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I. INTRODUCTION

The O(N) model with quartic interactions has a long history with applications ranging from condensed
matter to high energy physics [1–6] (e.g. the Standard Model Higgs) including string theory [7, 8]. It has been
investigated in several space-time dimensions and its dynamics discussed within and beyond perturbation
theory and/or in different thermodynamic regimes of temperature and matter density. Despite the relevance
and the energies devoted its full dynamics remains unknown. For example, consider the theory just below
six dimensions. It was Parisi [9] to show that in the large N expansion and for 4 < d < 6 an ultraviolet (UV)
fixed point (FP) emerges in the O(N) model with quartic couplings, rendering the theory non-perturbatively
renormalizable in the 1/N expansion. At the same time, the finite N dynamics is not yet solved. Is it possible
to make progress beyond the large N limit? In order to positively answer this question and make a dent
in this direction, we will consider a slight detour. The latter uses an alternative model, known as the cubic
model, according to which rather than having quartic interactions the theory features an O(N) singlet field
interacting with the O(N) fields via a cubic operator [10]. The relation between the two models is expected
to hold in between four and six dimensions because both theories are simultaneously critical in this range.

In fact, in [10], the authors proposed a dual description of the UV FP of the quartic theory in 4 < d < 6 in
terms of the infrared (IR) FP of the cubic model. For the cubic theory, one can show that it has upper critical
dimension d = 6 and thus it is usually investigated in d = 6 − ε via the ε-expansion. Within this expansion
one observes a critical value of N above which the model features an IR FP. The one-loop guesstimate
obtained pushing ε to one gives Ncrit = 1038 [10] that should be confronted with the four- and five-loop
results resummed results [11, 12] that place it at Ncrit ≈ 400.

The equivalence between the quartic and the cubic critical theories has been supported by a series of
investigations regarding the scaling dimensions at the cubic FP of various operators [10–14], and few OPE
coefficients [15], which strikingly match their counterparts in the critical quartic theory. Since the cubic
and quartic models are usually investigated via the ε and 1/N expansion, respectively, the comparison is
usually performed at the level of the terms which appear in both expansion schemes at the considered
order of expansion. In Table I (at the end of Section III), we summarize, together along with the new results
reported in the present paper, the checks of the dual picture appeared in the literature so far.

On the other hand, even if the critical O(N) theory is well-defined and unitary order by order in the
1/N expansion, the quartic theory cannot exhibit a stable FP [16–18] because it occurs at negative values
of the quartic coupling. In the cubic theory, the instability of the quartic FP is manifested by the fact that
the cubic potential is unbounded from below. As shown in [19], the instability is realized by instantonic
effects which mediate the tunnelling from the vacuum at 0-values of the fields to large negative values
of the singlet scalar field and give rise to complex CFT data. Remarkably, in [19], the non-perturbative
instantonic contribution to the CFT data has been computed in both theories finding agreement between
the two pictures. This contribution is exponentially suppressed at large N. As a result, when N is large
enough, the imaginary part of the CFT data is negligible and the UV FP of the quartic theory can be studied
via the conformal bootstrap as done in [20–22], where the authors found a region in the parameter space
where the CFT data are in good agreement with the results from the 1/N expansion. The instability of the
cubic FP at large N has been confirmed by functional studies [23, 24].

Here we use large-charge semiclassical methods [25–44] to further test the equivalence between the
two CFTs. We compute the scaling dimensions of a whole family of fixed-charge operators for the cubic
model in d = 6− ε and compare the results with the existing O(N) literature. In particular, our semiclassical
expansion resums an infinite series of Feynman diagrams and allows comparing terms at arbitrarily high
perturbative orders providing interesting insights of the dual picture.

The first test of the equivalence of the large-charge sector has been carried out in [14], where the authors
calculated the scaling dimension of traceless symmetric O(N) operators in d = 6 − ε dimensions at the
leading order in both the charge and ε, obtaining the same result in both models1.

1 This result is obtained from the exponentiation of the diagrams with the leading charge-scaling at every loop order.
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We summarize below the highlights of our work:

1. We compute the scaling dimensions of a family of fixed-charge operators at the infrared fixed point
of the O(N) model featuring cubic interactions in d = 6−ε to leading (LO) and next-to-leading (NLO)
order in the fixed-charge expansion for arbitrary N and to all orders in the cubic model couplings.

2. We use the results above to analyze the envisioned equivalence with the critical O(N) model with
quartic interactions by comparing them against the known large N results for the quartic model. The
results are summarized in Table I (at the end of Section III).

3. Once established that our results further support the equivalence of the two model descriptions
of the critical dynamics we provide novel results on the finite N physics stemming from the cubic
computation near d = 6 dimensions.

4. We analyze the onset of complex CFT dynamics of the large charge sectors of the two models by
determining the critical charge above which the anomalous dimensions become complex.

The paper is organised as follows. In section II we review large-N results on the scaling dimension of
traceless symmetric O(N)-operators in the quartic model. Then, in section III, we semiclassically compute
the same quantities in the cubic theory and we compare them with the quartic model’s results mentioned
above. In section IV, we study the emergence of complex CFT data above a critical value of the charge,
which we compute in the ε-expansion. We offer our conclusions in section V. Appendix B, contains details
on the 1-loop renormalization of the semiclassical expansion in the cubic model.

II. THE O(N) QUARTIC MODEL IN 4 < d < 6: TRACELESS SYMMETRIC OPERATORS

In this section, we collect relevant results in the literature about the scaling dimensions of operators
transforming in the traceless symmetric representations of the O(N) group at the UV FP of the O(N) quartic
model in 4 < d < 6 dimensions. In the next section, we will semiclassically compute the same quantities at
the IR FP of the O(N) cubic model in 6−ε dimensions and compare the results. Their equality will provide a
stringent test of the proposed equivalence between the two FPs, at least at large N and near six dimensions.
The Euclidean action of the O(N) quartic model in d dimensions is written as

S =

∫
ddx

(
(∂φa)2

2
+

(4π)2g0

4!
(φaφa)2

)
. (1)

Here φa, a = 1, 2, ...,N are a set of N real scalar fields which collectively transform as an O(N) vector. In the
above expression, the summation over a from 1 to N is understood. In what follows, we will be interested
in operators transforming as traceless fully symmetric tensors of O(N), and that can be expressed as

TQ = ta1...aQ

Q (φa) , (2)

where ta1...aQ

Q (φa) is a homogeneous polynomial of degree Q in the φa’s that is fully symmetric in the indices
and traceless (i.e. contraction of any two indices gives zero). The explicit form of the first three ta1...aQ

Q
polynomials reads

ta
1(φ) = φa , tab

2 (φ) = φaφb
−

1
N
δabφ2 , tabc

3 (φ) = φaφbφc
−

φ2

N + 2

(
φaδbc + φbδac + φcδab

)
, (3)

whereφ2
≡

∑a=N
a=1 φaφa. The classical scaling dimension of TQ is Q (d/2−1). Furthermore, Q can be identified

with its total charge as follows. For simplicity, suppose N is even, then we can define N/2 Cartan charges
as

Q
( j) =

∫
dd−1x(φ2 j−1∂

0φ2 j − φ2 j∂
0φ2 j−1), j = 1, 2, ...,N/2 , (4)
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and fix their values as Q( j) = Q( j) with
{
Q( j)

}
a set of constants. It is then possible to show that all operators

that have the same value of Q =
∑ j=N/2

j=1 |Q( j)
| and have the minimal classical scaling dimension span the

same space as the operator TQ [27]. Then, in the perturbative regime, i.e. when the anomalous dimensions
are small, the TQ are the lowest-lying O(N)-operators with total charge Q. As we shall see in the next
section, this property will be relevant for our semiclassical computations.

At the fixed point, the scaling dimension of the TQ operators (denoted ∆Q) can be computed non-
perturbatively via Monte Carlo simulations [45] and the conformal bootstrap method [46]. Furthermore,
∆Q is usually computed perturbatively in the ε-expansion in d = 4 − ε dimensions [47–49] and in the large
N expansion [50, 51]. Nice expositions of these conventional approaches are available in the literature, e.g.
ref. [1] for the ε-expansion, and ref. [52] for the large N expansion. While most of the literature investigated
∆Q in the range 2 < d < 4, which is relevant for condensed matter experiments, the 1/N expansion is
well-defined and unitary also in 4 < d < 6. The upper limit d < 6 is set by observing that the scaling
dimension at the UV FP of the φ2 operators is 2 + O

(
1
N

)
in any d, and thus it violates the unitarity bound

(d/2 − 1) when d > 6 [10].
The large N expansion is generated by performing a Hubbard-Stratonovich transformation, turning the

Lagrangian (1) into

S =

∫
ddx

(
1
2

(∂φa)2 +
1
2
σφaφa −

3σ2

2g0(4π)2

)
, (5)

where we introduced an auxiliary field σ that can be integrated out via its equation of motion (EOM)
σ =

(4π)2 g0

6 φaφa to come back to the original action (1). At the critical point, it is possible to neglect the last
term and one is left with the following action [53]

Scrit =

∫
ddx

(1
2

(∂φa)2 +
1
2
σφaφa

)
. (6)

The 1/N expansion is then generated by integrating out the fields φa, which appear quadratic in Scrit. ∆Q

has been computed in the 1/N expansion for arbitrary Q and d to order O
(

1
N2

)
[50, 51]

∆Q =

(
d
2
− 1

)
Q −

1
N

2d−3d sin
(
πd
2

)
Γ
(

d−1
2

)
π3/2Γ

(
d
2 + 1

) (
Q(Q − 2) +

4Q
d

) +
1

N2

[
ηQ −

8(Q − 1)Q sin2
(
πd
2

)
Γ(d − 2)2

3π2(d − 2)3dΓ
(

d
2 − 1

)4

×

(
−12((d − 3)d + 4)(d − 2)

(
Hd−3 + π cot

(
πd
2

))
+ d(d − 2)2(Q − 2)

(
π2
− 6ψ(1)

(
d
2

))
+ 12(d − 3)d

) ]
+ O

( 1
N3

)
,

(7)

where H denotes the harmonic numbers and η is the coefficient of the
(

1
N2

)
term in the scaling dimension of

φa. The latter has been computed to order O
(

1
N3

)
in [54]. In d = 6 − ε, we have η = 44ε − 835

6 ε
2 +O

(
ε3

)
, and

the above becomes

∆Q = 2Q −
ε
2

Q +
1
N

[(
−3Q2 + 4Q

)
ε +

(7
4

Q2
−

8
3

Q
)
ε2 + O

(
ε3

)]
+

1
N2

[(
−132Q2 + 176Q

)
ε −

(
45Q3

−
857

2
Q2 +

1568
3

Q
)
ε2 + O

(
ε3

)]
+ O

( 1
N3

)
. (8)

Recently, these operators have been studied in the double scaling limit Q → ∞, N → ∞ with fixed ’t
Hooft-like coupling J ≡ Q/N in d = 3 [34] and 2 < d < 6 [43]. In this limit, the scaling dimension of TQ takes
the form

∆Q =
∑
k=−1

1
Nk

∆̃k(J) , (9)

corresponding to a semiclassical expansion around the classical solution of the theory at fixed-charge. The
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LO ∆̃−1 is the classical term of the saddle-point expansion and has been computed in [43]

∆̃−1 =

 f (cσ) + J

√(
d
2
− 1

)2

+ cσ


cσ=cσ(J)

, (10)

where cσ(J) solves

d
dcσ

 f (cσ) + J

√(
d
2
− 1

)2

+ cσ

 = 0 , (11)

and f (cσ) is given by

f (cσ) = −
cσ

d − 2

∫
∞

0
dt

J2

(√
cσt

)
t(2 cosh t − 2)

d
2−1

, (12)

with J2 the Bessel function of the first kind. The small J expansion of ∆̃−1 reads [43]

∆̃−1 =

(
d
2
− 1

)
J + h2(d)J2 + h3(d)J3 + . . . , (13)

where

h2(d) = −
2d−3d sin

(
πd
2

)
Γ
(

d−1
2

)
π3/2Γ

(
d
2 + 1

) , h3(d) = −
(d − 2)d2Γ(d − 2)2

(
π2
− 6ψ(1)

(
d
2

))
6Γ

(
2 − d

2

)2
Γ
(

d
2 − 1

)4
Γ
(

d
2 + 1

)2 h4(d) = . . . (14)

∆̃−1 resums an infinite number of terms of the conventional large N expansion. Specifically, it resums all
the terms with the leading Q-scaling at every 1/N order2. This fact will allow us to probe the equivalence
of quartic and cubic theories by comparing terms up to arbitrarily high orders in the 1/N expansion by
performing a similar computation in the cubic theory. In d = 6 − ε, ∆̃−1 can be expanded as

N∆̃−1 = 2Q −
ε
2

Q + Q
∑

j

(Q
N

) j (
α jε

j + β jε
j+1 + γ jε

j+2 + . . .
)
. (15)

For later comparison with the cubic model, we list below the values of the first α j and β j coefficients

α1 = −3 , α2 = −45 , α3 = −1350 , α4 = −
213597

4
, α5 = −2457216

α6 = −
995773905

8
, α7 = −6739459200 , α8 = −

24526111620285
64

. (16)

β1 =
7
4
, β2 =

3
4

(48ζ(3) + 31) , β3 =
27
2

(128ζ(3) + 40ζ(5) + 41) ,

β4 =
81
16

(18208ζ(3) + 7168ζ(5) + 1792ζ(7) + 3117) , β5 = 648(8202ζ(3) + 3510ζ(5) + 1218ζ(7) + 252ζ(9) + 677)

β6 =
2187

32
(4727888ζ(3) + 2109440ζ(5) + 836864ζ(7) + 256000ζ(9) + 45056ζ(11) + 110211) . (17)

It is interesting to consider also the large J expansion of ∆̃−1, which reads

∆Q = NJ
d

d−1

(
δ0 + δ1 J

−2
d−1 + δ2 J

−4
d−1 + . . .

)
, (18)

2 In fact it can be checked that h2(d) and h3(d) agree with the diagrammatic result (7).
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where [43]

δ0 =
(
1 −

1
d

)
C

1
2
0 , δ1 =

(d − 1)(d − 2)
12

C−
1
2

0 , δ2 = −
(d − 1)(d − 2)2(3d − 2)

1440
C−

3
2

0 , (19)

with

C0 =

(
−

2d

πd
sin

(
πd
2

)
Γ

(
d
2

) (
1 +

d
2

)) 2
d−1

. (20)

Eq.(18) agrees with the general form of the large-charge expansion in O(N) symmetric models [25, 26]

∆Q = Q
d

d−1

[
α1 + α2Q

−2
d−1 + α3Q

−4
d−1 + . . .

]
+ Q0

[
β0 + β1Q

−2
d−1 + . . .

]
+ O

(
Q−

d
d−1

)
, (21)

which has been predicted using effective field theory methods which do not rely on the presence of other
expansion parameters besides Q. Since C0 is complex in 4 < d < 6, the scaling dimensions in the large J
expansion are complex as well. It can be shown that the imaginary part in ∆Q arises at a critical value of
J, above which there are no real solutions to the saddle-point equations [43]. Jc depends non-trivially on
d and has been estimated numerically in [43] in the whole range 4 < d < 6. Accordingly, we shall see that
also the cubic FP exhibits the presence of a critical charge. Assuming the validity of the dual description,
in Sec.IV we will compute Jc analytically in the ε expansion in both d = 6 − ε and d = 4 + ε. In d = 6 − ε
dimensions the large J expansion of ∆̃−1 reads

N∆̃−1 = −e±i4π/5 5N
3

(2ε)1/5 J6/5(1+O(ε))+e±iπ/5 5N
6

(2ε)−1/5 J4/5(1+O(ε))−e±3iπ/5 N
9

(2ε)−3/5 J2/5(1+O(ε))+O
(
J0
)
.

(22)

III. THE SEMICLASSICAL EXPANSION IN THE CUBIC MODEL

As mentioned, an alternative description of the critical quartic O(N) model in 4 < d < 6, is given by the
infrared FP of a theory with N + 1 fields, O(N) symmetry, and Lagrangian

L =
1
2

(∂φa)2 +
1
2

(∂η)2 +
g0

2
η(φa)2 +

h0

6
η3 , (23)

where φa is again an O(N) vector. This model is usually studied near its upper critical dimension, d = 6,
where the infrared dynamics becomes free. In d = 6 − ε, the 1-loop beta functions of the model read

βg = −
ε
2

g +
(N − 8)g3

− 12g2h + gh2

12(4π)3 , βh = −
ε
2

h +
−4Ng3 + Ng2h − 3h3

4(4π)3 , (24)

At large enough N, the model features an IR FP at real values of the two couplings which, at the one-loop
level, read

g∗ ≡

√
6ε(4π)3

N

(
1 +

22
N

+
726
N2 −

326180
N3 + ... + O (ε)

)
,

h∗ ≡ 6

√
6ε(4π)3

N

(
1 +

162
N

+
68766

N2 +
41224420

N3 + ... + O (ε)
)
. (25)

The 5-loop beta functions have been derived in [12]. On can check that at the leading order in 1/N, the FP
couplings are exact at order

√
ε.
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A. Leading order

We now proceed by computing the ∆Q to NLO in the semiclassical large-charge expansion, i.e in the
double scaling limit ε→ 0, Q→∞withA ≡ Qε fixed. We start by introducing N/2 complex fields as

ϕ j =
1
√

2
(φ2 j−1 + iφ2 j) , j = 1, . . . ,N/2 , (26)

and mapping the theory to the cylinder Rd
→ R × Sd−1 [55]. Considering polar coordinates (r,Ωd−1) for Rd,

the map reads
(r,Ωd−1)→ (τ,Ωd−1) , r = Reτ/R , (27)

with R the radius of Sd−1. The cylinder Lagrangian

Lcyl = ∂ϕ∗j∂ϕ j +
1
2
∂η∂η + g0η(ϕ∗jϕ j) +

h0

6
η3 +

m2

2
η2 + m2ϕ∗jϕ j , (28)

contains mass terms stemming from the conformal coupling of the fields to the Ricci scalar of the cylinder
[56]. The mass reads m = d−2

2R . According to the state-operator correspondence (e.g. [55]), the action of an
operator τ = −∞ creates a state on the cylinder with the same quantum numbers and with energy related
to its scaling dimension by

E =
∆

R
. (29)

As anticipated, TQ is the lowest-lying operator with total charge Q, and, as a consequence, we can compute
∆Q by considering the expectation value of the evolution operator e−HT (with H the Hamiltonian and
T = τ f − τi) in an arbitrary state |Q〉 with fixed (total) charge Q and taking the limit T → ∞ in order to
project out the ground state from it. That is

〈Q| e−HT
|Q〉 =

T→∞
Ñe−EQT=Ñe−

∆Q
R T , (30)

with Ñ a normalization factor. As discussed in [27], the anomalous dimension of TQ is not affected by the
number of Cartan charges (4) we fix as long is different from 0. In other words, one is free to rotate all the
non-zero Cartan charges of the O(N) vector model into one single component without loss of generality.
This special property is known to apply to the O(N) vector model and ∆Q only and fails in more general
cases where the distribution of individual Cartan charges affects the physics [28, 29, 57]. For the sake of
simplicity, we fix only one charge to Q. Then the solution of the EOM with the minimal energy is spatially
homogeneous and reads [27] ρ = f , χ = −iµτ , η = v ,

ϕi = 0 i = 2, . . . ,N/2 .
(31)

where ϕ1 = 1
√

2
ρeiχ and µ has the role of the chemical potential associated with the fixed charge. The

parameters f , v, and µ are fixed by the EOM and the expression for the Noether charge as

µ2
−m2 = g0v ,

g0

2
f 2 +

h0

2
v2 + m2v = 0 ,

Q
Ωd−1Rd−1

= µ f 2 . (32)

For convenience, we choose |Q〉 as

|Q〉 =

∫
Dα(~n)

{
exp

[
iQ

Rd−1Ωd−1

∫
dΩd−1 α(~n)

]}
| f , 0, α(~n), v〉 , (33)

where ~n identifies points on Sd−1 and | f , 0, α(~n), v〉 is the state with fixed values of the fields ρ(~n) = f ,
ϕi,1(~n) = 0, χ(~n) = α(~n), and η(~n) = v. The term in the brace can be thought of as a wave-functional for the
state which fixes one charge to Q. Eq.(33) leads to

〈Q| e−HT
|Q〉 =

1
Z

∫
DηDϕDϕ̄ e−Ŝ , (34)
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whereZ is an unimportant normalization constant and

Ŝ =

∫ T/2

−T/2
dt

∫
dΩd−1

(
Lcyl +

iQ
Ωd−1Rd−1

χ̇

)
. (35)

Eq.(34) can be computed semiclassically around the solution (31), resulting in 3

∆Q =
∑
k=−1

1
Qk

∆k(A) , A ≡ Qε , (36)

which is an expansion in inverse powers of Q at fixed and finite ’t Hooft-like couplingA. This is similar to
the semiclassical expansion Eq.(9). The leading order ∆−1 is given by the action Ŝ evaluated on the classical
solution. From Eq.(32), we have

Rµ
[
(Rµ)2

− 4
] (

8g0 + h0

[
(Rµ)2

− 4
])

+
Qg3

0

π3 = 0 , (37)

which, once rewritten at the FP, implicitly defines the chemical potential as a function of the ’t Hooft
couplingA. The above equation can be solved numerically, or analytically for small/large values ofA. The
first terms of the former expansion reads

Rµ = 2 −
g2

0Q
64π3 −

g3
0Q2(3g0 + 2h0)

16384π6 −

g4
0Q3

(
2g2

0 + 2g0h0 + h2
0

)
524288π9 + O

(
Q4

)
. (38)

The leading order is the classical energy on the cylinder and reads

Q
∆−1

R
= −

f 2µ2

2
+

g0v f 2

2
+

h0v3

6
+

m2 f 2

2
+

m2v2

2
+

Qµ
Ωd−1Rd−1

. (39)

Using Eq.(38) in the classical energy above and evaluating the result at the FP, we obtain the leading
order ∆−1(A) of the semiclassical large-charge expansion. Notice that this classical result resums at once an
infinite series of Feynman diagrams. By expanding ∆−1 for small values ofA, we obtain

∆−1 = 2 −
g2Q

128π3 −
g3Q2 (

3g + 2h
)

49152π6 −

g4Q3
(
2g2 + 2gh + h2

)
2097152π9 −

g5Q4
(
21g3 + 28g2h + 20gh2 + 8h3

)
1073741824π12

−

g6Q5
(
24g4 + 40g3h + 36g2h2 + 21gh3 + 7h4

)
51539607552π15 −

3g7Q6
(
143g5 + 286g4h + 308g3h2 + 224g2h3 + 112gh4 + 32h5

)
35184372088832π18

−

g8Q7
(
192g6 + 448g5h + 560g4h2 + 480g3h3 + 300g2h4 + 132gh5 + 33h6

)
562949953421312π21

−

11g9Q8
(
12597g7 + 33592g6h + 47736g5h2 + 46800g4h3 + 34320g3h4 + 19008g2h5 + 7488gh6 + 1664h7

)
13835058055282163712π24 + O

(
A

9
)
,

(40)

Rewriting the above at the FP (25) gives

3 As a slight abuse of notation, here we denote the coefficients of the semiclassical expansion as ∆k, which should not
be mistaken for the full scaling dimension ∆Q.
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Q∆−1 = 2Q −
εQ2

N

(
3 +

132
N

+
5808
N2 + . . .

)
−

Q3ε2

N2

(
45 +

9000
N

+
3043440

N2 + . . .
)

−
Q4ε3

N3

(
1350 +

495720
N

+
223974720

N2 + . . .
)
−

Q5ε4

N4

(213597
4

+
28653588

N
+

15700511880
N2 + . . .

)
−

Q6ε5

N5

(
2457216 +

1736458560
N

+
1109489011200

N2 + . . .
)

−
Q7ε6

N6

(995773905
8

+
109168708635

N
+

79449296874570
N2 + . . .

)
−

Q8ε7

N7

(
6739459200 +

7060148282880
N

+
5757420242165760

N2 + . . .
)

−
Q9ε8

N8

(24526111620285
64

+
933675673809285

2N
+

421344743454254565
N2 + . . .

)
+ O

(
Q10ε9

)
. (41)

The above remarkably reproduces the α j coefficients in Eq.(16) for the scaling dimension in the quartic O(N)
model. Notice that ∆̃−1(J) in (15) and ∆−1(A) in (41) are the leading order in two distinct expansion schemes
denoted respectively as

∑
k=−1

∆k(Q/N)
Nk and

∑
k=−1

∆k(Qε)
Qk . However, since at LO in 1/N the FP (25) is O(

√
ε)

exact, all (and only) the terms scaling as Q
(

Qε
N

) j
appear at the LO of both expansions and can be compared.

We can thus check terms up to arbitrarily high orders in the conventional loop expansion. Furthermore, we
can compare also the term −132 εQ

2

N2 which is not contained in (15) but appears in the diagrammatic result
(8). Assuming the validity of the dual description, ∆−1 represents a new result for ∆Q in the quartic theory.

All the terms scaling as Q
N

(
Qε
N

) j
are contained in the NLO ∆̃0 of the semiclassical expansion (9) and can be

used to check future computations of ∆̃0 in the quartic theory.
We now move to consider the expansion of ∆−1 for large ’t Hooft couplingA. One needs to select a root

of the quintic equation (37). This correspond to choosing a root of (−1)1/5. In general, we have

Q∆−1 = −x
5N
3

(2ε)1/5 J6/5
(
1 + O

( 1
N

))
−

1
x

5N
6

(2ε)−1/5 J4/5
(
1 + O

( 1
N

))
+

1
x3

N
9

(2ε)−3/5 J2/5
(
1 + O

( 1
N

))
+ O

(
J0
)

(42)

where the five solutions are parametrized by x =
{
1, e±

4iπ
5 , e±

2iπ
5

}
, and we have rewritten the result in terms

of J ≡ Q/N to compare with the quartic model result (22). As shown in the Appendix A, the physical
(complex conjugate) solutions satisfies the criteria Re[∆−1] > 0, which fixes x = e±

4iπ
5 . This solution matches

the quartic result Eq.(22).

B. Next-to-leading order

We move to compute the leading quantum correction ∆0 in the semiclassical expansion, which is given
by the functional determinant of the fluctuation around the classical solution (31). First, we note that fixing
one charge induces the symmetry breaking pattern below [27]

SO(d + 1, 1) ×O(N) →
Explicit

SO(d) ×D ×O(N − 2) ×U(1) →
Spontaneous

SO(d) ×D′ ×O(N − 2) , (43)

where D′ = D + µQ with D the generator of the time translations on the cylinder. This symmetry breaking
pattern defines a conformal generalized superfluid state of matter [58, 59] which occurs naturally in CFT at
fixed-charge. The spontaneous part of the symmetry breaking results in one relativistic Goldstone boson

(the so-called conformal phonon), which at large µ propagates at the speed of sound c =
√

1
d−1 dictated by

tracelesness of the energy-momentum tensor. Furthermore, fixing only one charge we are left with N − 2
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”spectator” massive states, with gap µ and dispersion relation given by [27, 33]

ω∗ =
√

p2 + µ2 , (44)

with p the momentum which is quantized on the cylinder.
For the remaining d.o.f., we expand the fluctuations as follows:ρ = f + r(x) , χ = −iµτ +

π(x)
f ,

η = v + η̃(x) .
(45)

The quadratic Lagrangian for these three modes reads

L̂
(2) =

1
2

(∂r)2 +
1
2

(∂η̃)2 +
1
2

(∂π)2
− 2iµrπ̇ + g0 f η̃r +

h0

2
vη̃2 +

m2

2
η̃2 +

m2

2
r2 . (46)

The dispersion relations can be computed in the momentum space by considering the inverse propagator
P
−1(p), which is defined by the quadratic action as

Ŝ
(2) =

∫
ddp

(2π)d
[r(−p) π(−p) η̃(−p)]P−1(p)


r(p)
π(p)
η̃(p)

 . (47)

Then the dispersion relations are the positive energy solutions of det P−1(p) = 0, where

P
−1(p) =


1
2

(
ω2
− p2

)
iωµ A

−iωµ 1
2

(
ω2
− p2

)
0

A 0 1
2

(
ω2
− p2

)
− B

 , (48)

with

A =
1
2

√(
m2 − µ2) [2g0m2 + h0

(
µ2 −m2)]

g0
, B =

1
2

(
m2 +

h0

g0

(
µ2
−m2

))
. (49)

It is easy to check that one of the dispersion relations describes the conformal phonon with speed c = 1
√

5
for large µ and d→ 6.

Clearly, at large N the N − 2 spectator fields provide the leading N contribution to ∆0, which we denote
as ∆(N)

0 . Since our goal is to compare with large N results in the quartic model, we start by computing
∆(N)

0 . The computation of the functional determinant associated with the spectator fields is given in App.B,
together with the details on its renormalization. The final result reads

∆(N)
0 =N

25R6µ6
− 130R4µ4

− 640R2µ2 + 2304Rµ − 1568
4608

+
N
2

∞∑
`=1

σ(N)(`) , (50)

where the sum over ` converges and σ(`) is given by

σ(N)(`) =
1

192

(
16(` + 1)(` + 2)2(` + 3)

√
R2µ2 + `(` + 4) −

1
`

[
R6µ6 + 32

(
R2µ2

− 1
)

−2(`(` + 2) + 5)R4µ4 + 8`(` + 2)(`(` + 4) + 5)R2µ2 + 16`(` + 2)3(`(` + 4) + 1)
] )
. (51)

The sum over ` can be computed numerically or analytically for small/large values of the ’t Hooft coupling.

In order to compare with the large N results of Sec.II, we note that all the terms scaling as N
(
εQ
N

) j
in ∆0
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receive contribution only form the spectator fields, i.e they can be read off from ∆(N)
0 . Furthermore, they

have exactly the right scaling to match the β j coefficients in Eq.(17). We have

∆0 = −Qε
[1
2

+ O
( 1

N

)]
+

(Qε)2

N

[7
4

+ O
( 1

N

)]
+

(Qε)3

N2

[3
4

(48ζ(3) + 31) + O
( 1

N

)]
+

(Qε)4

N3

[27
2

(128ζ(3) + 40ζ(5) + 41) + O
( 1

N

)]
+

(Qε)5

N4

[81
16

(18208ζ(3) + 7168ζ(5) + 1792ζ(7) + 3117) + O
( 1

N

)]
+

(Qε)6

N5

[
648(8202ζ(3) + 3510ζ(5) + 1218ζ(7) + 252ζ(9) + 677) + O

( 1
N

)]
+

(Qε)7

N6

[
2187
32

(4727888ζ(3) + 2109440ζ(5) + 836864ζ(7) + 256000ζ(9) + 45056ζ(11) + 110211) + O
( 1

N

) ]
+ O

(
(Qε)8

)
, (52)

in remarkable agreement with the values listed in Eq.(17) for the quartic model.
The subleading 1/N orders in every square bracket in the equation above receive contributions also from

the fluctuation in Eq.(45). This can be computed by the same procedure used for the spectator fields and
outlined in App.B, but with two differences. First, now one cannot truncate the expressions to the leading
1/N order. Second, since the dispersion relations are more involved, the fluctuation determinant has to be
regularized and evaluated numerically at fixed values of N, Q, and ε. Unfortunately, this fact obscures the
comparison with the results in the quartic model. We, therefore, limit ourselves to the numerical calculation
of the coefficient of the leading ε term in ∆0. We extract it by computing numerically ∆0 − ∆(N)

0 at small
values of g and fitting the result to the functional form (∆0 −∆(N)

0 ) ≈ CQg2, which follows from Eq.(38). The
fit gives C = 0.0020997(3) ≈ 25

384π3 . Considering the result at the FP (25) and neglecting the numerical error,
we obtain

∆0 = Qε
(
−

1
2

+
4
N

+
176
N2 +

360544
N3 + O

( 1
N4

))
+ O

(
Q2ε2

)
(53)

It is easy to check that the first three terms match the quartic result Eq.(8). Finally, we numerically estimate
the term of order ε2Q2

N2 , which receives contributions from both ∆−1
4 and ∆0. We have

Q2ε2

N2

(
−2219

2
+ 1382(2) + 155

)
=

Q2ε2

N2

855(4)
2

(54)

again in agreement with Eq.(8). The three terms in brackets come, respectively, from the N − 2 spectator
fields, the remaining three d.o.f, and ∆−1. To summarize the comparison with Eq.(8), we add Q∆−1 to ∆0

and rewrite our findings as

∆Q = 2Q −
ε
2

Q +
1
N

[(
−3Q2 + 4.000(3)Q

)
ε +

(7
4

Q2
−

8
3

Q
)
ε2 + O

(
ε3

)]
+

1
N2

[ (
−132Q2 + 176.0(1)Q

)
ε

−

(
45Q3

−
855(4)

2
+ O (Q)

)
ε2 + O

(
ε3

) ]
+ O

( 1
N3

)
. (55)

The term of order Qε2

N has been estimated by requiring consistency with the known anomalous dimension
of φa, which reads ∆φa = 2 − ε

2 + 1
N

(
ε − 11

12ε
2 + . . .

)
+ O

(
1

N2

)
and has to stem from Eq.(55) when Q = 1.

All the checks of the duality between the critical cubic and quartic theories are summarized in Table I.

IV. COMPLEX ANOMALOUS DIMENSIONS

As for the quartic model in 4 < d < 6, our result (42) reveals the existence of a critical value of the charge
Qc above which the scaling dimensions are complex. Here we analytically estimate Qc in d = 6 − ε in the

4 In this case, one needs to consider the values of the FP coupling g∗ to 2-loops.
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O(N) Cubic Theory (d = 6 − ε) O(N) Quartic Theory (4 < d < 6)

Operator Term compared Eq.& Ref
Expansion

scheme
Order Eq.

Expansion
scheme

Order Ref.

TQ Qk+1
(
ε
N

)k
, k ≥ 1 (41)

∞∑
k=−1

∆k(Qε,N)
Qk LO (16)

∞∑
k=−1

∆k(Q/N,d)
Nk LO [43]

TQ (Qε)k
(

1
N

)k−1
, k ≥ 1 (52)

∞∑
k=−1

∆k(Qε,N)
Qk NLO (17)

∞∑
k=−1

∆k(Q/N,d)
Nk LO [43]

TQ
4Qε
N (55)

∞∑
k=−1

∆k(Qε,N)
Qk NLO (8)

∞∑
k=−1

∆k(Q/N,d)
Nk LO [43]

TQ −
8
3

Qε2

N (55)
∞∑

k=−1

∆k(Qε,N)
Qk NNLO (8)

∞∑
k=−1

∆k(Q/N,d)
Nk LO [43]

TQ −
132Q2ε

N2 (55)
∞∑

k=−1

∆k(Qε,N)
Qk LO (8)

∞∑
k=0

∆k(Q,d)
Nk NLO [51]

TQ
176Qε

N2 (55)
∞∑

k=−1

∆k(Qε,N)
Qk NLO (8)

∞∑
k=0

∆k(Q,d)
Nk NLO [51]

TQ
855Q2ε2

2N2 (55)
∞∑

k=−1

∆k(Qε,N)
Qk NLO (8)

∞∑
k=0

∆k(Q,d)
Nk NLO [51]

TQ
Nε

1−2k
5

(
Q
N

) 6−2k
5

k = 0, 1, 2
(42)

∞∑
k=−1

∆k(Qε,N)
Qk LO (22)

∞∑
k=−1

∆k(Q/N,d)
Nk LO [43]

φ
k=5, j=3∑
k=1, j=1

εkakj

N j [13][10][12]
∞∑

k=0
∆k(N)εk N4LO NA

∞∑
k=0

∆k(Q,d)
Nk NNLO [13][10][60]

σ
k=3, j=2∑
k=1, j=1

εkbkj

N j [13][10][12]
∞∑

k=0
∆k(N)εk NNLO NA

∞∑
k=0

∆k(Q,d)
Nk NLO [13][10][61]

(φiφi)2

σ2;φiφi

j=2∑
j=1

εc j

N j [13][10]
∞∑

k=0
∆k(N)εk NLO NA

∞∑
k=0

∆k(Q,d)
Nk NLO [13][10][62]

σ3

σ3; σφφ
−

420ε
N [13][10]

∞∑
k=0

∆k(N)εk LO NA
∞∑

k=0

∆k(Q,d)
Nk LO [13][10][50]

TABLE I: Summary of the duality between O(N) cubic theory and quartic theory. In each line, we show a
term of the scaling dimensions which matches between the O(N) cubic and quartic theories together with
the expansion scheme according to which it has been computed. All the comparisons made in this work
have been summarized in the upper part of the table (above the two-line dividing line). The lower part
of the table covers the existing results in the literature where NA denotes not applicable. In the last two

lines of the table,
(
φiφi

)2
(similarly σ3) operator in the quartic theory matches to the primary operator from

mixing of the σ2 and φiφi (similarly σ3, σφφ) in the cubic theory.

cubic model and in d = 4 + ε in the quartic model to the leading order in the ε-expansion. In d = 6 − ε
dimensions, the imaginary part occurs first in the chemical potential µ, which is given implicitly by Eq.(37).
Let us fix R = 1 and rewrite Eq.(37) at the FP (25). Truncating the FP values at the leading order in 1/N,
Eq.(37) can be transformed into

F6(µ) ≡
1

192
µ
(
3µ4
− 20µ2 + 32

)
= −

Qε
N

+ O
( 1

N2

)
. (56)

The plot of F6(µ) in the physical region µ > 0 is shown in Fig.1; we note that only a limited range of
values of the product Qε

N > 0 allows for a real and positive chemical potential. As in the O(N) case, above
Qc ≡ Qc(ε,N) there are no physical solutions to the saddle-point equations, and the scaling dimensions
acquire an imaginary part. Qc is determined by the value of F6(µ) at its minimum

Qc =
N

90ε

(
−9 +

√

105
) √

1
30

(
15 +

√

105
)
. (57)
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FIG. 1: F6(µ) (Left) and F4(µ) (Right) as a function of µ. The value of these two functions at their minimum
at positive values of µ determines Qc in d = 6 − ε and d = 4 + ε, respectively.

At Q = Qc, the chemical potential is non-analytic. Notice that, since the 1-loop FP is real only when
N > 1038, in this range of values of N, the inclusion of the subleading 1/N orders in Eq.(56) results solely
in small corrections to Qc.

For the sake of completeness, we study the quartic O(N) model in d = 4 + ε, which is obtained by
continuing our results [27] in d = 4 − ε, to negative ε. There, we studied ∆Q in the double scaling limit
ε → 0, Q → ∞ with Qε fixed. This results in a semiclassical expansion analogous to Eq.(36). In that case,
we found the chemical potential of the system as the solution of a cubic equation

µ3
− µ =

4
3

Qg∗ , (58)

with g∗ = g∗(ε) the fixed point coupling. The physical solution, which is real below d = 4 and matches
perturbation theory for small Qg∗, reads

Rµ =
3

1
3 +

(
6g∗Q +

√
−3 + 36(g∗Q)2

) 2
3

3
2
3

(
6g∗Q +

√
−3 + 36(g∗Q)2

) 1
3

. (59)

As before, to study the appearance of complex scaling dimensions, we rewrite Eq.(58) at the FP g∗(ε) = − 3
N+8ε

as
F4(µ) ≡

1
4

(
µ3
− µ

)
= −

Qε
N + 8

+ O
(
ε2

)
. (60)

The plot of F4(µ) for µ > 0 is shown in Fig.1: we have two regimes corresponding to ε positive and negative.
For negative ε we are in d < 4, F4(µ) is positive and monotonic and there are no complex anomalous
dimensions, as expected. For positive ε, there is a minimum in µ = 1

√
3
, and we have

Qc = −(N + 8)
F4

(
1
√

3

)
ε

=
N + 8

6
√

3ε
, (61)

In general, by using Eq. (58) one can obtain Qc = − 1
2
√

3g∗(ε)
and study the corrections to Qc due to higher ε

orders in g∗(ε).
Finally, to make contact with the numerical estimation of Qc in 4 < d < 6 made in [43], we consider large

N and introduce Jc(d) ≡ Qc(d)/N. In Fig.2, we show the two tails we found for Jc around 6 and 4 dimensions
together with the numerical result of [43].
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FIG. 2: The behaviour of Jc in d = 4 + ε (red curve) and d = 6 − ε (blue curve) to leading order in both 1/N
and ε. The black dots correspond to the numerical estimation of Jc to leading order in 1/N obtained in [43].

V. DISCUSSION

We have investigated the large-charge dynamics of the cubic version of the O(N) model for any N
just below six dimensions. In this limit, we computed the scaling dimensions of a family of fixed-charge
operators at the infrared fixed point of the model to leading and subleading order in the fixed charge
expansion but to all orders in the couplings. The so obtained results allowed us to investigate the conjectured
equivalence with the O(N) model featuring quartic interactions at its ultraviolet fixed point. We compared
the newly derived information on the scaling dimensions with the known large N results for the quartic
interaction model and shown that they agree. Our work therefore strengthens the conjectured equivalence
while providing novel information on the finite N physics coming from our computations within the
critical cubic model just below 6 dimensions. Finally, the results presented here could also be of useful in
holography since it is believed that d-dimensional O(N) CFTs can have a holographic description in terms
of Vasiliev higher-spin theories in AdSd+1 [7, 63, 64].
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Appendix A: Selecting the chemical potential in the large ’t Hooft coupling regime

The main point of this appendix is to show that the values of x in (42) to be chosen are the ones for
which the real part of the scaling dimension is positive. Arguing for continuity between large and small
charge values compatible with the semiclassical expansion we can use the information at small charge to
find a lower positive bound on the real part of the scaling dimension at large charge.

We now move to prove the statement above. In the semiclassical analysis a key equation is the relation
between the chemical potential µ and the charge Q, Eq. (37), from which one eliminates µ and expresses
the scaling dimension ∆Q solely in terms of Q (and N, ε). This equation is however quintic, allowing five
solutions for µ, in which one is real, and the other four are complex. In the small ’t Hooft coupling regime
(i.e. Qε

N � 1), one chooses the solution that matches the perturbative result for ∆Q. In the large ’t Hooft
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coupling regime (i.e. Qε
N � 1) other methods to select among the solutions are needed. As discussed below

Eq. (42), this amounts to select the value of x from the set
{
1, e±

4iπ
5 , e±

2iπ
5

}
.

In the large ’t Hooft coupling regime, the condition Qε
N � 1 implies that the leading contribution in

Eq. (42) comes from the first term on its right-hand side, which we now write as

T1 ≡ −x
5N
3

(2ε)1/5 J6/5 (A1)

where we ignored the O(N−1) correction. With this expression, only x = e±
4iπ
5 leads to a positive real part

for T1 (and accordingly for ∆Q). In the present context, it is however not possible to use unitarity bound to
exclude the other choices x = 1, e±

2iπ
5 which yields a negative real part for ∆Q. The reason is that we have

not proven the O(N) cubic theory in d = 6 − ε dimensions is unitary. In fact, it is likely to be non-unitary
for two reasons. First, the Wilson-Fisher FPs associated with fractional dimensions are known to be non-
unitary [65]. Second, the O(N) quartic theory is known to exhibit complex scaling dimensions in the large
charge sector [43]. If the equivalence between the cubic and quartic theories holds, then the cubic theory
should also exhibit complex scaling dimensions in the large charge sector.

Nevertheless, as we shall see, we are able to set a lower bound on Re∆Q. We start by noticing that TQ is
actually an irreducible tensor multiplet with components corresponding to weights of the Q-index traceless
symmetric tensor representation of O(N). (A weight is just a charge configuration in Lie algebraic terms.)
Then the bound on Re∆Q can be obtained following the reasoning below:

1. For a charge configuration with its total charge Q in the large ’t Hooft coupling regime, the irreducible
tensor multiplet associated with TQ must contain some component operator OS corresponding to
a charge configuration with total charge QS in the small ’t Hooft coupling regime5. (To be proven
below.)

2. In the irreducible tensor multiplet associated with TQ, all component operators have the same scaling
dimension according to the Wigner-Eckart theorem. (Re∆Q = Re∆OS )

3. Semiclassical computations in the small ’t Hooft coupling regime sets a lower bound on the real part
of the scaling dimension for all the possible operators associated with the same charge configuration.
In fact we have Re∆QS > 0 where ∆QS is the lowest-lying scaling dimension among the operators
with the same charge configuration as OS. Then we have: Re∆Q = Re∆OS ≥ Re∆QS > 0.

Here point 3 is related to the fact that we are computing the matrix element 〈Q| e−HT
|Q〉 in the limit of

T → +∞ which projects out the contribution of the lowest-lying operator with fixed-charge Q. When the
scaling dimension can be complex, “lowest-lying” refers to the real part of the scaling dimension. For a
charge configuration QS in the small ’t Hooft coupling regime, conventional perturbation theory can be
trusted which indicates the scaling dimension ∆QS associated with the lowest-lying operator in the charge
configuration QS must be real and positive, i.e. ∆QS > 0. Therefore the combination of the three points
above leads to Re∆Q > 0 even for Q in the large ’t Hooft coupling regime, allowing us to select x = e±

4iπ
5 .

The point 1 above can be proven using Theorem 10.1 of ref. [66]. Suppose we have an irreducible
representation Γ of a complex semi-simple Lie algebra with the highest weight ν, the theorem then states
that an integral element (i.e. integer combination of fundamental weights) λ is a weight of Γ if and only if
the following two conditions are satisfied:

• λ belongs to the convex hull of the Weyl-group orbit of ν.

• ν − λ can be expressed as an integer combinations of roots.

5 There is a simple analogy with the SU(2) case where the total charge corresponds to the total spin while the charge
configuration corresponds to its projection along a given direction.
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Here the convex hull of a set of vectors v1, ..., vM is defined to be the set of all vectors of the form c1v1 + c2v2 +

... + cMvM where the c j’s are non-negative real numbers satisfying c1 + c2 + ... + cM = 1.
Intuitively, the convex hull of the Weyl-group orbit of the highest weight ν of TQ must encompass a

neighborhood of origin in which one can find some integral element νS that can be obtained from ν by
subtracting an integer combination of roots. Because νS is close to the origin, it must be in the small ’t Hooft
coupling regime. Thus point 1 follows from the theorem.

We can make the above intuitive understanding rigorous by explicitly finding an integral element νS in
the small ’t Hooft coupling regime which simultaneously satisfies the two conditions of the theorem.

First consider the case of odd N, that is N = 2l + 1 with l a positive integer. This corresponds to Bl Lie
algebra and TQ is associated with the highest weight ν = QΛ1, with Λ1 being the first fundamental weight
which can be expressed in terms of the positive simple roots α1, α2, ..., αl of Bl (c.f. Appendix F of [67])

Λ1 =

l∑
p=1

αp (A2)

Now note that TQ is a real representation, ν̄ ≡ −ν must be a weight of TQ and therefore be in the convex
hull of the Weyl-group orbit of ν according to the theorem. Thus let us consider

νS ≡
Q + 1

2Q
ν +

Q − 1
2Q

ν̄ (A3)

from which we easily find νS = Λ1 is an integral element. Also νS belongs to the convex hull ν and ν̄, and
therefore it belongs to6 the convex hull of the Weyl-group orbit of ν. Finally we may easily confirm that
ν− νS = (Q− 1)

∑l
p=1 αp which is an integer combination of roots. Therefore νS satisfies all conditions of the

theorem. Moreover νS is in the small ’t Hooft coupling regime since νS = Λ1 is the charge configuration
associated with an O(N) vector.

Second, consider the case of even N, that is N = 2l with l a positive integer. This corresponds to Dl Lie
algebra and TQ is associated with the highest weight ν = QΛ1, with Λ1 being the first fundamental weight
which can be expressed in terms of the positive simple roots α1, α2, ..., αl of Dl (c.f. Appendix F of [67])

Λ1 =

l−2∑
p=1

αp +
1
2
αl−1 +

1
2
αl (A4)

Again note that TQ is a real representation, ν̄ ≡ −ν must be a weight of TQ and therefore be in the convex
hull of the Weyl-group orbit of ν. Thus let us consider

νS ≡
Q + 1

2Q
ν +

Q − 1
2Q

ν̄, odd Q, (A5)

νS ≡
Q + 2

2Q
ν +

Q − 2
2Q

ν̄, even Q, (A6)

By simple computation we find

νS = Λ1, odd Q, (A7)

νS = 2Λ1, even Q, (A8)

and

ν − νS = (Q − 1)
l−2∑
p=1

αp +
Q − 1

2
αl−1 +

Q − 1
2

αl, odd Q, (A9)

ν − νS = (Q − 2)
l−2∑
p=1

αp +
Q − 2

2
αl−1 +

Q − 2
2

αl, even Q, (A10)

6 Using the definition of the convex hull, it is straightforward to prove that if C is the convex hull of v1, ..., vM, then for
any u1, ...,uK ∈ C, the convex hull of u1, ...,uK must be a subset of C.
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Therefore νS obviously satisfies the conditions of the theorem. It is also in the small ’t Hooft coupling regime
as it corresponds to the charge configuration of an O(N) vector or 2-index traceless symmetric O(N) tensor.

Appendix B: Computation of ∆(N)
0

In this appendix, we illustrate the computation of the contribution of the spectator fields ∆(N)
0 . Being this

a quantum contribution, we will need to renormalize our results. Then, we start by rewriting the expansion
(36) in its bare and renormalized forms

E(N)
Q R =

∞∑
k=−1

1
Qk

e(N)
k (g0, h0,Q, d) =

∞∑
k=−1

1
Qk

ē(N)
k (g, h,Q, d,RM) , (B1)

where e(N)
j and ē(N)

j are, respectively, the bare and renormalized coefficients of the expansion and M is the

renormalization scale. e(N)
0 is determined by the functional determinant of the spectators’ fluctuations and

can be written in terms of the dispersion relations (44) as [27, 39]

e(N)
0 (g0, h0,Q, d) = N

R
2

∞∑
`=0

n`ω∗(p2 = J`) , (B2)

where the factor of N comes from summing over all the spectator modes. The expressions of the eigenvalues
of the Laplacian on the sphere J` and their multiplicity n` are given by

J2
` =

` (` + d − 2)
R2 , n` =

(2` + d − 2) Γ (` + d − 2)
Γ (` + 1) Γ (d − 1)

. (B3)

The sum over ` in (B2) diverges and needs regularization. The renormalization is carried out at the one-loop
level and leading order in 1/N. Working in MS scheme, bare and renormalized couplings are related by
[68]

g0 = Mε/2

g +

∞∑
k=1

Zg,k(g, h)

εk

 , h0 = Mε/2

h +

∞∑
k=1

Zh,k(g, h)
εk

 , (B4)

The beta functions of the couplings are related to Zg,k and Zh,k as

2βg = −εg+ g
∂Zg,1(g, h)

∂g
+h

∂Zg,1(g, h)
∂h

−Zg,1(g, h) , 2βh = −εh+ g
∂Zh,1(g, h)

∂g
+h

∂Zh,1(g, h)
∂h

−Zh,1(g, h).

(B5)
Then, taking the large N limit in Eq.(24), one has

g0 = Mε/2
(
g +

g3N
768π3ε

)
, h0 = Mε/2

(
h +

g2N(h − 4g)
256π3ε

)
, (B6)

The renormalization is performed by using Eq.(B6) into Eq.(B1) and expanding every term in powers of
couplings. This procedure mixes the bare orders of the expansion. In particular, we have

ē(N)
0 (g, h,Q, d,RM) = e(N)

0 (g, h,Q, d) + f (N)
0 (g, h,Q, d,RM) , (B7)

where

f (N)
0 =

N
(
µ2R2

− 4
)2 (
µ2R2

− 2
)

384R

(1
ε
− log(MR

√
π)

)
−

N
1536R

×

( (
µ2R2

− 4
) (

(2γ − 3)µ4R4
− 12γµ2R2

− 2µ2R2 + 16γ + 24
) )

+ O(ε) , (B8)
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with γ is the Euler–Mascheroni constant. We computed f0 by expanding e−1 (which is obtained as ∆−1 but
working in d = 6 − ε instead of d = 6) in powers of the couplings and retaining the term of order g0 and
h0. The next step is to evaluate this expression at the FP. Being the fixed point couplings expressed as a
power series in ε, this step mixes again different orders of the expansion, now the renormalized ones. In
particular, in order to include in ∆(N)

0 all the terms with the right scaling, we need to add the expansion of
Qē−1 to the leading order in ε. After this procedure, the term depending on the renormalization scale M
drops, and ∆(N)

0 depends only onA = Qε. We have

∆(N)
0 (A) = N

lim
ε→0

R
2

∞∑
`=0

n`ω∗(`) +

(
µ2R2

− 4
)2 (
µ2R2

− 2
)

384Rε




g,h=g∗(ε),h∗(ε)

. (B9)

The sum over ` can be regularized as done in [27, 39]. In the regularization procedure, also the 1
ε pole

in Eq.(B9) cancels, and we can consistently take the limit ε → 0 in Eq.(B9), after which we are left with
our final result (50), which is finite. Notice that, since the two 1/ε terms come from different orders of
the bare expansion, their cancellation can be used as a non-trivial internal check of the correctness of our
calculations. We checked numerically that the cancellation of the 1/ε pole occurs also in the renormalization
of the full ∆0 coefficient.
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