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Abstract

We provide a quantitative analysis of the splittings in low-lying numerical entanglement spectra

(ES), at given momentum, of a number of quantum states that can be identified, based on “Li-

Haldane state-counting”, as ground states of (2 + 1)-dimensional chiral topological phases with

global SU(2) symmetry. The ability to account for numerical ES splittings solely within the context

of conformal field theory (CFT) is an additional diagnostic of the underlying topological theory,

of finer sensitivity than “state-counting”. We use the conformal boundary state description of

the ES, which can be viewed as a quantum quench. In this language, the ES splittings arise

from local conservation laws in the chiral CFT besides the energy, which we view as a Generalized

Gibbs Ensemble (GGE). Global SU(2) symmetry imposes strong constraints on the number of such

conservation laws, so that only a small number of parameters can be responsible for the splittings.

We work out these conservation laws for chiral SU(2) Wess-Zumino-Witten CFTs at levels one and

two, and for the latter we notably find that some of the conservation laws take the form of local

integrals of operators of fractional dimension, as proposed by Cardy for quantum quenches. We

analyze numerical ES from systems with SU(2) symmetry including chiral spin-liquid ground states

of local 2D Hamiltonians and two chiral Projected Entangled Pair States (PEPS) tensor networks,

which exhibit the “state-counting” of the SU(2)-level-one and -level-two theories. We find that

the low-lying ES splittings can be well understood by the lowest of our conservation laws, and we

demonstrate the importance of accounting for the fractional conservation laws at level two. Thus

the states we consider, including the PEPS, appear chiral also under our more sensitive diagnostic.
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I. INTRODUCTION

Topological states of matter exhibit a new kind of robust “nonlocal” order that is of

great interest to condensed matter physics.1–5 Some types of topological states in two spatial

dimensions, including fractional quantum Hall states, lack time-reversal symmetry and are

known as chiral topological states, which possess gapless topologically-protected edge states

at their boundaries with universal finite-size spectra governed by (1+1)D chiral conformal

field theories (CFTs) particular to the specific bulk topological order.5–8 The searches for

physical Hamiltonians that give rise to two-dimensional quantum states of this type, as well

as investigations of the states themselves, make up a very active area of research.

A useful method to help identify these states in numerical simulations is the entanglement

spectrum (ES). Bipartitioning the Hilbert space into two disjoint halves A and Ā, we can

compute the reduced density matrix of A as ρA = TrĀ ρ, where ρ is the (global, pure-state)

density matrix of the topological quantum state, and TrĀ indicates that we trace out the

degrees of freedom associated to Ā. Then we can define the entanglement Hamiltonian as

Hentanglement = − log ρA. Its spectrum will be the ES. If the bipartition corresponds to degrees

of freedom in two regions of real space, we call this spectrum the real space entanglement

spectrum (RSES), and we refer to the division (interface) between the two spatial regions

A and Ā as the entanglement cut. The crucial realization by Li and Haldane was that, for

chiral topological systems, the low-energy states of the theory on a physical edge in real

space, known to be described by a chiral CFT, are in a one-to-one correspondence with the

low-lying eigenstates of the entanglement Hamiltonian computed across the entanglement

cut placed at the same location as that physical edge.9–14.

This wonderful fact, judiciously applied, allows the ES to become a diagnostic for iden-

tifying the presence of chiral topological states in numerical simulations. Typically the

entanglement spectrum is computed across the entanglement cut (see Fig. 1, e.g., for an

entanglement cut that is a circle, which appears when the surface of a cylinder is cut into

two parts), and for the low-(entanglement)-energy part of the spectrum, the number of

states at each momentum (along the circular cut) and of each type is counted and compared

to the corresponding number in the relevant CFT. This agreement is taken as evidence

that the correct topological state (or something similar to it) has been produced by the

computation.15–18
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Numerical results at finite size, however, typically show splitting of the energy levels of

entanglement spectra at a given momentum (see, e.g., Refs. 13, 15–21, among many others),

energy levels that would be degenerate considering the corresponding CFT Hamiltonian

alone. We would like to gain a more complete understanding of the detailed character-

istics of these splittings in the low-energy levels for real space entanglement spectra, as

these may provide information (going beyond the state-counting alone) about the underly-

ing (2 + 1)-dimensional topological field theory, which is directly reflected in the structure

of the resulting CFT, as well as the performance of the numerical methods used. In par-

ticular, regarding the former point, if the underlying (2 + 1)-dimensional bulk topological

field theory has been correctly identified, it must be possible to account for the splittings

in the ES entirely within the context of the resulting CFT, i.e., without recourse to any

other principles. If this is not possible, then the nature of the bulk state was not correctly

identified.

Various papers13,19,20 have successfully endeavored to study splittings in the entangle-

ment spectra for Laughlin (or Pfaffian) quantum Hall states in a number of cases by ir-

relevant and/or dispersive terms, or composite fermion descriptions. We focus our atten-

tion on systematically investigating the ability of CFT to describe and characterize these

splittings in a variety of different numerically generated chiral topological states, includ-

ing Projected Entangled Pair States (PEPS)—see below. We use the conformal boundary

state description10,22–24 to do this. The specific chiral topological states we consider are those

where the bulk, and consequently also the edge theory (and therefore the chiral CFT describ-

ing the entanglement spectrum), possess global SU(2) symmetry: in particular, those where

the topological properties of the bulk are described by SU(2)-level-k (SU(2)k) Chern-Simons

theory7, and thus where a physical edge is described by a chiral SU(2)k Wess-Zumino-Witten

(WZW) CFT (reviewed in Sec. II), as is the case for some types of topological state.5 The

Kalmeyer-Laughlin spin liquid25 is one example15 of such a chiral topological state that

hosts, at a physical edge, edge modes described by a chiral SU(2)1 WZW CFT, and the

non-Abelian SU(2)2 chiral spin liquid has also been investigated26. In this work specifically,

we consider chiral spin liquids described by (chiral) SU(2)1 and SU(2)2 Chern-Simons theo-

ries, and indeed we account for special features appearing in the entanglement spectrum of

the half-integer spin sector of the SU(2)2 theory, stressing in particular the importance of

fractional conservation laws22 in understanding that entanglement spectrum. As compared
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to the quantum Hall states mentioned above, global SU(2) symmetry turns out to strongly

constrain the number of parameters that can be responsible for the splittings. We addi-

tionally consider the effect of a discrete symmetry, the composition of spatial reflection and

time reversal (RT ), which further constrains the number of parameters responsible for the

splittings in some cases.

For chiral topological states, the splittings can be understood in terms of CFT, as outlined

below, by considering certain conserved quantities in the chiral CFT describing the ES,

which contribute to a Generalized Gibbs Ensemble (GGE) form for the reduced density

matrix. Thus the entanglement Hamiltonian will incorporate not only the data of the CFT

Hamiltonian itself, but also data on the locally conserved quantities of the theory of the

CFT that obey the SU(2) symmetry, as well as relevant discrete symmetries. These locally

conserved quantities can be thought of as arising physically in the process10 of generating

the reduced density matrix along the real-space entanglement cut and are a property of the

underlying two-dimensional topological quantum state itself. (See Sec. III below for a review

of this process using the “conformal boundary state” formulation.) Further, in Ref. 22, Cardy

describes, in the context of quantum quenches, “semi-local” conserved quantities, integrals

of operators with noninteger dimension, that should in general be present in the GGE.

These are the aforementioned fractional conservation laws. In sectors with twisted boundary

conditions (such as, in a cylindrical geometry, those arising from threading the cylinder with

topological flux, as shown in Fig. 1), these quantities take the form of integrals of local

operators, commute with the Hamiltonian, and belong to the GGE along with other locally

conserved quantities. We detail the contribution by these conserved quantities described by

Cardy to the splittings in the half-integer spin sector of the chiral SU(2)2 theory (which can

be viewed as the Ramond sector of a theory with N = 1 supersymmetry). This discussion,

of how to understand the entanglement spectrum splittings with conserved quantities from

CFT, and which conserved quantities will contribute to the splittings, is found in Secs. III

and IV.

In Sec. V, we fit this description of the ES (which by construction is capable of describing

the entanglement spectrum of any such chiral topological state) to numerically computed en-

tanglement spectrum data of a variety of different states, all of which were observed to obey

Li-Haldane counting. What we find from these fits is that we can understand the numerical

spectra very well using our approach, including the novel fractional dimension conserved
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quantities, which we show to be essential to the understanding of the entanglement spectra

of chiral topological states described by SU(2)2 Chern-Simons theory. As mentioned above,

this provides confirmation that the description of the bulk topological state by the corre-

sponding topological field theory is correct for the systems considered, as the ES, including

the splittings, can be described entirely in terms of quantities of the CFT associated with

that bulk topological field theory.

This approach also gives insight into the success of the various computational techniques

used by the works considered here in capturing the chiral topological nature of the states

in question. For instance, Refs. 15 and 16, whose work we discuss in Sec. V, use Density

Matrix Renormalization Group (DMRG)-based techniques, and we verify that they exhibit

detailed splitting behavior in the entanglement spectrum that is consistent with the possi-

bilities allowed by the construction of the entanglement Hamiltonian out of available terms

in the GGE from the chiral CFT, thereby supporting the ability of these DMRG-based

techniques to capture chiral topological behavior. The other two numerical entanglement

spectra discussed in Sec. V, Refs. 17 and 18, are generated instead through the use of chiral

projected entangled pair states (PEPS) tensor network techniques. There, too, our results

support the ability of these (PEPS) techniques to capture chiral topological behavior.

PEPS tensor network techniques are a powerful general tool and the subject of con-

siderable interest in their own right.27 Here, we consider in particular chiral interacting

PEPS17,18,28. However, noninteracting fermionic chiral topological PEPS (that is, noninter-

acting fermionic PEPS possessing a nontrivial Chern number) are known to obey a “no-go

theorem”, stating that they cannot be ground states of local Hamiltonians gapped in the

bulk.29,30 Thus, if a noninteracting fermionic chiral topological PEPS is the ground state of a

local parent Hamiltonian, that Hamiltonian must be gapless in the bulk. Whether this “no-

go theorem”, or a variation thereof, generalizes to interacting chiral topological PEPS is, to

date, an open question. Our work can provide insight into this topic. For example, we con-

sider the entanglement spectrum of the spin-1/2 PEPS investigated in Ref. 17 (shown, with

our fit to the splittings, in Fig. 5, corresponding to those for an Abelian SU(2)1 chiral spin

liquid). The observed finite size splittings of the entanglement spectrum can be very well

understood by our approach, only using the information from the CFT. This analysis lends

substantial support to the claim of chirality for the PEPS of Ref. 17, consistent with earlier

work pointing toward chirality of this PEPS.31 Our approach also bolsters the evidence for
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FIG. 1. An infinite cylinder is bipartitioned into two sections A and Ā by a circumferential

(virtual) entanglement cut (in black). If the cylinder consists of a chiral topological bulk state,

then by the result of Li and Haldane, the low-lying eigenstates of the entanglement Hamiltonian

computed across the depicted entanglement cut are in a one-to-one correspondence with the low-

energy states of the theory on the physical edge in real space that would be present if a physical,

separating cut was made along the entanglement cut. An anyon flux of type a is shown threaded

through the cylinder.

chirality in the spin-1 PEPS of Ref. 18, where we find splittings characteristic of the non-

Abelian chiral SU(2)2 theory, consistent with the observed Li-Haldane counting. In Ref. 18,

as well as in other interacting PEPS that appear to be chiral based on Li-Haldane counting

(including the PEPS of Ref. 28, which is similar to the PEPS found in Ref. 17, discussed

above), it has been observed numerically that equal-time correlations of local operators in

the PEPS quantum state appear to have long-range correlations.18,28,32,33 It is expected (see,

e.g., Refs. 34 and 35) that this implies that local parent Hamiltonians of these PEPS would

be gapless, which would be further evidence in support of an interacting “no-go theorem”.

Therefore, by providing additional evidence for chiral topological behavior in interacting

PEPS, our approach shows the ability to help determine whether such a “no-go theorem”

holds for interacting chiral topological PEPS.
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II. STRUCTURE OF CHIRAL SU(2)k WESS-ZUMINO-WITTEN CFTS

The CFTs we will encounter in the entanglement spectra we look at in this work are

chiral SU(2)k WZW CFTs.36 The Hilbert space of such a CFT consists of k + 1 primary

states and their descendants under the actions of elements of an affine SU(2) current algebra.

Each primary state and its (affine) descendants comprise a separate topological sector of the

theory. Each descendant of a primary state has a particular (descendant) level associated

to it based on the elements of the current algebra used to specify the state. The descendant

states, ordered by increasing level above the primary state, form “conformal towers” for each

topological sector of the theory.

We can denote each of the k + 1 primary states of SU(2)k by its global SU(2) spin

quantum number j, with the notation |j = i/2〉 for some integer i = 0, . . . , k. The state

|j〉 takes the form of the (2j + 1)-dimensional spin-j representation of global SU(2) (with

jz ranging from −j to +j in integral increments in the usual way). The descendant states

in the conformal tower also obey the global SU(2) symmetry, and we can therefore view all

of them as SU(2) multiplets of various dimensions. The pattern of multiplicities of these

multiplets is characteristic of the theory. In the SU(2)1 theory, the two topological sectors,

which correspond to |j = 0〉 and |j = 1/2〉 primary states (of the affine current algebra),

are often referred to as the integer and half-integer sectors, respectively. This structure is

illustrated for the chiral SU(2)1 WZW CFT in Fig. 2.

Our analysis will be done in a spatially circular geometry with fixed time coordinate in

the CFT, in which we take the affine SU(2) currents Ja(x) (where a = 1, 2, 3 is the index of

the generator in the adjoint representation of SU(2)) to be periodic in the spatial coordinate

x around the circle: Ja(x) = Ja(x + `), where ` is the circumference of the circle. The

energy-momentum tensor T (x) of the CFT can be related to the Ja(x) by expressing T (x)

in the Sugawara form36

T (x) =
1

k + 2

3∑
a=1

(JaJa)(x), (2.1)

where we use brackets () around JaJa to indicate normal ordering. We note that T (x) will

inherit the periodicity of Ja(x): T (x) = T (x+`). We can then write T (x) in terms of modes

L−n as

T (x) =

(
2π

`

)2
(
− c

24
+

∞∑
n=−∞

L−ne
2πinx/`

)
, (2.2)
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(a) (b)

FIG. 2. A reproduction of the entanglement spectrum of Figure 4a from Bauer et al. (Ref. 15).

Two topological sectors are manifest, the integer in (a) and half-integer in (b), with conformal

towers rooted, respectively, in the |j = 0〉 and |j = 1/2〉 primary states (the lowest markers at

momenta 0 and ±π, respectively). Extending above these primary states in each blue-shaded

subtower of fixed jz are their descendant states, all of which display SU(2) symmetry across the

indicated jz written at the bottom of the subtowers. [In the Figure, these different subtowers are

horizontally offset from each other by 2π to make them clearly visible (i.e., they actually have

the same momenta).] Within each subtower, indicated by vertical black lines up to the fourth

descendant level, we have the 1-1-2-3-5 counting of states that are degenerate in momentum and

under the pure CFT Hamiltonian. This state-counting pattern is characteristic of the chiral SU(2)1

CFT. (See Appendix A for more detail on the counting of states here.)

a Our Fig. 2 is taken from Figure 4 of the arXiv version: arXiv:1401.3017 [cond-mat.str-el].

where the central charge c = 3k
k+2

for an SU(2)k WZW CFT. Thus we see that the Hamilto-

nian of this theory, which describes the left-moving states, will be

HL =
v

2π

∫ `

0

T (x)dx =
2πv

`

(
L0 −

c

24

)
(2.3)

where v is a (nonuniversal) velocity. From now on we will suppose v = 1 for simplicity, since

9
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the conclusions we draw will not depend on an overall scale factor. The eigenvalue of L0 (or

L0) is the overall conformal dimension h + K of the state on which it acts: the sum of the

conformal weight h of the WZW primary state at the base of the relevant conformal tower

and, if the state in question is a descendant of a WZW primary state, the level K of that

descendant state above the corresponding primary state.

The left-moving momentum kL acts uniformly on all the states |h,K〉 at descendant level

K above a primary state with conformal weight h to give

kL|h,K〉 =
2π

`
L0|h,K〉 =

2π

`
(h+K) |h,K〉. (2.4)

We can also write down a corresponding set of quantities for right-moving states (in the

Hilbert space of the chiral right-moving CFT): a Hamiltonian HR that is instead an integral

of the conjugate energy-momentum tensor T (x), L0 the zero-mode of T (x), and the right-

moving momentum kR. Therefore, all of the states in a given conformal tower at the same

descendant level should be degenerate in both momentum, and energy, the eigenvalue of

the CFT Hamiltonian HL (or HR). The counts of these degeneracies are a characteristic

marker of the CFT. These degeneracies and their description in terms of SU(2) multiplets

are described in a more detailed discussion of the structure of the chiral SU(2)k WZW CFT

Hilbert space in Appendix A.

We can observe these degeneracies in numerical results. If this (1+1)D CFT on a circular

spatial geometry is in fact the theory of one of the two decoupled circular edges that arises

from cutting, along its circumference, an infinite cylinder home to a (2+1)D bulk topological

quantum field theory, then the left- and right-moving momenta kL and kR, and Hamiltonians

HL and HR, govern the left- and right-moving states along the respective physical edges

created by that cut of the cylinder. The aforementioned degeneracies of the momenta and

energy spectra will also be present.

The geometry of this setting is depicted in Fig. 1. As discussed in the introduction, the

Li-Haldane correspondence means that these degeneracies will then appear in the low-lying

(entanglement) energy levels of the real space entanglement spectrum computed with an

infinite cylinder bipartitioned with a (virtual) entanglement cut in the same location as the

physical cut determining the edge. Crucially, though, when this computation is done, as

in the numerical work, for cylinders of finite circumference for the entanglement cut, the

degeneracies in question appear only for momentum, but are split for the entanglement en-
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ergies. To illustrate this with a particular example, we can consider Fig. 2, an entanglement

spectrum exhibiting the characteristic pattern of degeneracies associated with the chiral

SU(2)1 WZW CFT. The degeneracies are present in momentum, but split in the entangle-

ment energy levels of the spectrum. We will consider this particular entanglement spectrum

in greater detail in Sec. V.

III. EXPLAINING ENTANGLEMENT SPECTRUM SPLITTING WITH LO-

CALLY CONSERVED QUANTITIES

As we saw in Fig. 2, in the real space entanglement spectra that we study, numerically

computed at finite size, the states at the same descendant level are not all degenerate.

Instead, we observe splitting of such states despite their common conformal dimension. Our

goal is to gain control over the RSES, splittings and all. To do this, we need to re-examine

the origin of the entanglement/edge correspondence that allows us to find the edge CFT

data in the entanglement spectra in the first place.

Ref. 10 (as briefly summarized here below) understands the entanglement/edge corre-

spondence in a bipartitioned cylindrical geometry (Fig. 1) from the point of view of a

quantum quench, that for time t > 0 decouples the two Hamiltonians HL and HR of the

counter-propagating left- and right-moving physical edges produced by physically cutting

the cylinder along the entanglement cut. Then, the actual topological ground state |G〉
of the system on the surface of the cylinder will serve as the t = 0 boundary condition of

the quench, i.e., as the initial state. That short-range entangled (and short-range corre-

lated) initial state |G〉 can be represented as the state resulting from a coupling between the

two counter-propagating edges above (e.g., by relevant or marginally relevant operators), a

process which generates a gap. This initial state plays a dual role (see Refs. 10, 23, and

24): (i) on the one hand, as described above, it can be viewed as the ground state of a

CFT gapped by coupling left- and right-movers, and (ii) at the same time, it is a bound-

ary condition on a gapless CFT describing the initial state of the quantum quench after

Wick-rotation to imaginary time. That boundary condition itself undergoes a renormaliza-

tion group (RG) flow, and is controlled at large scales by a scale-invariant boundary fixed
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point. When formulated in the language of a state in the Hilbert space of the bulk CFT,

this fixed point is described by what is known as a conformally invariant boundary state

|G∗〉. That fixed point boundary state is itself not immediately useful for representing the

physical state |G〉 because, representing a fixed point, it turns out to be not normalizable.

|G∗〉 can be given a finite norm by slightly “deforming” this state by slightly moving away

from the fixed point in the RG sense by irrelevant boundary operators. The initial work

by Cardy and Calabrese on quantum quenches37,38 made a particular (special) choice for an

irrelevant boundary operator, which they chose to be the energy momentum tensor of the

CFT at the boundary; thus, they represented the physical state |G〉 in terms of the fixed

point conformal boundary state as

|G〉 ∝ e−τ0(HL+HR)|G∗〉, (3.1)

where HL and HR are the CFT Hamiltonians for left- and right-movers, which are precisely

the spatial integrals of the left- and right-moving energy-momentum tensors T (x) and T (x),

respectively. The so-obtained state |G〉 turns out to be a purification of a thermal density

matrix (as reviewed below), where the “extrapolation length” τ0 plays the role of an in-

verse temperature, which sets the scale for the finite correlation length of all “equal time”

correlation functions of local operators in this state.39

But Eq. (3.1) is not the whole story, since the energy-momentum tensor is only one of

the possible irrelevant operators that may be used to deform the boundary fixed point state

|G∗〉 in order to make it normalizable. The integral of the energy-momentum tensor alone is

not general enough to represent the actual ground state |G〉 of the topological system on the

surface of the cylinder in terms of the fixed point boundary state |G∗〉. The procedure that

allows for a representation of a general ground state on the cylinder surface will be described

in Eq. (3.3). Before describing this, we need to also introduce the different topological flux

sectors. We do that first using the state in Eq. (3.1), and generalize this subsequently.

The topological sector of the theory on the surface of the cylinder depends on the topo-

logical flux through the cylinder (Fig. 1). This will select, following Ref. 10, a corresponding

sector in the entanglement spectrum we are interested in describing. In any so-called ratio-

nal CFT, such as those under consideration, all conformally invariant boundary states |G∗〉
turn out to be finite linear combinations of states |G∗,a〉, where a denotes topological flux.40

This leads to the obvious generalization of Eq. (3.1), namely, |Ga〉 ∝ e−τ0(HL+HR)|G∗,a〉,

12



where |Ga〉 describes the ground state of the system in the topological flux sector a. We

are interested in the reduced density matrix ρL,a of the ground state |Ga〉 of the topological

system in question, for which the half of the cylinder with the right-moving edge has been

traced out. It turns out that under the assumption of Eq. (3.1), tracing out the half of the

cylinder with the right-moving edge degrees of freedom yields10

ρL,a = TrR (|Ga〉〈Ga|) ∝ Pae
−4τ0HLPa, (3.2)

where Pa is a projector onto the sector a. That is, the reduced density matrix has a thermal

form with effective inverse temperature β = 4τ0. Then we would have an entanglement

Hamiltonian simply proportional to the Hamiltonian HL of the left-moving chiral edge CFT

Eq. (2.3) projected onto the sector a. As previously noted, though, under this Hamiltonian,

all the states of a given conformal dimension are degenerate, so there must be additional

terms in the entanglement Hamiltonian. Cardy has more recently argued22 in the context

of quantum quenches that one can generalize the assumption of Eq. (3.1) to include also

conservation laws which are integrals of irrelevant local boundary operators Φi and Φi (left-

and right-moving, respectively, in the bulk, with coinciding boundary limits41, Φi(x) =

Φi(x), corresponding to the boundary operator) other than the energy-momentum tensor

T (x) and T (x), leading to a Generalized Gibbs Ensemble (GGE):

|G〉 ∝ e−(β/4)(HL+HR)
∏
i

e−(βi/4)
∫
[Φi(x)+Φi(x)]dx|G∗〉 (3.3)

That is to say, we now introduce a more fine-grained ansatz to guide |G〉 closer toward

the actual topological ground state on the surface of the cylinder by deforming |G∗〉 with

a more complete set of irrelevant boundary operators42. When we calculate the reduced

density matrix ρL,a by tracing out the right-moving parts of the above expression, we obtain

a GGE form for ρL,a,

ρL,a = TrR (|Ga〉〈Ga|) ∝ Pae
−βHL

∏
i

e−βi
∫

Φi(x)dxPa, (3.4)

where Φi(x) can be viewed as operators acting only on the left-moving boundary43. This clar-

ifies the cause of the splittings: additional locally conserved quantities H(i) = 1
2π

∫ `
0

Φi(x)dx

in the theory, besides just the Hamiltonian HL, are entering into the form of the reduced

density matrices ρL,a. These may include integrals of such irrelevant operators as powers of

the energy-momentum tensor T (x), e.g., 1
2π

∫
dx(TT )(x), a hierarchy of integrals of motion
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that can be written down for a wide range of CFTs.44,45 Integrals of other available local

operators of even integer conformal dimension will come in as well, however, and for the

case of the chiral SU(2)2 theory (in the spin-1/2 sector, where the boundary conditions allow

them) we will also have integrals of operators with half-integer conformal dimension, a case

discussed in Ref. 22 in the context of quantum quenches. One example of these in our case is

the integral G0 = 1
2π

∫
dxG(x) of a chiral superconformal current operator G(x), analogous

to that included in the hierarchy of integrals of motion in an N = 1 superconformal field

theory.46 We will find that this same conservation law can be written down in the chiral

SU(2)2 theory, since it is known47–49 to possess N = 1 superconformal invariance.

The entanglement Hamiltonian is then a sum involving all these conserved quantities,

and we have50 (within a given sector, so we can suppress the subscripts a)

Hentanglement − const. = − log ρL − const. =
∞∑
i

βiH
(i) = βHL +

∞∑
i 6=1

βiH
(i), (3.5)

where βi are parameters chosen to properly match the initial conditions of the quench,

and we take β1 = β and H(1) = HL (the Hamiltonian of the CFT, which is just one of the

conservation laws). Thus, we explain the splittings by some linear combination of the locally

conserved quantities H(i).

We end this section by highlighting an aspect of the fact that the entanglement Hamilto-

nian Eq. (3.5) is described by a linear combination of conservation laws involving irrelevant

boundary operators, the particular linear combination being dictated by the wave func-

tion of the topological quantum state on the cylinder surface (the initial condition of the

quench). When expressed in terms of system size `-independent conservation laws H̃(i) :=(
`

2π

)∆i−1
H(i) (where ∆i > 1 is the associated conformal dimension — these are summarized

in Table IV of Appendix B),

Hentanglement − const. = β

(
2π

`

)
H̃L +

∞∑
i 6=1

βi

(
2π

`

)∆i−1

H̃(i), (3.6)

the entanglement Hamiltonian in the limit of large system size ` (cylinder circumference)

ought to be dominated by the least irrelevant conservation law (the H̃(i) with the smallest

∆i). While we find that for most systems (and topological sectors) whose numerical ES data

we investigated, this least irrelevant conservation law is the Hamiltonian H̃L of the CFT,

the integral of the energy momentum tensor (i.e., all ∆i > 2, for i 6= 1), we find instead
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in Sec. V B below that, in contrast, the entanglement spectrum of the spin-1/2 sector of

the non-Abelian chiral SU(2)2 spin liquid requires a fractional conservation law H̃(0) ∝ G0

with scaling dimension (∆i=0 = 3/2) smaller than that of the energy momentum tensor

(and any other conservation laws). More generally, this conservation law is allowed to occur

in this sector on symmetry grounds51, so it will in general be present in the entanglement

Hamiltonian. It would appear, then, that this fractional conservation law, arising (as al-

ready mentioned above) from an underlying supersymmetry of the corresponding CFT, will

dominate the entanglement spectrum at large system size (far beyond the small finite sizes

of the spectra shown in Sec. V). As a consequence of this, the entanglement spectrum in

the limit of large system size would therefore not be expected to approach the spectrum of

a CFT Hamiltonian [which would describe the spectrum at a physical edge as in (2.3)], but

rather the spectrum of G0,

Hentanglement ∼ β0

(
2π

`

)1/2

G0, (`→∞). (3.7)

Since the Hamiltonian of the CFT is related to the square of G0 due to the space-time

supersymmetry48, the eigenvalues of G0 are related to those of the energy (and the momen-

tum) via52

G0 = ±
√
L0 −

c

24
. (3.8)

Given this relation, it would seem that in this sector the entanglement spectrum would

take values equal to the positive and negative square-root of the (left-moving) momenta kL

[compare (2.3)]:

Hentanglement ∼ ±β0

√
vkL +O(kL) (`→∞). (3.9)

It would be interesting to try to understand this in future work, e.g., through numerical

investigation by accessing the thermodynamic limit of the entanglement spectrum using

an excitation ansatz approach, as discussed in Ref. 53 for the simpler, Abelian Kalmeyer-

Laughlin chiral spin liquid31.

IV. CHOOSING THE LOCALLY CONSERVED QUANTITIES

A crucial question in this effort is how to properly choose the locally conserved quantities

H(i) that go into our parametrization Eq. (3.5) of the entanglement Hamiltonian. These
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quantities H(i) must both commute with the Hamiltonian HL of Eq. (2.3) and, crucially,

must preserve both the SU(2) symmetry of the CFT and any applicable discrete symmetries.

The requirement of global SU(2) symmetry serves as a strong constraint on the irrelevant

local operators whose integrals we can use for the H(i). For the systems we consider, the

principal discrete symmetry in question is the RT symmetry of the (1+1)D theory found in

the entanglement spectrum that results from the symmetry of the (2+1)D theory under the

composition of a spatial reflection through a plane parallel to the axis of the cylinder and

time reversal. Further, in the case of each of the PEPS we consider, the RT symmetry has

been built into the PEPS wavefunction by construction. The details of the RT symmetry

can be found in Appendix C.

We will not require our conserved quantities to commute among themselves as long as

they commute with HL. One might rightly worry about the issue of noncommutativity of the

H(i) among themselves when taking the logarithm of Eq. (3.4) to obtain Eq. (3.5), but since

our list of H(i) will be exhaustive of quantities that commute with HL and preserve SU(2)

and RT symmetry, we can simply reassign the βi as needed to account for the commutators.

To simplify our calculations and to avoid a surfeit of parameters, we only consider inte-

grals of local operators up to conformal dimension ∆ = 6. (Operators of higher conformal

dimension, more irrelevant, will have less significant contributions to the spectral splittings,

and could of course be incorporated if necessary.) At a given conformal dimension ∆, we

begin by considering the complete list of all the independent SU(2)-invariant operators of

dimension ∆ in the theory. The operators of this type available will exactly correspond

to the SU(2) singlet descendant states of the primary states of the theory. For the SU(2)1

WZW CFT, the number of operators in that list is the number of SU(2) singlet descendant

operators of the identity with dimension ∆, equal to the number of singlet descendant states

of the primary state |j = 0〉 at descendant level K = ∆. Since the level k of the SU(2)k=1

theory is k = 1, we can take advantage of Abelian bosonization to construct these singlet

descendants from |j = 0〉 using only the Virasoro modes of the energy-momentum tensor,

and therefore these operators will consist only of combinations of the energy-momentum

tensor T (x) and its derivatives. We do, however, exclude total derivatives from the list of

operators we consider, as their spatial integrals will not contribute given the periodicity of

the cylinder. [Indeed, while the number of singlet descendant states of |j = 0〉 can be found

in Table II of Appendix A as the number of singlets (1’s) in the “Multiplet content” column
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for the |j = 0〉 primary sector, a further calculation is required to get the actual number

of operators we consider at each dimension ∆ = K: one must account for the exclusion

of the derivatives of the operators of dimension ∆− 1, corresponding to the subtraction of

the number of singlet states at descendant level K = 1.] Additionally, the RT symmetry

requires that we only include operators with even dimension ∆, as it can be observed that

operators with an odd number of derivatives will be odd under RT , while all factors of

T (x) are even under RT . In SU(2)1, though, this does not exclude any further operators,

as all such operators of odd dimension ∆ in the SU(2)1 theory up to ∆ = 6 turn out to

be total derivatives as well. A list of the operators Φi(x) we consider for the SU(2)1 theory

can be found in the leftmost column of Table I, arranged by their corresponding conformal

dimension ∆i.

∆i Φi(x) in SU(2)k≥1 Φi(x) in SU(2)2 (∆i ∈ Z) Φi(x) in SU(2)2 (∆i ∈ Z + 1
2)

3/2 — — G(x)

2 T (x) — —

7/2 — — (TG)(x)

4 (TT )(x) i(G∂G)(x) —

9/2 — — (T∂G)(x)

11/2 — — (G(TT ))(x), (∂T∂G)(x)

6 (T (TT ))(x), (∂T∂T )(x) i(T (G∂G))(x), i(∂G∂2G)(x) —

TABLE I. An enumeration of the lower-dimensional (of conformal dimensions ∆i ≤ 6) irrelevant

operators Φi(x) we will use to fit the splittings of the numerical spectra within each descendant level

for (leftmost column) the chiral SU(2)1 and (all columns) chiral SU(2)2 WZW theories we consider.

The shaded cell indicates an irrelevant operator that we choose to exclude due to consideration of

RT symmetry.

For the SU(2)2 WZW CFT, the picture is somewhat more complex. As we did for SU(2)1,

we can use the operator-state correspondence to find the operators available to us in the

SU(2)2 theory. For SU(2)2, the SU(2) singlet states come in two sets: descendants of the

|j = 0〉 primary state and descendants of the |j = 1〉 primary state54. (This is because these

are the two sectors that have integer spin multiplets, and therefore contain SU(2) singlet

states.) Descendants of the |j = 0〉 primary state correspond to operators that have integer
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conformal dimension, since the conformal weight of the |j = 0〉 primary state is hj=0 = 0.

This set of operators includes as a subset the operators we considered for the SU(2)1 theory,

all of which had integer conformal dimension. Descendants of the |j = 1〉 primary state,

on the other hand, correspond to operators that have fractional (half-integer) conformal

dimension, as the conformal weight of the |j = 1〉 primary state is hj=1 = 1/2. [The number

of singlet descendant states at each descendant level K for both the |j = 0〉 and |j = 1〉
primary sectors, corresponding to the number of available operators of dimension ∆ = K

(for |j = 0〉) or ∆ = K+1/2 (for |j = 1〉), can be found in the respective “Multiplet content”

columns in Table III of Appendix A (where singlets are denoted by 1’s), though as in the

SU(2)1 case, one must account for the exclusion of total derivatives when comparing to the

enumeration of operators in Table I.]

It turns out that we will only need to consider the action of the integrals of the operators

with half-integer conformal dimension on the states of the |j = 1/2〉 sector, in which the

operators possess periodicity around the cylinder. One way to see this is to express55 the

chiral SU(2)2 WZW CFT as a theory of three free real Majorana fermions, which we will

denote by ψa(x) for a = 1, 2, 3. (See e.g., Ref. 56.) We can relate the 3-fermion theory to

the chiral SU(2)2 WZW CFT as described in Sec. II by writing the SU(2) current Ja(x) as

the fermion bilinear

Ja(x) = − i
2
εabc : ψbψc : (x), (4.1)

where the :: indicates normal ordering. The 3-fermion theory possesses N = 1 supersym-

metry. The sectors of the |j = 0〉 and |j = 1〉 primary states of the chiral SU(2)2 theory

correspond to the Neveu-Schwarz sector of the 3-fermion theory, while the sector of the

|j = 1/2〉 primary state corresponds to the Ramond sector. ψa(x) has conformal dimen-

sion 1/2, so in the 3-fermion theory the half-integer dimensional operators are exactly the

fermionic operators. On the cylinder, fermionic operators have periodic boundary conditions

only in the Ramond sector, with anti-periodic boundary conditions in the Neveu-Schwarz

sector. Thus integrals of fermionic operators will be non-trivial only in the Ramond sector.

And indeed, this result holds in general for the half-integer dimensional operators of the

SU(2)2 theory we consider, so we will only take them into account in our set of conserved

quantities for the |j = 1/2〉 primary state sector, which corresponds to the Ramond sector,

of SU(2)2.

We will not work with the three fermions ψa(x) per se, however, but rather with bosonic
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spin-1 Kac-Moody (affine) primary operators φa(x) of conformal dimension ∆ = 1/2 that

possess identical “anti-commutation relations” within the chiral theory57 and satisfy

Ja(x) = − i
2
εabc : φbφc : (x). (4.2)

We can then additionally write down a current operator G(x) in terms of the φa(x) operators,

which has the same operator product expansion relations within the chiral theory as the

superconformal current operator G(x) (see, e.g., Refs. 47, 48, and 58):

G(x) =
i

6
εabc : φaφbφc : (x). (4.3)

G(x) has conformal dimension ∆i=0 = 3/2 (as it is composed of three of the ∆ = 1/2

operators φa(x)). Furthermore, G(x) is an SU(2) singlet. G(x) corresponds to the lowest-

level SU(2) singlet descendant in the |j = 1〉 primary sector, and is thus one of the fractional

dimension operators available in SU(2)2. The operators T (x), G(x), and combinations of

both and their derivatives will comprise the set of all of the operators Φi(x) we consider in

the SU(2)2 theory. These are explicitly listed up to conformal dimension ∆i = 6 in all the

columns of Table I. The left two columns comprise the integer dimensional operators, those

which contain an even number of half-integer dimensional factors (G(x) or its derivatives)

and hence are periodic in, and therefore found in, all sectors. The right column contains

the half-integer dimensional operators, which contain an odd number of factors of G(x) or

its derivatives, and are only available to us in the |j = 1/2〉 sector as discussed above. Note

that we again exclude total derivatives. The RT symmetry also requires that we again

exclude all operators with odd integer dimension ∆, though as was the case for SU(2)1, all

operators of odd integer dimension below ∆ = 6 for SU(2)2 will again be total derivatives

of even integer dimensional operators as well, and thus they are already excluded. G(x),

however, which has ∆i=0 = 3/2, is invariant under RT in the Ramond sector as discussed in

Appendix C 3. Thus, of the half-integer dimensional operators we consider, only (T∂G)(x),

where an odd number of derivatives are not multiplied by an i (which will become −i under

the anti-unitary RT ), will actually be wholly excluded from the entanglement Hamiltonian

due to the RT symmetry. This is indicated in Table I by a shaded cell.

For each of these operators Φi(x), we compute the mode-expanded form of the system size

`-independent integral H̃(i). (Recall that H̃(i) =
(
`

2π

)∆i−1
H(i), where ∆i is the conformal

dimension of Φi(x).) The mode-expanded forms of the H̃(i) can be found in Table IV
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of Appendix B. Using the mode-expanded forms for the H̃(i), Hentanglement of Eq. (3.5) is

diagonalized on the space of descendant states of each of the k + 1 CFT primary states of

SU(2)k, a description also found in Appendix B. For each primary state, this gives a method

for finding the entanglement spectrum of the corresponding sector of the CFT in terms of

the set of parameters {βi} of Eq. (3.5). As can be seen from Table I, this will give 4 free

parameters βi for the SU(2)1 case and 11 free parameters βi for the SU(2)2 case. To test the

ability of this method to fit the RSES data, we use a least-squares method to find the set

of parameters that lead to splittings that best fit the numerical data. Details on the fitting

procedure are found in Appendix D. The results of this fitting procedure are shown for a

number of data sets in the plots of the next section. Precise values of the parameters and

statistics of individual fits are found in Tables V and VI of Appendix E.

V. RESULTS

We present fits to four different sets of numerical entanglement spectrum data, of which

the first three exhibit the chiral SU(2)1 WZW CFT, characteristic of the Kalmeyer-Laughlin

spin liquid, while the last exhibits the chiral SU(2)2 WZW CFT, characteristic of a non-

Abelian chiral SU(2)2 spin liquid. In each case, we consider a certain number of low-lying

descendant levels of the numerical entanglement spectrum data, as typically, numerical

results may be less reliable as we get to higher entanglement energies.

A. Entanglement spectra containing an SU(2)1 WZW CFT

The first fit is to the numerical entanglement spectrum of the Kalmeyer-Laughlin chiral

spin liquid found in a Mott insulator on the kagome lattice with broken time-reversal symme-

try by Bauer et al. in Figure 4 of their 2014 paper, Ref. 15. Bauer et al. employed the method

of Ref. 59 to compute their spectrum, using infinite DMRG to optimize a variational MPS

state on a cylinder of circumference ` = 12 sites. The authors cite the observed degeneracies

and multiplets of the global SU(2) symmetry as evidence that the entanglement spectrum

is described by a chiral SU(2)1 CFT.15 Indeed, we discussed the chiral SU(2)1 countings in

Sec. II, accompanied by the depiction of this particular numerical entanglement spectrum in

Fig. 2. Our fit of the splittings of the first five descendant levels of the spectrum is seen in

20



Fig. 3. Note that the depiction of the SU(2) multiplets in Fig. 3, as well as our subsequent

plots of fits, differs from the depiction in Fig. 2. In Figure 2, the individual states of each

multiplet at fixed jz are depicted in each blue-shaded subtower. By contrast, in Fig. 3, each

spin-j SU(2) multiplet of dimension d = (2j+1) is depicted as a horizontal row of d markers

at the vertical coordinate corresponding to the entanglement energy of the multiplet. Mul-

tiplets are grouped by descendant level K. The associated countings of various dimensions

of multiplets at a given K in each of the integer (|j = 0〉) and half-integer (|j = 1/2〉)
sectors may be compared with Table II in Appendix A. For the Bauer et al. data set, the fits

are performed independently in both the integer and half-integer sectors.60 On the whole,

while not perfect, we see that the fits are fairly successful in explaining the 11 splittings

between the 12 multiplets in those levels with the 4 parameters available by considering the

coefficients of the integrals of the 4 operators up to dimension ∆ = 6 in the SU(2)1 theory

(see Table I). In particular, the fits match the relative positioning of the different multiplets

within each descendant level of the spectrum.

The second fit is to the numerical entanglement spectrum of the chiral spin liquid found

in a Haldane-Hubbard Mott Insulator on the honeycomb lattice by Hickey et al. in Figure

3 of their 2016 paper, Ref. 16. Hickey et al. used infinite DMRG as well, on a cylinder with

a circumference of ` = 8 sites. Also here, the degeneracies and multiplets of global SU(2)

symmetry were cited as evidence of a description of the observed entanglement by the SU(2)1

WZW CFT.16 Our fit of the splittings of the first five descendant levels of this spectrum

is seen in Fig. 4. For the Hickey et al. data set, we are able to very successfully fit both

integer and half-integer sectors simultaneously, with one set of 4 parameters. In particular,

the fit captures the relative positioning of the multiplets within each descendant level of the

spectrum, in both the integer and half-integer sectors. The 22 splittings of the 24 multiplets

of the first five levels in both the integer and half-integer sectors are explained with the 4

parameters available by considering the coefficients of the integrals of the 4 operators up to

dimension ∆ = 6 in the SU(2)1 theory (see Table I).

The third fit is to the entanglement spectrum of a particular PEPS on an infinite cylinder

by Hackenbroich et al. in their 2018 paper, Ref. 17. We fit the spectrum found in their Figure

14. Hackenbroich et al. worked with a cylinder of circumference ` = 8. In this spectrum

the authors cited the degeneracies and relative computed conformal weight of the |j = 0〉
and |j = 1/2〉 primary states as evidence of a description of the entanglement spectrum by
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a chiral SU(2)1 WZW CFT.17

Fig. 5 is our fit of the spectrum. We are able to fit both sectors of the Hackenbroich

et al. dataset simultaneously with great success, though a relative scale factor between the

two sectors is used due to their possibly differing velocities v in Eq. (2.3).17 We thus end

up using 5 parameters—the 4 parameters available by considering the coefficients of the

integrals of the 4 operators up to dimension ∆ = 6 in the chiral SU(2)1 theory (see Table

I), plus the relative scale factor, to fit the 22 differences between the multiplets in the first

five descendant levels (with 12 multiplets each) in both the integer and half-integer sectors.

The fit is quite good, and certainly captures the relative positioning of the multiplets within

each descendant level of the spectrum in both sectors.

The power of our approach was demonstrated by one phenomenon in the Hackenbroich

et al. data: the highest-energy multiplet in the highest descendant level that we fit in the

half-integer sector is not simply the next higher doublet at the same value of momentum,

as the Brillouin zone of the spectrum is “folded” in the half-integer sector (as compared to

the integer sector—momenta are multiples of 2π/4 instead of 2π/8).17 This leads data from

higher descendant levels to overlap with the data of the level we are trying to fit. Yet, by

fitting the integer sector, we were able to determine an estimate of the correct parameters

{βi} for the half-integer sector, as well. These parameters predicted where the final highest-

energy doublet in the half-integer sector could be found. Indeed, there was a doublet present

at that point in the entanglement spectrum, and so we were able to show (in Fig. 5) the

success of our fit for the Hackenbroich et al. dataset.
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FIG. 3. Our fit to the SU(2)1 entanglement spectrum data of Bauer et al. (Ref. 15) is shown in (a)

the integer sector (|j = 0〉 primary state and descendants) and (b) the half-integer sector (|j = 1/2〉

primary state and descendants). The original data is indicated by black +’s, while red ×’s mark

the fit produced by our approach. The black boxes indicate states with the same momentum, and

hence the same descendant level K above the corresponding primary state, while SU(2) multiplets

are grouped within each box. (The multiplet content of each box may be compared to Table II

in Appendix A.) We attempt to fit 11 differences between multiplets in the integer sector and

11 differences between multiplets in the half-integer sector. For each sector, our approach uses

4 parameters: 4 coefficients βi in Eq. (3.5) for the conserved quantities corresponding to the 4

distinct operators of ∆ ≤ 6 available in SU(2)1 found in the left column of Table I. The data was

computed with a cylinder of circumference ` = 12.15 The scales of the vertical entanglement energy

axes are normalized such that β(2π/`) = 1 [β(2π/`) being the coefficient of H̃L in Eq. (3.6)], with

the zero point appropriate to the conformal weight of the primary state for each sector.

23



+

+++

++++
++++

+++
++++

+++++
++++

×

×

× ×
× × ×

× ×
×

× ×

×

×

×
×

×

×
×

××

×

×

×
×

×

×
×

××

K=0

K=1

K=2

K=3

K=4

Hickey et al., integer sector

+
×
Data
Fit

0

1

2

3
E
nt
an
gl
em
en
te
ne
rg
y

(a)

++

++

++++++

++++
++

++
++++++

++++++ ++

×

×

× ×

×
×

×
× ×

×× ×

×

×
×

×

×

×

× ×

×
×

×
× ×

×× ×

×

×
×

×

K=0

K=1

K=2

K=3

K=4

Hickey et al., half-integer sector

+
×
Data
Fit

0

1

2

3

E
nt
an
gl
em
en
te
ne
rg
y

(b)

FIG. 4. Our fit to the SU(2)1 entanglement spectrum data of Hickey et al. (Ref. 16) is shown in (a)

the integer sector (|j = 0〉 primary state and descendants) and (b) the half-integer sector (|j = 1/2〉

primary state and descendants). The original data is indicated by black +’s, while red ×’s mark

the fit produced by our approach. The black boxes indicate states with the same momentum, and

hence the same descendant level K above the corresponding primary state, while SU(2) multiplets

are grouped within each box. (The multiplet content of each box may be compared to Table II

in Appendix A.) We attempt to fit 11 differences between multiplets in the integer sector and

11 differences between multiplets in the half-integer sector, i.e., a total of 22 differences. Fitting

both sectors simultaneously, our approach uses 4 parameters: 4 coefficients βi in Eq. (3.5) for the

conserved quantities corresponding to the 4 distinct operators of ∆ ≤ 6 available in SU(2)1 found

in the left column of Table I. The data was computed with a cylinder of circumference ` = 8.16

The scales of the vertical entanglement energy axes are normalized such that β(2π/`) = 1 [β(2π/`)

being the coefficient of H̃L in Eq. (3.6)], with the zero point appropriate to the conformal weight

of the primary state for each sector.
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FIG. 5. Our fit to the SU(2)1 entanglement spectrum data of Hackenbroich et al. (Ref. 17) is

shown in (a) the integer sector (|j = 0〉 primary state and descendants) and (b) the half-integer

sector (|j = 1/2〉 primary state and descendants). The original data is indicated by black +’s,

while red ×’s mark the fit produced by our approach. The black boxes indicate states with the

same momentum, and hence the same descendant level K above the corresponding primary state,

while SU(2) multiplets are grouped within each box. (The multiplet content of each box may

be compared to Table II in Appendix A.) We attempt to fit 11 differences between multiplets

in the integer sector and 11 differences between multiplets in the half-integer sector, i.e., a total

of 22 differences. Fitting both sectors simultaneously up to a scale factor, our approach uses 5

parameters: 4 coefficients βi in Eq. (3.5) for conserved quantities corresponding to the 4 distinct

operators of ∆ ≤ 6 available in SU(2)1 found in the left column of Table I, plus a relative scale

factor between the two sectors. The data was computed with a cylinder of circumference ` = 8.17

The scales of the vertical entanglement energy axes are normalized such that β(2π/`) = 1 [β(2π/`)

being the coefficient of H̃L in Eq. (3.6)], with the zero point appropriate to the conformal weight

of the primary state for each sector.

B. Entanglement spectra containing an SU(2)2 WZW CFT

The fourth and final set of fits is to the entanglement spectrum of a PEPS aimed at

representing a spin-1 chiral Heisenberg antiferromagnet defined on a square lattice by Chen

et al. in their 2018 paper, Ref. 18. The spectra we fit are those of their Figures 11 (c) and (d),

which display numerical entanglement spectra computed on a cylinder of circumference

` = 6.18 The authors obtained degeneracies and multiplet content consistent with a chiral
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SU(2)2 WZW CFT, as may be seen by comparison with the data of Table III of Appendix A.

Recall from Sec. II that the chiral SU(2)2 WZW CFT will have three (affine) primary states,

|j = 0〉, |j = 1/2〉, and |j = 1〉, each with an associated topological sector of descendant

states. The Chen et al. data does not contain a clear representation of the |j = 1〉 sector61.

We perform several fits to the Chen et al. data.

In the first pair of fits, depicted in Fig. 6 in the same format as the figures of Sec. V A, we

illustrate the necessity of including the conserved quantities corresponding to the half-integer

dimensional operators (found in the rightmost column of Table I) in the fit. To show this, we

fit only the three lowest descendant levels of the |j = 1/2〉 sector, by two different approaches.

In one approach, shown in Fig. 6(a), we use the conserved quantities corresponding to the

first three integer dimensional operators from Table I available in SU(2)2, up to ∆ = 4, which

are T (x), (TT )(x), and i(G∂G)(x), to fit the numerical spectrum. In the other approach,

shown in Fig. 6(b), we use the conserved quantities corresponding to the first three operators

available of both integer and half-integer dimension, up to ∆ = 7/2, which are G(x), T (x),

and (TG)(x), to fit the numerical spectrum. In both approaches, there are 3 parameters

available corresponding to the coefficients of the conserved integrals of the operators in

question, which are used to fit the 6 differences present in the data for the first three levels

of the |j = 1/2〉 sector. Yet it is clear from Fig. 6 that the second approach, which makes

use of the two half-integer dimensional operators, produces a far better fit.62

In the second fit, depicted in Fig. 7, we consider the first three descendant levels of both

(in Fig. 7(a)) the |j = 0〉 and (in Fig. 7(b)) the |j = 1/2〉 sectors in tandem. We employ

the conserved integrals of all integer and half-integer dimensional operators in the SU(2)2

theory (all three columns of Table I) up to ∆ = 4 to fit the numerical spectra. The 2

half-integer dimensional operators will contribute to the fit in the |j = 1/2〉 sector only,

while the 3 integer dimensional operators will contribute in both sectors. We thus fit the

4 differences between the multiplets of the first three levels of the |j = 0〉 sector and the

6 differences between the multiplets of the first three levels of the |j = 1/2〉 sector, for a

total of 10 differences simultaneously, with the 6 parameters available by considering the

coefficients of conserved integrals of the 5 operators up to dimension ∆ = 4 in Table I, plus

an additional relative scale factor between the two sectors. The fit is quite good in both

sectors and correctly captures the relative positioning of multiplets within each level of both

sectors.
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In the third and final fit, found in Fig. 8, we consider a simultaneous fit of the first

four descendant levels of both (in Fig. 8(a)) the |j = 0〉 and (in Fig. 8(b)) the |j = 1/2〉
sector with all 11 unshaded operators of Table I (up to ∆ = 6). As before, the half-integer

dimensional operators, of which there are now 4, will contribute in the |j = 1/2〉 sector only,

while the 7 integer dimensional operators will contribute to the fit in both sectors. This

fit attempts to account for 9 differences between multiplets in the |j = 0〉 sector and 14

differences between multiplets in the |j = 1/2〉 sector, for a total of 23 differences between

multiplets, using the 12 parameters available by considering the coefficients of conserved

integrals of the 11 included operators up to dimension ∆ = 6 in Table I, plus an additional

relative scale factor between the two sectors. The resulting fit is reasonable, especially in the

lower levels. In each of the sectors, though, there are instances where the relative ordering

of the multiplets has been changed in a few places in the higher levels.

That this occurs despite the use of all 11 operators with ∆ ≤ 6 indicates that, at higher

entanglement energies, the numerical entanglement spectrum for the particular system of

Chen et al. begins to differ slightly from our expectations for a topological state with an

entanglement spectrum exhibiting the chiral SU(2)2 WZW CFT. (This may be a consequence

of numerical limitations on the accuracy of the data at higher entanglement energies.) We

did also perform a slight modification of this last fit that included the integral of (T∂G)(x)

(the operator from Table I otherwise excluded due to the RT symmetry). The inclusion of

this additional integral did not result in a significant improvement of the quality of the fit,

consistent with the fact that the integral ought to be excluded. Taken together, the results

of the three fits in this subsection do demonstrate the necessity of including the fractional

conserved quantities, and in particular G0, in the chiral SU(2)2 entanglement spectrum.
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FIG. 6. Two fits to the SU(2)2 entanglement spectrum data of Chen et al. (Ref. 18) in the

sector of the |j = 1/2〉 primary state and descendants are shown. The original data is indicated

by black +’s, while red ×’s mark the fits produced by our approach. The black boxes indicate

states with the same descendant level K above the corresponding primary state, while states in

the same SU(2) multiplet are grouped within each box. (The multiplet content of each box may be

compared to Table III in Appendix A.) We attempt to fit the 6 differences between multiplets in

the 3 depicted levels of the |j = 1/2〉 sector, up to K = 2. The fits use 3 parameters corresponding

to the coefficients βi in Eq. (3.5) for the conserved quantities corresponding to, in (a), the 3 integer

dimensional operators with ∆ ≤ 4 available in SU(2)2, (T (x), (TT )(x), and i(G∂G)(x)), and,

in (b), the 3 integer and half-integer dimensional operators with ∆ ≤ 7/2 available in SU(2)2,

(G(x), T (x), and (TG)(x)). (See Table I.) The scales of the vertical entanglement energy axes are

normalized such that β(2π/`) = 1 [β(2π/`) being the coefficient of H̃L in Eq. (3.6)], with the zero

point appropriate to the conformal weight of the primary state for the sector.
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FIG. 7. A fit to the SU(2)2 entanglement spectrum data of Chen et al. (Ref. 18) is shown for the

first three levels (up to K = 2) in (a) the sector of the |j = 0〉 primary state and descendants and

(b) the sector of the |j = 1/2〉 primary state and descendants. The original data is indicated by

black +’s, while red ×’s mark the fit produced by our approach. The black boxes indicate states

with the same descendant level K above the corresponding primary state, while SU(2) multiplets

are grouped within each box. (The multiplet content of each box may be compared to Table III

in Appendix A.) We attempt to fit 4 differences in the |j = 0〉 sector and 6 differences in the

|j = 1/2〉 sector. Fitting both sectors simultaneously up to a relative scale factor, our approach

uses 6 parameters: 5 coefficients βi in Eq. (3.5) for conserved quantities corresponding to the 5

distinct operators of ∆ ≤ 4 available in SU(2)2 (see Table I), plus a scale factor, which corresponds

to the relative scale of the two sectors. The scales of the vertical entanglement energy axes are

normalized such that β(2π/`) = 1 [β(2π/`) being the coefficient of H̃L in Eq. (3.6)], with the zero

point appropriate to the conformal weight of the primary state for each sector.
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FIG. 8. A fit to the SU(2)2 entanglement spectrum data of Chen et al. (Ref. 18) is shown for the

first four levels (up to K = 3) in (a) the sector of the |j = 0〉 primary state and descendants and

(b) the sector of the |j = 1/2〉 primary state and descendants. The original data is indicated by

black +’s, while red ×’s mark the fit produced by our approach. The black boxes indicate states

with the same descendant level K above the corresponding primary state, while SU(2) multiplets

are grouped within each box. (The multiplet content of each box may be compared to Table III

in Appendix A.) We attempt to fit 9 differences in the |j = 0〉 sector and 14 differences in the

|j = 1/2〉 sector. Fitting both sectors simultaneously up to a relative scale factor, our approach

uses 12 parameters: 11 coefficients βi in Eq. (3.5) for included conserved quantities corresponding

to the 11 distinct operators of ∆ ≤ 6 available in SU(2)2 (see Table I), plus a scale factor, which

corresponds to the relative scale of the two sectors. The scales of the vertical entanglement energy

axes are normalized such that β(2π/`) = 1 [β(2π/`) being the coefficient of H̃L in Eq. (3.6)], with

the zero point appropriate to the conformal weight of the primary state for each sector.

VI. CONCLUSION AND OUTLOOK

The results of Sec. V demonstrate the success of our approach to quantitatively under-

standing splittings in low-lying numerical entanglement spectra entirely within the frame-

work of CFT, and thereby further support the chiral nature of the considered quantum

states. We also note that such a success of the fits applies even more so to the chiral topo-

logical PEPS data of Hackenbroich et al. (Fig. 5). The results for the PEPS data from Chen

et al., as well, are close to what we expect (Figs. 7 and 8), and these, as well as the results

shown in Fig. 6, clearly illustrate the necessity of including the integrals of the half-integer
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dimensional operators of Table I. Because we are able to reproduce the splittings of the re-

spective entanglement spectra at low energies, we are able to confirm, with more confidence

than based on the characteristic Li-Haldane countings of the chiral SU(2)1 or SU(2)2 WZW

CFT alone, that the PEPS entanglement spectra of Hackenbroich et al. and Chen et al., as

well as the non-PEPS entanglement spectra we consider from Bauer et al. and Hickey et al.,

reflect the presence of an underlying (2+1)-dimensional chiral topological theory. Where

the PEPS we considered are concerned, our analysis thus provides substantial support to

the claim of the chiral topological nature of the corresponding PEPS wavefunctions. As

mentioned, our analysis and approach also show the ability to help determine whether a

“no-go theorem” holds for interacting topological PEPS.

As numerical methods for calculating the entanglement spectra of chiral topological

states develop further, more data will become amenable to analysis by the approach de-

veloped in this work. The next target could perhaps be the chiral SU(2)3 spin-liquid state63,

known to possess non-Abelian anyonic excitations capable of supporting universal quantum

computation5,64. This system will require the understanding of generalizations of the con-

served quantities in this work, including those of half-integer dimension introduced in the

context of SU(2)2. The CFT of SU(2)3, however, is known to possess fractional conservation

laws65 (also referred to as “fractional supersymmetry”) which are a direct generalization of

the (actual, nonfractional) N = 1 supersymmetry used in the present work to handle the

SU(2)2 case. Based on the present work, it is presumably to be expected that these more

unusual fractional conservation laws will be needed to explain the splittings in the entangle-

ment spectrum of the chiral topological SU(2)3 spin-liquid. We leave the discussion of this to

future work. Beyond that, it may also become worthwhile to extend our approach to more

general SU(N)k spin-liquids such as those with N > 2, or SU(2)k spin-liquids with k > 3.

Most such extensions will also require understanding generalizations of the conserved quan-

tities discussed here, including those of fractional dimension, and potentially again including

those found in Ref. 65.
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Appendix A: Brief Review of Properties of SU(2)k

Here we expand somewhat on the structure of the chiral SU(2)k WZW theory that we

first discussed in Sec. II. We wish to understand the structure of the chiral SU(2)k WZW

Hilbert space in more detail. That Hilbert space is built up from the primary states. The

k+ 1 primaries of the SU(2)k theory can be thought of as SU(2) multiplets, so we can write

down states of each |j = i/2〉 primary (where i = 0, . . . , k) as states |j, jz〉 that correspond

to the 2j + 1 individual states with a particular jz within the primary spin-j multiplet.

These states of the primary spin-j multiplet will all share the same conformal weight given

by

hj =
j(j + 1)

k + 2
. (A1)

In the WZW theory, we can go beyond the modes Ln of T (x) defined in Eq. (2.2) and

define modes Ja−n of the (“affine”) SU(2) Noether current Ja(x) as well, writing

Ja(x) =
2π

`

∞∑
n=−∞

Ja−ne
2πinx/`. (A2)

These modes can be used to build up the chiral SU(2)k Hilbert space from the k+1 primary

multiplets. Descendant states can then be written down, of the form

Ja1
−n1
· · · Jam−nm

|j, jz〉. (A3)

Such a state will have descendant level K =
∑m

i=1 nm, and the spin-j primary of which

it is a descendant will have conformal weight h = hj. With these values of h and K, the

expression of Eq. (A3) then provides a more concrete realization of the state |h,K〉 discussed

in Eq. (2.4). Note that such a realization is not unique, leading to the degeneracies of

momentum and energy (considered as eigenvalues of kL and HL from Sec. II) present at

each descendant level in each primary sector of the SU(2)k theory. Even the states of

Eq. (A3) ought not to be considered distinct in general.36
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The distinct such states can be organized into SU(2) representations, or multiplets, of

various dimensions. The SU(2) multiplet content in the cases of the chiral SU(2)1 and SU(2)2

WZW CFTs can be calculated66 and is given up to K = 4 in Tables II and III, respectively.

These multiplets are preserved despite the spectral splittings by SU(2)-invariant conservation

laws studied in this work. The countings of the “Multiplet content” column of Table II can

be observed in low-lying entanglement spectra from the studies of chiral SU(2)1 spin liquids

(Refs. 15–17) in Figs. 2–5. The multiplets are written as representations of SU(2), with

the dimension d = (2j + 1) of the spin-j representation shown in bold. For example,

the 1 representation is the singlet (j = 0). The “# at jz = 0” and “# at jz = +1/2”

columns simply describe the number of multiplets at each descendant level K, since every

multiplet, even singlets (in the |j = 0〉 primary sector, wherein the multiplets have integer

spin) or doublets (in the |j = 1/2〉 primary sector, wherein the multiplets have half-integer

spin), has a single state at that value of jz. In Fig. 2 this can be seen by looking at the

central subtowers, which exhibit the 1-1-2-3-5 degeneracy in momentum, consistent with

these columns for Table II. In Figs. 3–5, these numbers are simply the number of multiplets

depicted in each box of level K. Since we fit the entanglement energies of the multiplets,

these are also the numbers of data points involved in the fit at each level K.

We have written down the same columns for the chiral SU(2)2 WZW CFT in Table III.

The countings of the “Multiplet content” column of Table III can be observed in low-lying

entanglement spectra from the study of the chiral SU(2)2 spin liquid (Ref. 18) in Figs. 6–8,

at least for the |j = 0〉 and |j = 1/2〉 primary sectors found in these spectra. The countings

of the |j = 1〉 sector are also included in Table III. The data of the “# at jz = 0” and “#

at jz = +1/2” columns (for the |j = 0〉 and |j = 1/2〉 primary sectors) is represented in

the number of multiplets depicted in each box of level K in Figs. 6–8, and again these data

represent the numbers of data points involved in the fit at each level K.

Appendix B: Calculation of the Conserved Quantities

To compute the values of the conserved quantities we will use in the GGE, we first write

them in terms of the modes Ln of T (x) defined by Eq. (2.2), and the modes Gn defined by
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K
|j = 0〉 primary sector |j = 1/2〉 primary sector

Multiplet content # at jz = 0 Multiplet content # at jz = +1/2

0 1 1 2 1

1 3 1 2 1

2 1 + 3 2 2 + 4 2

3 1 + 2(3) 3 2(2) + 4 3

4 2(1) + 2(3) + 5 5 3(2) + 2(4) 5

TABLE II. SU(2) multiplet content of the chiral SU(2)1 WZW CFT, in both the |j = 0〉 and |j =

1/2〉 primary sectors, listed by descendant level K. The multiplets are written as representations

of SU(2), with the dimension d = (2j+ 1) of the spin-j representation shown in bold. For example

the primary state multiplets are shown at ∆ = 0 as 1 and 2 (i.e. singlet and doublet), respectively.

The “#” columns indicate the total number of multiplets at each level, which corresponds to the

number of states at the indicated central jz value.

a similar mode expansion for the superconformal currents G(x) of Eq. (4.3):

G(x) =

(
2π

`

)3/2 ∞∑
m=−∞

G−me
2πimx/`, (B1)

where we will choose m ∈ Z + 1/2 if the conserved quantity is to be used in the Neveu-

Schwarz sector (the sector of descendants of the |j = 0〉 and |j = 1〉 primary states),

and m ∈ Z if the conserved quantity is to be used in the Ramond sector (the sector of

descendants of the |j = 1/2〉 primary state). The expressions we get are collected in Table

IV. For completeness, the table includes H̃(5), which is excluded from the entanglement

Hamiltonian by RT symmetry (indicated by the shading of the row), though we take the

associated coefficient β5 = 0 in the expression of the entanglement Hamiltonian as a linear

combination of conserved quantities in Eq. (3.5).

To find the spectral levels with our approach, we diagonalize the expression Eq. (3.5)

using these mode representations.67 This requires finding a basis to represent the descendant

states in each level of the conformal tower. For the SU(2)1 case, in particular, where we can

make use of Abelian bosonization, we can then represent the central jz = 0 or jz = +1/2

(depending on the sector) state of every descendant multiplet by a unique linear combination
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K
|j = 0〉 primary sector |j = 1/2〉 primary sector |j = 1〉 primary sector

Multiplet content # at jz = 0 Multiplet content # at jz = +1/2 Multiplet content # at jz = 0

0 1 1 2 1 3 1

1 3 1 2 + 4 2 1 + 3 2

2 1 + 3 + 5 3 2(2) + 2(4) 4 1 + 2(3) + 5 4

3 1 + 3(3) + 5 5 4(2) + 3(4) + 6 8 2(1) + 3(3) + 2(5) 7

4 3(1) + 4(3) + 3(5) 10 6(2) + 6(4) + 2(6) 14 3(1) + 6(3) + 3(5) + 7 13

TABLE III. SU(2) multiplet content of the chiral SU(2)2 WZW CFT, in the |j = 0〉, |j = 1/2〉, and

|j = 1〉 primary sectors, listed by descendant level K. The multiplets are written as representations

of SU(2), with the dimension d = (2j+ 1) of the spin-j representation shown in bold. For example

the primary state multiplets are shown at ∆ = 0 as 1, 2, and 3 (i.e. singlet, doublet, and

triplet), respectively. The “#” columns indicate the total number of multiplets at each level,

which corresponds to the number of states at the indicated central jz value.

of states with the form

J3
−n1
· · · J3

−n`
|j,+j〉 (B2)

where |j,+j〉 is the highest-weight state in the |j = 0〉 or |j = 1/2〉 primary SU(2) multiplets,

for some choice of positive integers n1 ≤ . . . ≤ n`.
68 The eigenvalue of L0 on the state

Eq. (B2) will be equal to hj + K, where hj is the eigenvalue of L0 on the primary state

|j,+j〉. (hj=0 = 0, while hj=1/2 = 1/4.) The descendant level K of the state is then

given by K =
∑`

i=1 ni. We then use the Virasoro and affine Lie commutation relations

along with the Sugawara form for Ln [the mode-expanded form of Eq. (2.1)] to evaluate

the mode expressions of Table IV corresponding to the integrals of the operators of the

leftmost column of Table I on the basis of states Eq. (B2). This is possible because these

mode expressions H̃(i) are exactly those in Table IV that include only Virasoro modes Ln.

The primary states of the chiral SU(2)1 WZW CFT are also Virasoro primary, in the sense

that Ln|j,+j〉 = 0 for all n > 0, which simplifies this process greatly. Diagonalizing an

arbitrary linear combination of the H̃(i) evaluated in that basis, we obtain an expression for

the splittings of the SU(2)1 conformal tower that we can fit to entanglement spectra.

It remains to identify each eigenvalue of the combined operator with a particular di-

mension of multiplet in the conformal tower. In the Abelian case, we take advantage of
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i ∆i Φi(x) H̃(i) =
(
`

2π

)∆i−1 1
2π

∫ `
0 Φi(x)dx

0 3/2 G(x) G0

1 2 T (x) L0 − c
24

2 7/2 (TG)(x)
∑

n>0(L−nGn +G−nLn) + L0G0 − c
24G0

3 4 (TT )(x) 2
∑

n>0 L−nLn + L2
0 − c

12L0 + c2

576

4 4 i(G∂G)(x) 2
∑

m>0mG−mGm

5 9/2 (T∂G)(x) i
∑

n>0 n(−L−nGn +G−nLn)

6 11/2 (G(TT ))(x)

∑
n1,n2≤0Gn2Ln1L−n2−n1 +

∑
n1>0,n2≤0Gn2L−n2−n1Ln1

+
∑

n1≤0,n2>0 Ln1L−n2−n1Gn2 +
∑

n1,n2>0 L−n2−n1Ln1Gn2

− c
12

∑
n>0(G−nLn + L−nGn)− c

12G0L0 + c2

576G0

7 11/2 (∂T∂G)(x)
∑

n>0 n
2(L−nGn +G−nLn)

8 6 (T (TT ))(x)

∑
n1+n2+n3=0 : Ln1Ln2Ln3 : +3

2

∑
n>0 n

2L−nLn + 3
2

∑
n>0 L1−2nL2n−1

− c
4

∑
n>0 L−nLn − c

8L
2
0 + c2

192L0 − c3

13824

9 6 (∂T∂T )(x) 2
∑

n>0 n
2L−nLn

10 6 i(T (G∂G))(x)

−∑m,n≤0(n+m)LnGmG−n−m +
∑

m>0,n≤0(n+m)LnG−n−mGm

−∑m≤0,n>0(n+m)GmG−n−mLn +
∑

m,n>0(n+m)G−n−mGmLn

− c
12

∑
m>0mG−mGm

11 6 i(∂G∂2G)(x) 2
∑

m>0m
3G−mGm

TABLE IV. Expressions for the size-independent parts H̃(i) of the corresponding locally conserved

quantities H(i) in terms of the Fourier modes Ln and Gn of the energy-momentum tensor T (x)

and the superconformal current G(x), respectively. The shaded row indicates that we will exclude

H̃(5) from fits on the basis of the RT symmetry. The indexa i denotes the quantity the parameter

βi refers to, useful for comparison to Tables V and VI. ∆i indicates the conformal dimension of

the operator Φi(x), which is integrated to give H(i). The symbols :: in the i = 6 row indicate

normal ordering by increasing subscripts n1, n2, n3. c is the central charge: c = 1 for SU(2)1, while

c = 3/2 for SU(2)2. Note that while H̃(i) with associated half-integer ∆i occur only in the Ramond

(|j = 1/2〉 primary) sector, leading to modes Gm with integer m, the H̃(i) with associated integer

∆i can occur in both the Neveu-Schwarz (|j = 0〉 and |j = 1〉 primary) and Ramond sectors, leading

to modes Gm with half-integer m in the Neveu-Schwarz sector and integer m in the Ramond sector.

Indices that are always integers have been denoted by n (or n1, etc.) above, while indices that

vary between integers and half-integers depending on the sector have been denoted by m.

a The index i should not be confused with the imaginary number i found in some entries.
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the symmetry of the conformal tower, and the fact that the mode expressions we use are

expressed solely in terms of Virasoro modes. It turns out that in the SU(2)1 theory, in

addition to the WZW primary states, the lowest-level descendant SU(2) multiplet of a given

dimension is also a Virasoro primary state.69 We can then write down an additional basis

similar to Eq. (B2) for the states of descendant multiplets that have jz = j+ i, for an integer

i ≥ 0:

J3
−n1
· · · J3

−n`
|j + i, j + i〉 , (B3)

where the notation |j + i, j + i〉 now denotes the SU(2) highest-weight state in the lowest-

level descendant spin-(j+ i) multiplet. Because the |j+ i, j+ i〉 states are Virasoro primary,

acting on the elements of this basis with the mode expressions of the conserved quantities

we need to evaluate in the SU(2)1 theory (composed solely of Virasoro modes) does not

require knowledge of the explicit form of the |j + i, j + i〉 state in terms of the modes of the

affine SU(2) current acting on the underlying WZW primary state |j〉. Each basis Eq. (B3)

at fixed i spans a section of the full SU(2)1 conformal tower with fixed jz = j + i. For

i = 0, jz = j, so the basis Eq. (B3) is simply the original Abelian basis Eq. (B2). The

number of such bases at fixed i in which an eigenvalue of the conserved quantities occurs

then determines the dimension of the SU(2) multiplet associated to that eigenvalue: if the

eigenvalue occurs in s such bases in addition to Eq. (B2), the multiplet is a spin-(j + s)

multiplet.

For the calculation in the SU(2)2 theory, we have to use non-Abelian bosonization, and so

we can no longer use the Abelian basis Eq. (B2). Instead of building a similar non-Abelian

basis from the modes Ja−n, we take the 3-fermion theory point of view, though instead making

use of the φa(x) of Eq. (4.2). We can define modes φa−m by

φa(x) =

(
2π

`

)1/2 ∞∑
m=−∞

φa−me
2πimx/`. (B4)

One non-Abelian basis is then

φa1
−m1
· · ·φa`−m`

|σ〉 , (B5)

where σ ∈ {NS,R} corresponds to the ground state of the Neveu-Schwarz or Ramond

sectors, respectively. If σ = NS, mi ∈ Z + 1/2, whereas if σ = R, mi ∈ Z. In either

case, ai ∈ {1, 2, 3}. The Neveu-Schwarz sector of this theory corresponds to the |j = 0〉
and |j = 1〉 primary sectors of the SU(2)2 WZW CFT: states with an even number of φa−m
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represent the descendants (by action of the affine current algebra) of the |j = 0〉 primary

state, while states with an odd number of φa−m represent the descendants of the |j = 1〉
primary state. The Ramond sector corresponds to the descendants of the |j = 1/2〉 primary

state. The eigenvalue of L0 on a state in the basis Eq. (B5) is given by hσ +
∑`

i=1mi, where

hσ = hσ=NS = 0 for states in the Neveu-Schwarz sector, and hσ = hσ=R = 3/16 for states

in the Ramond sector. The descendant level K of that state is then found by subtracting

off the eigenvalue hj of L0 of the corresponding primary state |j〉. For states in the |j = 0〉
and |j = 1/2〉 primary state sectors, this is simply K =

∑`
i=1mi, since hj=0 = hσ=NS and

hj=1/2 = hσ=R. For the |j = 1〉 primary state sector, we have hj=1 = 1/2 = hNS + 1/2, so

the level K of the descendant state is given by K =
∑`

i=1mi − 1/2.

To obtain a basis that more directly reflects the multiplet structure of the theory, however,

we diagonalize the operator J3
0 [which can be expressed in terms of φam modes by the relation

Eq. (4.2)] on the basis Eq. (B5) and use those eigenstates as the basis. The eigenvalues of

J3
0 can be thought of as jz quantum numbers. We can then diagonalize linear combinations

Eq. (3.5) of the conserved quantities corresponding to the mode representations of Table IV

(which can be algorithmically re-written in terms of the φam modes) in each of the fixed-jz

sectors formed by that basis. The presence of a given eigenvalue across 2s+1 fixed-jz sectors

is used to associate that eigenvalue with a spin-s multiplet.
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Appendix C: RT Symmetry Mechanism

x1

x2

A

Ā

R

FIG. 9. A truncated representation of the infinite cylindrical geometry we consider is shown in

blue, along with a diagram of the spatial reflection R. R reflects the cylinder about the violet

plane, mapping regions A and Ā to themselves. The coordinate x1 is the compactified coordinate

around the cylinder, while the coordinate x2 denotes spatial position along the cylinder. The

entanglement cut lies along the spatial circle x2 = 0.

1. The RT Symmetry on a Cylinder

We consider a chiral topological state arranged in the cylindrical geometry of Fig. 9. The

infinite cylinder is bipartitioned into two regions A and Ā, with an entanglement cut between

them. The coordinate x1 is the compactified spatial coordinate around the cylinder, which

has circumference `, while the coordinate x2 denotes spatial position along the cylinder. The

region A is thus the half-cylinder x2 ≥ 0, while the region Ā is the half-cylinder x2 < 0.

The entanglement cut lies along x2 = 0. We can then define an orientation-reversing spatial

transformation that preserves the position of the entanglement cut:

R : (x1, x2) 7→ (−x1, x2) (C1)

R reflects the cylinder about the violet plane in Fig. 9, mapping region A into region A and

region Ā into region Ā.

This reflection reverses the orientation of the cylinder, so it inverts the chirality of the

chiral topological state, in the sense that, among other things, the associated chiral edge

modes, if one were to physically cut the cylinder along the entanglement cut, would reverse

their direction of flow. We can restore the system to its original state if we follow spatial
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reflection with a time-reversal transformation T , which will also reverse the direction of flow

of the chiral edge modes. This gives rise to the discrete symmetry we will consider, RT ,

under which we consider our system to be invariant.

2. The RT Symmetry in the PEPS

At the level of the square-lattice PEPS wavefunctions we consider in the SU(2)1 (Ref. 17)

and SU(2)2 (Ref. 18) cases, we can see the RT invariance explicitly. The projectors onto

the PEPS, which are the building blocks of the PEPS wavefunctions, take the form of either

A1 + iA2 or B1 + iB2, where A1, A2, B1, and B2 are linear combinations of projectors that

transform like the A1, A2, B1, and B2 irreducible representations, respectively, under the

actions of the elements of C4v point group of the square lattice.70 The consequence of this

is that under the action of R, we have

A1 7→ A1 A2 7→ −A2 B1 7→ B1 B2 7→ −B2. (C2)

At the same time, A1, A2, B1, and B2 are all real, and therefore invariant under T . Thus

the only effect of the antiunitary T is to conjugate the i in A1 + iA2 or B1 + iB2:

A1 + iA2 7→ A1 − iA2 B1 + iB2 7→ B1 − iB2. (C3)

Thus A1 + iA2 and B1 + iB2 are both invariant under RT .

3. The Action of RT Symmetry on the Conserved Quantities of the Entanglement

Hamiltonian

We thus see that whether we think of an abstract chiral topological state or the concrete

PEPS we are working with, we will have invariance of the overall density matrix ρ under

RT . Since the RT symmetry preserves ρ and maps A 7→ A and Ā 7→ Ā, we can see that the

reduced density matrix ρA = TrĀ ρ, which may be compared to Eq. (3.4), will be preserved

under RT . Hence, the entanglement Hamiltonian Hentanglement = − ln ρA, Eq. (3.5) in our

case, should likewise be invariant under RT . As a consequence, we demand that the H(i)

of Eq. (3.5) satisfy

(RT )H(i)(RT )−1 = H(i). (C4)
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We can deduce the action of RT on the H(i) by considering its action on the modes of the

various operators. First, we consider the effect of RT on the left-moving energy-momentum

tensor T (t, x), the energy-momentum tensor of our chiral theory, expressed as a function

of the time coordinate t and compact spatial coordinate x (x1 in the notation of Fig. 9,

since T (t, x) is an operator in the (1 + 1)-dimensional theory along the cut). Conjugating

by spatial reflection R alone, we have that

RT (t, x)R−1 = T (t, `− x) = T (t,−x) (C5)

RT (t, x)R−1 = T (t, `− x) = T (t,−x), (C6)

where T (t, x) indicates the energy-momentum tensor of the right-moving theory, and we have

used the spatial periodicity of T (t, x) and T (t, x) around the cylinder in the last equality.

Likewise, time reversal gives

T T (t, x)T −1 = T (−t, x) (C7)

T T (t, x)T −1 = T (−t, x). (C8)

We can then use the scaling property of the ∆ = 2 operator T (t, x) to see that

(RT )T (t, x)(RT )−1 = T (−t,−x) = (−1)2T (t, x) = T (t, x) (C9)

(RT )T (t, x)(RT )−1 = T (−t,−x) = (−1)2T (t, x) = T (t, x). (C10)

Thus T (t, x), and hence the T (x) we have considered at fixed time, remains invariant under

conjugation by RT . By similar logic, we have for the affine SU(2) currents Ja(t, x) that

(RT )Ja(t, x)(RT )−1 = Ja(−t,−x) = (−1)1Ja(t, x) = −Ja(t, x) (C11)

(RT )J
a
(t, x)(RT )−1 = J

a
(−t,−x) = (−1)1J

a
(t, x) = −Ja(t, x), (C12)

where in the last equalities of Eq. (C11) and Eq. (C12) we have used the scaling property

of the ∆ = 1 operator Ja(t, x).

Now the invariance of T (x) extends to its modes,71 and so we have

(RT )Ln(RT )−1 = Ln. (C13)

From Eq. (C11) we can likewise conclude that the modes Jan of Eq. (A2) will obey

(RT )Jan(RT )−1 = −Jan (C14)
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under conjugation by RT .

We observe that Eq. (C13) and Eq. (C14) are consistent with the commutation relations36

of the Jan,

[Jan, J
b
m] = iεabcJ

c
n+m +

k

2
nδn+m,0, (C15)

and the Sugawara relation Eq. (2.1). Eq. (2.1) and Eq. (C13) require that we must have

one of (RT )Jan(RT )−1 = ±Jan, but only the minus sign of Eq. (C14) is also consistent with

Eq. (C15). This is due to the anti-unitarity of RT , which causes (RT )i(RT )−1 = −i to

flip the sign of the i upon conjugation of both sides of Eq. (C15) by RT . In the |j = 1/2〉
primary sector, Ja0 acts36 on the |j = 1/2〉 doublet like σa/2, where σa is the ath Pauli

matrix,72 and we have

Ja0 |j = 1/2〉α =
σaβα
2
|j = 1/2〉β, (C16)

where |j = 1/2〉α, for α = ±, indicates the |1/2,±1/2〉 state [in the notation of Eq. (B2)]

within the |j = 1/2〉 doublet.

We now examine the effect of RT on the φa0 modes. Group theory guarantees that the

φa0 modes act36 on the |j = 1/2〉 primary state as σa/
√

2.73 Up to normalization, this is the

same as Eq. (C16), and so we see that we must also have

(RT )φa0(RT )−1 = −φa0, (C17)

since the Ja0 obey Eq. (C14). The φan satisfy commutation relations with the modes Ln of

the energy-momentum tensor,

[Ln, φ
a
m] = −

(n
2

+m
)
φan+m. (C18)

When m = 0, this becomes

[Ln, φ
a
0] = −n

2
φan. (C19)

From Eq. (C13) and Eq. (C17), we know how the left hand side of Eq. (C19) transforms,

and therefore it follows that for integer indices n,

(RT )φan(RT )−1 = −φan, (n ∈ Z). (C20)

Note that the derivation of Eq. (C20) relies upon n ∈ Z, i.e., that we are in the |j = 1/2〉
primary sector, which is the Ramond sector for the φan. This is because the indices of the Ln

in Eq. (C19) can only take integer values. In the |j = 0〉 and |j = 1〉 primary sectors, which
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are the Neveu-Schwarz sector for the φan, the indices of the φan will instead take half-integer

values. There the fractional dimension operators will be anti-periodic in space, and so the

conjugation by R will have the opposite sign.74 Thus we instead obtain

(RT )φan(RT )−1 = φan, (n ∈ Z + 1/2). (C21)

From Eqs. (4.3), (C20), and (C21), we thus deduce that the superconformal current modes

Gn satisfy

(RT )Gn(RT )−1 = Gn, (n ∈ Z), and (C22)

(RT )Gn(RT )−1 = −Gn, (n ∈ Z + 1/2), (C23)

in the Ramond and Neveu-Schwarz sectors, respectively.

Taking Eqs. (C13) and (C22) into account, we can see that of the conserved quantities

in Table IV, only H(5) (considered, of necessity, in the Ramond sector) will fail to sat-

isfy Eq. (C4), due to the effect of the anti-unitarity of RT on the imaginary coefficient.

This analysis is done in terms of the modes, useful for considering the conserved quantities

themselves, but the translation to the corresponding local operators of which they are the

integrals (i.e., the contents of Table I) is straightforward.

Appendix D: Discussion of Fitting Algorithm

Above, we have discussed how we compute the splittings of entanglement spectra of chiral

topological states that feature an SU(2)1 or SU(2)2 WZW CFT in the entanglement spectrum

by incorporating the linear combination of terms with conserved integrals of irrelevant local

operators Eq. (3.5). We now discuss how we determine the optimal values of the parameters

βi in that linear combination.

For a given set of numerical entanglement spectrum data, we choose the GGE parameters

βi that best fit that spectrum. Within each topological sector of the entanglement spectrum,

we calculate the eigenvalues of the linear combination of operators as a function of the βi

and order those eigenvalues in increasing order of, first, the associated descendant level,

then multiplet dimension, and finally value. We write the `th element of that ordered list

as ξfit
` ({βi}). We order the actual entanglement spectrum data by the same criteria, and

write the `th element of that ordered list as ξdata
` . We can then write a fitting function of
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the chosen GGE parameters in the |j〉 primary sector:

Rj ({βi}) =
∑
`

[
ξdata
` − ξfit

` ({βi})
]2
W`, (D1)

where W` is a weight associated to the ξ`. We set the weights W` so that the states at each

descendant level have, collectively, the same weight in the fit, with W` ∝ 1
N∆`

, where N∆ is

the number of states at descendant level ∆ (i.e., the corresponding counting from the “#”

column of Table II or III of Appendix A), and ∆` is the descendant level of the `th state

from the spectral data. The weights W` are normalized, however, so that
∑

`W` = 1.

We then minimize either the individual Rj ({βi}) for each sector of descendants of

each primary state |j〉, or, in the case of a simultaneous fit of multiple sectors, the sum∑
j Rj ({βi}) of the Rj ({βi}) over all the relevant sectors. The method used for minimiza-

tion is Mathematica’s NMinimize function. The results of this minimization are the plotted

results of Sec. V, Figs. 3–8. The corresponding values of the β̃i can be found in Tables V–VI

of Appendix E.

We note that the NMinimize function may not always find the exact global minimum of

the function that we attempt to minimize. We believe, however, that the minimizing sets of

β̃i reported here reflect local minima which are representative, in the sense that the globally

minimal fits would not be substantial improvements in fitting the data. In cases where we

do obtain very good fits, this is necessarily true. But even in the more difficult case of the

SU(2)2 data from Chen et al., e.g., in Fig. 8, the consistency of our results with the exact

RT symmetry, as described in Sec. V B, gives us confidence in this conclusion.

Appendix E: Fitting Parameter Data

Tables V and VI exhibit the numerical values of the parameters that were actually used

in our approach to generate the best-fit results of the figures of Sec. V. Since our calcula-

tions on the CFT Hilbert space are done using the size `-independent integrals of motion

H̃(i) =
(
`

2π

)∆i−1
H(i) (enumerated in Table IV) we end up computing correspondingly size-

dependent parameters β̃i =
(

2π
`

)∆i−1
βi. Essentially, we rewrite Eq. (3.6) as

Hentanglement − const. = β̃H̃(1) +
∞∑
i 6=1

β̃iH̃
(i). (E1)
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To remove arbitrary factors of scale, the β̃i, which determine the splitting within a descen-

dant level, have been normalized by dividing by β̃, which is the parameter that determines

the distance between descendant levels as the coefficient of H̃(1) = `
2π
HL in Eq. (E1). Tables

V and VI also note the value of the corresponding fitting function Rj ({βi}) of Eq. (D1) for

the best fit that was achieved for the given data. Since Rj ({βi}) is a sum of the squares of

the distances between the data and our fit, we have normalized Rj ({βi}) by dividing by β̃2.

Data source Figure Size ` Sector Rj ({βi}) β̃3 β̃8 β̃9

Bauer et al. (Ref. 15) Fig. 3 12
|j = 0〉 0.00201 -0.0733 0.00283 0.00401∣∣j = 1

2

〉
0.00535 -0.0423 0.000408 0.00452

Hickey et al. (Ref. 16) Fig. 4 8
|j = 0〉 0.000482

-0.0313 0.000970 0.000441∣∣j = 1
2

〉
0.000609

Hackenbroich et al. (Ref. 17) Fig. 5 8
|j = 0〉 0.00222

-0.0554 0.00698 -0.00211∣∣j = 1
2

〉
0.00136

TABLE V. The values of the fitting function Rj ({βi}), along with the associated normalized

numerical values of the β̃i (where β̃i is the parameter corresponding to the ith conserved quantity

of Table IV) that were calculated for the best fits to the SU(2)1 data of Sec. V A. The fits to

the data of Hickey et al. and Hackenbroich et al. were performed simultaneously in both sectors,

minimizing the sum of the Rj ({βi}), and so the parameter values of the β̃i are the same in both

sectors for those fits.
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Figure Sector Rj ({βi}) β̃0 β̃2 β̃3 β̃4 β̃5 β̃6 β̃7 β̃8 β̃9 β̃10 β̃11

Fig. 6(a)
∣∣j = 1

2

〉
0.00727 — — 0.0045 -0.03 —

Fig. 6(b)
∣∣j = 1

2

〉
0.00055 0.17 -0.018 — — —

Fig. 7
|j = 0〉 0.00043 — —

-0.0061 -0.022 —∣∣j = 1
2

〉
0.00013 0.17 -0.033

Fig. 8
|j = 0〉 0.00142 — —

-0.049 -0.036
— — —

0.006 0.013 0.016 -0.009∣∣j = 1
2

〉
0.00174 0.19 -0.064 0a 0.01 0.008

a We set β̃5 = 0 due to the exclusion of H̃(5) by the RT symmetry.

TABLE VI. The values of the fitting function Rj ({βi}), along with the associated normalized

numerical values of the β̃i (where β̃i is the parameter corresponding to the ith conserved quantity

of Table IV) that were calculated for the best fits to the SU(2)2 data of Sec. V B. Note the

substantial improvement in Rj ({βi}) of Fig. 6(b) relative to Fig. 6(a) that was achieved by fitting

with the half-integer dimensional conserved quantities H̃0 and H̃2 instead of the integer dimensional

conserved quantities H̃3 and H̃4. The fits of Figs. 7 and 8 were performed simultaneously in both

sectors, minimizing the sum of the Rj ({βi}), and so the parameter values of the β̃i corresponding

to integer dimensional conserved quantities are the same in both sectors for those fits. Half-integer

dimensional conserved quantities were only used for the |j = 1/2〉 sector, so the corresponding β̃i

are marked by — in the |j = 0〉 sector. The data used for these fits is from Chen et al. (Ref. 18),

with size ` = 6.
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to that between the two spatial regions A and Ā above), and the reduced density matrix in our

Eqs. (3.2) and (3.4) is obtained by performing a trace over the right-moving degrees of freedom.

48

http://dx.doi.org/10.1103/PhysRevB.91.224431
http://dx.doi.org/10.1103/PhysRevB.96.121118
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://arxiv.org/abs/1008.5137
http://dx.doi.org/ https://doi.org/10.1016/0550-3213(84)90374-2
http://dx.doi.org/10.1103/PhysRevLett.96.136801
http://stacks.iop.org/1742-5468/2007/i=06/a=P06008


This density matrix reflects the left-right entanglement of the boundary state |Ga〉.
44 R. Sasaki and I. Yamanaka, Adv. Stud. Pure Math. 16, 271 (1988).

45 V. V. Bazhanov, S. L. Lukyanov, and A. B. Zamolodchikov, Commun. Math. Phys. 177, 381

(1996).

46 P. P. Kulish and A. M. Zeitlin, Nucl. Phys. B 709, 578 (2005).

47 G. Mussardo, G. Sotkov, and M. Stanishkov, Nucl. Phys. B 305, 69 (1988).

48 D. Friedan, Z. Qiu, and S. Shenker, Phys. Lett. B 151, 37 (1985).

49 L. Dixon, P. Ginsparg, and J. Harvey, Nucl. Phys. B 306, 470 (1988).

50 The constant below satisfies “const. = lnZa”, where 1/Za is the factor by which the right hand

side of (3.4) has to be multiplied to ensure the proper normalization of the density matrix on

the left hand side. In general, this constant has a complicated dependence on the coefficients βi.

However, if in the limit of large system size ` the entanglement Hamiltonian is dominated by

the Hamiltonian H̃L of the CFT [compare (3.6)], then this constant is known10,78,79 to take the

form “const. = α` − γa”, where α is nonuniversal and γa is related to the quantum dimension

of the topological excitation a.

51 See also Appendix C 3.

52 The modes Gn of the superconformal current, together with the Virasoro modes Ln of the

energy-momentum tensor, obey the N = 1 superconformal algebra48,58 at central charge c =

3/2. In particular, {Gm, Gn} = 2Lm+n + c
3

(
m2 − 1

4

)
δm,−n, so in particular, G2

0 = {G0,G0}
2 =

L0 − c
24 . Therefore the eigenvalues of G0 must in every case be one of ±

√
L0 − c

24 .

53 J. Haegeman and F. Verstraete, Annu. Rev. Conden. Ma. P. 8, 355 (2017).

54 As will be seen later, the SU(2)2 entanglement spectrum data available to us from Ref. 18 only

includes clearly observable countings for the |j = 0〉 and |j = 1/2〉 primary sectors, so those will

be the only sectors of SU(2)2 we fit in Sec. V B. This does not in any way preclude our use of

the integrals of operators that correspond to descendant states in the |j = 1〉 primary sector.

55 A. B. Zamolodchikov and V. A. Fateev, Sov. J. Nucl. Phys. 43, 657 (1986).

56 P. Goddard and D. Olive, Int. J. Mod. Phys. A 01, 303 (1986).

57 In contrast to the ψa(x) and their antichiral counterparts ψ̄a(x), which anticommute with each

other, φa(x) and φ̄a(x) actually commute with each other. Within the chiral (antichiral) theory,

though, φa(x) and ψa(x) (φ̄a(x) and ψ̄a(x)) will behave the same way in correlation functions

(see, e.g., Ref. 80.).

49

http://dx.doi.org/10.2969/aspm/01610271
http://dx.doi.org/10.1007/BF02101898
http://dx.doi.org/10.1007/BF02101898
http://dx.doi.org/ https://doi.org/10.1016/j.nuclphysb.2004.12.031
http://dx.doi.org/https://doi.org/10.1016/0550-3213(88)90686-4
http://dx.doi.org/10.1016/0370-2693(85)90819-6
http://dx.doi.org/10.1016/0550-3213(88)90011-9
http://dx.doi.org/10.1146/annurev-conmatphys-031016-025507
http://dx.doi.org/10.1142/S0217751X86000149


58 J. Cohn and D. Friedan, Nucl. Phys. B 296, 779 (1988).

59 L. Cincio and G. Vidal, Phys. Rev. Lett. 110, 067208 (2013).

60 Attempts to fit both sectors simultaneously resulted in some of the very highest-energy multi-

plets, in the highest descendant level considered, not agreeing with our expectations based on

the set of parameters that successfully fit the low-energy part of the spectrum.

61 The states in this sector can be thought of possessing odd fermion parity in SU(2)2, as opposed

to the states in the |j = 0〉 sector (see, e.g., the discussion in Sec. IV). Perhaps this might be

related to the fact that they do not seem to be visible in the data.

62 Observe that, for example, the first method is not able to lift the degeneracy of even the lowest

excited momentum state at descendant level K = 1, while the second method achieves that

goal with ease.

63 N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999).

64 Z. Wang, Topological Quantum Computation, CBMS Regional Conference Series in Mathematics

No. 112 (American Mathematical Society, Providence, RI, 2010).

65 C. Ahn, D. Bernard, and A. Leclair, Nucl. Phys. B 346, 409 (1990).

66 S. Kass, R. Moody, J. Patera, and R. Slansky, Affine Lie Algebras, Weight Multiplicities, and

Branching Rules, Vol. 2 (University of California Press, Berkeley, 1990).

67 Strictly, we ignore the constant terms in the expressions of Table IV, because each will shift

every state in the spectrum by the exact same amount, and therefore none of these terms will

affect the splittings.
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