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Anomalous diffusion of antibiotic (colistin) in a system consisting of packed gel (alginate) beads
immersed in water is studied experimentally and theoretically. The experimental studies are per-
formed using the interferometric method of measuring concentration profiles of diffusing substance.
We use the g–subdiffusion equation with the fractional Caputo time derivative with respect to an-
other function g to describe the process. The function g and relevant parameters define anomalous
diffusion. We show that experimentally measured time evolution of the amount of antibiotic released
from the system determine the function g. The process can be interpreted as subdiffusion in which
subdiffusion parameter (exponent) α decreases over time. The g–subdiffusion equation, which is
more general than the ”ordinary” fractional subdiffusion equation, can be widely used in various
fields of science to model diffusion in a system in which parameters, and even a type of diffusion,
evolve over time. We postulate that diffusion in a system composed of channels and matrix can be
described by the g–subdiffusion equation, just like diffusion in a system of packed gel beads placed
in water.

PACS numbers:

I. INTRODUCTION

Subdiffusion is a process in which the movement of
molecules is very hindered by a complex internal struc-
ture of the medium [1–8]. This process was observed,
among others, in diffusion of sugars in agarose gel [9]
and in antibiotics diffusion in a bacterial biofilm [10, 11],
the reference list can be extended significantly. A dis-
tinctive feature of “ordinary” subdiffusion is the relation
σ2(t) ∼ tα, where σ2 is the Mean Square Displacement
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of a diffusing particle and α ∈ (0, 1). In general, subdif-
fusion occur when time of a molecule to jump is anoma-
lously long. Within the Continuous Time Random Walk
model, for “ordinary” subdiffusion the distribution of a
waiting time for a molecule to jump ψ has a heavy tail,
ψ(t) ∼ 1/tα+1, the average value of this time is infinite.
“Ordinary” subdiffusion can be described by a differen-
tial equation with a time derivative of fractional order
controlled by the parameter α [1–8, 12].

The situation is more complicated when molecules dif-
fuse in a system consisting of matrix and channels. The
channels are defined here as ”free spaces” in the matrix
which usually have a complicated geometric structure.
The channels can be “free spaces” in a porous medium,
tubules, or spaces between packed beads. Diffusion oc-
curs mainly in channels, but molecules can diffuse into
and out of the matrix. Diffusion of various substances in
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a system consisting of channels and matrix has been con-
sidered in medicine, biology, engineering, geology, agri-
culture, and other fields of science. The examples are
diffusive release of vitamin from collagen [13], nutrients
from a fertilizer to water and sand [14], fertilizers from
beads [15, 16], diffusion of oxygen in soils [17], the process
of active ingredients release which can be used in reduc-
tion of groundwater pesticide pollution [18], insulin re-
lease from chitosan beads [19], drug release from alginate
beads [20, 21] and from coating beads [22]. Such stud-
ies are needed to establish the conditions under which
the optimal dose of the drug is released [23, 24]. The-
oretical models of the processes mentioned above have
been based on diffusion–reaction equations [17, 24–30],
“ordinary” subdiffusion equation with Caputo deriva-
tive in which source term is involved [31], “ordinary”
subdiffusion-reaction equation [32], and on scaling ap-
proach [33]. Subiffusion parameters depend on disorder
of packing beads [34, 35] and on the structure of beads
[36].

We assume that the process could be described by the
“ordinary” subdiffusion equation with a fixed parame-
ter α at some initial time interval. The normal diffusion
equation may be treated as a special case of the “ordi-
nary” subdiffusion equation for α = 1, thus we do not ex-
clude normal diffusion from further considerations. How-
ever, getting the molecules into the beads and back again
can slow down subdiffusion. Similar processes in which
diffusion of molecules is interrupted by their trapping in
an immobile zone have been considered in [33, 37–39].
Traps can be small caves with narrow passages. Such
traps change the time scale of the process [40, 41]. To
describe the process we use a subdiffusion equation with
the fractional Caputo derivative with respect to another
function g [42–44] which controls the slowness of the pro-
cess. We call this equation g–subdiffusion equation. The
key is to determine the g function experimentally. For
this purpose it is convenient to define a function describ-
ing diffusion process and controlled by the function g that
is relatively easily measurable experimentally.

In the following, we experimentally study diffusion of
an antibiotic (colistin) in a system in which gel (alginate)
beads soaked with the antibiotic are placed in water. We
use the g–subdiffusion equation to describe the process
and show that the time evolution of the amount of the
antibiotic released from the system allows the determi-
nation of the function g.

II. EXPERIMENT

The system used for the experimental study consists
of two regions A (x < 0) and B (x > 0) separated by a
thin membrane located at x = 0, see Fig. 1. We assume
that the system is homogeneous in the plane perpendicu-
lar to the x-axis, so it is effectively one-dimensional. The
membrane, which is very permeable to diffusing parti-
cles, keeps the beads in region A. At the initial moment,

all antibiotic is in beads, it is distributed uniformly in
each bead. The antibiotic concentration is measured by
means of the interferometric method. Since the region
containing the beads is not transparent to the laser beam,
measurements of the antibiotic concentration can only
be made in region B. We focus our attention on a time
evolution of the amount of the antibiotic N(t) that has
diffused from region A to B.

A B

C0

C(x,t)

laser beam

x0

FIG. 1: Top panel: scheme of the system used in the experi-
ment, region (vessel) A contains alginate beads impregnated
with colistin placed in water and region B contains water at
the initial moment. As the beads are non–transparent to the
laser beam, interferometric measurement of concentration is
only possible in region B. Lower panel: C denotes the con-
centration of the antibiotic, C0 is the initial concentration in
region A.

The scheme of the system is shown in Fig. 1. The
system consists of two vessels separated by a thin mem-
brane. The vessel sizes are: the cross-sectional area is
S = 7 × 10−5 m2, the length of the vessel A (measured
along the x axis) is LA = 10−2 m, and the length of
the vessel B is LB = 5 × 10−2 m. Antibiotic soaked al-
ginate beads were made as follows. 1 mg of colistin in
the form of methanesulfonate sodium (Fluka, Germany)
was dissolved in 1 ml of 1.5% alginate solution. Using an
automatic pipette, the alginate solution with an antibi-
otic was added dropwise to a calcium chloride solution
of 0.15 mol/m3 concentration. As a hydrogel carrier the
sodium alginate (SAFC, USA) was used. Due to the
biocompatibility as a crosslinking agent calcium cations
were applied, the source of which was calcium chloride
(POCH S.A., Poland). A single bead has a volume of
15 µl. 27 beads were in the vessel A, the ratio of the
total volume of all beads to the volume of the vessel A is
equal to 0.58. Within the homogeneous medium approx-
imation the initial colistin concentration in the vessel A
was calculated using the formula C0 = N0/VA, where N0

is the total amount of colistin in all beads at the initial
moment. We obtained C0 = 0.50 mol/m3. Linear ini-
tial concentration used in theoretical model C0 = SC0 is
C0 = 3.5 × 10−5 mol/m. Concentration profiles of an-
tibiotic were determined in region B for different times
t ∈ [120 s, 2400 s].

For experimental study we used colistin in the form
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FIG. 2: Experimental setup. Detailed description is in the
text.

of methanesulfonate sodium (Fluka, Germany). Antibi-
otic solutions were prepared in double deionized water.
The hydrogel carrier was sodium alginate (SAFC, USA),
and calcium cations were selected as the cross-linking
agent due to their biocompatibility. The source of cal-
cium cations was calcium chloride (POCH S.A., Poland).
In order to prepare alginate beads with colistin, 1 mg of
colistin was dissolved in 1 ml of a 1.5% alginate solu-
tion and mixed thoroughly. Then, using an automatic
pipette, the alginate-antibiotic solution was dripped into
the 0.15 mol/m3 calcium chloride solution also contain-
ing the antibiotic. As a result of gelation, beads having
a volume approximately 15 µl were obtained.

The colistin concentration has been measured by
means of the laser interferometric method [9, 10, 45, 46].
Fig. 2 presents the sketch of measuring apparatus. The
main element of the apparatus is the double-beam Mach-
Zehnder interferometer with a laser illumination system
and a computerized system for recording and processing
of interference images. The laser beam produced by a
15 mW He–Ne laser is spatially filtered and next, using
the beam expander, is transformed into a parallel beam
of width of 80 mm and later is split into two beams.
One of them passes through both cuvettes parallel to
the membrane surface, while the other being a reference
beam goes directly through the compensation plate to
the light detecting system where it superimposes with
the laser beam which passing through the diffusion cell.
The result is the formation of interference fringes, see
Fig. 3.

The course of the interference fringes is determined
by the refractive index of the solution, which in turn
depends on its concentration. Interference fringes are
straight when the solute is homogeneous and bend when
a concentration gradient is non–zero. The magnitude of
the deviation of the interference fringe at a given point
with respect to a undisturbed fringe d(x, t) (see Fig. 4)
reflects the changes in the refractive index between these
points and thus provides information about changes in
the concentration of the substance between the points.

The relation between the change of the substance con-
centration ∆C(x, t) and the change of the refractive index

FIG. 3: Interferogram obtained after 20 min.
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FIG. 4: Schematic drawing of the interference fringes.

∆n(x, t) is linear [47–50],

∆C(x, t) = a∆n(x, t) , (1)

where ∆C(x, t) = CI − C(x, t), CI is the initial concen-
tration,

∆n(x, t) =
λd(x, t)

hf
, (2)

where λ denotes a wavelength of the laser light
(632.8 nm), h is the distance between the interferomet-
ric fringes in the area where they are parallel and f
denotes thickness of solution layer along the course of
the laser beam. The coefficient a was determined in a
separate experiment using the interference refractometer
(Zeiss). In the range of tested concentration the depen-
dence of refractive index on the concentration of colistin
solution is linear and the value of the parameter a is
2.92 × 103 mol/m3. The sign of the deviation of the in-
terference fringe d depends on the measurement setup
settings. In the experiment, d(x, t) < 0 means that in
the observed region the interference fringe deviates to the
right and the substance flows in from other regions what
means that the concentration in this region is increas-
ing relative to initial concentration. When d(x, t) > 0,
the interference fringe deviates to the left and the sub-
stance flows away to the other regions what means the
concentration in this region is decreasing relative to ini-
tial concentration.



4

The diffusion cell consists of two vessels made of glass
with a very high optical homogeneity separated by a
horizontally located thin membrane (see Fig. 2). Ini-
tially, the alginate beads with colistin of concentration
1 mg/ml were placed close together completely filling
the volume of lower cuvette, while the upper cuvette was
filled with pure water, thus CI = 0. Then, an antibiotic
diffuses to the upper cuvette. The duration of the ex-
periment was 40 min and interferograms were recorded
with time interval equals 2 min. The measurements was
conducted under isothermal conditions at a temperature
of T = 295± 0.3 K.

III. THEORY

We use the g-subdiffusion equation to model antibiotic
diffusion in a system consisting of antibiotic soaked alig-
nian beads densely packed in water. Normal diffusion or
subdiffusion may occur in the spaces between the beads.
As we have mentioned, the motivation behind the use
of the g-subdiffusion equation is that the release of the
antibiotic from the gel beads, as well as the possibility
of the antibiotic particles re-penetrating the beads, can
slow down antibiotic diffusion in the system.

Diffusion in region A is a combination of two processes:
subdiffusion of antibiotic molecules inside the bead to
their exit outside and their further diffusion mainly in a
“free space” between the beads. The border between a
bead and the free space is not an obstacle for the particles
exiting the bead. However, it is an obstacle for the parti-
cles trying to re-enter the bead because then the particle
must hit a pore on the bead surface. We suppose that
the return of the antibiotic molecule to a bead is possible
when the molecule moves in region A and has frequent
contact with the bead surfaces. When a molecule diffuses
in region B near the border with region A the molecule
contact with the beads is much less frequent and the
molecule is unlikely to return to region A. We assume
that the boundary between the regions can be regarded
as an absorbing wall for molecules located in region A.
The most often used boundary condition at the absorb-
ing wall is zero concentration of diffusing substance at
the wall. The amount of antibiotic that is in region B is
equal to the amount of the antibiotic that left region A
at the same time. Therefore, in the following we consider
diffusion of the antibiotic in region A. We use the approx-
imation of a homogeneous medium for region A and as-
sume that the medium structure does not change in time.
Then, the medium consisting of beads and “free spaces”
between beads has assigned subdiffusion parameters such
as for a homogeneous medium; similar approximation has
been used in modeling of diffusion in disordered system of
spheres [34, 35]. We also assume that the parameters are
independent of time and a spatial variable and the an-
tibiotic is distributed homogeneously in region A at the
initial moment. The parameters presented later in this
paper and Eq. (8) show that σ ≈ 0.036 cm for t = 2400 s

whereas the length of vessel A is 1.0 cm. Thus, we sup-
pose that the influence of the outer wall of the vessel A
on molecules diffusing from A to B is negligibly small; at
the outer wall the concentration is still C0. To simplify
the calculations, we assume that the wall is located at
−∞. Diffusion of antibiotic molecules in the vessel A is
described by the g–subdiffusion equation Eq. (6), the ini-
tial condition is C(x, 0) = C0, the boundary conditions
are C(−∞, t) = C0 and C(0−, t) = 0.

Subdiffusion is often described by the subdiffusion
equation with the Riemann–Liouville fractional time
derivative [1–4, 12], which may be converted to the fol-
lowing form

C∂αC̃(x, t)

∂tα
= D

∂2C̃(x, t)

∂x2
(3)

with the “ordinary” Caputo derivative of the order α ∈
(0, 1) defined as

C∂αf(t)

∂tα
=

1

Γ(1− α)

∫ t

0

(t− u)−αf ′(u)du, (4)

D is a subdiffusion coefficient given in the units of m2/sα.
We call Eq. (3) the “ordinary” subdiffusion equation, its

solution is denoted here as C̃. Recently, differential equa-
tions with a fractional Caputo derivative with respect to
another function g (the g–Caputo fractional derivative)
have been considered [51–54]. For α ∈ (0, 1) this deriva-
tive is defined as

Cdαg f(t)

dtα
=

1

Γ(1− α)

∫ t

0

(g(t)− g(t′))−αf ′(t′)dt′, (5)

the function g, which is given in a time unit, fulfils the
conditions g(0) = 0, g(∞) = ∞, and g′(t) > 0 for t > 0.
Involving this derivative in the diffusion equation we get
the g–subdiffusion equation

C∂αg C(x, t)

∂tα
= D

∂2C(x, t)

∂x2
. (6)

When g(t) ≡ t we have “ordinary” subdiffusion equation.

Solutions C̃ of the “ordinary” subdiffusion equation and
C of the g–subdiffusion equation are related to each other
as follows [42, 43]

C(x, t) = C̃(x, g(t)), (7)

if the boundary conditions, the initial condition, and the
parameters α and D are the same for both equations.
Thus, the g–subdiffusion equation describes the subdif-
fusion process with changed time variable. If diffusion
is described by Eq. (6), then random walk of a single
molecule is characterized by the relation [42]

σ2(t) =
2Dgα(t)

Γ(1 + α)
. (8)

Choosing the function g appropriately, we can obtain dif-
ferent functions σ2 that have been derived from other
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models, e.g. g ∼ logαt for ultraslow diffusion and
g ∼ t2/dw for diffusion on a fractal, dw is the fractal
dimension of a medium; an overview of σ2 derived from
different models is presented in [8, 55].

The key is to find the g function on the basis of exper-
imental results. A function providing the function g is a
time evolution of the total amount of the substance that
has diffused from region A to B,

N(t) =

∫ 0

−∞
[C0 − C(x, t)]dx, (9)

see Fig. 1.
Solutions to the g–subdiffusion equation can be ob-

tained by means of the g-Laplace transform method.
This transform is defined as

Lg[f(t)](s) =

∫ ∞
0

e−sg(t)f(t)g′(t)dt, (10)

it has the following property [51, 53]

Lg

[
Cdαg f(t)

dtα

]
(s) = sαLg[f(t)](s)− sα−1f(0) (11)

that makes the procedure for solving Eq. (6) similar to
the procedure for solving “ordinary” subdiffusion equa-
tion Eq. (3) using the “ordinary” Laplace transform
L[f(t)](s) =

∫∞
0

exp(−st)f(t)dt [42]. In terms of the
g–Laplace transform the g–subdiffusion equation is

sαLg[C(x, t)](s)− sα−1C0 = D
∂2Lg[C(x, t)](s)

∂x2
. (12)

The solution to this equation for the boundary conditions
Lg[C(−∞, t)](s) = C0/s, Lg[C(0−, t)](s) = 0, and the
initial condition C(x, 0) = C0 is

Lg[C(x, t)](s) =
C0

s

(
1− e

√
sα/Dx

)
. (13)

The Lg transform is related to the “ordinary” Laplace
transform by the formula

Lg[f(t)](s) = L[f(g−1(t))](s), (14)

this formula is helpful in calculating the inverse g–
Laplace transforms [51, 53]. From the relation Lg[1](s) =
1/s, the g–Laplace transform of Eq. (9), and Eq. (13) we

obtain Lg[N(t)](s) = C0

√
D/s1+α/2. Using the formula

L−1g [1/s1+β ](t) = gβ(t)/Γ(1 + β), β, s > 0, we get

N(t) = κgα/2(t), (15)

where

κ =
C0

√
D

Γ(1 + α/2)
. (16)

For “ordinary” subdiffusion we have

N(t) = κtα/2. (17)

The function for normal diffusion is obtained from the
above equations puting α = 1,

N(t) =
2C0

√
D√

π

√
t. (18)

IV. DETERMINATION OF THE FUNCTION g
AND THE PARAMETERS α AND D

We assume that properties of the medium do not
change rapidly, thus the function N is smooth, i.e. its
derivative is continuous. Since N(t) ∼ σ(t), we use N to
identify the type of diffusion. When N is a power func-
tion with an exponent less than 1/2 the process can be
treated as subdiffusion. The empirical results and the
power functions N Eq. (17) with α = 0.5 (solid line) and
Eq. (18) for normal diffusion (dashed line) are presented
in the logarithmic scale in Fig. 5. The slope of the lines
representing N depends on the parameter α only.

1 0 0 1 0 0 0

5 x 1 0 - 9

6 x 1 0 - 9

7 x 1 0 - 9

8 x 1 0 - 9

9 x 1 0 - 9

1 x 1 0 - 8

N [
mo

l]

t  [ s ]

FIG. 5: Plots of the power functions N(t) = 1.57× 10−9t0.25

for “ordinary” subdiffusion (solid line) and N(t) = 0.55 ×
10−9

√
t for normal diffusion (dashed line) in the log–log scale,

the empirical results are denoted by symbols. The function
for normal diffusion is an example, it does not represent any
process considered in this paper.

From Fig. 5 we conclude that: (1) the process un-
der study is not normal diffusion, (2) the process is not
“ordinary” subdiffusion with constant parameter α over
the entire time domain, (3) the process can be treated as
“ordinary” subdiffusion only in some initial time interval
(we estimate it as t ≤ 480 s, which corresponds to four
initial points in the plot), (4) for longer times the pro-
cess is slower than “ordinary” subdiffusion mentioned in
point (3).

Based on the above conclusions, we assume that: (i) for
t ∈ [0, 480 s] the process is “ordinary” subdiffusion with
parameters α and D, (ii) for later times the process is g–
subdiffusion with function g which generates the relation

N(t) = κtα̃(t)/2, (19)

where α̃(t) fulfils the conditions 0 < α̃(t) ≤ 1 and α̃(0) =
α. Eqs. (15) and (19) provide g(t) = tα̃(t)/α. Parameters
α and D in the g–subdiffusion equation Eq. (6) are the
same as for the initial “ordinary” subdiffusion process.
Eq. (19) is a generalization of Eq. (17) for the case of a
time-varying subdiffusion parameter (exponent).
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In further considerations we assume

α̃(t) =
α

1 + βt
, (20)

where β is a parameter measured in the unit of 1/s. Com-
paring Eqs. (15) and (19), the latter with the exponent
Eq. (20), we obtain

g(t) = κ2/αt1/(1+βt). (21)

Fig. 5 shows that for t ∈ [120 s, 480 s] the data are
described well by the function N Eq. (17) with α = 0.5
and κ = 1.57 × 10−9 mol/s0.25. From the last equation,
the value of initial concentration C0, and Eq. (16) we
get D = 0.58 × 10−9 m2/s0.5. Knowing κ and α, we
fit the function N Eq. (19) with the exponent given by
Eq. (20) to the empirical data in the whole time domain,
the fit parameter is β only. As shown in Fig. 6, for
β = 4.3× 10−5 1/s the fit is good.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0
0

2 x 1 0 - 9

4 x 1 0 - 9

6 x 1 0 - 9

8 x 1 0 - 9

1 x 1 0 - 8

N [
mo

l]

t  [ s ]

FIG. 6: Plot of the function N Eq. (19) with α̃(t) given by
Eq. (20) (solid line) for κ = 1.57 × 10−9 mol/s0.25, α = 0.5,
and β = 4.3× 10−5 1/s, the empirical results are denoted by
symbols.

V. FINAL REMARKS

We postulate: Diffusion in a system composed of chan-
nels and matrix can be described by the g–subdiffusion
equation Eq. (6), just like diffusion in a system of
packed gel beads placed in water. The solution to the
g–subdiffusion equation provides the time evolution of
the amount of colistin released from region A which is
consistent with the empirical results. We mention that
different models of normal and anomalous diffusion, de-
scribing the release of substances from the (sub)diffusive
medium, give power functions N(t) ∼ tβ (when “ordi-
nary” subdiffusion occurs in A) or exponential functions

of the form N(t) ∼ 1 − ae−bt
β

in the long time limit
[13, 28–30, 50, 56, 57]. In our study, the g–subdiffusion

equation provides N as a power function with exponent
evolving over time. Based on Fig. 5 we conclude that
it is not possible to model the diffusion process in re-
gion A over the entire time domain using the ”ordinary”
subdiffusion equation with a fixed parameter α.

The fact that the experimentally obtained function N
is well approximated by a power function with decreas-
ing subdiffusion parameter α̃(t) we interpret as follows.
Colistin (Polymyxin E) is a cationic antimicrobial pep-
tide. Due to the presence of positively charged five L-
diaminobutyric acid (L-Dab) amino groups in colistin
structure, it is possible that this molecule interacts with
calcium alginate. Two mechanisms of polycations bind-
ing to alginate have been proposed: an electrostatic in-
teraction and the formation of a calcium alginate gel by
displacement of calcium ions in the presence of polyca-
tions [58]. Taking into account the interaction of colistin
with alginate and the complex geometric structure of the
channels in the alginate gel, subdiffusion of colistin in
alginate beads is expected. The first stage of the pro-
cess is the subdiffusive release of molecules located in the
beads close to their surfaces to the space between the
beads. This process is ruled by distribution of waiting
time to take particle next step with a heavy tail con-
trolled by the parameter α, as for “ordinary” subdiffu-
sion. Initially, releasing antibiotic molecules from region
A to B is subdiffusion of molecules from beads located at
the border between the regions. Later, the process may
change its nature when molecules located in A in the lay-
ers more distant from the border diffuse into region B.
These molecules have a more complicated path from the
inside of vessel A to the vessel B.

The g–subdiffusion equation offers greater possibilities
for modeling subdiffusion processes compared to the “or-
dinary” subdiffusion equation. Recently, anomalous dif-
fusion equations with various fractional derivatives have
been considered, see the references cited in Ref. [42]. Un-
fortunately, such equations often do not have a stochastic
interpretation. The interpretation of Eq. (6) is based on
Eq. (7). We mention that the derivation of Eq. (6) can
be based on the ”ordinary” Continuous Time Random
Walk model [1, 2], in which, as in Eq. (7), the time vari-
able in the distribution of waiting time for a molecule to
jump is changed, ψ(t)→ ψ(g(t)) [43].

The model of diffusion in a matrix with channels sys-
tem can be used, among others, in the mathematical
characteristic of drug delivery system for wound heal-
ing [59], the extracellular matrix mimetic to deliver and
retain therapeutic cells at the site of administration for
tissue engineering and regenerative medicine [60, 61] or
“smart” hydrogels as thermo- or pH-responsive [62]. Al-
ginate and the other polysaccharides are the most com-
monly used materials for polymyxin delivery systems as
provide suitable drug loading efficiency and controlled
drug release. So, it seems to be important to characteris-
tic these effects on a theoretical level for proper design of
the chemical structure of gels as a controlled matrix for
drug releasing. It is crucial for effective bacteria eradi-



7

cation by a lethal concentration of antibiotics obtain in
the wound healing environment or stimuli the tissue re-

generation [63].
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