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Abstract— In the late 80s and 90s, theoretical physicists of 
the Landau Institute for Theoretical Physics designed and 
developed several specialized computers for challenging 
computational problems in the physics of phase transitions. 
These computers did not have a central processing unit. They 
optimize algorithms to handle elementary operations on 
integers - read, write, compare, and count. The approach 
allowed them to achieve recording run times. Computers 
performed calculations three orders of magnitude faster than 
similar calculations on the world's best supercomputers. The 
approach made it possible to obtain fundamentally new results, 
some of which have not yet been surpassed in the accuracy of 
calculations. The report will present the main ideas for the 
development of specialized computers and the scientific results 
obtained with their help. The lessons of planning and execution 
of long-term complex scientific projects will also be discussed. 
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I. INTRODUCTION 
   The subject of statistical physics is, in particular, the study 
of phase transitions and critical phenomena [1]. Each of us 
almost daily observes one of these phenomena - the boiling 
of water in a kettle or coffee maker, in which the heated 
water, reaching the boiling point, begins to turn into steam. 
The phenomenon is the so-called first-order phase transition, 
which is characterized by the presence of latent heat, the 
difference between the internal energies of the two phases of 
water, liquid, and gaseous. Internal energy is the first 
derivative of the thermodynamic functional to temperature - 
free energy, which is what gave rise to the name phase 
transition of the first order at the suggestion of P. Ehrenfest 
[2]. The theory of first-order phase transitions has not yet 
been developed. Another type of phase transition is a 
second-order phase transition, in which the first derivative is 
continuous. However, there is a singularity in the second 
derivative, for example, the heat capacity. The highlight of 
the second-order phase transition is in the appearance of 
spontaneous magnetization of a ferromagnet when it is 
cooled below the critical temperature, the Curie temperature. 
An example of a ferromagnet is a magnetic needle, the 
spontaneous magnetic moment of which at room 
temperature acquires an orientation along the lines of force 
of the Earth's magnetic field.  When the magnetic needle is 
heated above the Curie temperature, the arrow will lose its 
magnetic moment and, accordingly, will lose a specific 
orientation, and upon cooling below the Curie temperature, 
the orientation will be restored. 
   The theory of phase transitions of the second kind was 
built in the 40s-70s of the XX century [1]. During these 
years, several two-dimensional models were exactly solved 
[3]. Despite the tremendous theoretical advances, there are 
still no exact solutions to three-dimensional models. Also, 

the theory of systems with impurities has not been fully 
developed, which is very necessary for applications. It is 
because the chemically pure and ideally ordered systems 
without defects are not so widespread in real life, in 
practical applications and engineering solutions. The theory 
of glass systems, which are obtained, for example, by rapid 
cooling, and such materials are widespread, is also not fully 
developed. And it is here that the possibility and necessity of 
using a numerical experiment opens up. 
    Numerical experiments in the field of statistical physics 
are based on Monte Carlo methods [4]. Their use requires 
serious computing resources. In this post, we provide an 
overview of research that has been carried out using 
specialized computers. The main idea was to design and 
manufacture a computer in which the algorithm would be 
implemented in hardware. Such a device, in some cases, can 
achieve a computational speed 1000 times higher than the 
computation speed using the most powerful supercomputer. 
 The creation of such computers required a rather 
severe investment of time for highly qualified specialists, 
and without the right to make mistakes. The basis of such a 
project is programming using microcircuits, where it is 
almost impossible to fix a code error. The risk of not 
completing such a project is very high. 

II. SPIN-GLASS COMPUTER AT BELL LAB  
Understanding the physical processes of the glass phase 

of a substance is one of the most critical tasks of modern 
solid-state physics and materials science. The study of such 
systems requires a lot of computer time. In the 80s of the last 
century, ideas for the development of specialized computers 
for solving a specific class of problems were implemented 
simultaneously in several research centers. 

Practically simultaneously, processors were built to study 
the simplest ferromagnet model, the Ising model, at Delft 
Technical University [5] and the Institute for Theoretical 
Physics at the University of California at Santa Barbara [6]. 
Both approaches used the Metropolis method [7] to 
thermalize the system and a shift register type random 
number generator [8] to implement the Markov chain. In the 
next section, we will discuss in detail the advantages and 
disadvantages of these two methods, which we have 
discovered in our experience during the construction of 
specialized computers and their use for simulation. Here, we 
note that no new scientific results were obtained using 
computers in Delft and Santa Barbara. 

   Significant results were obtained using a computer built at 
Bell Laboratories [9]. We will dwell on the discussion of its 
design in detail. A specialized computer was designed to 
study a model of statistical mechanics - an Ising spin glass 
on a hypercubic lattice with periodic boundary conditions. 
At each vertex of such a lattice, spin may be absent or 



 

 

present (a variable with values +1 and -1). At each lattice 
site, there can also be an external magnetic field of a random 
value. Variables are located on the lattice edges, which can 
take on some random values. A Markov process was used to 
simulate the dynamics of spin configurations. The 
computation cycle consisted of two stages, lattice spin flips 
by the heat bath method [4] and the calculation of 
thermodynamic quantities. The first stage was performed on 
a dedicated processor, while the second - on a standard 
commercial site with a Motorola 68000 processor, which 
was connected to the control computer via an RS-232 serial 
port at a speed of 9.2 kilobits per second. This decision was 
made to provide flexibility in the study of models. As it 
turned out, this combined solution turned out to be 
superfluous. On the other hand, this design allowed the use 
of many ready-made hardware solutions for various parts 
and accelerated the development of the system as a whole. 
   The solution was chosen as follows - building a 
specialized high-speed processor with the implementation of 
one-spin relaxation and using the bus to quickly transfer 
large words containing packed spins to a regular computer. 
VMEbus with 32-bit transmission and having a separate 
address bus was chosen. Eight 2MB VME DRAM modules 
with 120 ns read time, and 240 ns memory cycle was 
installed. 
   The specialized processor was built on TTL technology 
and was placed on two VME cards. To change the 
parameters of the model was required to manufacture and 
install a new PROM memory and PALS (Programmable 
Array Logic Devices) in a specialized processor. We used 
the packing of spins (one-bit variable) into words. The 
packing, in turn, required the development of a special 
device for calculating the address of adjacent spins. 
Implementing the Markov process, pipelined processing 
with a specialized device for generating random numbers 
was used. To store the probabilities of spin flips, we used a 
pre-calculated and loaded table implemented in 25 ns 
memory. A generator at a frequency of 25 MHz was used 
for synchronization. In the random number generator, the 
Fibonacci algorithm was implemented with a characteristic 
pair of constants (5,17). 
   As a result, a simulation rate of up to 17 million spin flips 
per second was achieved with a theoretical speed of 25 
million per second. The memory capacity made it possible 
to study square lattices with a side of 8192, cubic with a side 
of 512, and four-dimensional with a side of 64, that is, 64 
million spins. For comparison, the speed of calculating a 
similar problem on the Cray-1 supercomputer was ten times 
slower, depending on the type of problem. The undoubted 
advantage of a specialized computer was its low cost and 
availability of computing time. 
   Investigating only one problem, a three-dimensional Ising 
spin glass, took one year of continuous operation of a 
specialized computer system. New and unexpected scientific 
results were obtained [10,11]. A phase transition to the 
glassy phase at a temperature of 1.2 was discovered, and the 
relaxation properties of this model were studied. Note that 
the linear size of the lattice in the calculations did not 
exceed 64. That is, only 1/64 of the installed memory was 
used. 
   Summing up, let us note that excesses were introduced 
into the design: 1) 16 megabytes of memory, although no 

more than 0.5 megabytes were actually used, 2) a random 
external field was not used, 3) the randomness of the lattice 
was not used, 4) only one was investigated a task that did 
not require reinstalling the PROM. 
   The design flaw was also the slowness of processing 
averages on the Motorolla 68000 processor, as well as the 
weak properties of the random number generator for this 
amount of computation. 
   Nevertheless, we emphasize that the three-dimensional 
model of spin glass has not yet been studied with such 
accuracy by other authors, which is an undoubted scientific 
success of the project. 

III. SPECIAL PURPOSE PROCESSORS FOR DILUTED TWO-
DIMENSIONAL ISING MODEL 

   The Ising model with impurities was analytically 
investigated by the Dotsenko brothers and required 
independent confirmation of their results. For this purpose, 
the first specialized processor was built [12]. It was the ideal 
Monte Carlo computer in terms of architecture. All 
operations were completed in less than 250 ns, with speed 
determined by a 200 ns memory chip cycle and 90 ns access 
time. As a result, the processor was performing at least 4 
million operations per second—precisely operations, not just 
spin flips. The processor consisted of memory, logic, and 
counters. During the same time, the average values of the 
thermodynamic values over the lattice (energy and magnetic 
moment) were calculated using 34-bit counters, the values 
of which were then read in parallel with the calculations by 
the AT-286 control computer. The latter also counted the 
moments of these quantities and an estimate of the heat 
capacity and magnetic susceptibility. The linear size of the 
lattice was limited to 256 nodes. The random number 
generator was built on the basis of a shift register with a 
characteristic pair (147,250). An algorithm previously tested 
on a VAX-11/780 computer was implemented. The 
specialized processor performed only integer operations. In 
this aspect, the implementation of some of the operations 
was closer to the implementation of the Bell Lab processor 
[9].    
   After a long time of work, the operator's methodical 
oversight was unexpectedly revealed. The random number 
generator was initialized with the same sequence of 250 
numbers, which led to the absolute identity of the Markov 
process implementations. By that time, it became clear that 
the lattice size of this processor would not allow revealing 
the subtle properties of the impurity Ising model, despite the 
fact that our SPP-1 processor was more flexible in this 
respect than its predecessors and allowed using any one-spin 
algorithm. 
   Fortunately, during the creation of the SPP-1 processor, 
cluster algorithms were developed for spin models, and it 
became clear that the simplest and most efficient of them 
can also be implemented in the integer arithmetic of a 
specialized processor. The first cluster Monte Carlo 
processor, SPP-2 [13], was built, which implements the one-
cluster Wolff algorithm [14] for the two-dimensional Ising 
model with random connections. SPP-2 could be 
programmed to study lattices with linear dimensions in 
powers of two from 64 to 1024 and with a programmable 
random number generator such as a shift register with a 
length of no more than 255. The combination of a single-



 

 

cluster algorithm and a random number generator was 
considered the best in the scientific community at that time. 
   Analysis of the simulation results indicated that the 
estimates obtained for lattice sizes of 128 and less are not 
accurate enough and, possibly, contain a systematic error of 
an unknown nature. At the same time, an article [15] 
appeared, which indicated that the combination of the two 
best methods, the single-cluster algorithm and the shift 
register, leads to large systematic errors. Fortunately, we 
managed to find a solution to this problem - a theory of the 
algorithm was built with the simultaneous use of a single-
cluster algorithm and a shift register [16-18] and universal 
boundaries were established for the level of systematic 
errors. It turned out that, within the limits of statistical 
errors, we have the right to use only gratings with a linear 
size of 256 or more. All this allowed us to confidently 
publish the results for such lattice sizes. We were able to 
calculate for the first time the correlation function of the 
Ising model at the transition point and discover its 
interesting properties for the impurity model [19], as well as 
accurately estimate the critical properties of the impurity 
Ising model [20], which made it possible to unambiguously 
single out correct analytical predictions. 
    Thus, the second SPP-2 processor was successful in 
obtaining new scientific results. Moreover, in order to 
substantiate the correctness of his work, important scientific 
results were obtained in the field of using random numbers 
in modeling problems in statistical physics. 

 
FIG. 1. Block diagram of the cluster processor SPP-2. 

 
   Figure 1 shows the basic schematic of an SPP-2 cluster 
processor. The RNG block is a programmable random 
number generator, the P1 and P2 registers contain the 
probabilities of inclusion in the cluster, the DMC (Decision 
Making Circuit) block decides whether the spin is included 
in the cluster, the Stack contains the raw spins of the cluster. 
The average construction time for one Wolff cluster took 
400 nanoseconds. 
IV. CLUSTER PROCESSORS FOR THREE-DIMENSIONAL ISING 

MODELS 
The success with the first cluster processor SPP-2 

allowed us to move on to the development of the cluster 
processor SPP-3 to study the three-dimensional Ising model 
[21]. This processor was developed to study a model with 
linear dimensions up to 256. It implemented the ideas of our 

theory of random number generators, which were 
programmable with a shift register size up to 16384. Each 
processor had two random number generators operating in 
parallel and programmed with different characteristic pairs of 
Mersenian primes. 12 processors were manufactured and 
placed in four control nodes. As a result of many years of 
operation of the SPP-3 complex, numerical data were 
obtained, which, as a result of processing, led to record 
estimates of the critical parameters and critical temperature 
of the three-dimensional Ising model [22]. Only 20 years 
later, a team from the United States managed to come close 
to our results through calculations on a specially built private 
cluster farm using conventional computing architecture [23]. 

Figure 2 shows a photograph of one of the twelve SPP-3 
processors. On the right is the RNG dual programmable 
random number generator [24]. One generator is visible, the 
second is located parallel to the first, their result, after 
applying a bitwise exclusive OR, is sent to the comparator 
for comparison with a probability that depends on the ratio of 
the coupling constant to the temperature. The bottom block is 
the main static 11-nanosecond memory containing 16 million 
spins. The middle block is the block for implementing the 
one-cluster Wolff algorithm. On the right is a block for 
connecting power and communication with the control 
computer. A total of about 400 microcircuits are used in one 
processor. Thе work от SPP-3 was supported by grants 07-
13-210 NWO (Netherlands), INTAS-93-0211, M0Q000 ISF, 
and 93-02-2018 RFBR. 

 

 
FIG. 2. Special-purpose processor SPP-3. 

 

V. CONCLUSIONS   
1. Using specialized processors is much cheaper than 
supercomputers. 
2. The results obtained with the help of specialized 
processors are chronologically ahead of the possibilities 
of supercomputer use. 
3. Obtaining new results with the help of specialized 
processors is risky - in a large number of projects, 
performers have failed to achieve new scientific results. 
4. There is a great risk due to errors or the discovery of 
new patterns since the accuracy of the calculations 
exceeds those preliminary estimates that were made using 
conventional computing technology. 
5. The cost of human labor is very high. 
6. Obtaining a new scientific result requires several years 
of work. 
7. If successful, it is actually success! 

REFERENCES 



 

 

[1] A. Z. Patashinskii, V. L. Pokrovskii, Fluctuation Theory of Phase 
Transitions. New York, Toronto, Sydney, Paris, Frankfurt: Pergamon 
Press, Oxford, 1979. 

[2] P. Ehrenfest, “Phasenumwandlungen im ueblichen und erweiterten 
Sinn, classifiziert nach dem entsprechenden Singularitaeten des 
thermodynamischen Potentiales.” Verhandlingen der Koninklijke 
Akademie van Wetenschappen (Amsterdam) 36: pp.153–157; 
Communications from the Physical Laboratory of the University of 
Leiden, Supplement No. 75b (1933). 

[3] R.J. Baxter, Exactly solved models in statistical mechanics,  
Academic Press, 1982. 

[4] D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in 
Statistical Physics, Cambridge, 2015. 

[5] A. Hoogland, J. Spaa, B. Selman, and A. Compagner, A Special-
Purpose Processor for the monte Carlo Simulation of Ising Spin 
Systems, J. Comput. Phys. 51, 1983, pp. 250-260. 

[6] R.B. Pearson, J.L. Richardson, and D. Toussaint D, A Fast Processor 
for Monte-Carlo Simulation, J. Comput. Phys. 51, 1983, pp. 241-249. 

[7] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. 
Teller, Equation of State Calculations by Fast Computing Machine, J. 
Chem. Phys. 21, 1953, pp. 1087-1092. 

[8] S.W. Golomb, Shift Register Sequences, second edition (Aegean Park 
Press, Laguna Hills, 1982). 

[9] J.H. Condon and A.T. Ogielski, Fast special purpose computer for 
Monte Carlo simulations in statistical physics, Rev. Scient. Instr. 56, 
1985, pp. 1691-1696. 

[10] A.T. Ogielski and I. Mongernstern, Critical behavior of three-
dimensional Ising spin-glass model, Phys. Rev. Lett., 54 (1985) pp. 
928-931.  

[11] A.T. Ogielski, Dynamics of three-dimensional Ising spin glasses in 
thermal equilibrium, Phys. Rev. B, 32 (1985), pp. 7384-7398. 

[12] A.L. Talapov, V.B. Andreichenko, Vl.S. Dotsenko, L.N. Shchur, 
Dedicated processor for studying Ising model on random lattice, JETP 
Lett., 51 (1990) pp. 182-185. 

[13] A.L. Talapov, L.N. Shchur, V.B. Andreichenko, Vl.S. Dotsenko, 
Cluster algorithm special purpose processor, Mod. Phys. Lett. B 6 
(1992) pp. 1111-1119. 

[14] U. Wolff, Collective Monte Carlo Updating for Spin Systems, Phys. 
Rev. Lett., 62 (1989) pp. 361-364. 

[15] A.M. Ferrenberg, D.P. Landau, and Y.J. Wong, Monte Carlo 
simulations: Hidden errors from ‘‘good’’ random number generators, 
Phys. Rev. Lett., 69 (1992) pp. 3382-2285. 

[16] L.N. Shchur and H.W.J. Blöte,  Cluster Monte Carlo: Scaling of 
systematic errors in the two-dimensional Ising model, Phys. Rev. E 55  
(1997) pp. R4905-R4908.  

[17] L.N. Shchur, J.R. Heringa and H.W.J. Blöte, Simulation of a directed 
random-walk model: The effect of pseudo-random-number 
correlations, Physica A 241 (1997) pp. 579-592. 

[18] L.N. Shchur, On the quality of random number generators with taps, 
Computer Phys. Communs., 121-122 (1999) pp. 83-85. 

[19] A.L. Talapov and L.N. Shchur, Critical-Point Correlation Function for 
the 2D Random Bond Ising Model, Europhys. Lett., 27 (1994)  pp. 
193-196. 

[20] A.L. Talapov and L.N. Shchur, The critical region of the random-
bond Ising model, J. Phys.: Cond. Mat., 6 (1994)  pp. 8295-8308. 

[21] A.L. Talapov, H.W.J. Blöte, and L.N. Shchur, Cluster algorithm 
special purpose computer for the 3D Ising model, Письма в ЖЭТФ, 
62 (1995) pp. 157-164. 

[22] H.W.J. Blöte, L.N. Shchur, and A.L. Talapov, The Cluster Processor: 
New Results, Int. J. Mod. Phys. C 10 (1999) pp. 1137-1148. 

[23] A.M. Ferrenberg, J. Xu, and D.P. Landau, Pushing the limits of Monte 
Carlo simulations for the three-dimensional Ising model, Phys. Rev. 
E, 97 (2018) p. 043301. 

[24] L.N. Shchur, Computational physics and testing theoretical 
predictions, Phys. Usp. 55 (2012) pp. 733-738. 

 

 


