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JOINT ERGODICITY OF FRACTIONAL POWERS OF PRIMES

NIKOS FRANTZIKINAKIS

Abstract. We establish mean convergence for multiple ergodic averages with iterates
given by distinct fractional powers of primes and related multiple recurrence results. A
consequence of our main result is that every set of integers with positive upper density
contains patterns of the form {m,m+[pan],m+[pbn]}, where a, b are positive non-integers
and pn denotes the n-th prime, a property that fails if a or b is a natural number. Our
approach is based on a recent criterion for joint ergodicity of collections of sequences
and the bulk of the proof is devoted to obtaining good seminorm estimates for the
related multiple ergodic averages. The input needed from number theory are upper
bounds for the number of prime k-tuples that follow from elementary sieve theory
estimates and equidistribution results of fractional powers of primes in the circle.

1. Introduction and main results

1.1. Introduction. Given an ergodic measure preserving system (X,µ, T ) and functions
f, g ∈ L∞(µ), it was shown in [6] that for distinct a, b ∈ R+ \ Z we have

(1) lim
N→∞

1

N

N
∑

n=1

T [na]f · T [nb]g =

∫

f dµ ·
∫

g dµ

in L2(µ).1 An immediate consequence of this limit formula is that for every (not neces-
sarily ergodic) measure preserving system and measurable set A, we have

(2) lim
N→∞

1

N

N
∑

n=1

µ(A ∩ T−[na]A ∩ T−[nb]A) ≥ µ(A)3.

Examples of periodic systems show that (1) and (2) fail if either a or b is an integer
greater than 1. Using the Furstenberg correspondence principle [10, 11], it is easy to
deduce from (2) that every set of integers with positive upper density contains patterns
of the form

{m,m+ [na],m+ [nb]}
for some m,n ∈ N.

The main goal of this article is to establish similar convergence and multiple recurrence
results, and deduce related combinatorial consequences, when in the previous statements
we replace the variable n with the n-th prime number pn. For instance, we show in
Theorem 1.1 that if a, b ∈ R+ are distinct non-integers, then

(3) lim
N→∞

1

N

N
∑

n=1

T [pan]f · T [pbn]g =

∫

f dµ ·
∫

g dµ
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1Throughout, with (X,µ, T ) we mean a probability space (X,X , µ) together with an invertible, mea-

surable, and measure-preserving T : X → X. The system is ergodic if the only T -invariant sets in X
have measure 0 or 1. If f ∈ L∞(µ), with Tnf we denote the composition f ◦Tn, where Tn := T ◦ · · · ◦T .

1

http://arxiv.org/abs/2107.02669v2


JOINT ERGODICITY OF FRACTIONAL POWERS OF PRIMES 2

in L2(µ). We also prove more general statements of this sort involving two or more
linearly independent polynomials with fractional exponents evaluated at primes (related
results for fractional powers of integers were previously established in [4, 6, 26]).

If a, b ∈ N are natural numbers, then (3) fails because of obvious congruence obstruc-
tions. On the other hand, using the method in [9] it can be shown that if a, b ∈ N are
distinct, then (3) does hold under the additional assumption that the system is totally er-
godic, see also [19, 20] for related work regarding polynomials in R[t] evaluated at primes.
The main idea in the proof of these results is to show that the difference of a modification
of the averages in (3) and the averages (1) converges to 0 in L2(µ). This comparison
method works well when a, b are positive integers, since in this case one can bound this
difference by the Gowers uniformity norm of the modified von Mangoldt function Λ̃N

(see [9, Lemma 3.5] for the precise statement), which is known by [14] to converge to 0 as
N → ∞. Unfortunately, if a, b are not integers this comparison step breaks down, since
it requires a uniformity property for Λ̃N in which some of the averaging parameters lie in
very short intervals, a property that is currently not known. An alternative approach for
establishing (3) is given by the argument used in [6] to prove (1). It uses the theory of
characteristic factors that originates from [16] and eventually reduces the problem to an
equidistribution result on nilmanifolds. This method is also blocked, since we are unable
to establish the needed equidistribution properties on general nilmanifolds.2

Our approach is quite different and is based on a recent result of the author from
[8] (see Theorem 2.1 below); it implies that in order to verify (3), it suffices to obtain
suitable seminorm estimates and equidistribution results on the circle (versus the general
nilmanifold that the method of characteristic factors requires). The needed equidistri-
bution property follows from [2] (see Theorem 2.2 below) and the bulk of this article is
devoted to the rather tricky proof of the seminorm estimates (see Theorem 1.4 below).

1.2. Main results. To facilitate discussion we use the following definition from [8].

Definition. We say that the collection of sequences b1, . . . , bℓ : N → Z is jointly ergodic,
if for every ergodic system (X,µ, T ) and functions f1, . . . , fℓ ∈ L∞(µ) we have

lim
N→∞

1

N

N
∑

n=1

T b1(n)f1 · . . . · T bℓ(n)fℓ =

∫

f1 dµ · . . . ·
∫

fℓ dµ

in L2(µ).

For instance, the identities (1) and (3) are equivalent to the joint ergodicity of the
pairs of sequences {[na], [nb]} and {[pan], [pbn]} when a, b ∈ R+ are distinct non-integers.

We are going to establish joint ergodicity properties involving the class of fractional
polynomials that we define next.

Definition. A polynomial with real exponents is a function a : R+ → R of the form
a(t) =

∑r
j=1 αjt

dj , where αj ∈ R and dj ∈ R+, j = 1, . . . , r. If d1, . . . , dr ∈ R+ \ Z, we
call it a fractional polynomial.

The following is the main result of this article:

Theorem 1.1. Let a1, . . . , aℓ be linearly independent3 fractional polynomials. Then the
collection of sequences [a1(pn)], . . . , [aℓ(pn)] is jointly ergodic.

In particular, this applies to the collection of sequences [nc1 ], . . . , [ncℓ ] where c1, . . . , cℓ ∈
R+\Z are distinct. We remark also that the linear independence assumption is necessary
for joint ergodicity. Indeed, suppose that a1, . . . , aℓ is a collection of linearly depended

2For polynomials with integer degrees the needed equidistribution property can be verified using a
comparison method that again breaks down when the degrees are fractional.

3Henceforth, when we say “linearly independent” we mean linearly independent over R.
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sequences. Then c1a1+· · ·+cℓaℓ = 0 for some c1, . . . , cℓ ∈ R not all of them 0. After mul-
tiplying by an appropriate constant we can assume that at least one of the c1, . . . , cℓ is not
an integer and maxi=1,...,ℓ |ci| ≤ 1/(10ℓ). Then c1[a1(n)] + · · ·+ cℓ[aℓ(n)] ∈ [−1/10, 1/10]
for all n ∈ N, and this easily implies that the collection [a1(n)], . . . , [aℓ(n)] is not good
for equidistribution (see definition in Section 2) and hence not jointly ergodic.

Using standard methods we immediately deduce from Theorem 1.1 the following mul-
tiple recurrence result:

Corollary 1.2. Let a1, . . . , aℓ be linearly independent fractional polynomials. Then for
every system (X,µ, T ) and measurable set A we have

lim
N→∞

1

N

N
∑

n=1

µ(A ∩ T−[a1(pn)]A ∩ · · · ∩ T−[aℓ(pn)]A) ≥ (µ(A))ℓ+1.

Using the Furstenberg correspondence principle [10, 11], we deduce the following com-
binatorial consequence:

Corollary 1.3. Let a1, . . . , aℓ be linearly independent fractional polynomials. Then for
every subset Λ of N we have4

lim inf
N→∞

1

N

N
∑

n=1

d(Λ ∩ (Λ− [a1(pn)]) ∩ · · · ∩ (Λ− [aℓ(pn)])) ≥ (d(Λ))ℓ+1.

Hence, every set of integers with positive upper density contains patterns of the form
{m,m+ [a1(pn)], . . . ,m+ [aℓ(pn)]} for some m,n ∈ N.

An essential tool in the proof of our main result is the following statement that is of
independent interest since it covers a larger class of collections of fractional polynomials
(not necessarily linearly independent) evaluated at primes. See Section 2 for the definition
of the seminorms ||| · |||s.
Theorem 1.4. Suppose that the fractional polynomials a1, . . . , aℓ and their pairwise dif-
ferences are non-zero. Then there exists s ∈ N such that for every ergodic system (X,µ, T )
and functions f1, . . . , fℓ ∈ L∞(µ) with |||fi|||s = 0 for some i ∈ {1, . . . , ℓ}, we have

(4) lim
N→∞

1

N

N
∑

n=1

T [a1(pn)]f1 · . . . · T [aℓ(pn)]fℓ = 0

in L2(µ).

Remark. It seems likely that with some additional effort the techniques of this article
can cover the more general case of Hardy field functions a1, . . . , aℓ such that the functions
and their differences belong to the set {a : R+ → R : tk+ε ≺ a(t) ≺ tk+1−ε for some k ∈
Z+ and ε > 0}. Using the equidistribution result in [3] and the argument in Section 2,
this would immediately give a corresponding strengthening of Theorem 1.1. We opted
not to deal with these more general statements because the added technical complexity
would obscure the main ideas of the proof of Theorem 1.4.

The proof of Theorem 1.4 crucially uses the fact that the iterates a1, . . . , aℓ have “frac-
tional power growth” and our argument fails for iterates with “integer power growth”.
Similar results that cover the case of polynomials with integer or real coefficients were
obtained in [9, 29] and [19] respectively, and depend on deep properties of the von Man-
goldt function from [13] and [14], but these results and their proofs do not appear to
be useful for our purposes. Instead, we rely on some softer number theory input that
follows from standard sieve theory techniques (see Section 3.2), and an argument that is
fine-tuned for the case of fractional polynomials (but fails for polynomials with integer

4For A ⊂ N we let d(A) := lim supN→∞
|A∩[N]|

N
.



JOINT ERGODICITY OF FRACTIONAL POWERS OF PRIMES 4

exponents). This argument eventually enables us to bound the averages in (4) with aver-
ages involving iterates given by multivariate polynomials with real coefficients evaluated
at the integers, a case that was essentially handled in [23].

1.3. Limitations of our techniques and open problems. We expect that the fol-
lowing generalisation of Theorem 1.1 holds:

Problem. Let a1, . . . , aℓ be functions from a Hardy field with polynomial growth such
that every non-trivial linear combination b of them satisfies |b(t) − p(t)|/ log t → ∞ for
all p ∈ Z[t]. Then the collection of sequences [a1(pn)], . . . , [aℓ(pn)] is jointly ergodic.

By Theorem 2.1, it suffices to show that the collection [a1(pn)], . . . , [aℓ(pn)] is good for
equidistribution and seminorm estimates. Although the needed equidistribution property
has been proved in [3, Theorem 3.1], the seminorm estimates that extend Theorem 1.4
seem hard to establish. Our argument breaks down when some of the functions, or
their differences, are close to integral powers of t, for example when they are tk log t or
tk/ log log t for some k ∈ N. In both cases the vdC-operation (see Section 5.2) leads to
sequences of sublinear growth for which we can no longer establish Lemma 4.1, in the
first case because the estimate (20) fails and in the second case because in (22) the length
of the interval in the average is too short for Corollary 3.4 to be applicable.

Finally, we remark that although the reduction offered by Theorem 2.1 is very helpful
when dealing with averages with independent iterates, as is the case in (3), it does not
offer any help when the iterates are linearly dependent, which is the case for the averages

(5)
1

N

N
∑

n=1

T [pan]f · T 2[pan]g,

where a ∈ R+ is not an integer. We do expect the L2(µ)-limit of the averages (5)

to be equal to the L2(µ)-limit of the averages 1
N

∑N
n=1 T nf · T 2ng, but this remains a

challenging open problem5, see Problem 27 in [7].

1.4. Notation. With N we denote the set of positive integers and with Z+ the set of
non-negative integers. With P we denote the set of prime numbers. With R+ we denote
the set of non-negative real numbers. For t ∈ R we let e(t) := e2πit. If x ∈ R+, when
there is no danger for confusion, with [x] we denote both the integer part of x and the
set {1, . . . , [x]}. We denote with ℜ(z) the real part of the complex number z.

Let a : N → C be a bounded sequence. If A is a non-empty finite subset of N we let

En∈A a(n) :=
1

|A|
∑

n∈A
a(n).

If a, b : R+ → R are functions we write

• a(t) ≺ b(t) if limt→+∞ a(t)/b(t) = 0;
• a(t) ∼ b(t) if limt→+∞ a(t)/b(t) exists and is non-zero;
• Ac1,...,cℓ(t) ≪c1,...,cℓ Bc1,...,cℓ(t) if there exist t0 = t0(c1, . . . , cℓ) ∈ R+ and C =
C(c1, . . . , cℓ) > 0 such that |Ac1,...,cℓ(t)| ≤ C|Bc1,...,cℓ(t)| for all t ≥ t0.

We use the same notation for sequences a, b : N → R.

Throughout, we let LN := [e
√
logN ], N ∈ N.

We say that a sequence (cN,h(n)) where h ∈ [LN ]k, n ∈ [N ], N ∈ N, is bounded, if

there exists C>0 such that |cN,h(n)| ≤ C for all h ∈ [LN ]k, n ∈ [N ], N ∈ N.

1.5. Acknowledgement. The author would like to thank the two anonymous referees
for their valuable comments.

5Although the method of Theorem 2.4 does give good seminorm bounds for the averages (5), the
needed equidistribution properties on nilmanifolds present serious difficulties.
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2. Proof strategy

Our argument depends upon a convenient criterion for joint ergodicity that was es-
tablished recently in [8] (and was motivated by work in [24, 25]). In order to state it we
need to review the definition of the ergodic seminorms from [16].

Definition. For a given ergodic system (X,µ, T ) and function f ∈ L∞(µ), we define
||| · |||s inductively as follows:

|||f |||1 :=
∣

∣

∣

∫

f dµ
∣

∣

∣
;

|||f |||2s+1

s+1 := lim
N→∞

1

N

N
∑

n=1

|||f̄ · T nf |||2ss , s ∈ N.

It was shown in [16], via successive uses of the mean ergodic theorem, that for every
s ∈ N the above limit exists and ||| · |||s defines an increasing sequence of seminorms on
L∞(µ).

Definition. We say that the collection of sequences b1, . . . , bℓ : N → Z is:

(i) good for seminorm estimates, if for every ergodic system (X,µ, T ) there exists
s ∈ N such that if f1, . . . , fℓ ∈ L∞(µ) and |||fm|||s = 0 for some m ∈ {1, . . . , ℓ},
then

(6) lim
N→∞

En∈[N ] T
b1(n)f1 · . . . · T bm(n)fm = 0

in L2(µ).6

(ii) good for equidistribution, if for all t1, . . . , tℓ ∈ [0, 1), not all of them 0, we have

lim
N→∞

En∈[N ] e(b1(n)t1 + · · ·+ bℓ(n)tℓ) = 0.

We remark that any collection of non-constant integer polynomial sequences with
pairwise non-constant differences is known to be good for seminorm estimates [23] and
examples of periodic systems show that no such collection is good for equidistribution
(unless ℓ = 1 and b1(t) = ±t+k). On the other hand, a collection of linearly independent
fractional polynomials is known to be good both for seminorm estimates [6, Theorem 2.9]
and equidistribution (follows from [22, Theorem 3.4] and [8, Lemma 6.2]).

A crucial ingredient used in the proof of our main result is the following result that
gives convenient necessary and sufficient conditions for joint ergodicity of a collection of
sequences (see also [5] for an extension of this result for sequences b1, . . . , bℓ : N

k → Z).

Theorem 2.1 ([8]). The sequences b1, . . . , bℓ : N → Z are jointly ergodic if and only if
they are good for equidistribution and seminorm estimates.

Remark. The proof of this result uses “soft” tools from ergodic theory, and avoids deeper
tools like the Host-Kra theory of characteristic factors (see [17, Chapter 21] for a detailed
description) and equidistribution results on nilmanifolds.

In view of this result, in order to establish Theorem 1.1, it suffices to show that a
collection of linearly independent fractional polynomials evaluated at primes is good
for seminorm estimates and equidistribution. The good equidistribution property is a
consequence of the following result [2, Theorem 2.1]:

Theorem 2.2 ([2]). If a(t) is a non-zero fractional polynomial, then the sequence (a(pn))
is equidistributed (mod 1).

Using the previous result and [8, Lemma 6.2] we immediately deduce the following:

6In practice, s can often be chosen independently of the system and (6) can be established with m = ℓ
(note that Property (i) with m = ℓ in (6) is a stronger property than Property (i) as stated).
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Corollary 2.3. If a1, . . . , aℓ are linearly independent fractional polynomials, then the
collection of sequences [a1(pn)], . . . , [aℓ(pn)] is good for equidistribution.

We let Λ′ : N → R+ be the following slight modification of the von Mangoldt function:
Λ′(n) := log(n) if n is a prime number and 0 otherwise. To establish that the collection
[a1(pn)], . . . , [aℓ(pn)] is good for seminorm estimates it suffices to prove the following
result (the case wN (n) := Λ′(n), N,n ∈ N, implies Theorem 1.4 in a standard way, see
for example [9, Lemma 2.1]):

Theorem 2.4. Suppose that the fractional polynomials a1, . . . , aℓ and their pairwise
differences are non-zero. Then there exists s ∈ N such that the following holds: If
(X,µ, T ) is an ergodic system and f1, . . . , fℓ ∈ L∞(µ) are such that |||fi|||s = 0 for some
i ∈ {1, . . . , ℓ}, then for every 1-bounded sequence (cN (n)) we have

(7) lim
N→∞

En∈[N ]wN (n) · T [a1(n)]f1 · . . . · T [aℓ(n)]fℓ = 0

in L2(µ), where wN (n) := Λ′(n) · cN (n), n ∈ [N ], N ∈ N.

Remarks. • The sequence (cN (n)) is not essential in order to deduce Theorem 1.4. It
is used because it helps us absorb error term that often appear in our argument.

• Our proof shows that the place of the sequence (Λ′(n)) can take any non-negative
sequence (b(n)) that satisfies properties (i) and (ii) of Corollary 3.4 and the estimate
b(n) ≪ nε for every ε > 0.

In order to prove Theorem 2.4, we use an induction argument, similar to the polynomial
exhaustion technique (PET-induction) introduced in [1], which is based on variants of
the van der Corput inequality stated immediately after Lemma 3.5. The fact that the
weight sequence (wN (n)) is unbounded, forces us to apply Lemma 3.5 in the form given
in (15) with LN ∈ N that satisfy LN ≻ (logN)A for every A > 0. On the other hand,
since we have to take care of some error terms that are of the order LB

N/Na for arbitrary
a,B > 0, we are also forced to take LN ≺ Na for every a > 0 in order for these errors to

be negligible. These two estimates are satisfied for example when LN = [e
√
logN ], N ∈ N,

which is the value of LN that we use henceforth.
During the course of the PET-induction argument, we have to keep close track of

the additional parameters h1, ..., hk that arise after each application of Lemma 3.5 in
the form that is given in (15). This is the reason why we prove a more general variant
of Theorem 2.4 that is stated in Theorem 3.1 and involves fractional polynomials with
coefficients depending on finitely many parameters. It turns out that the most laborious
part of its proof is the base case of the induction where all iterates have sublinear growth.
This case is dealt in three steps. First, in Lemma 4.1 we use a change of variables
argument and the number theory input from Corollary 3.4 in order to reduce matters
to the case where the weight sequence (wN (n)) is bounded. Next, in Lemma 4.2 we use
another change of variables argument and Lemma 3.5 in order to successively “eliminate”
the sequences a1, . . . , aℓ, and, after ℓ-iterations, we get an upper bound that involves
iterates given by the integer parts of polynomials in several variables with real coefficients.
Lastly, in Lemma 4.3 we show that averages with such iterates obey good seminorm
bounds. This last step is carried out by adapting an argument from [23] to our setup;
this is done by another PET-induction, which this time uses Lemma 3.5 in the form that
is given in (16). In Sections 4.1 and 5.1 the reader will find examples that explain how
these arguments work in some model cases that contain the essential ideas of the general
arguments.

To conclude this section, we remark that in order to prove Theorem 1.1 it suffices to
prove Theorem 2.4; the remaining sections are devoted to this task.
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3. Seminorm estimates - Some preparation

3.1. A more general statement. In order to prove Theorem 2.4, it will be convenient
to establish a technically more complicated statement that is better suited for a PET-
induction argument. We state it in this subsection.

Throughout, the sequence LN is chosen to satisfy (logN)A ≺ LN ≺ Na for all A, a > 0;
so we can take for example

LN := [e
√
logN ], N ∈ N.

With R[t1, . . . , tk] we denote the set of polynomials with real coefficients in k-variables.

Definition. We say that a : Zk × R+ → R is a polynomial with real exponents and
k-parameters, if it has the form

a(h, t) =

r
∑

j=0

pj(h) t
dj ,

for some r ∈ N, 0 = d0 < d1 < · · · < dr ∈ R+, and p0, . . . , pr ∈ R[t1, . . . , tk]. If
d1, . . . , dr ∈ R+ \ Z, we call it a fractional polynomial with k-parameters. If pj is non-
zero for some j ∈ {1, . . . , r}, we say that a(h, t) is non-constant. We define the fractional
degree of a(h, t), and denote it by f-deg(a), to be the maximum exponent dj for which the
polynomial pj is non-zero. We call the integer part of its fractional degree the (integral)
degree of a(h, t) and denote it by deg(a). We also let deg(0) := −1.

For example, the fractional polynomial with 1-parameter h2t0.5 + (h2
√
2 + h)t0.1 has

fractional degree 0.5 and degree 0.

Definition. We say that a collection a1, . . . , aℓ of polynomials with real exponents and
k-parameters is nice if

(i) f-deg(ai) ≤ f-deg(a1) for i = 2, . . . , ℓ, and
(ii) the functions a1, . . . aℓ and the functions a1−a2, . . . , a1−aℓ are non-constant in

the variable t (and as a consequence they have positive fractional degree).

Given a sequence u : N → C, we let (∆hu)(n) := u(n + h) · u(n), h, n ∈ N, and
if h = (h1, . . . , hk), we let (∆h)(u(n)) := (∆hk

· · ·∆h1)(u(n)), h1, . . . , hk, n ∈ N. For
example, (∆(h1,h2))(u(n)) = u(n+ h1 + h2) · u(n+ h1) · u(n+ h2) · u(n), h1, h2, n ∈ N.

Theorem 3.1. For k ∈ Z+, ℓ ∈ N, let a1, . . . , aℓ : N
k × N → R be a nice collec-

tion of fractional polynomials with k-parameters and (cN,h(n)) be a 1-bounded sequence.
Then there exists s ∈ N such that the following holds: If (X,µ, T ) is a system and
fN,h,1, . . . , fN,h,ℓ ∈ L∞(µ), h ∈ [LN ]k, N ∈ N, are 1-bounded functions with fN,h,1 = f1,

h ∈ N
k, N ∈ N, and |||f1|||s = 0, then

(8) lim
N→∞

Eh∈[LN ]k

∥

∥

∥

∥

∥

En∈[N ]wN,h(n) ·
ℓ
∏

i=1

T [ai(h,n)]fN,h,i

∥

∥

∥

∥

∥

L2(µ)

= 0,

where wN,h(n) := (∆hΛ
′)(n) · cN,h(n), h ∈ [LN ]k, n ∈ [N ], N ∈ N.

Remark. Our argument also works if ∆hΛ
′(n) is replaced by other expressions involving

Λ′, for example when k = 0 one can use the expression
∏m

i=1 Λ
′(n+ ci), where c1, . . . , cm

are distinct integers.

If in Theorem 3.1 we take k = 0, then we get Theorem 2.4 using an argument that we
describe next.

Proof of Theorem 2.4 assuming Theorem 3.1. Let a1, . . . , aℓ and wN (n) be as in The-
orem 2.4. Since the assumptions of Theorem 2.4 are symmetric with respect to the
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sequences a1, . . . , aℓ it suffices to show that there exists s ∈ N such that if |||f1|||s = 0,
then (7) holds.

If a1 has maximal fractional degree within the family a1, . . . aℓ, then if we take k = 0
and all functions to be independent of N in Theorem 3.1, we get that the conclusion of
Theorem 2.4 holds. Otherwise, we can assume that aℓ is the function with the highest
fractional degree and, as a consequence, f-deg(a1) < f-deg(aℓ). It suffices to show that

lim
N→∞

En∈[N ]wN (n) ·
∫

fN,0 ·
ℓ
∏

i=1

T [ai(n)]fi dµ = 0,

where

fN,0 := En∈[N ]wN (n) ·
ℓ
∏

i=1

T [ai(n)]f i, N ∈ N.

Note that since f1, . . . , fℓ and cN are 1-bounded we have

lim sup
N→∞

‖fN,0‖∞ ≤ lim
N→∞

En∈[N ]Λ
′(n) = 1,

(the last identity follows from the prime number theorem but we only need the much
simpler upper bound) hence, we can assume that fN,0 is 1-bounded for every N ∈ N.

After composing with T−[aℓ(n)], using the Cauchy-Schwarz inequality, and the identity
[x]− [y] = [x− y] + e for some e ∈ {0, 1}, we are reduced to showing that

lim
N→∞

∥

∥

∥

∥

∥

En∈[N ]wN (n) ·
ℓ−1
∏

i=1

T [ai(n)−aℓ(n)]+ei(n)fi · T [−aℓ(n)]+eℓ(n)fN,0

∥

∥

∥

∥

∥

L2(µ)

= 0,

for some e1(n), . . . , eℓ−1(n) ∈ {0, 1}, n ∈ N. Next, we would like to replace the error
sequences e1, . . . , eℓ−1 with constant sequences. To this end, we use Lemma 3.6 for I a

singleton, J := [N ], X := L∞(µ), AN (n1, . . . , nℓ) :=
∏ℓ−1

i=1 T
nifi · T−nℓfN,0, n1, . . . , nℓ ∈

Z, and bi := [ai − aℓ], i = 1, . . . , ℓ− 1, bℓ := [−aℓ]. We get that it suffices to show that

(9) lim
N→∞

∥

∥

∥

∥

∥

En∈[N ] zN (n) ·
ℓ
∏

i=1

T [a′i(n)]gN,i

∥

∥

∥

∥

∥

L2(µ)

= 0,

where

a′i := ai − aℓ, i = 1, . . . , ℓ− 1, a′ℓ := −aℓ.

for some 1-bounded sequence (zN (n)), where gN,i := T ǫifi, i = 1, . . . , ℓ − 1, gN,ℓ :=
T ǫℓfN,0, N ∈ N, for some constants ǫ1, . . . , ǫℓ ∈ {0, 1}. Note that the family a′1, . . . , a

′
ℓ is

nice, and gN,1 = T ǫ1f1, N ∈ N, so Theorem 3.1 applies (for k = 0 and all but one of the
functions independent of N) and gives that there exists s ∈ N so that if |||f1|||s = 0, then
(9) holds. This completes the proof. �

We will prove Theorem 3.1 in Sections 4 and 5 using a PET-induction technique. The
first section covers the base case of the induction where all the iterates have sublinear
growth and the subsequent section contains the proof of the induction step. Before
moving into the details we gather some basic tools that will be used in the argument.

3.2. Feedback from number theory. The next statement is well known and can be
proved using elementary sieve theory methods (see for example [15, Theorem 5.7] or [18,
Theorem 6.7]).

Theorem 3.2. Let P be the set of prime numbers. For all k ∈ N there exist Ck > 0 such
that for all distinct h1, . . . , hk ∈ N and all N ∈ N we have

|{n ∈ [N ] : n+ h1, . . . , n+ hk ∈ P}| ≤ Ck Gk(h1, . . . , hk)
N

(logN)k
,
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where

(10) Gk(h1, . . . , hk) :=
∏

p∈P

(

1− 1

p

)−k(

1− νp(h1, . . . , hk)

p

)

and νp(h1, . . . , hk) denotes the number of congruence classes mod p that are occupied by
h1, . . . , hk.

We remark that although G1 = 1, the expression Gk(h1, . . . , hk) is not bounded in
h1, . . . , hk if k ≥ 2, and this causes some problems for us. Asymptotics for averages
of powers of Gk(h1, . . . , hk) are given in [12] and [21, Theorem 1.1] using elementary
but somewhat elaborate arguments. These results are not immediately applicable for
our purposes, since we need to understand the behavior of Gk on thin subsets of Z

k,
for instance, when k = 4 we need to understand the averages of G4(0, h1, h2, h1 + h2).
Luckily, we only need to get upper bounds for these averages and this can be done rather
easily as we will see shortly (a similar argument was used in [28] to handle averages over
r of Gk(0, r, 2r, . . . , (k − 1)r)).

Definition. Let ℓ ∈ N and for h ∈ N
ℓ let Cube(h) ∈ N

2ℓ be defined by

cube(h) := (ǫ · h)ǫ∈{0,1}ℓ ,

where ǫ · h is the inner product of ǫ and h.
If S is a subset of Nℓ, we define

S∗ := {h ∈ S : cube(h) has distinct coordinates}.

For instance, when ℓ = 3 we have

cube(h1, h2, h3) = (0, h1, h2, h3, h1 + h2, h1 + h3, h2 + h3, h1 + h2 + h3)

and ([N ]3)∗ consists of all triples (h1, h2, h3) ∈ [N ]3 with distinct coordinates that in
addition satisfy hi 6= hj + hk for all distinct i, j, k ∈ {1, 2, 3}. Since the complement of

([N ]ℓ)∗ in [N ]ℓ is contained on the zero set of finitely many (at most 3ℓ) linear forms, we
get that there exists Kℓ > 0 such that

(11) |[N ]ℓ \ ([N ]ℓ)∗| ≤ KℓN
ℓ−1

for every N ∈ N.

Proposition 3.3. For every ℓ ∈ N there exists Cℓ > 0 such that

Eh∈[N ]ℓ
(

G2ℓ(cube(h))
)2 ≤ Cℓ,

for all N ∈ N, where G2ℓ(cube(h)) is as in (10).

Remark. If we use k-th powers instead of squares we get similar upper bounds (which
also depend on k), but we will not need this.

Proof. In the following argument whenever we write p we assume that p is a prime
number.

Let h ∈ [N ]ℓ. Note that if νp(cube(h)) = 2ℓ, then

(

1− 1

p

)−2ℓ(

1− νp(cube(h))

p

)

≤ 1,

and if νp(cube(h)) < 2ℓ, then for aℓ := 2ℓ+1 − 2 we have

(

1− 1

p

)−2ℓ(

1− νp(cube(h))

p

)

≤
(

1− 1

p

)−(2ℓ−1)
≤ e

aℓ
p ,
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where we used that 1
1−x ≤ e2x for x ∈ [0, 12 ]. Note also that if νp(cube(h)) < 2ℓ, then

there exist distinct ǫ, ǫ′ ∈ {0, 1}ℓ such that p|(ǫ − ǫ′) · h, in which case we have that
p ∈ P(h) where

P(h) :=
⋃

ǫ,ǫ′∈{0,1}ℓ,ǫ, 6=ǫ′

{p ∈ P : p|(ǫ− ǫ′) · h}, h ∈ N
ℓ.

We deduce from the above facts and (10) that

(12) G2ℓ(cube(h)) ≤ eaℓ
∑

p∈P(h)
1
p .

By [27, Lemma E.1] we have for some bℓ, cℓ > 0 that

(13) eaℓ
∑

p∈P(h)
1
p ≤ bℓ

∑

p∈P(h)

(log p)cℓ

p
= bℓ

∑

ǫ,ǫ′∈{0,1}ℓ,ǫ6=ǫ′

(

∑

p|(ǫ−ǫ′)·h

(log p)cℓ

p

)

.

Moreover, we get for some dℓ, eℓ > 0 that

(14)
∑

h∈[N ]ℓ

(

∑

p|(ǫ−ǫ′)·h

(log p)cℓ

p

)

≤ dℓ
∑

p

(log p)cℓ

p

N ℓ

p
≤ eℓ N

ℓ,

for all N ∈ N, where to get the first estimate we used the fact that for some dℓ > 0 we
have

|h ∈ [N ]ℓ : p|(ǫ− ǫ′) · h| ≤ dℓ
N ℓ

p
,

for all N ∈ N, and to get the second estimate we used that
∑

p
(log p)cℓ

p2
< ∞.

If we take squares in (12) and sum over all h ∈ [N ]ℓ, then use (13) and (14), we get
the asserted estimate. �

From this we deduce the following estimate that is a crucial ingredient used in the
proof of Theorem 2.4:

Corollary 3.4. Let ℓ ∈ N. Then for every A ≥ 1 there exist CA,ℓ(h) > 0, h ∈ N
ℓ, and

DA,ℓ > 0, such that

(i) for all N ∈ N, h = (h1, . . . , hℓ) ∈ (Nℓ)∗, c ∈ N, such that c+h1+ · · ·+hℓ ≤ NA,
we have

En∈[N ] (∆hΛ
′)(n+ c) ≤ CA,ℓ(h);

(ii) Eh∈[H]ℓ(CA,ℓ(h))
2 ≤ DA,ℓ for every H ∈ N.

Remark. We will use this result in the proof of Lemma 4.1 for values of c that are larger
than N and smaller than NA for some A > 0 (the choice of A depends on the situation).

Proof. Since Λ′ is supported on primes and c+ h1 + · · ·+ hℓ ≤ NA, we have that
∑

n∈[N ]

(∆hΛ
′)(n+ c) ≤ |{n ∈ [N ] : n+ c+ cube(h) ∈ P

2ℓ}| · (log(N +NA))2
ℓ
,

where n+ c is a vector with 2ℓ coordinates, all equal to n+c. Note that for h ∈ (Nℓ)∗ we
can apply Theorem 3.2 and we get that there exists DA,ℓ > 0 such that for every N ∈ N

the last expression is bounded by

DA,ℓG2ℓ(cube(h))N.

If we let CA,ℓ(h) := DA,ℓG2ℓ(cube(h)), h ∈ N
ℓ, and use Proposition 3.3, we get that

properties (i) and (ii) hold. �
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3.3. Two elementary lemmas. We will use the following inner product space variant
of a classical elementary estimate of van der Corput (see [22, Lemma 3.1]):

Lemma 3.5. Let N ∈ N and (u(n))n∈[N ] be vectors in some inner product space. Then
for all H ∈ [N ] we have

∥

∥En∈[N ] u(n)
∥

∥

2 ≤ 2

H
En∈[N ] ‖u(n)‖2 + 4Eh∈[H]

(

1− h

H

)

ℜ
( 1

N

N−h
∑

n=1

〈u(n+ h), u(n)〉
)

.

We will apply the previous lemma in the following two cases, depending on the range
of the shift parameter h (the first case will be used when the relevant sequences are not
necessarily bounded).

(i) If MN := 1 + maxn∈[N ] ‖uN (n)‖2, N ∈ N, and LN are such that MN ≺ LN ≺
N
MN

, then for H := LN we have

(15)
∥

∥En∈[N ] uN (n)
∥

∥

2 ≤ 4Eh∈[LN ]

∣

∣

∣
En∈[N ]〈uN (n+ h), uN (n)〉

∣

∣

∣
+ oN (1),

where for every fixed N ∈ N the sequence (uN (n)) is either defined on the larger
interval [N + LN ] or it is extended to be zero outside the interval [N ]. In all
the cases where we will apply this estimate we have MN ≪ (logN)A for some

A > 0 and we take LN = [e
√
logN ], N ∈ N.

(ii) If the sequence (uN (n)) is bounded, then we have

(16) lim sup
N→∞

∥

∥En∈[N ] uN (n)
∥

∥

2 ≤ 4 lim sup
H→∞

Eh∈[H] lim sup
N→∞

∣

∣

∣
En∈[N ]〈uN (n+ h), uN (n)〉

∣

∣

∣
,

where for every fixed N ∈ N the sequence (uN (n)) is either defined on the larger
interval [N +H] or it is extended to be zero outside the interval [N ].

We will also make frequent use of the following simple lemma, or variants of it, to
replace error sequences that take finitely many integer values with constant sequences.

Lemma 3.6. For f, ℓ ∈ N there exists Cf,ℓ > 0 such that the following holds: Let (X, ‖·‖)
be a normed space and F be a finite subset of Z with |F | = f , k ∈ N, and I ⊂ N

k,
J ⊂ N be finite. For h ∈ I, consider sequences Ah : Z

ℓ → X, b1,h, . . . , bℓ,h : J → Z,
wh : J → C, and e1,h, . . . , eℓ,h : J → F . Then there exist sequences w̃h : J → C, h ∈ I,

with
∥

∥w̃h

∥

∥

L∞(J)
≤

∥

∥wh

∥

∥

L∞(J)
, and constants ǫ1, . . . , ǫℓ ∈ F , such that

∑

h∈I

∣

∣

∣

∣

∣

∣

∑

n∈J
wh(n) ·Ah(b1,h(n) + e1,h(n), . . . , bℓ,h(n) + eℓ,h(n))

∣

∣

∣

∣

∣

∣
≤

Cf,ℓ

∑

h∈I

∣

∣

∣

∣

∣

∣

∑

n∈J
w̃h(n) ·Ah(b1,h(n) + ǫ1, . . . , bℓ,h(n) + ǫℓ)

∣

∣

∣

∣

∣

∣
.

Remark. Often, when this estimate is used, the sequence Ah is defined only on a subset

of Zℓ, and we assume that it is extended to be zero at the elements where it is not defined.

Proof. The expression on the left-hand side is bounded by

t
∑

j=1

∑

h∈I

∣

∣

∣

∣

∣

∣

∑

n∈J
wh(n) ·Ah(b1,h(n) + e1,h(n), . . . , bℓ,h(n) + eℓ,h(n)) · 1Ej,h

(n)
∣

∣

∣

∣

∣

∣
,

where for t = f ℓ the sets E1,h, . . . , Et,h form a partition of N into sets (possibly empty)
on which all the sequences e1,h, . . . , eℓ,h are constant (and the constants do not depend
on h). If the maximum of the summands over j occurs for some j0 ∈ [t], then there exist
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ǫ1, . . . , ǫℓ ∈ F such that for all n ∈ Ej0,h we have ei,h(n) = ǫi, i ∈ [ℓ], h ∈ I. Hence, the
last sum is bounded by

t
∑

h∈I

∣

∣

∣

∣

∣

∣

∑

n∈J
w̃h(n) · Ah(b1,h(n) + ǫ1, . . . , bℓ,h(n) + ǫℓ)

∣

∣

∣

∣

∣

∣
,

where w̃h(n) := wh(n) · 1Ej0,h
(n), n ∈ J , h ∈ I. �

We will use the previous lemma to handle some error sequences that occur when we use
the Taylor expansion in order to perform some approximations and when we replace the
sum (or the difference) of the integer parts of sequences with the corresponding integer
part of their sum (or the difference), and vice versa. For instance, if e1(n), . . . eℓ(n) ∈
(−1, 1), n ∈ [N ], we have

∥

∥En∈[N ]w(n) ·A([a1(n) + b1(n) + e1(n)], . . . , [aℓ(n) + bℓ(n) + eℓ(n)])
∥

∥ ≤
4ℓ

∥

∥En∈[N ] w̃(n) · A([a1(n)] + [b1(n)] + ǫ1, . . . , [aℓ(n)] + [bℓ(n)] + ǫℓ)
∥

∥ ,

for some ǫ1, . . . , ǫℓ ∈ {−1, 0, 1, 2} and w̃ : [N ] → C with ‖w̃‖L∞[N ] ≤ ‖w‖L∞[N ]. Often

the constants ǫ1, . . . , ǫℓ make no difference for our argument and can be ignored.

4. Seminorm estimates - Sublinear case

The goal of this section is to establish Theorem 3.1 in the case where all the iterates
have fractional degree smaller than 1, see Proposition 4.4 below.

4.1. An example. We explain in some detail how the proof of Theorem 3.1 works when
k = 1, ℓ = 2, and a1(h, t) := p1(h)t

0.5 + q1(h)t
0.1, a2(h, t) := p2(h)t

0.5 + q2(h)t
0.1, h ∈ N,

t ∈ R+. We assume that p1 6= 0 and a1, a2, a1 − a2 are non-zero.
We also assume that the sequence of weights (wN,h(n)) is defined by

wN,h(n) := Λ′(n) · Λ′(n+ h) · cN,h(n), h ∈ [LN ], n ∈ [N ], N ∈ N,

where (cN,h(n)) is a 1-bounded sequence.
Our aim is to show that there exists s ∈ N such that if |||f1|||s = 0, then

lim
N→∞

Eh∈[LN ]

∥

∥

∥

∥

∥

En∈[N ]wN,h(n) ·
2
∏

i=1

T [pi(h)n0.5+qi(h)n0.1]fi

∥

∥

∥

∥

∥

L2(µ)

= 0.

Step 1. Our first goal is to use the number theory feedback of Section 3.2, to reduce
matters to showing mean convergence to zero for some other averages with bounded
weights wN,h (this step corresponds to Lemma 4.1 below). We let

p(h) := [max{|p1|(h), |p2|(h), |q1|(h), |q2|(h)}10] + 1, h ∈ N.

Note that p is not a polynomial, but this will not bother us. After splitting the average
over [N ] into subintervals, we see (this reduction will be explained in more detail in the
proof of Lemma 4.1) that it suffices to show mean convergence to zero for

Eh∈[LN ]

∥

∥

∥

∥

∥

En∈IN,h
En1∈Jn,h

wN,h(n1) ·
2
∏

i=1

T [pi(h)n
0.5
1 +qi(h)n

0.1
1 ]fi

∥

∥

∥

∥

∥

L2(µ)

,

where

IN,h := [N0.5p(h)], Jn,h :=
[(n− 1

p(h)

)2
,
( n

p(h)

)2)

, n ∈ IN,h, h ∈ [LN ], N ∈ N.

For convenience, we write

Jn,h = (kn,h, kn,h + ln,h], n ∈ IN,h, h ∈ [LN ], N ∈ N,

for some kn,h, ln,h ∈ N.
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Note that for fixed n, h ∈ N, when n1 ranges in Jn,h the value of p1(h)n
0.5
1 ranges in

an interval of length at most 1 and the same property holds for the values of p2(h)n
0.5
1 ,

q1(h)n
0.1
1 , q2(h)n

0.1
1 . Hence, for n1 ∈ Jn,h we have

pi(h)n
0.5
1 + qi(h)n

0.1
1 =

pi(h)

p(h)
n+ qi(h)

( n

p(h)

)0.2
+ ei(h, n, n1), i = 1, 2,

where e1(h, n, n1), e2(h, n, n1) are bounded by 2 for all n1 ∈ Jn,h, n ∈ IN,h, h ∈ [LN ],
N ∈ N. Using Lemma 3.6, and since replacing fi with T ǫi,Nfi, i = 1, 2, where ǫ1,N , ǫ2,N
take finitely many values for N ∈ N, does not introduce changes to our argument, we
can ignore these error terms. We are thus left with showing convergence to zero for

Eh∈[LN ]

∥

∥

∥

∥

∥

En∈IN,h
w̃N,h(n) ·

2
∏

i=1

T

[

pi(h)

p(h)
n+qi(h)(

n
p(h)

)0.2
]

fi

∥

∥

∥

∥

∥

L2(µ)

,

where for n ∈ [IN,h], h ∈ [LN ], N ∈ N, we let
(17)
w̃N,h(n) := En1∈Jn,h

wN,h(n1) = En1∈[ln,h] Λ
′(n1+kn,h) ·Λ′(n1+kn,h+h) ·cN,h(n1+kn,h).

From the definition of kn,h, ln,h, LN , we get that there exists N0 = N0(p) ∈ N such that

kn,h + h ≤ l3n,h, for all n ∈ [N0.4, N0.5p(h)], h ∈ [LN ], N ≥ N0.

Using Corollary 3.4 (with ℓ = 1, A = 3, c = kn,h, N = ln,h) we see that there exist D > 0
and C(h), h ∈ N, such that for the above-mentioned values of n, h,N we can write

w̃N,h(n) = C(h) · zN,h(n),

where (zN,h(n)) is 1-bounded and

Eh∈[LN ](C(h))2 ≤ D

for every N ∈ N.
We use this estimate, apply the Cauchy-Schwarz inequality, and keep in mind that the

part of the intervals IN,h that intersects the interval [N0.4] is negligible for our averages.
We deduce that it suffices to show convergence to zero for

Eh∈[LN ]

∥

∥

∥

∥

∥

En∈IN,h
zN,h(n) ·

2
∏

i=1

T

[

pi(h)

p(h)
n+qi(h)(

n
p(h)

)0.2
]

fi

∥

∥

∥

∥

∥

2

L2(µ)

,

where the sequence (zN,h(n)) is 1-bounded. We write n = n′p(h)+s for some n′ ∈ [N0.5]
and s ∈ [p(h)]. For convenience, we also rename n′ as n, and use Lemma 3.6 to treat finite
valued error sequences that are introduced when we approximate qi(h)(n+s/p(h))0.2 with
qi(h)n

0.2, i = 1, 2. We get that it suffices to show convergence to zero for

Eh∈[LN ]Es∈[p(h)]

∥

∥

∥

∥

∥

En∈[N0.5] zN,h,s(n) ·
2
∏

i=1

T [pi(h)n+qi(h)n0.2+ei(h,s)]fi

∥

∥

∥

∥

∥

2

L2(µ)

,

where (zN,h,s(n)) is some other 1-bounded sequence and ei(h, s) := spi(h)
p(h) , i = 1, 2. After

replacing the average Es∈[p(h)] with maxs∈[p(h)], we are left with dealing with the averages

Eh∈[LN ]

∥

∥

∥

∥

∥

En∈[N0.5] zN,h(n) ·
2
∏

i=1

T [pi(h)n+qi(h)n0.2+ei,N (h)]fi

∥

∥

∥

∥

∥

2

L2(µ)

,

for some other 1-bounded sequence (zN,h(n)) and arbitrary sequences of real numbers
(e1,N (h)), (e2,N (h)) (which will be eliminated later, so their particular form is not im-
portant).
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Step 2. Our next goal is to reduce matters to showing mean convergence to zero for
averages with iterates given by polynomials in several variables and real coefficients (this
step corresponds to Lemma 4.2 below). After using (15) for the average over n, we are
left with showing convergence to zero for

Eh,h1∈[LN ]

∣

∣

∣
En∈[N0.5] cN,h,h1(n) ·

∫ 2
∏

i=1

T [pi(h)(n+h1)+qi(h)(n+h1)0.2+ei,N (h)]fi·

2
∏

i=1

T [pi(h)n+qi(h)n0.2+ei,N (h)]f i dµ
∣

∣

∣
,

where (cN,h,h1(n)) is a 1-bounded sequence. We compose with T−[p2(h)n+q2(h)n0.2+e2,N (h)]

(and not with T−[p1(h)n+q1(h)n0.2+e1,N (h)] because we want the highest fractional degree
iterate to be applied to the function f1), use that (n + h1)

0.2 can for our purposes be
replaced with n0.2, ignore errors that take finitely many values using Lemma 3.6, and
use the Cauchy-Schwarz inequality. We are left with showing convergence to zero for

Eh,h1∈[LN ]

∥

∥

∥
En∈[N0.5] cN,h,h1(n) · T [(p1−p2)(h)n+(q1−q2)(h)n0.2+e3,N (h)](T [p1(h)h1]f1 · f1)

∥

∥

∥

L2(µ)
,

where (cN,h,h1(n)) is some other 1-bounded sequence and the sequence (e3,N (h)) takes
arbitrary real values.

We consider two cases. Suppose first that p1 = p2. Then by assumption q1 − q2 6= 0.
Repeating the argument used in Step 1 we are left with showing convergence to zero for

Eh,h1∈[LN ]

∥

∥

∥
En∈[N0.1] cN,h,h1(n) · T [(q1−q2)(h)n+e4,N (h)](T [p1(h)h1]f1 · f1)

∥

∥

∥

L2(µ)
,

for some other 1-bounded sequence of complex numbers (cN,h,h1(n)) and (e4,N (h)) ar-
bitrary sequence of real numbers. Using as above (15) for the average over n, com-
posing with T−[(q1−q2)(h)n+e4,N (h)], and then using the Cauchy-Schwarz inequality and
Lemma 3.6 to treat errors, we are left with showing mean convergence to zero for

Eh,h1,h2∈[LN ] cN,h,h1,h2(n) · T [(q1−q2)(h)h2+p1(h)h1]f1 · T [(q1−q2)(h)h2]f1 · T [p1(h)h1]f1,

for some 1-bounded sequence of complex numbers (cN,h,h1,h2(n)).
If p1 6= p2, we apply (15) for the average over n, then compose with the transfor-

mation T−[(p1−p2)(h)n+(q1−q2)(h)n0.2+e3,N (h)] and use the Cauchy-Schwarz inequality and
Lemma 3.6 to treat errors. We are left with showing mean convergence to zero for

Eh,h1,h2∈[LN ] cN,h,h1,h2(n) · T [(p1−p2)(h)h2+p1(h)h1]f1 · T [(p1−p2)(h)h2]f1 · T [p1(h)h1]f1,

for some other 1-bounded sequence of complex numbers (cN,h,h1,h2(n)).

Step 3. In Step 2 we were led to show mean convergence to zero for averages with
iterates given by non-constant polynomials with real coefficients in several variables that
have pairwise non-constant differences. For such averages one can argue as in [23] in order
to show that there exists s ∈ N such that if |||f1|||s = 0, then we have mean convergence
to zero. For more details see the proof of Lemma 4.3 below. This achieves our goal.

4.2. Reduction to averages with bounded weights and change of variables. Our
first goal is to prove the following result that allows us to restrict to the case where the
weights wN,h are 1-bounded and also allows us to perform the substitution n 7→ n1/d.

Lemma 4.1. For k ∈ Z+, ℓ ∈ N, let a1, . . . , aℓ be a nice collection of fractional poly-
nomials with k-parameters and suppose that d := f-deg(a1) ∈ (0, 1). Then the following
holds: If (X,µ, T ) is a system, fN,h,1, . . . , fN,h,ℓ ∈ L∞(µ), h ∈ N

k, N ∈ N, are 1-bounded
functions, a > 0, and

wN,h(n) := (∆hΛ
′)(n) · cN,h(n) or wN,h(n) := cN,h(n), h ∈ [LN ]k, n ∈ [Na], N ∈ N,
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where (cN,h(n)) is a 1-bounded sequence, then there exist a 1-bounded sequence (zN,h(n))
and sequences of real numbers (e1,N (h)), . . . , (eℓ,N (h)), such that

(18) Eh∈[LN ]k

∥

∥

∥

∥

∥

En∈[Na]wN,h(n) ·
ℓ
∏

i=1

T [ai(h,n)]fN,h,i

∥

∥

∥

∥

∥

L2(µ)

≪k,a1,...,aℓ

Eh∈[LN ]k

∥

∥

∥

∥

∥

En∈[Nad] zN,h(n) ·
ℓ
∏

i=1

T [ai(h,n
1/d)+ei,N (h)]fN,h,i

∥

∥

∥

∥

∥

L2(µ)

+ oN (1),

where oN (1) is a quantity that converges to 0 when N → ∞ and all other parameters
remain fixed.

Remark. It is important that the function a1 has sublinear growth; our argument would
not work if a1 had linear or larger than linear growth.

Proof. We cover the case where wN,h(n) = (∆hΛ
′)(n) ·cN,h(n), the case where wN,h(n) =

cN,h(n) is similar (in fact easier).

By assumption, we have that ai(h, t) :=
∑r

j=0 pi,j(h)t
dj , i = 1, . . . , ℓ, where 0 = d0 <

d1 < . . . < dr = d < 1 and pi,j ∈ R[t1, . . . , tk] with p1,r 6= 0. We let

p(h) :=
[

max
i,j

{|pi,j |(h)}
1
d1

]

+ 1, h ∈ N
k.

For h ∈ [LN ]k, after partitioning [Na] into sub-intervals, we deduce that it suffices to
get an upper bound for the averages

Eh∈[LN ]k

∥

∥

∥

∥

∥

En∈IN,h
E
∗
n1∈Jn,h

wN,h(n1) ·
ℓ
∏

i=1

T [ai(h,n1)]fN,h,i

∥

∥

∥

∥

∥

L2(µ)

,

where

IN,h := [Nadp(h)], Jn,h :=
[(n− 1

p(h)

)
1
d
,
( n

p(h)

)
1
d
)

, n ∈ IN,h, h ∈ [LN ]k, N ∈ N,

and for D : N → C and fixed N ∈ N, n ∈ IN,h, h ∈ [LN ]k, we let

(19) E
∗
n1∈Jn,h

D(n1) :=
1

Na/|IN,h|
∑

n1∈Jn,h

D(n1).

Note that an application of the mean value theorem gives

(20) |Jn,h| ≤
1

d

(Nadp(h))
1
d
−1

p(h)
1
d

=
1

d
· Na

|IN,h|
, n ∈ IN,h, h ∈ [LN ]k, N ∈ N.7

For convenience, we write

Jn,h = (kn,h, kn,h + ln,h], n ∈ IN,h, h ∈ [LN ]k, N ∈ N,

for some kn,h, ln,h ∈ N. Note that for i = 1, . . . , ℓ, j = 1, . . . , r, and fixed n, h, when

n1 ranges on Jn,h the values of pi,j(h)n
dj
1 belong to an interval of length 1. Hence, for

i = 1, . . . , ℓ we can write

ai(h, n1) = ai(h, (n/p(h))
1/d) + ǫi(h, n, n1),

where ǫi(h, n, n1) is bounded by r for all n1 ∈ Jn,h, n ∈ IN,h, h ∈ [LN ]k, N ∈ N.

7We crucially used here that fractional polynomials do not grow too slowly. The estimate would fail
if, for example, for ℓ = 1 we started with a1(t) := log t.
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The terms ǫi(h, n, n1) can be easily taken care by using Lemma 3.6 and appropriately
modifying (cN,h(n)) to another bounded sequence of weights. We deduce that it suffices
to get an upper bound for the averages

(21) Eh∈[LN ]k

∥

∥

∥

∥

∥

En∈IN,h
1I′N,h

(n) w̃N,h(n) ·
ℓ
∏

i=1

T [ai(h,(n/p(h))1/d)]+ǫi,NfN,h,i

∥

∥

∥

∥

∥

L2(µ)

,

where I ′N,h := [N
ad
2 , Nadp(h)], N ∈ N (the indicator introduces a negligible oN (1) term),

ǫ1,N , . . . , ǫℓ,N take finitely many values for N ∈ N, and for n ∈ [IN,h], h ∈ [LN ]k, N ∈ N,
we let

(22) w̃N,h(n) := E
∗
n1∈Jn,h

wN,h(n1).

We used that LN ,Λ′(N) ≺ N ε for all ε > 0 in order to justify that inserting the indicator
1I′N,h

only introduces an oN (1) term, which is fine for our purposes.

Using that (cN,h(n)) is 1-bounded, ((∆hΛ
′)(n)) is non-negative, and (19), (20), we

deduce that

(23) |w̃N,h(n)| ≤ d−1 · En1∈Jn,h
(∆hΛ

′)(n1) = d−1 · En1∈[ln,h] (∆hΛ
′)(n1 + kn,h).

From the definition of ln,h and the mean value theorem we have that

ln,h ≥ n
1
d
−1

d(p(h))
1
d

, n ∈ N.

Since LN ≺ N ε for every ε > 0 and kn,h ≤ n1/d, it follows that if A > 1
1−d , for example

if A := 1
1−d + 1, then there exists N0 = N0(d, p) ∈ N such that for all N ≥ N0 and all

n ∈ I ′N,h, h ∈ [LN ]k, we have

kn,h ≤ lAn,h.
8

Hence, there exists N1 = N1(d, k, p) ∈ N such that for all N ≥ N1 we have for all n ∈ I ′N,h

and h = (h1, . . . , hk) ∈ [LN ]k that

kn,h + h1 + · · ·+ hk ≤ lAn,h.

We will combine this with the identity

(∆hΛ
′)(n) =

∏

ǫ∈{0,1}k
Λ′(n+ ǫ · h),

the estimate (23), and Corollary 3.4 (with ℓ := k, c := kn,h, N := ln,h, A := 1
1−d + 1).

We deduce that there exist C = C(d, k) > 0 and Cd,k(h) > 0, h ∈ N
k, such that for all

large enough N (depending only on d, k, p), for every n ∈ IN,h, h ∈ ([LN ]k)∗, we can
write

(24) w̃N,h(n) = Cd,k(h) · zN,h(n),

where (zN,h(n)) is 1-bounded and

(25) Eh∈[LN ]k(Cd,k(h))
2 ≤ C

for every N ∈ N.
Note that since LN ≻ (logN)K for every K > 0 and Λ′(n) ≤ log n, for every n ∈ N we

have that maxh∈[LN ]k,n∈[N ](w̃N,h(n))
2 ≺ LN . Using this and since by (11) we have that

1
Lk
N

|[LN ]k \ ([LN ]k)∗| ≪k
1

LN
, we deduce that we can redefine C(h) on the complement

of ([LN ]k)∗ so that for all large enough N (depending on d, k, p) equation (24) holds for
all n ∈ IN,h, h ∈ [LN ]k, and (25) also holds (for some larger constant C ′ in place of C).

8In the process of deriving this estimate we crucially used that sublinear fractional polynomials are not
too close to linear ones. The estimate would fail if, for example, for ℓ = 1 we started with a1(t) := t/ log t.
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We now use (24), (25), and the Cauchy-Schwarz inequality, in order to bound the
averages in (21). We can also remove the indicator 1I′N,h

(n) since it has a negligible

effect on our averages. We deduce that it suffices to get an upper bound for the averages

Eh∈[LN ]k

∥

∥

∥

∥

∥

En∈IN,h
zN,h(n) ·

ℓ
∏

i=1

T [ai(h,(n/p(h))
1/d)]+ǫi,N fN,h,i

∥

∥

∥

∥

∥

2

L2(µ)

.

Note that since the weights and the functions are bounded, it suffices to get an upper
bound for the previous expression ignoring the square. For h ∈ [LN ]k we can express
n ∈ IN,h as n = n′p(h) + s for some n′ ∈ [Nad] or n′ = 0 and s ∈ [p(h)]. After renaming
n′ as n for convenience, we are led to upper-bounding the averages

(26) Eh∈[LN ]kEs∈[p(h)]

∥

∥

∥

∥

∥

En∈[Nad] zN,h,s(n) ·
ℓ
∏

i=1

T [ai(h,(n+s/p(h))1/d)]+ǫi,NfN,h,i

∥

∥

∥

∥

∥

L2(µ)

for some 1-bounded sequence (zN,h,s(n)). Note that if u ∈ (0, 1) and q ∈ R[t1, . . . , tk],
then an application of the mean value theorem shows that for every ε > 0 we have

lim
N→∞

sup
c∈[0,1],h∈[LN ]k,n≥Nε

|q(h)((n + c)u − nu)| = 0.

It follows that in (26) when computing ai(h, (n + s/p(h))1/d) we can replace n+ s/p(h)
with n in the non-linear monomials; this will lead to some error sequences that are
1-bounded for large enough N and can be handled by appealing to Lemma 3.6 (and
redefining the sequence zN,h(n)). With this in mind, it follows that in (26) we can

replace ai(h, (n+s/p(h))1/d) with ai(h, n
1/d)+

pi,r(h)
p(h) s. Hence, it suffices to get an upper

bound for the averages

Eh∈[LN ]kEs∈[p(h)]

∥

∥

∥

∥

∥

En∈[Nad] zN,h(n) ·
ℓ
∏

i=1

T [ai(h,n
1/d)+ei,N (h,s)]fN,h,i

∥

∥

∥

∥

∥

L2(µ)

,

where ei,N (h, s) :=
pi,r(h)
p(h) s + ǫi,N , i = 1, . . . , ℓ, and ǫ1,N , . . . , ǫℓ,N take finitely many

values for N ∈ N. After replacing the average Es∈[p(h)] with maxs∈[p(h)] we are led to the
asserted upper bound in (18). �

4.3. Reduction to averages with polynomial iterates. For the purposes of the
next lemma it will be convenient to slightly enlarge the class of polynomials with real
exponents that we work with to include those with fractional degree equal to 1.

Lemma 4.2. Let k ∈ Z+, ℓ ∈ N and a1, . . . , aℓ : N
k × N → R be a nice collection of

polynomials with real exponents and k-parameters of fractional degree at most 1. Then
there exist l, r ∈ N and non-constant polynomials P1, . . . , Pr ∈ R[t1, . . . , tk+l], with pair-
wise non-constant differences, such that the following holds: If (X,µ, T ) is a system
and fN,h,1, . . . , fN,h,ℓ ∈ L∞(µ), h ∈ N

k, N ∈ N, are 1-bounded functions, then for ev-
ery a > 0, sequences of real numbers (e1,N (h)), . . . , (eℓ,N (h)), and 1-bounded sequence of
complex numbers (cN,h(n)), we have

(27) Eh∈[LN ]k

∥

∥

∥

∥

∥

En∈[Na] cN,h(n) ·
ℓ
∏

i=1

T [ai(h,n)+ei,N (h)]fN,h,i

∥

∥

∥

∥

∥

L2(µ)

≪k,a1,...,aℓ

Eh1∈[LN ]k,h2∈[LN ]l

∣

∣

∣

∫ r
∏

i=0

T [Pi(h1,h2)]+ǫi,NFN,h1,i
dµ

∣

∣

∣
+ oN (1),
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where P0 := 0, FN,h1,i
∈ {fN,h1,1

, fN,h1,1
} for i = 0, . . . , r, h1 ∈ [LN ]k, N ∈ N,

ǫ0,N , . . . , ǫr,N take finitely many values for N ∈ N, and oN (1) is a quantity that con-
verges to 0 when N → ∞ and all other parameters remain fixed.

Proof. We first reduce to the case where ei,N (h) = 0 for i = 1, . . . , ℓ. To do this, we
replace [ai(h, n)+ei,N(h)] with [ai(h, n)]+[ei,N (h)], this introduces some error sequences
on the exponents that take finitely many values. To treat the error sequences we use
Lemma 3.6, redefine the weight (cN,h(n)), and introduce some sequences ǫ1,N , . . . , ǫℓ,N
that take finitely many values for N ∈ N. Next, we compose with T−[e1,N (h)]−ǫ1,N and
we are left with upper-bounding the expression

Eh∈[LN ]k

∥

∥

∥

∥

∥

En∈[Na] cN,h(n) ·
ℓ
∏

i=1

T [ai(h,n)](T [ei,N (h)]−[e1,N (h)]+ǫi,N−ǫ1,N fN,h,i)

∥

∥

∥

∥

∥

L2(µ)

.

If we rename for i = 2, . . . , ℓ the functions T [ei,N (h)]−[e1,N (h)]+ǫi,N−ǫ1,N fN,h,i as fN,h,i, we
are reduced to bounding (27) when ei,N (h) = 0 for i = 1, . . . , ℓ.

We will prove the statement by induction on ℓ ∈ N. For ℓ = 1 the argument is similar
to the one used in the inductive step, so we only summarise it briefly (for more details
see Steps 1-3 below). We first use Lemma 4.1 and we are led to upper-bounding the
averages

Eh∈[LN ]k

∥

∥

∥
En∈[Na] cN,h(n) · T [p1(h)n+q1(h,n)]fN,h,1

∥

∥

∥

L2(µ)
,

where p1 6= 0 and q1 is a polynomial with real exponents and f-deg(q1) < 1. We then

apply (15) for the average over n, compose with T−[p1(h)n+q1(h,n)], use that q1(h, n +
hk+1) − q1(h, n) is negligible for the range of parameters we are interested in, and use
Lemma 3.6 to treat the finite valued error sequences that arise. We get an upper bound
by the averages

Eh∈[LN ]k,hk+1∈[LN ]

∣

∣

∣

∫

T [p1(h)hk+1]+ǫNfN,h,1 · fN,h,1 dµ
∣

∣

∣
,

where ǫN takes finitely many values for N ∈ N. This proves (27) (with ℓ = r = 1).
Suppose that ℓ ≥ 2 and the statement holds for all nice collections of ℓ−1 polynomials

with real exponents and finitely many parameters.
We have that ai(h, t) :=

∑r
j=1 pi,j(h)t

dj , i = 1, . . . , ℓ where 0 ≤ d1 < · · · < dr = d ≤ 1

and pi,j ∈ R[t1, . . . , tk]. Furthermore, we can assume that the polynomial p1,r is non-zero,
and hence the fractional degree of a1 is d.

Step 1 (Linearising the highest-order term). If the fractional degree of a1 is 1, then
we proceed to Step 2. If not, then Lemma 4.1 (for wN,h := cN,h) applies and we get an
estimate of the form (18). Hence, in order to get an estimate of the form (27), it suffices
to get a similar estimate for the averages

Eh∈[LN ]k

∥

∥

∥

∥

∥

En∈[Nad] cN,h(n) ·
ℓ
∏

i=1

T [ãi(h,n)]+ei,N (h)fN,h,i

∥

∥

∥

∥

∥

L2(µ)

,

where (cN,h(n)) is another 1-bounded sequence, (e1,N (h)), . . . , (eℓ,N (h)) are sequences of
real numbers, and

(28) ãi(h, t) := pi,r(h) t+ qi(h, t), where qi(h, t) :=

r−1
∑

j=1

pi,j(h) t
dj
d , i = 1, . . . , ℓ.

After composing with T−e1,N (h) and redefining the functions fN,h,i, i = 2, . . . , ℓ, we are
reduced to the case where ei,N (h) = 0 for i = 1, . . . , ℓ. So we only treat this case
henceforth. We also remark that since the collection a1, . . . , aℓ is nice, and ãi(h, t) =

ai(h, t
1/d), i = 1, . . . , ℓ, the collection ã1, . . . , ãℓ is also nice.
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Step 2 (Reduction of ℓ via vdC). Applying (15) for the average over n, we get that it
suffices to obtain an upper bound for the following averages

E(h,hk+1)∈[LN ]k+1En∈[Nad]

∣

∣

∣

∫ ℓ
∏

i=1

T [ãi(h,n+hk+1)]fN,h,i

ℓ
∏

i=1

T [ãi(h,n)]fN,h,i dµ
∣

∣

∣
.

We compose with T−[ã1(h,n)] and for i = 1, . . . , ℓ we replace the differences [ãi(h, n +
hk+1)] − [ã1(h, n)], [ãi(h, n)] − [ã1(h, n)] with [ãi(h, n + hk+1) − ã1(h, n)], [ãi(h, n) −
ã1(h, n)], respectively. To do so, we have to introduce some error sequences that take
values on a finite subset of N. We use Lemma 3.6 to treat the errors that arise and we
are left with upper-bounding averages of the form

E(h,hk+1)∈[LN ]k+1En∈[Nad]

∣

∣

∣

∫ ℓ
∏

i=1

T [ãi(h,n+hk+1)−ã1(h,n)]+ǫi,NfN,h,i·

ℓ
∏

i=1

T [ãi(h,n)−ã1(h,n)]+ǫ′i,NfN,h,i dµ
∣

∣

∣
,

where ǫi,N , ǫ′i,N , i = 1, . . . , ℓ, take finitely many values for N ∈ N. Note that the fractional
degree of q1, . . . , qℓ is strictly smaller than 1. It follows from this and the mean value
theorem that

(29) lim
N→∞

max
(h,hk)∈[LN ]k+1,i∈{1,...,ℓ}

|qi(h, t+ hk+1)− qi(h, t)| = 0.

Using (28) and (29), and then Lemma 3.6, we get that it suffices to get an upper bound
for the averages

E(h,hk+1)∈[LN ]k+1En∈[Nad] cN,h,hk+1
(n) ·

∫

(T [p1,r(h)hk+1]+ǫ1,NfN,h,1 · fN,h,1)·
ℓ
∏

i=2

T [bi(h,n)]+ǫi,N f̃N,h,hk+1,i dµ,

where ǫ1,N , . . . , ǫℓ,N take finitely many values for N ∈ N,

bi(h, t) := (pi,r − p1,r)(h) t+ (qi − q1)(h, t), i = 2, . . . , ℓ,

f̃N,h,hk+1,i ∈ L∞(µ), i = 2, . . . , ℓ, are 1-bounded functions, and (cN,h,hk+1
(n)) is a 1-

bounded sequence. Without loss of generality we can assume that bℓ has maximal frac-
tional degree within the collection b2, . . . , bℓ (note that some of the polynomials pi,r−p1,r
may vanish). We compose with T−[bℓ(h,n)] and apply Lemma 3.6 to treat finite-valued
error sequences that we get when we replace differences of integer parts with the inte-
ger part of the corresponding differences. After using the Cauchy-Schwarz inequality we
deduce that it suffices to get an upper bound for the following averages

(30) Ehk+1∈[LN ]

(

Eh∈[LN ]k

∥

∥

∥

∥

∥

En∈[Nad] cN,h,hk+1
(n)

ℓ−1
∏

i=1

T [b̃i(h,n)]+ǫ′i,N f̃N,h,hk+1,i

∥

∥

∥

∥

∥

L2(µ)

)

,

where ǫ′1,N , . . . , ǫ′ℓ−1,N take finitely many values for N ∈ N,

b̃i(h, t) := (pi,r − pℓ,r)(h) t+ (qi − qℓ)(h, t), i = 1, . . . , ℓ− 1,

and

(31) f̃N,h,hk+1,1 := T [p1,r(h)hk+1]+ǫ1,N fN,h,1 · fN,h,1,

where ǫ1,N takes finitely many values for N ∈ N.

Note that our assumptions imply that b̃1, . . . , b̃ℓ−1, thought of as a collection of poly-
nomials with real exponents and (k + 1)-parameters, is nice.
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Step 3 (Applying the induction hypothesis). Using the induction hypothesis for the

expression in (30) that is inside the parentheses, and the fact that b̃1, . . . , b̃ℓ−1 do not
depend on the parameter hk+1, we get that there exist l, r ∈ N and non-constant poly-
nomials P1, . . . , Pr ∈ R[t1, . . . , tk+l] with pairwise non-constant differences, such that the
averages in (30) are bounded by an oN (1) term plus a constant Ck,a1,...,aℓ (note that

b̃1, . . . , b̃ℓ−1 are determined by a1, . . . , aℓ) times the expression

E(h1,hk+1)∈[LN ]k+1,h2∈[LN ]l

∣

∣

∣

∫ r
∏

i=0

T [Pi(h1,h2)]+ǫ′i,NFN,h1,hk+1,i dµ
∣

∣

∣
,

where P0 := 0, FN,h,hk+1,i ∈ {f̃N,h,hk+1,1, f̃N,h,hk+1,1
} for i = 0, . . . , r, h1 ∈ [LN ]k, hk+1 ∈

[LN ], N ∈ N, and ǫ′0,N , . . . , ǫ′r,N take finitely many values for N ∈ N.

Using (31) and Lemma 3.6, we can bound this expression by a constant Cr times the
following average

E(h1,hk+1)∈[LN ]k+1,h2∈[LN ]l

∣

∣

∣

∫

fN,h1,1 · T
[p1,r(h1)hk+1]+ǫ′0,NfN,h1,1

·
r
∏

i=1

(

T [Pi(h1,h2)+p1,r(h1)hk+1]+ǫ′i,NGN,h1,hk+1,i · T
[Pi(h1,h2)]+ǫ′r+i,NGN,h1,hk+1,r+i

)

dµ
∣

∣

∣
,

where for i = 1, . . . , 2r we have GN,h1,hk+1,i ∈ {fN,h1,1
, fN,h1,1

}, h1 ∈ [LN ]k, hk+1 ∈ [LN ],

N ∈ N, and ǫ′i,N , i = 0, . . . , 2r, take finitely many values for N ∈ N. Since the polynomial
p1,r is non-zero and the polynomials P1, . . . , Pr with k+ l variables are non-constant and
have non-constant pairwise differences, the same holds for the 2r + 1 polynomials with
k + l + 1 variables p1,r(h1)hk+1, Pi(h1, h2) + p1,r(h1)hk+1, Pi(h1, h2), i = 1, . . . , r. This
completes the proof. �

4.4. Averages with polynomial iterates. Lemma 4.1 and Lemma 4.2 show that in
the case of iterates with sublinear growth, to get good seminorm estimates for the aver-
ages in Theorem 3.1, it suffices to study averages with iterates given by polynomials in
R[t1, . . . , tk] for some k ∈ N. This is the context of the next result.

Lemma 4.3. Let k, r ∈ N and P1, . . . , Pr ∈ R[t1, . . . , tk] be non-constant polynomials
with pairwise non-constant differences. Then there exists s ∈ N such that the following
holds: If (X,µ, T ) is an ergodic system and f1, . . . , fr ∈ L∞(µ) are such that |||fi|||s = 0
for some i ∈ {1, . . . , r}, then for every 1-bounded sequence (cN (h)), we have

lim
N→∞

Eh∈[N ]k cN (h) ·
r
∏

i=1

T [Pi(h)]fi = 0

in L2(µ).

Proof. The argument is similar to the one used to prove [23, Theorem 1] where the case
of polynomials with integer coefficients and cN (h) := 1 is covered, so we only sketch
the points in the argument where one has to deviate slightly because of minor technical
complications. The proof proceeds by induction on a certain vector, called the weight,
that is associated to each polynomial family P1, . . . , Pr in R[t1, . . . , tk].

The inductive step is carried out by using a variant of Lemma 3.5 in the form used
in (16) that concerns averages over [N ]k (see [23, Lemma 4] for the precise statement).
The argument applies verbatim in our case, the only change is that we need at various
instances to replace the differences of the integer part of polynomials with the integer part
of their differences; we do this with the help of Lemma 3.6 and the use of the constants
(cN (h)) facilitates this task.

The base case of the induction is the case where all the polynomials are linear with
respect to all variables involved. This case is covered using another induction, this time
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on the number r of linear functions. The inductive step is proved using [23, Lemma 4].
The only difference in our case, versus the argument used in [23, Proposition 5], appears
in the proof of the estimate

(32) lim sup
N→∞

Eh∈[N ]k |||g · T [L(h)]f |||2ss ≤ CL |||f |||2s+1

s+1 ,

for some CL > 0, where f, g ∈ L∞(µ) and L(h) =
∑k

j=1 αjhj , for some k ∈ N and
α1, . . . , αk ∈ R. To obtain this bound, we first use Lemma 3.6 to show that it suffices to

replace [
∑k

j=1 αjhj ] with
∑k

j=1[αjhj ], and we remark that the set

{([α1h1], . . . , [αkhk]) : (h1, . . . , hk) ∈ N
k}

has bounded multiplicity and positive density (as a subset of Nk). It follows that there
exists CL > 0 such that

lim sup
N→∞

Eh∈[N ]k |||g · T
∑k

j=1[αjhj ]f |||2ss ≤ CL lim sup
N→∞

Eh∈[N ]k |||g · T
∑k

j=1 hjf |||2ss .

By [23, Lemma 8], the last expression is bounded by a constant multiple of |||f |||2s+1

s+1 .
Combining the above we get that (32) holds. Finally, the base case of the induction (of
the linear case) is when r = 1 and P1 = L is linear. To cover this case, we again use [23,
Lemma 4] and reduce matters to the task of obtaining an upper bound for the expression

lim sup
N→∞

Eh∈[N ]k

∣

∣

∣

∫

f · TL(h)f dµ
∣

∣

∣
.

By the s = 1 case of (32) (recall that |||f |||1 = |
∫

f dµ|) we get an upper bound by CL|||f |||22
for some CL > 0. This completes the proof. �

4.5. Proof of Theorem 3.1 in the sublinear case. We are now ready to combine
the ingredients of the previous subsections to complete the goal of this section, which is
to prove the following result:

Proposition 4.4. Theorem 3.1 holds in the case where all a1, . . . , aℓ have fractional
degree smaller than one.

Proof. Combining Lemma 4.1 and Lemma 4.2 (for fN,h,1 := f1, N ∈ N, h ∈ N
k) we get

that there exist k, r ∈ N and non-constant polynomials P1, . . . , Pr ∈ R[t1, . . . , tk], with
pairwise non-constant differences, such that the averages (8) are bounded by an oN (1)
term plus a constant multiple of

Eh∈[LN ]k

∣

∣

∣

∫ r
∏

i=0

T [Pi(h)]+ǫi,NFi,h dµ
∣

∣

∣
,

where P0 := 0, F0,h, . . . , Fr,h ∈ {f1, f1}, h ∈ N
k, and the sequences ǫ0,N , . . . , ǫr,N take

values on a finite subset S of Z for N ∈ N. Since the limsup as N → ∞ of the previous
average is bounded by

∑

ǫ0,...,ǫr∈S, F0,...,Fr∈{f1,f1}

lim sup
N→∞

(

Eh∈[LN ]k

∣

∣

∣

∫ r
∏

i=0

T [Pi(h)]+ǫiFi dµ
∣

∣

∣

)

,

it suffices to show that for all fixed ǫ0, . . . , ǫr ∈ Z and F0, . . . , Fr ∈ {f1, f1}, we have

lim
N→∞

Eh∈[LN ]k

∣

∣

∣

∫ r
∏

i=0

T [Pi(h)]+ǫiFi dµ
∣

∣

∣
= 0.

The last average is equal to

Eh∈[LN ]k cN (h) ·
∫ r

∏

i=0

T [Pi(h)+ǫi]Fi dµ
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for some 1-bounded sequence (cN (h)). The result now follows from Lemma 4.3. �

5. Seminorm estimates - induction step

The goal of this section is to finish the proof of Theorem 3.1 using a PET-induction ar-
gument. The basis of the induction was covered in the previous section and the induction
step will be carried out in this section.

5.1. An example. To better illustrate our method, we first explain the details in a
simple case. We take ℓ = 2 and a1(t) := t1.5, a2(t) = t1.5 + t1.1, t ∈ R+. Then {a1, a2} is
a nice family and our aim is to show that if |||f1|||s = 0 for some s ∈ N, then

lim
N→∞

En∈[N ]wN (n) · T [n1.5]f1 · T [n1.5+n1.1]f2 = 0,

where wN (n) = Λ′(n) · cN (n) for some 1-bounded sequence (cN (n)).

We start by using (15), compose with T−[n1.5+n1.1], use Lemma 3.6 to dispose the error
sequence that arises when we replace the difference of integer parts with the integer part
of the difference, and use the Cauchy-Schwarz inequality. We deduce that it suffices to
prove convergence to zero of the averages

Eh1∈[LN ]

∣

∣

∣

∣

∣

∣
En∈[N ]wN,h1(n) · T [(n+h1)1.5−n1.5−n1.1]f1·

T [(n+h1)1.5+(n+h1)1.1−n1.5−n1.1]f2 · T [−n1.1]f1

∣

∣

∣

∣

∣

∣

L2(µ)
,

where wN,h1(n) := (∆h1Λ
′)(n) · cN,h1(n) for some 1-bounded sequence (cN,h1(n)). Using

the mean value theorem and Lemma 3.6, we get that for the range of h1, n we are working
with, we can replace (n+h1)

1.5−n1.5 with 1.5h1n
0.5 and (n+h1)

1.1−n1.1 with 1.1h1n
0.1,

which for notational simplicity we replace with h1n
0.5 and h1n

0.1 respectively. We thus
arrive to the problem of proving convergence to zero of the averages

Eh1∈[LN ]

∥

∥

∥
En∈[N ]wN,h1(n) · T [−n1.1+h1n0.5]f1 · T [h1n0.5+h1n0.1]f2 · T [−n1.1]f1

∥

∥

∥

L2(µ)
.

Performing one more time the previous operation (we compose with T−[h1n0.5+h1n0.1] after
applying (15)) we arrive in a similar fashion at the following averages

Eh1,h2∈[LN ]

∣

∣

∣

∣

∣

∣
En∈[N ]wN,h1,h2(n) · T [−n1.1−h2n0.1]f1 · T [−n1.1−h1n0.5−(h1+h2)n0.1]f1·

T [−n1.1−h1n0.1]f1 · T [−n1.1−h1n0.5−h1n0.1]f1

∣

∣

∣

∣

∣

∣

L2(µ)
,

where wN,h1,h2(n) := (∆h1,h2Λ
′)(n)·cN,h1,h2(n) for some 1-bounded sequence (cN,h1,h2(n)).

After one more iteration of the previous operation (this time we compose with the trans-

formation T [n1.1+h1n0.5+h1n0.1] after applying (15)) we arrive at the averages

Eh1,h2,h3∈[LN ]

∣

∣

∣

∣

∣

∣
En∈[N ]wN,h1,h2,h3(n) · T [(h1−h2−h3)n0.1+h1n0.5]f1 · T [−(h2+h3)n0.1]f1·

T [−h3n0.1+h1n0.5]f1 · T [−h3n0.1]f1 · T [(h1−h2)n0.1+h1n0.5]f̄1 · T [−h2n0.1]f1 · T [h1n0.5]f1

∣

∣

∣

∣

∣

∣

L2(µ)
,

where wN,h1,h2,h3(n) := (∆h1,h2,h3Λ
′)(n) · cN,h1,h2,h3(n) for some 1-bounded sequence

(cN,h1,h2,h3(n)). We have now reduced to the case of fractional polynomials with 3-
parameters and fractional degree smaller than 1. This case was dealt in the previous
section, where we showed in Proposition 4.4 that there exists s ∈ N such that if |||f1|||s = 0,
then the last averages converge to zero as N → ∞.
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5.2. The van der Corput operation and reduction of type. In this subsection
we define the type of a family of polynomials with real exponents and finitely many
parameters and the van der Corput operation that reduces the type.

Definition. We say that two polynomials a, b with real exponents and finitely many
parameters are equivalent, and write a ∼= b, if the (integral) degree of a − b is strictly
smaller than the degree of a and b.9

We define the type of a family a1, . . . , aℓ of polynomials with real exponents and finitely
many parameters to be the vector that consists of the maximal degree d of the family
(in the first coordinate) and the number of non-equivalent classes of degree d, d− 1,. . .,
0 in the other coordinates (we ignore polynomials that are identically 0).

We order the set of all possible types lexicographically; meaning, (d, kd, . . . , k0) >
(d′, k′d, . . . , k

′
0) if and only if in the first instance where the two vectors disagree the

coordinate of the first vector is larger than the coordinate of the second vector.

We caution the reader that t2.5 6∼= t2.5 + t2.1 (but t2.5 ∼= t2.5 + t1.1). Also if a1(h, t) =
ht2.5+h2t2.1, a2(h, t) = ht2.5, a3(h, t) = ht2.5+h2t2.1+ht1.5, a4(h, t) = t0.5, then a1 6∼= a2,
a2 6∼= a3, a1 ∼= a3 and the family a1, a2, a3, a4 has type (2, 2, 0, 1).

Recall that LN = [e
√
logN ], N ∈ N. We introduce a class of sequences that often occur

as errors that can be eliminated using Lemma 3.6.

Definition. We say that e : Nk × R+ → R is negligible if

lim
N→∞

max
h∈[LN ]k,t∈[

√
N,N ]

|e(h, t)| = 0.

If a(t) is a fractional polynomial, then a(t+ c) is also a fractional polynomial modulo
negligible terms. This is the context of the next lemma, which is proved in a more general
form that is better suited for our purposes.

Lemma 5.1. Let a(h, t) be a polynomial with real exponents and k-parameters and degree
d. Then modulo negligible terms, a(h, t+ hk+1) is a polynomial with real exponents and
(k + 1)-parameters. In fact, we have

(33) a(h, t+ hk+1) = ã(h, hk+1, t) + e(h, hk+1, t),

where (below a(j) denotes the j-th derivative of a with respect to the variable t)

(34) ã(h, hk+1, t) :=

d
∑

j=0

hjk+1

j!
a(j)(h, t)

and e : Nk+1 × R → R is negligible.

Proof. Using the Taylor expansion of a(h, t) we get that (33) holds with

e(h, hk+1, t) :=
hd+1
k+1

(d+ 1)!
a(d+1)(h, ξh,hk+1,t)

for some ξh,hk+1,t ∈ [t, t+hk+1]. Since the fractional degree of a is d+c for some c ∈ (0, 1),
we have

max
(h,hk+1)∈[LN ]k+1,t∈[

√
N,N ]

|e(h, hk+1, t)| ≺
LA
N

N
1−c
2

,

for some A > 0 that depends on d and the maximum degree of the coefficient polynomials
of a(h, t). Since LN ≺ N ε for every ε > 0, it follows that

lim
N→∞

max
(h,hk+1)∈[LN ]k+1,t∈[

√
N,N ]

|e(h, hk+1, t)| = 0,

9We do not choose to identify functions with the same fractional degree because if we did so, then
the vdC operation that will be described shortly would not necessarily lead to families with smaller type
(see the example given after the relevant definition).
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completing the proof. �

For example, if a(h, t) = hta for some a ∈ (2, 3), then modulo negligible terms (in the

sense defined above) we have that ã(h, t+h1) is equal to hta+ah1ht
a−1+ a(a−1)

2 h21ht
a−2.

Next we define an operation that we later show preserves nice families of polynomials
and reduces their type.

Definition. Let A = {a1, . . . , aℓ} be a family of polynomials with real exponents and
k-parameters and a ∈ A. We define a new family of polynomials with real exponents
and (k + 1)-parameters vdC(A, a) as follows: We start with the family

{ãi(h, hk+1, t)− a(h, t), ai(h, t)− a(h, t), i = 1, . . . , ℓ},
where for i = 1, . . . , ℓ the polynomial with real exponents and (k + 1)-parameters ãi is
as in (34) (so it is equal to ai(h, t + hk+1) modulo negligible terms), and we remove all
functions that are constant in the variable t.

Suppose for example that we start with the nice family

A = {t1.5, t1.5 + t1.1, t1.5 + t1.2}.
The type of this family is (1, 3, 0) and the family vdC(A, t1.5 + t1.2) is

{−t1.2 + 1.5ht0.5,−t1.2 + t1.1 + 1.5ht0.5, 1.5ht0.5 + 1.2ht0.2,−t1.2,−t1.2 + t1.1},
(note that the first and fourth functions can be identified and the same holds for the
second and the fifth) which is also nice and has smaller type, namely (1, 2, 1). We
remark that if we had chosen to identify functions that have the same fractional degree,
then the original family would have type (1, 1, 0) and the family vdC(A, t1.5+ t1.2) would
have larger type, namely (1, 2, 1).

Lemma 5.2. Let A = {a1, . . . , aℓ} be a nice family of polynomials with real exponents
and k-parameters such that f-deg(a1) > 1. Then there exists a ∈ A such that the family
vdC(A, a), ordered so that the first function is ã1 − a, is nice and has smaller type.
Furthermore, if A consists of fractional polynomials with k-parameters, then vdC(A, a)
consists of fractional polynomials with (k + 1)-parameters.

Proof. We first remark that if A consists of fractional polynomials with k-parameters
and a is any fractional polynomial with k-parameters, then (34) implies that vdC(A, a)
consists of fractional polynomials with (k + 1)-parameters.

For i = 1, . . . , ℓ, let ãi be the polynomial with real exponents and (k + 1)-parameters
given by (34). We choose a ∈ A as follows:

(i) If a1, . . . , aℓ do not have the same fractional degree, we let ai0 be a function
in the family {a2, . . . , aℓ} that has minimal (positive) fractional degree, and set
a = ai0 .

(ii) If a1, . . . , aℓ have the same fractional degree, we let i0 ∈ {1, . . . , ℓ} be so that
ã1−ai0 has maximal degree within the family ã1−a1, . . . , ã1−aℓ and set a = ai0 .

Claim 1. The family vdC(A, a) is nice.
By construction, all functions in vdC(A, a) are non-constant (we have removed con-

stant functions). We first show that independently of the choice of a, the difference of
ã1 − a with a function in vdC(A, a) is always non-constant (in the variable t); in the
process we also show that f-deg(ã1−a) > 0. Suppose that such a difference has the form
ã1 − ai for some i ∈ {1, . . . , ℓ}. It follows from Lemma 5.1 that ã1 contains the term
hk+1a

′
1(t), which depends non-trivially on the parameter hk+1 (note also that a1, . . . , aℓ

do not depend on this parameter). It follows from this and our assumption f-deg(a1) > 1
that

f-deg(ã1 − ai) ≥ f-deg(a′1) = f-deg(a1)− 1 > 0, i = 1, . . . , ℓ.
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It remains to cover the case where the difference of ã1 − a with a function in vdC(A, a)
has the form ã1 − ãi for some i ∈ {2, . . . , ℓ}. Then using Lemma 5.1 and our assumption
that A is nice, we get

f-deg(ã1 − ãi) ≥ f-deg(a1 − ai) > 0, i = 2, . . . , ℓ.

Next we show that ã1 − a has maximal fractional degree within the family vdC(A, a).
Suppose first that we are in Case (i). Since f-deg(ai0) < f-deg(a1), we have that ã1 − ai0
has the same fractional degree as a1, which by assumption has maximal fractional degree
within the family {a1, . . . , aℓ}. We deduce that ã1 − ai0 has maximal fractional degree
within the family vdC(A, a). Suppose now that we are in Case (ii) and let i ∈ {1, . . . , ℓ}.
Since ai − ai0 = (ai − ã1) + (ã1 − ai0) and by the choice of i0 we have f-deg(ã1 − ai0) ≥
f-deg(ã1 − ai), we deduce that

(35) f-deg(ã1 − ai0) ≥ f-deg(ai − ai0), i = 1, . . . , ℓ.

Moreover, note that ãi − ai0 = (ãi − ai) + (ai − ai0) and

(36) f-deg(ã1 − ai0) ≥ f-deg(ã1 − a1) = f-deg(a1)− 1 ≥ f-deg(ai)− 1 = f-deg(ãi − ai),

where the two identities follow from Lemma 5.1, and the first estimate follows from the
choice of i0 and the second since the family A is nice. We deduce from (35) and (36)
that

(37) f-deg(ã1 − ai0) ≥ f-deg(ãi − ai0), i = 1, . . . , ℓ.

Combining (35) and (37) we get that ã1 − ai0 has maximal fractional degree within the
family vdC(A, a).

Claim 2. The family vdC(A, a) has smaller type.
Using Lemma 5.1 and the definition of the degree, it is easy to verify that if for some

i ∈ {1, . . . , ℓ} we have ai 6∼= ai0 , then deg(ai−ai0) = deg(ãi−ai0) = deg(ai) and ai−ai0
∼=

ãi−ai0 , while if ai ∼= ai0 , then deg(ai−ai0) < deg(ai) and deg(ãi−ai0) < deg(ai). Using
these facts we easily get the following:

If we are in Case (i), we have that the type of A has the form (d, kd, . . . , kl, 0, . . . , 0),
where l = deg(ai0), kl ≥ 1, and d ≥ 1. Then the type of vdC(A, a) is (d, kd, . . . , kl − 1)
if l = 0, and (d, kd, . . . , kl − 1, kl−1, . . . , k0) for some k0, . . . , kl−1 ∈ Z+ if l ≥ 1.

If we are in Case (ii), we have that the type of A has the form (d, kd, 0, . . . , 0), where
d ≥ 1 and kd ≥ 1. Then for every a ∈ A the type of vdC(A, a) is (d, kd − 1, kd−1 . . . , k0)
for some k0, . . . , kd−1 ∈ Z+.

In both cases the type of the family vdC(A, a) is smaller than the type of the family
A, completing the proof of Claim 2. �

5.3. Proof of Theorem 3.1. We will now use a PET-induction technique to prove
Theorem 3.1. The base case of the induction was covered in the previous section and the
inductive step will be proved using (15) and Lemma 5.2.

Proof of Theorem 3.1. Our goal is to show that there exists s ∈ N such that if fN,h,1 = f1,

h ∈ [LN ]k, N ∈ N, and |||f1|||s = 0, and all other functions below are assumed to be 1-
bounded, then

lim
N→∞

Eh∈[LN ]k

∥

∥

∥

∥

∥

En∈[N ]wN,h(n) ·
ℓ
∏

i=1

T [ai(h,n)]fN,h,i

∥

∥

∥

∥

∥

L2(µ)

= 0,

where wN,h(n) := (∆hΛ
′)(n) · cN,h(n), h ∈ [LN ]k, n ∈ [N ], N ∈ N, and the sequence

(cN,h(n)) is 1-bounded.
We prove this using induction on the type of the nice family of fractional polynomials

A := {a1, . . . , aℓ} with finitely many parameters. If f-deg(a1) < 1 (then also f-deg(aj) < 1
for j = 2, . . . , ℓ), then the result follows from Proposition 4.4.
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Suppose that the family A := {a1, . . . , aℓ} has type (d, kd, . . . , k0), where d ≥ 1, kd ≥ 1,
kd−1, . . . , k0 ∈ Z+, and the statement holds for all families of fractional polynomials with
finitely many parameters and type strictly smaller than (d, kd, . . . , k0). Since deg(a1) ≥ 1
and a1 is a fractional polynomial we have that f-deg(a1) > 1.

By Lemma 5.2, there exists a ∈ A such that the family vdC(A, a), ordered so that the
first function is ã1 − a (where ã1 is as in (34)), consists of fractional polynomials with
finitely many parameters and satisfies the following

(38) vdC(A, a) is nice and has type strictly smaller than (d, kd, . . . , k0).

We use (15) for the average En∈[N ], compose with T−[a(h,n)] and then use the Cauchy-
Schwarz inequality. We get that it suffices to show the following (recall that (∆hu)(n) =

u(n+ h) · u(n))

lim
N→∞

E(h,hk+1)∈[LN ]k+1

∣

∣

∣

∣

∣

∣
En∈[N ] (∆hk+1

wN,h)(n) ·
ℓ
∏

i=1

T [ai(h,n+hk+1)]−[a(h,n)]fN,h,i·

ℓ
∏

i=1

T [ai(h,n)]−[a(h,n)]fN,h,i

∣

∣

∣

∣

∣

∣

L2(µ)
= 0.

We replace the differences of integer parts on the iterates with the integer part of their
differences and also replace ai(h, n+ hk+1) with ãi(h, hk+1, n), where ãj is associated to
aj by (34) of Lemma 5.1. To make these substitutions we introduce some error sequences
that take finitely many values; as usual, these sequences can be handled after we apply
Lemma 3.6 (which applies without a problem since the values of n that are smaller than√
N contribute negligibly in the average). After completing these maneuvers we see that

it suffices to show the following

lim
N→∞

E(h,hk+1)∈[LN ]k+1

∥

∥

∥

∥

∥

En∈[N ]wN,h,hk+1
(n) ·

2ℓ
∏

i=1

T [bi(h,hk+1,n)]+ǫi,NgN,h,hk+1,i

∥

∥

∥

∥

∥

L2(µ)

= 0,

where ǫ1,N , . . . , ǫ2ℓ,N take finitely many values for N ∈ N,

wN (h, hk+1, n) := (∆(h,hk+1)Λ
′)(n) · cN,h,hk+1

(n),

for some 1-bounded sequence (cN,h,hk+1
(n)), and

bi(h, hk+1, t) := ãi(h, t+ hk+1)− a(h, t), i = 1, . . . , ℓ,

bℓ+i(h, hk+1, t) := ai(h, t)− a(h, t), i = 1, . . . , ℓ,

and gN,h,hk+1,i are 1-bounded functions in L∞(µ) such that gN,h,hk+1,1 := f1 for all

(h, hk+1) ∈ [LN ]k+1, N ∈ N. We compose with T−ǫ1,N inside the L2(µ)-norm and set
hN,h,hk+1,i := T ǫi,N−ǫ1,N gN,h,hk+1,i, i = 1, . . . , 2ℓ (then hN,h,hk+1,1 = f1). We get that it
suffices to show that
(39)

lim
N→∞

E(h,hk+1)∈[LN ]k+1

∥

∥

∥

∥

∥

En∈[N ]wN,h,hk+1
(n) ·

2ℓ
∏

i=1

T [bi(h,hk+1,n)]hN,h,hk+1,i

∥

∥

∥

∥

∥

L2(µ)

= 0.

Finally, we can remove all functions associated with iterates that do not depend on
the variable n (note that by Lemma 5.2 the function b1 is not one of them), and thus
we arrive at an average with iterates given by the family vdC(A, a), ordered so that the
first function is ã1 − a. By the choice of a we have that (38) holds. Hence, the induction
hypothesis applies for this family and gives that there exists s ∈ N such that if |||f1|||s = 0,
then (39) holds. This completes the induction step and the proof. �
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