by Freja satellite [46] and 

Viking satellite [47]. In order to better study the linear and nonlinear phenomena in the complex 

plasma, Abid et al. gave a more general non-Maxwellian distribution function ( or Vasyliunas- 

Carins distribution function) in 2015 [48]. Recently, a generalized two-parameter (r, q) non- 

Maxwellian distribution function was studied and explored [49-53], which fits the CLUSTER data 

related to electrons in the magnetic sheath very well, and it is also effective for the solar wind 

proton data [54,55]. The two-parameter (r, q) distribution is very suitable for modeling the 

electron velocity distributions observed in the downstream region of the ground bow shock [53], 

and it can also be used in the general case of space plasma [50]. In 2017, Abid et al. further 

introduced a three-parameter velocity distribution function, including many non-Maxwellian 

distributions such as the Carins distribution function and the (r, q)-distribution function [53] etc. 

with spectral indices α, r and q [56], which showed the rate of energetic and superthermality on 
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the tail of velocity distribution curve of the plasma species, respectively. The three-parameter 

distribution function may help to understand the occurrence of a large number of linear and 

nonlinear space plasma phenomena in solar wind [57], magnetocaloric [55] and auroral regions 

[43,58] more effectively. The collision frequency between electron-neutral particles in the weakly 

ionized plasma plays an important role in these linear, nonlinear and transport phenomena. In 

order to study the kinetics of electrons in the non-Maxwellian velocity distribution functions of the 

nonequilibrium complex plasmas, in this work we study the average collision frequency of 

electrons-neutral-particles in the weakly ionized plasma with the non-Maxwellian distribution 

functions, and analyze the roles of these parameters in the average collision frequency of 

electron-neutral particles.  

The paper is organized as follows. In section 2, we present several different types of 

non-Maxwellian/power-law distribution functions. In section 3, we study the average collision 

frequency between electrons and neutral particles in the weakly ionized plasmas with different 

non-Maxwellian distribution functions. In section 4, we numerically analyze the roles of these 

spectral indices in the average collision frequency. Finally in section 5, we give the conclusion. 

2. Non-Maxwellian velocity distribution functions 
Traditionally, the velocities of the j-th species in the plasma areconsidered to obey the 

Maxwellian velocity distribution when the plasma is in the thermal equilibrium state [59,60],  

                        ( ) ( 2 2
3/2 3 expjM

j j j tj
tj

n )f v
vπ

= −v v

)

,                       (1) 

where subscript j represents the plasma species ( j = e is electrons and j = i is ions), nj, vj, Tj, and 

mj are respectively the number density, the velocity, the temperature, and the mass of the particles, 

and is the thermal velocity. This kind of distribution function (1) is only suitable 

for studying the plasma being in a thermal equilibrium state. Both experimental and theoretical 

studies have shown that when a complex plasma system deviates far from the thermal equilibrium 

state, the velocity distributions of particles can have a low-energy or superthermality tail shoulder 

[61-67]. In the recent years, non-Maxwellian velocity distributions are widely observed and 

studied in astrophysical and space plasmas and also in laboratory plasmas [68]. Next we will 

discuss several non-Maxwellian distribution functions. 

( 1/2
2 /tj B j jv k T m=

In the astrophysical and space plasmas, the kappa distribution function (or Vasyliunas 

distribution function [42] ) of the j-th species particle can be expressed as 

                        ( )
( )12

3/ 2 3 3 2 2
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31 ,     
2

j jV
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κ

κ κ
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where the parameter κ represents the superthermality in the plasma system, which shows the 

deviation of the complex space plasma from a thermal equilibrium; ( )1 3/2 /κ κ= − κ

)
, and 

, where Γ represents a gamma function. Only when we take the limit κ 

→ ∞，the Maxwellian distribution function is recovered. 

( ) (3/2

= 1 / 1/2Cκ κ κ κΓ + Γ −
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The Carins distribution function [43] of velocity for the j-th species in the complex plasma can 

be written as follows, 

                 ( )
4 2

3/2 3 4 2
1

1 expj jC
j j

tj tj tj

n v vf v
v v v

α
α π

⎛ ⎞ ⎛
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,                    (3) 

where the parameter α characterizes the number of high-energy species in the plasma system 

under consideration, and α1=1+3α. Only if we take α = 0, the Carins distribution becomes into the 

Maxwellian velocity distribution. 

The Vasyliunas-Carins distribution function [48] of the j-th species in the complex plasma can 

be expressed as 

          ( )
( )14 2

3/ 2 3 4 2 2
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,             (4) 

where BBκ is the normalization constant, given by 

              
( )

( ) ( )3/ 2 3 / 2 1
1 2

11=
1+3
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κ
α κκ κ
Γ +

Γ − ,                       (5) 

the two parameters need to satisfy κ > 3/2 and α < 1. It is easily found that the Vasyliunas-Carins 

distribution function (4) can become (i) the Vasyliunas distribution function (2) only for α = 0, (ii) 

the Carins distribution function (3) only for κ → ∞, and (iii) the Maxwellian distribution function 

(1) only for α = 0 and κ → ∞. 

The generalized two-parameter (r, q) distribution function of the j-th species in the complex 

plasma can be written as 
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12

,
, 2

,

11
1

qr

jr q
j j r q

r q tj

V
f v D

q X v

−+⎡ ⎤⎛ ⎞
⎢ ⎥= + ⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

,                  (6) 

where Dr,q is the normalization constant that depends on the parameters r and q, given by 
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The two-parameter (r, q) distribution function (6) can show a broad shoulder with high energy tails. 

The deviation of the complex plasma from the thermal equilibrium depends significantly on the 

two parameters r and q [56]. It can be shown that when wetake r = 0 and q = κ +1, the (r, 

q)-distribution function (6) becomes the kappa distribution function [42], and when we take r = 0 

and q → ∞, (6) becomes the Maxwellian distribution function. Based on the normalization and the 
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definition of temperature in the above distribution function, the spectral index r and q must satisfy 

q > 1 and q (1 + r) > 5/2. Generally, if we increase the value of r only and keep the value of q 

unchanged, the contribution of high-energy particles decreases, but the shoulder of the distribution 

curve become wider. Similarly, if we increase the value of q only and keep the value of r fixed, the 

result is the same [69]. 

The three-parameter (α, r, q) velocity distribution function (or the AZ distribution) of the j-th 

species in the complex plasma can be written as 
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14 2
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where the normalization constant is modified [70] as 
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The AZ-distribution function (10) has three parameters α, r and q, to satisfy the condition q > 

1, α > 0 and q (1 + r) > 5/2. They show the rate of charged particles on the shoulder, on a broad 

shoulder and the superthermality on the tail of velocity distribution curve of the plasma species, 

respectively. The three-parameter (α, r, q) distribution function (10) is produced from the Carins 

distribution (3) and the two-parameter (r, q) distribution function (6). It is easily proved that when 

we take different values of the three-parameter (α, r, q), the AZ-distribution function (10) can fall 

back to different non-Maxwellian velocity distribution functions. For example, when we take α = 

0, it becomes the (r, q) distribution function (6), when we take r → 0 and q = κ + 1, it becomes the 

Vasyliunas-Cairns distribution function (4), when we take r → 0 and q → ∞, it becomes the 

Cairns distribution function (3), when we take α → 0，r → 0 and q = κ + 1，it becomes the kappa 

distribution function (2), and only when we take α → 0，r → 0 and q → ∞，it recovers to the 

Maxwellian distribution function (1). 

3. The average collision frequency of electron-neutral particle in the weakly 
ionized plasmas 

The weakly ionized plasma is the plasma with an ionization degree of less than 1%, so the 

plasma temperature is about (0.5~3.0)×104K [15-23]. In the weakly ionized plasma, the number of 

charged particles (electrons, ions) is relatively few. Therefore, when studying the collision of 
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electrons, we usually only consider the collision between electrons and neutral particles [23]. 
Assuming that the kinetic energy of the electron is smaller or much smaller than the excitation 

energy of the neutral particle, the collision between the two can be regarded as elastic collision. If 

we regard electrons and neutral particles as hard spheres with no internal structure, when two 

particles collide elastically, there is no interaction force between the particles except the collision 

moment. Since the mass of an electron is much smaller than the mass of a neutral particle, the 

neutral particles can hardly obtain kinetic energy from the collision process with the electrons. 

Therefore, we can use the "steel ball" collision model [2] to calculate the average collision 

frequency of the electron-neutral particle in the weakly ionized plasma with the different types of 

non-Maxwellian distribution functions. The average collision frequency of the electron-neutral 

particle in this model is defined [2] as 

( ) ( )en n en eN v v f dν σ= ∫ v v ,                        (13) 

where Nn is the number density of neutral particles, σen is the collision scattering cross section, 

fe(v) is the velocity distribution function of electrons. We can easily find that the average collision 

frequency of the electron-neutral particle depends on the velocity distribution function. In the 

current plasma, we regard the electrons and the neutral particles as rigid spheres with radii re and 

rn respectively. For the moving electrons and stationary neutral particles, collisions can occur 

when the projections of their centroids fall within a circular section with a radius of den, where den 

is called the effective collision radius, which is equal to the sum of the radii of an electron and a 

neutral particle. Using the steel ball collision model, the collision scattering cross section can be 

expressed by 

( 2
en n er rσ π= + ) ,                            (14) 

where re and rn are both constants for the plasma system under consideration, (13) becomes 

( )en n en eN vf dν σ= ∫ v v .                         (15) 

By using equation (15) we can calculate the average collision frequency in the weakly 

ionized plasma following the velocity distribution fe(v). If the plasma follows the Maxwellian 

velocity distribution (1), the average collision frequency of the electron-neutral particle can be 

obtained as 

, 3 / 2

2 te
en M n en

v
N

π
ν σ

π
= ,                          (16) 

where we have used the approximate conditions, re << rn, ne << Nn and ( )2 2
en n e nr r rσ π= + ≈ π . When 

the complex plasma under consideration deviates far from the equilibrium state, the velocity 

distribution of electrons is not a Maxwellian distribution, but often non-Maxwellian distribution.  

If the velocity distribution of electrons in the weakly ionized plasma is the Vasyliunas 

distribution function in equation (2) (or the kappa distribution function), the average collision 

frequency of the electron-neutral particle can be derived as  
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We find that the above result significantly depends on the parameter κ. It is easy to prove that 

when the parameter κ tends to infinity, the average collision frequency (17) returns to the result of 

that with a Maxwellian distribution. Similarly, when the velocity distribution of electrons obeys 

the Carins distribution function (3), the average collision frequency of the electron-neutral particle 

is calculated as 

2
,

81 6 .
1 3

B e
en C n n

e

k T
N r

m
παν

α
+

=
+                         (18) 

Obviously, when the nonthermal index α = 0, the result of equation (18) is the same as the average 

collision frequency of the electron-neutral particle with a Maxwellian velocity distribution.  

When the velocity distribution of electrons in the plasma is the Vasyliunas-Carins distribution 

function (4), the average collision frequency of the electron-neutral particle is given (see Appendix 

A) by 

( ) ( )( )
( )( )( )( )

( )
( )

5 2
42

, 7 / 4 1
2

3 2 3 2 3 2 123 .
2 1 3 3 2 1

B e
en VC n n
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N r

m
α κ κ κπ

ν κ
κκ α κ κ κ

− + − − Γ +⎛ ⎞= −⎜ ⎟ Γ −+ − − −⎝ ⎠

κ
       (19) 

The condition that equation (19) holds is that the two spectral indices must satisfy κ > 3. It is clear 

that when we take κ → ∞, equation (19) returns to the result of that with the Carins distribution, 

when we take a = 0 it returns to the result of that with the kappa distribution, and when we take κ 

= ∞ and α = 0, the equation (19) will fall back to the result of a Maxwellian distribution in 

equation (16).  

If the velocity distribution of electrons in the complex plasma can be simulated by the 

generalized two-parameter (r, q) distribution function in equation (6), the average collision 

frequency of the electron-neutral particle is derived (see Appendix B) as  

( )

1
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⎛ ⎞ ⎛ ⎞× Γ Γ −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

.     (20) 

where the parameters q (1 + r) > 5/2 and q > 1 are required so as to ensure the convergence of the 

integral. It is worth noting that under the limits of r = 0 and q → ∞, equation (20) will reduce to 

the case of a Maxwellian velocity distribution.  

If the velocity distribution function of electrons can be depicted with the AZ distribution 

function (10), the average collision frequency of the electron-neutral particle is calculated (see 

Appendix C) as  

2
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and the convergence of the integral requires that q > 1, α > 0 and q ( r + 1 ) > 5/2. Equation (21) 

shows the evolution of νen,AZ with the parameters α, r and q. From equation (21) we can obtain the 

conclusions that (i) when we take α = 0, (21) becomes into νen,(r,q) in equation (20); (ii) when we 

take r → 0 and q = κ + 1, (21) becomes into νen,VC in equation (19); (iii) when we take r → 0 and q 

→ ∞, (21) becomes into νen,C in equation (18); (iv) when we take r → 0, α → 0 and q = κ + 1, (21) 

becomes into νen,V in equation (17); (v) when we take α → 0, r → 0 and q → ∞, (21) becomes into 

νen,M in equation (16).  

4. Numerical analysis and discussion 
In section 3, it has been shown that the spectral indices in the non-Maxwell distribution 

functions play an important role in the average collision frequency of the electron-neutral particle 
in the weakly ionized complex plasma. Now by numerical analyses we demonstrate how these 
spectral indices, or the non-Maxwellian velocity distributions, influence the properties of the 
average collision frequency. For this purpose, by using equation (17), equation (18) and equation 
(16), we can write the following equations,  
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1 2 32
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ν κ κ
ν κ κ
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 Figure1. Dependence of the average collision frequency in (17) on the parameter κ  

and in (18) on the parameter α , respectively. 
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The results obtained from equation (23) are displayed in figure 1,where the red dashed line 

represents , ,/en M en Mν ν , which is the standard 1, and the blue dashed line represents the ratio of the 

average collision frequency of the electrons-neutral-particle collision in the weakly ionized plasma 

with the Vasyliunas velocity distribution (kappa distribution) to that with the Maxwellian 

distribution, and the black dashed line represents the ratio of the average collision frequency with 

the Carins velocity distribution to that with the Maxwellian distribution. Figure1 clearly shows 

that ,en Vν  increases as the parameter κ increases for low values of κ (viz., κ < 7). As κ continues 

to increase to a certain value (viz., κ = 10), it will gradually approach the standard curve 

“ , ,/en M en Mν ν ”, and it reaches the maximum value in the limit of κ → ∞. On the other hand, is 

always greater than 

,en Cν
−

,en Mν
−

 and , and it takes the minimum value when α = 0. After that, as α 

continues to increase,  shows a trend of rapid increase within the small value of α, and then 

 does not vary basically with the α increase (viz., α > 7).  

,en Vν
−

,en Cν
−

,en Cν
−

From equations (19) and (16), we find that 
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  Figure 2. Dependence of the average collision frequency in (19) on parameters κ and α . 
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Based on equation (25), in figures 2 (a) and (b), we show the effects of the parameters κ and 
α on the average collision frequency (19) of the electron-neutral particle in the plasma with 
Vasyliunas-Carins distribution. Numerically analyses of ,en VCν  are made for different values of α 
(viz., α = 0, α = 0.1, α = 0.4 and α = 0.7 ) and different values of κ (viz., κ = 4, κ = 6 and κ = 9 ). It 
is observed from figure 2(a) that  decrease sharply with the increase of α within a small 
range of κ (viz., κ < 8) for a fixed α, and when κ exceeds a certain range, such as κ > 8, 

,en VCν
−

,en VCν  will 
approach ,en Mν . It is worth noting that when α = 0, the curve of ,en VCν  is similar to that of ,en Vν . 
We also show the dependence of ,en VCν  curve on the spectral index α for a fixed κ in figure 2(b), 
which indicates that ,en VCν  intersects the  curve when α = 0, and when α is small and in a 
certain range (viz., α <5), it increases monotonously with the increase of α. When α exceeds a 
certain value, 

,en Mν
−

,en VCν  is close to a constant. Another property presented in Figure 2(b) is that as κ 
increases, ,en VCν will gradually approach ,en Cν , and in the limit of κ → ∞ the two coincide 
completely.  

From equations (20) and (16), we can find that 

( )
1
2, ,

,

3 3 3 5 5 2 2
2 2 2 2 2 2 2 2 2 1 1

en r q

en M

q q q
r r r r r

ν π
ν
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⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛= Γ Γ − Γ − Γ Γ Γ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎢ ⎥ r

⎞
⎟+ + + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝⎣ ⎦ + ⎠

.     (26) 
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    Figure 3. Dependence of the average collision frequency in equation (20) on the parameters r and q. 
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Based on equation (26), figure 3 numerically shows the effects of spectral indices r and q on 
the average collision frequency in equation (20). In figure 3(a) we took q as three fixed values of 
1.5, 2.2 and 5.4, respectively, and then changed the parameter r. It can be seen that as the value of 
r increases, ( ), ,en r qν  increases for the low values of r (viz., r < 5), and for large values of r with 
different q values, all ( ), ,en r qν  will approach a same constant. In figure 3(b), r was taken a fixed as 
0, 0.9, 5 and 7.2,  respectively, and  the values of q changed. We notice that ν en,(r,q) increases 
rapidly as the value of q increases when q is small, but it becomes constant when value of q is 
higher and it becomes independent of q. And with the increase of r, in the limit of q → ∞ all 

( ), ,en r qν  will approach the same constant. For this reason, we can give a mathematical expression 
by calculating the limit of equation (26) at r → ∞, as follows: 

 ( ) ( )
( )

2
, ,

2
,

53lim
8

en r q

r
en M

q
q

ν π
ν→ ∞

Γ
=

Γ
.                      (27) 

Based on equations (21) and (16), the dependence of ,en AZν  on the spectral indices α, r and q 

is presented by 

, ,,

2 2,

31
5 5 3 3 7 72 9

2 2 2 2 2 2 2 2 2 2 2 2

r qen AZ

en M

A

q q q
r r r r r r

απν
ν α

=
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ − Γ + Γ − Γ Γ − Γ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠+

.

    (28) 
In order to illustrate our the results more clearly, in figure 4(a)-(c), based on equation (28) we 

show the dependence of the average collision frequency ,en AZν on the parameters α, r and q. From 

the figure 4 (a) we show that ,en AZν  decreases with the increase of the parameter q when α and r 

are fixed and α ≠ 0. When q increases to a certain value (related to the value of r and α), ,en AZν  

will become a constant and independent of q. This is because ,en AZν  transforms into ( ), ,en r qν at α = 

0, the curve of ,en AZν is also infinitely close to that of ( ), ,en r qν , as shown in figure 4(a), the black 

dotted line and the green dotted line are completely merged.  
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                   Figure 4. Dependence of the average collision frequency in equation (21) on  

the parameters α, r and q. 

 
Figure 4(b) depicts that for fixed values of α (α ≠ 0) and q (viz., α = 0.8 and q = 1.5, α = 1.2 

and q = 6), the frequency ,en AZν  decreases with increase of the parameter r, and when r reaches a 

certain value, ,en AZν no longer changes with change of r. From the black and yellow curves in 

figure 4(b) it can be seen that ,en AZν  will fall back to ( ), ,en r qν for α = 0. In figure 4(c) we show that 

,en AZν  depends on α significantly when r and q are fixed. In this case, ,en AZν increases rapidly with 

the increase of α in the range 0 < α < 5, and at α = 0, ,en AZν  takes the minimum value. When α is 

greater than a certain value (viz., α > 8), ,en AZν  will hardly change with α. In all cases, we find 

that ,en Mν  is generally smaller than ,en AZν . 

5. Conclusion and Discussion 
In summary, we have investigated the average collision frequency of electron-neutral-particle 

in the weakly ionized complex plasmas with a variety of non-Maxwellian velocity distributions. 

We derived the expressions of the average collision frequency of electron-neutral-particle when 

the plasmas follow the kappa distribution, the Carins distribution, the Vasyliunas Carins 
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distribution, the generalized two parameter (r, q) distribution, and the three-parameters AZ 

velocity distribution, respectively. They are given by the equations (17), (18), (19), (20) and (21), 

respectively. We find that these average collision frequencies are all significantly dependent on the 

parameters in the complex plasmas with the non-Maxwell distributions. And only when these 

spectral indices (parameters) are the special cases, the collision frequencies in equations (17), (18), 

(19), (20) and (21) can all return to the cases of the plasmas with the Maxwellian distribution 

perfectly.  

In order to show the results more clearly, we have numerically analyzed the effects of the 

non-Maxwellian distributions on the average collision frequency of electron-neutral-particle in the 

weakly ionized complex plasmas. The results are illustrated in the figures (1)-(4) respectively.  

We have shown that the frequency ,en Vν in the plasma is generally smaller than ,en Mν , and 

 increases monotonously with the increase of the parameter κ at first and finally it approaches ,en Vν

,en Mν  with increase of κ. The frequency ,en Cν  depends strongly on α when α is relatively small, and 

such dependence will be weaken gradually with the increase of α.  

We have also shown that when α is fixed, the frequency ,en VCν  has a sharp decrease as the 

increase of the parameter κ in a small range of κ, and then ,en VCν  hardly changes with κ. For a 

fixed value of κ, ,en VCν  increases sharply at the beginning and then approaches a constant 

gradually. 

We have further shown the effects of r and q on the frequency ( ), ,en r qν . It is found that ( ), ,en r qν  

increases as r increase when value of r is low, but when r exceeds a certain range, all ( ), ,en r qν  will 

approach the same constant. We can get the similar conclusion that the difference is that ( ), ,en r qν  

with different fixed r values will approach different constants when the value of q becomes high. 

Finally, we have respectively studied the roles of the parameters α, r and q in the average 

collision frequency of electron-neutral-particle in the complex plasma with the three-parameter 

AZ velocity distribution. If the parameters α and r are fixed, we show that when value of q is low, 

the frequency ,en AZν  decrease monotonously with the increase of q and finally it approaches a 

constant. If the parameters α and q are fixed, we show that the effect of r on ,en AZν  is similar to 

the effect of q on ,en AZν . But if r and q are fixed, ,en AZν  increase monotonously with the 

increase of α when α is small. When α exceeds a certain value, ,en AZν will also become a constant. 

We can obtain the following points:  

(i) for α = 0, ,en AZν becomes ν en,(r,q). 

(ii) for r → 0 and q = κ + 1, ,en AZν becomes ν en,VC. 

(iii) for α → 0 and r → 0 and q = κ + 1, ,en AZν becomes ν en,V . 

(iv) for r → 0 and q → ∞, ,en AZν and ν en,C become the same. 

(v) for α → 0, r → 0 and q → ∞, ,en AZν becomes ν en,M. 

In conclusion, the average collision frequencies of electron-neutral-particle in the weakly 

ionized complex plasmas with the non-Maxwellian velocity distributions are generally and 

significantly different from those with a Maxwellian velocity distribution, and so the related 
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transport properties in the complex plasmas are also different from those in the plasmas with a 

Maxwellian velocity distribution. 

Appendix A 

The calculation of ,en VCν .  Substituting equation (4) into equation (15), we obtain that 
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where κ > 3 is required to ensure the convergence of the integral. 

Appendix B 

The calculation of ( ), ,en r qν . We can express the integral of the equation (15) that obeys the 
distribution function (6) as, 
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where q (1 + r) > 5/2 and q > 1 are required to ensure the convergence of the integral. 

Appendix C 

The calculation of ,en AZν  is calculated as follows. 
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 (C3) 
where q > 1, α > 0 and q (1 + r) > 5/2 are satisfied to ensure the validity of the integral. 
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