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Abstract

In this paper we prove that if {ϕi(x) = λx + ti} is an equicontractive iterated function
system and b is a positive integer satisfying log b

log |λ| /∈ Q, then almost every x is normal in

base b for any non-atomic self-similar measure of {ϕi}.
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1 Introduction

Let b ≥ 2 be an integer. A real number x is said to be normal in base b if the sequence (bnx)∞n=1

is uniformly distributed modulo one. For a real number x, being normal in base b indicates that
the base b expansion of x behaves like a sequence of uniformly distributed i.i.d random variables.
The study of normal numbers was pioneered by Borel in [3]. He proved that Lebesgue almost
every x is normal in base b for any integer b ≥ 2. Since these beginnings, the study of normal
numbers has developed into an important and active branch of mathematics. It has significant
connections to Ergodic Theory, Fractal Geometry, and Number Theory. We refer the reader to
the books [5] and [17] for a more detailed introduction to this subject.

Despite the result of Borel mentioned above, it is often a challenging problem to demonstrate
that a real number is normal in a given base b. Indeed there are relatively few explicit examples
of real numbers that are normal in a base b (see [5]). Nevertheless it is reasonable to expect
that a real number will be normal in base b if it is defined in a manner that is independent
from b. This reasoning leads to natural conjectures which state that well known constants like
π and e are normal in any base. These conjectures are extremely challenging and it is necessary
to readjust our expectations. Instead of studying specific real numbers, one can study Borel
probability measures on R. If a Borel probability measure µ is defined in a manner that is
independent from b, then it is reasonable to expect that µ almost every x will be normal in base
b. In this paper we will pursue this line of research in the special case when µ is a self-similar
measure of an iterated function system.

1.1 Background and statement of results

We call a map ϕ : R → R a contracting similarity if there exists λ ∈ (−1, 0) ∪ (0, 1) and t ∈ R

such that ϕ(x) = λx + t. We call a finite set of contracting similarities an iterated function
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system or IFS for short. A well known theorem due to Hutchinson [13] states that for any IFS
{ϕi}i∈I , there exists a unique non-empty compact set X satisfying

X =
⋃

i∈I

ϕi(X). (1.1)

We call X the self-similar set of {ϕi}i∈I . Many well known fractal sets can be realised as the
self-similar set of an iterated function system. For example the middle third Cantor set is the
self-similar set of the IFS {φ1(x) = x

3 , φ2(x) = x+2
3 }. Given an IFS {ϕi}i∈I and a probability

vector p = (pi)i∈I , there exists a unique Borel probability measure µp supported on X satisfying

µp =
∑

i∈I

pi · ϕiµp.

Here ϕiµp denotes the pushforward of µp by the similarity ϕi. We call µp the self-similar measure
corresponding to {ϕi}i∈I and p. We say that a self-similar measure µp is fully supported if pi > 0
for all i ∈ I. It is often the case that there is no loss of generality in assuming that a self-similar
measure is fully supported. This is because if a self-similar measure is not fully supported, for
each i ∈ I satisfying pi = 0 we can remove the corresponding similarity from the IFS and remove
the corresponding entry from p. This new IFS and probability vector yields the same self-similar
measure. However it is now fully supported with respect to the new probability vector.

Many important properties of a self-similar set depend upon the contraction ratios of the
similarities in the IFS, i.e. those λi ∈ (−1, 0) ∪ (0, 1) such that ϕi(x) = λix + ti. With our
previous discussion in mind, it is reasonable to expect that the arithmetic properties of the
contraction ratios may influence the existence of normal numbers within the self-similar set.
The following conjecture is natural and follows from these considerations.

Conjecture 1.1. Let {ϕi(x) = λix + ti}i∈I be an IFS and b ≥ 2 be an integer. Suppose that
log b

log |λi|
/∈ Q for some i ∈ I. Then almost every x is normal in base b for any non-atomic fully

supported self-similar measure of {ϕi}i∈I .

Clearly Conjecture 1.1 is false without the assumption log b
log |λi|

/∈ Q for some i ∈ I. Take for
example the middle third Cantor set. It contains no real numbers that are normal in base 3.
The existence of the digit i ∈ I for which log b

log |λi|
/∈ Q should be interpreted as a mechanism

ensuring that the self-similar set X has no arithmetic structure relating to the base b. This
lack of structure means that the non-atomic fully supported self-similar measures are in a sense
independent from b. As such it is reasonable to expect that these measures would give full mass
to the set of real numbers that are normal in base b.

The first instances of a special case of Conjecture 1.1 being proved can be found in the
papers of Cassels and Schmidt [6, 23]. They considered the IFS {φ1(x) = x

3 , φ2(x) = x+2
3 }

and the probability vector p = (1/2, 1/2). They proved that with respect to the corresponding
self-similar measure, almost every x is normal in base b if b is not a power of three. By proving
this result, these authors answered in the affirmative a question of Steinhaus on whether there
exists a real number that is normal in base b for infinitely many b but not all b. Hochman and
Shmerkin proved Conjecture 1.1 under the additional assumption that the IFS satisfies a certain
separation condition [12]. Important progress towards a proof of Conjecture 1.1 was made in a
recent paper by Algom et al [1]. In this paper the authors proved that if a self-similar measure
µp is a Rajchman measure, that is its Fourier transform converges to zero, then µp almost every
x is normal in base b for any b ≥ 2. By combining this result with existing theorems on when
self-similar measures are Rajchman measures, we can conclude a number of special cases of
Conjecture 1.1. In particular, by a result of Li and Sahlsten [18], it follows that Conjecture 1.1

is true under the additional assumption that there exists i, i′ ∈ I such that log |λi|
log |λi′ |

/∈ Q. This
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leaves open the case when all of the contraction ratios are integer powers of some parameter λ.
This case was studied by Brémont in [4]. He proved that for such an IFS, if µp is a non-atomic
self similar measure and it is not a Rajchman measure, then the parameter λ is the reciprocal of
a Pisot number and the underlying IFS can be conjugated to an IFS with translation parameters
satisfying ti ∈ Q(λ) for all i ∈ I. Recall that a real number is said to be a Pisot number if it is
an algebraic integer greater than 1 whose Galois conjugates all have modulus strictly less than
1. The golden mean is an example of a Pisot number. Combining this result of Brémont with
the aforementioned result of Algom et al, it follows that Conjecture 1.1 is true if the contraction
ratios are not all integer powers of a common Pisot number. In another recent paper, Hochman
gave an alternative proof of a well known theorem due to Host [11]. At the end of this paper,
Hochman commented that his method could be extended to prove Conjecture 1.1 under the
assumption that the IFS satisfies the strong separation condition, i.e. ϕi(X) ∩ ϕi′(X) = ∅ for
i, i′ ∈ I such that i 6= i′.

In this paper we prove Conjecture 1.1 under the assumption that the IFS is equicontractive,
i.e. there exists λ ∈ (−1, 0)∪ (0, 1) such that λi = λ for all i ∈ I. We emphasise that this result
allows for λ to be the reciprocal of a Pisot number, and can handle self-similar measures that are
not Rajchman measures, see Example 1.3. Our proof is independent from the work of Algom et
al and Brémont, and treats both the Rajchman and non-Rajchman cases simultaneously.

Theorem 1.2. Let {ϕi(x) = λx + ti}i∈I be an equicontractive IFS and b ≥ 2 be an integer.
Suppose that log b

log |λ| /∈ Q. Then almost every x is normal in base b for any non-atomic self-similar

measure of {ϕi}i∈I .

We remark that unlike in the statement of Conjecture 1.1, we do not need the assumption
that µp be fully supported in the statement of Theorem 1.2. This is because even if µp is not
fully supported, it can still be realised as a fully supported self-similar measure for some other
appropriate equicontractive IFS which satisfies log b

log |λ| /∈ Q. The same is not true in the more
general setting of Conjecture 1.1.

The following example gives one particular application of Theorem 1.2. We include it because
it is of independent interest, and because it details a specific instance when Theorem 1.2 applies
to self-similar measures that are not Rajchman measures.

Example 1.3. Let λ ∈ (1/2, 1) and µλ be the distribution of the random sum
∑∞

n=0±λn where
plus and minus are chosen with equal probability. The probability measure µλ is known as the
Bernoulli convolution. Bernoulli convolutions are a well studied family of measures. They have
connections to the theory of algebraic numbers and to problems from Harmonic Analysis. Often
we are interested in calculating the dimension of µλ and determining whether it is absolutely
continuous. For a more detailed introduction to Bernoulli convolutions we refer the reader
to the articles [19, 25, 26, 27] and the references therein. For our purposes, the important
point is that µλ can be realised as the self-similar measure for the iterated function system
{ϕ1(x) = λx− 1, ϕ2(x) = λx+ 1} and the probability vector (1/2, 1/2).

In [9] Erdős proved that if λ is the reciprocal of a Pisot number then µλ is not a Rajchman
measure. This is significant for two reasons. First of all, it implies that µλ is singular with
respect to the Lebesgue measure. Therefore normality results for µλ typical points cannot be
immediately deduced from Borel’s theorem. Secondly, it also means that we cannot use the work
of Algom et al to establish normality results. As we will now explain, Theorem 1.2 overcomes
these obstacles and implies that if λ is the reciprocal of a Pisot number and b ≥ 2 is any integer,
then µλ almost every x is normal in base b.

Let us fix λ the reciprocal of a Pisot number and b ≥ 2. By Theorem 1.2, to prove our
statement it suffices to show that log b

log λ /∈ Q. For the purpose of obtaining a contradiction, let us

suppose log b
log λ ∈ Q. This implies that b−p/q = λ for some p, q ∈ N. Therefore for any l ∈ N we
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have that λ−lq ∈ N. Because λ ∈ (1/2, 1) we must have λ−1 ∈ (1, 2). Since λ−1 is an algebraic
integer, we may deduce that its minimal polynomial has degree at least 2. This implies that λ−1

has a non-empty set of Galois conjugates which we denote by {γ1, . . . , γd}. Using well known
properties of algebraic integers, we know that for any l ∈ N we have

λ−lq + γlq1 + · · ·+ γlqd ∈ Z. (1.2)

Using the fact that each of the Galois conjugates has modulus strictly less than 1, it can be
shown that there exists infinitely many l for which 0 < |γlq1 + · · · + γlqd | < 1. This fact together

with (1.2) contradicts the fact that λ−lq ∈ N for all l ∈ N. Therefore we must have log b
log λ /∈ Q.

We conclude this introductory section by surveying some other related works. In [8] Dayan,
Ganguly, and Weiss proved that if {ϕi(x) = x

b + ti}i∈I is an iterated function system and
ti − ti′ /∈ Q for some i, i′ ∈ I, then µp almost every x is normal in base b for every non-atomic
fully supported self-similar measure. In [2] the author studied powers of real numbers. They gave
sufficient conditions for a self-similar measure to ensure that for µp almost every x the sequence
(xn)∞n=1 is uniformly distributed modulo one. For an arbitrary Borel probability measure µ,
to prove that µ almost every x is normal in base b it is sufficient to prove that the Fourier
transform of µ decays to zero sufficiently quickly. This fact follows from a result of Davenport,
Erdős, and LeVeque [7]. The rate at which the Fourier transform of a fractal measure decays
to zero is a well studied problem. For more on this topic we refer the reader to the papers
[1, 4, 14, 16, 18, 20, 22, 24, 28] and the references therein.

2 Proof of Theorem 1.2

For the rest of this paper we fix an equicontractive IFS {ϕi(x) = λx + ti}i∈I and an integer
b ≥ 2 such that log b

log |λ| /∈ Q. We now explain several assumptions that we can make without
any loss of generality. These assumptions will help to simplify our proof. By considering the
IFS {ϕi ◦ ϕi′}i,i′∈I if necessary, we can assume without loss of generality that λ ∈ (0, 1). Let
us now also fix a non-atomic self-similar measure µp. As previously explained, we can assume
without loss of generality that µp is fully supported. It follows from the assumption that µp is
non-atomic, that for M sufficiently large there exists (i1, . . . , iM ), (i′1, . . . , i

′
M ) ∈ IM such that

Conv ((ϕi1 ◦ · · · ◦ ϕiM )(X)) ∩ Conv((ϕi′1
◦ · · · ◦ ϕi′M

)(X)) = ∅. (2.1)

Here and throughout Conv(·) is used to denote the convex hull of a set. Since each self-similar
measure of {ϕi}i∈I can be realised as a self-similar measure for {ϕi1 ◦ · · · ◦ ϕiM }(i1,...,iM )∈IM , it
follows from (2.1) that without loss of generality we can assume that there exists i′, i′′ ∈ I such
that

Conv(ϕi′(X)) ∩ Conv(ϕi′′(X)) = ∅. (2.2)

Last of all, since the property of being normal in base b is preserved by integer translations
and multiplication by 1

b , without loss of generality we can assume that X ⊂ [0, 1). This final
assumption will allows us to express our proof in terms of dynamics on the torus R/Z.

We now set out to prove that µp almost every x is normal in base b. Our proof is split into
two parts. In the first part we show that it is possible to express µp as the integral of some
random probability measures. These random measures will resemble self-similar measures for
iterated function systems satisfying the strong separation condition. This property means that
blowing up small pieces of these measures can be interpreted dynamically in terms of the full
shift on an appropriate sequence space. In the second part we use this observation together with
a dynamical argument of Hochman to complete our proof.
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2.1 Disintegrating µp.

Our method to disintegrate µp is based upon a technique that first appeared in [10], and was
subsequently applied in [15] and [21]. In these papers the authors used this technique to express
an arbitrary self-similar measure as the integral of a collection of random measures. What was
important for these authors was that these random measures could be expressed as an infinite
convolution. Using the fact that our IFS is equicontractive, it can be shown that any of its
self-similar measures automatically have this infinite convolution structure. For our purposes,
the important difference is that use this technique to express µp as the integral of a collection of
random measures which each resembles a self-similar measure for an IFS satisfying the strong
separation condition.

It is useful at this point to establish some notation. In what follows we will let µ ∗ ν denote
the convolution of two Borel probability measures on R. Given t ∈ R we let St : R → R denote
the map given by St(x) = tx. Moreover for µ a Borel probability measure we let Stµ denote its
pushforward under St.

Let i′, i′′ ∈ I be as in (2.2). Let

Ω :=
{

{i′, i′′}
}

⋃

i∈I

i 6=i′,i 6=i′′

{{i}} .

We now define a probability vector (qω)ω∈Ω according to the rules

qω = pi′ + pi′′ if ω = {i′, i′′}

and
qω = pi if ω = {i} for i such that i 6= i′ and i 6= i′′.

We denote the infinite product measure on ΩN corresponding to the probability vector (qω)ω∈Ω
by P.

Given ω ∈ Ω we let
[ω] :=

{

(ωn)
∞
n=0 ∈ ΩN : ω0 = ω

}

.

To any ω = (ωn)
∞
n=0 ∈ ΩN we associate the set

Xω :=

{

∞
∑

n=0

tnλ
n : tn ∈ {ti}i∈ωn ∀n ≥ 0

}

.

Given ω ∈ ΩN and a finite word (in)
m
n=0 ∈ Im+1 satisfying in ∈ ωn for each 0 ≤ n ≤ m, we

associate the cylinder set

Xω ((in)
m
n=0)) :=

{

∞
∑

n=0

tnλ
n : tn = tin for 0 ≤ n ≤ m and tn ∈ {ti}i∈ωn ∀n ≥ m+ 1

}

.

Notice that for each m ∈ N we have the relation

Xω =
⋃

(in)m
n=0

∈Im+1

in∈ωn for 0≤n≤m

Xω((in)
m
n=0)).

Alternatively, we can rewrite this as

Xω =
⋃

(in)m
n=0

∈Im+1

in∈ωn for 0≤n≤m

(ϕi0 ◦ · · · ◦ ϕim)(Xσm+1(ω)). (2.3)
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Here σ is the left shift on ΩN. Equation (2.3) demonstrates that the set Xω satisfies a type of
dynamical self-similarity analogous to (1.1). We emphasise that the union in (2.3) is disjoint.
This follows from a simple induction argument and the fact that any digit ωn is either a single
element set or ωn = {i′, i′′} where i′ and i′′ are as in (2.2).

To each ω ∈ ΩN we associate a probability measure µω supported on Xω as follows

µω := ∗∞n=0

∑

i∈ωn

pi
qωn

δti·λn .

Alternatively, µω can be interpreted as the law of the random sum
∑∞

n=0 tnλ
n where for each n

the parameter tn is chosen from {ti}i∈ωn with probabilities determined by the probability vector
( pi
qωn

)i∈ωn . The following proposition describes the key properties of µω that we will need in our
proof.

Proposition 2.1. The following properties hold:

1. µp =
∫

µω dP.

2. For P almost every ω the measure µω is non-atomic.

3. For any ω and finite word (in)
m
n=0 ∈ Im+1 satisfying in ∈ ωn for all 0 ≤ n ≤ m, we have

µω|Xω((in))

µω(Xω((in)))
= (ϕi0 ◦ · · · ◦ ϕim)(µσm+1(ω)).

Proof. We will prove each item in turn. The proof of item 1 can be found in any of [10, 15, 21].
We include the details for completion. We start by showing that

∫

µω dP satisfies the equation
µ =

∑

i∈I pi · ϕiµ :

∫

µω dP =

∫

∑

i∈ω0

pi
qω0

· δti ∗ Sλµσ(ω)dP =

∫

∑

i∈ω0

pi
qω0

· ϕiµσ(ω)dP

=
∑

ω0∈Ω

∫

[ω0]

∑

i∈ω0

pi
qω0

· ϕiµσ(ω)dP

=
∑

ω0∈Ω

∑

i∈ω0

pi
qω0

∫

[ω0]
ϕiµσ(ω)dP

=
∑

ω0∈Ω

∑

i∈ω0

pi
qω0

·

(

qω0

∫

ϕiµωdP

)

(2.4)

=
∑

ω∈Ω

∑

i∈ω0

pi

∫

ΩN

ϕiµωdP

=
∑

i∈I

pi

∫

ϕiµωdP.

In line (2.4) we used the fact that P is a product measure. We have shown that the probability
measure

∫

µω dP satisfies the equation µ =
∑

i∈I pi · ϕiµ. The self-similar measure µp is the
unique probability measure satisfying this equation. Therefore µp =

∫

µω dP.

We now move on to our proof of item 2. We begin by remarking that for any ω ∈ ΩN and
finite word (in)

m
n=0 satisfying in ∈ ωn for 0 ≤ n ≤ m, we have

µω (Xω((in)
m
n=0)) ≤

(

max

{

pi′

pi′ + pi′′
,

pi′′

pi′ + pi′′

})#{0≤n≤m:ωn={i′,i′′}}

. (2.5)
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For P almost every ω the digit {i′, i′′} occurs infinitely many times. Therefore the right hand
side of (2.5) converges to 0 as m → ∞ for P almost every ω. Therefore for P almost every ω, the
µω measure of a cylinder set Xω((in)

m
n=0) converges uniformly to zero as m → ∞. This implies

that µω is almost surely non-atomic.

We now focus on item 3. We remark that because the union in (2.3) is disjoint, the measure
µω |Xω((in)m

n=0
)

µω(Xω((in)mn=0))
is the law of the random sum

∑∞
n=0 tnλ

n where tn = tin for 0 ≤ n ≤ m, and for

n ≥ m + 1 each tn is chosen from {ti}i∈ωn according to the law determined by the probability
vector (pi/qwn)i∈ωn . This is precisely the pushforward of µσm+1

ω
by ϕi0 ◦· · ·◦ϕim . This completes

our proof.

2.2 Applying Hochman’s argument

To complete our proof of Theorem 1.2 we apply an argument due to Hochman from [11]. Before
recalling some results from this paper, it is useful to introduce some notation. For any l ∈ R we
let el(x) denote e2πilx. Given a Borel probability measure µ we let

Fl(µ) :=

∫

el(x) dµ(x).

We let Tb : R/Z → R/Z be given by Tb(x) = bx mod 1. Given (X,B, µ) a probability space
and A a measurable partition of X, for x ∈ X we let A(x) denote the unique element of A
containing x. Given A ∈ A for which µ(A) > 0, we let µA denote the normalised restriction of

µ to A, i.e. µA := µ|A
µ(A) .

Let

θ := −
log b

log λ
.

By our hypothesis we know that θ is irrational. We let Rθ : R/Z → R/Z be given by Rθ(x) = x+θ
mod 1. For each n ∈ N we let

n′ = ⌊θn⌋.

Our parameter n′ has the property that

bnλn′

= λ−θnλ⌊θn⌋ = λ−Rn
θ 0.

The following three statements are taken from [11].

Theorem 2.2. [11, Theorem 2.2] Let T : X → X be a continuous map of a compact metric
space. Let A1,A2,A3, . . . be a refining sequence of Borel partitions. Let µ be a Borel probability
measure on X and assume that

sup
n∈N

{Diam(T n(A)) : A ∈ An+k, µ(A) > 0} → 0 as k → ∞.

Then for µ almost every x,

lim
N→∞

(

1

N

N
∑

n=1

δTnx −
1

N

N
∑

n=1

T nµAn(x)

)

= 0

in the weak-* sense.

Theorem 2.3. [11, Corollary 2.7] Let (X,µ, T ) be an ergodic measure preserving system on a
compact metric space. Let β > 0 and θ 6= 0. Then for µ almost every x the sequence (nθ, T ⌊βn⌋x)
equidistributes for a measure νx on [0, 1) × X that satisfies

∫

νxdµ(x) = τ × µ, where τ is the
invariant measure on (R/Z, Rθ) supported on the orbit closure of 0.
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Lemma 2.4. [11, Lemma 3.2] Let ν be a Borel probability measure on R and λ ∈ (0, 1). Then
for every r > 0 and l 6= 0,

∫ 1

0
|Fl(Sλ−tν)|2 dt ≤

1

r · |l| · log λ−1
+

∫

ν(Br(y)) dν(y).

We now return to our proof.

Proof of Theorem 1.2. By Weyl’s equidistribution criterion, to prove that µp almost every x is
normal in base b, it is sufficient to show that for any l ∈ Z \ {0} for µp almost every x we have

lim
N→∞

1

N

N
∑

n=1

el(T
n
b x) = 0. (2.6)

Moreover, because of the disintegration µp =
∫

µω dP provided by item 1 from Proposition 2.1, it
is in fact sufficient to show that for any l ∈ Z\{0} we have that µω almost every x satisfies (2.6)
for P almost every ω. To establish this latter statement we will prove that for any l ∈ Z \ {0}
and ǫ > 0 we have

P

(

ω : µω almost every x satisfies lim sup
N→∞

∣

∣

∣

∣

∣

1

N

N
∑

n=1

el(T
n
b x)

∣

∣

∣

∣

∣

< ǫ

)

> 1− ǫ. (2.7)

To see why (2.7) implies this statement consider the set

G :=

∞
⋂

J=1

∞
⋃

j=J

{

ω : µω almost every x satisfies lim sup
N→∞

∣

∣

∣

∣

∣

1

N

N
∑

n=1

el(T
n
b x)

∣

∣

∣

∣

∣

<
1

j

}

.

Equation (2.7) implies that P(G) = 1. Moreover, for any ω ∈ G we clearly have that µω almost
every x satisfies (2.6). Therefore (2.7) implies our statement and so to complete our proof it is
sufficient to show that (2.7) holds.

Let us now fix l ∈ Z \ {0} and ǫ > 0. We start our proof of (2.7) by stating the trivial fact
that for any x ∈ R and k ∈ N we have

lim sup
N→∞

∣

∣

∣

∣

∣

1

N

N
∑

n=1

el(T
n
b x)

∣

∣

∣

∣

∣

= lim sup
N→∞

∣

∣

∣

∣

∣

1

N

N
∑

n=1

el(T
n+k
b x)

∣

∣

∣

∣

∣

.

Importantly the parameter k here can be chosen to depend upon ǫ. To prove that (2.7) holds
we will eventually take k to be sufficiently large in a way that depends upon ǫ.

To each ω ∈ ΩN we associate the refining sequence of partitions A1,A2,A3, . . . , where for
each m the partition Am is given by the cylinder sets corresponding to words of length ⌊θm⌋,

i.e. Am = {Xω((in)
⌊θm⌋−1
n=0 ) : in ∈ ωn for 0 ≤ n ≤ ⌊θm⌋ − 1}. By Theorem 2.2 it follows that for

µω almost every x we have

lim sup
N→∞

∣

∣

∣

∣

∣

1

N

N
∑

n=1

el(T
n+k
b x)

∣

∣

∣

∣

∣

= lim sup
N→∞

∣

∣

∣

∣

∣

1

N

N
∑

n=1

Fl(T
n+k
b µ

ω,An(x))

∣

∣

∣

∣

∣

. (2.8)

By item 3. from Proposition 2.1, we know that for any x ∈ Xω we have

µ
ω,An(x) = δ∑n′−1

j=0 tijλ
j ∗ Sλn′µσn′ (ω)

for some (i0, . . . , in′−1) ∈ In′

. Therefore

T n+k
b µ

ω,An(x) = Sbn+kµω,An(x) mod 1 = δ
bn+k ·

∑n′−1
j=0 tijλ

j ∗ SbkSbnλn′µσn′ (ω) mod 1
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= δ
bn+k ·

∑n′−1
j=0 tijλ

j ∗ SbkSλ
−Rn

θ
0µσn′ (ω) mod 1

= δ
bn+k ·

∑n′−1
j=0 tijλ

j ∗ Sλ
−Rn

θ
0Sbkµσn′ (ω) mod 1.

Substituting the above into (2.8), we have the following for µω almost every x:

lim sup
N→∞

∣

∣

∣

∣

∣

1

N

N
∑

n=1

el(T
n+k
b x)

∣

∣

∣

∣

∣

= lim sup
N→∞

∣

∣

∣

∣

∣

1

N

N
∑

n=1

Fl

(

δ
bn+k ·

∑n′−1
j=0 tijλ

j ∗ Sλ
−Rn

θ
0Sbkµσn′ (ω)

)

∣

∣

∣

∣

∣

≤ lim sup
N→∞

1

N

N
∑

n=1

∣

∣

∣

∣

Fl

(

δ
bn+k ·

∑n′−1
j=0 tijλ

j ∗ Sλ
−Rn

θ
0Sbkµσn′ (ω)

)
∣

∣

∣

∣

= lim sup
N→∞

1

N

N
∑

n=1

∣

∣

∣
Fl

(

S
λ
−Rn

θ
0Sbkµσn′ (ω)

)∣

∣

∣
.

In the final line we have used the fact that for any Borel probability measure µ and Dirac mass
δy, we have |Fl(δy ∗ µ)| = |Fl(µ)| for any l ∈ Z. We emphasise that the last term only depends
upon ω and provides an upper bound for

lim sup
N→∞

∣

∣

∣

∣

∣

1

N

N
∑

n=1

el(T
n+k
b x)

∣

∣

∣

∣

∣

for µω almost every x. Applying Theorem 2.3 we know that for P almost every ω there exists
a measure νω on R/Z× ΩN such that

lim
N→∞

1

N

N
∑

n=1

∣

∣

∣
Fl

(

S
λ
−Rn

θ
0Sbkµσn′ (ω)

)
∣

∣

∣
=

∫

|Fl(Sλ−tSbkµω
′)|dνω .

Moreover because θ is irrational, Theorem 2.3 also implies that
∫

νω dP = τ × P where τ is the
Lebesgue measure. It follows from the above that to establish (2.7) it is sufficient to prove that

P

(

ω :

∫

|Fl(Sλ−tSbkµω
′)|dνω < ǫ

)

> 1− ǫ. (2.9)

Using Markov’s inequality, the relation
∫

νω dP = τ × P, and the Cauchy-Schwartz inequality,
we have

ǫ · P

(

ω :

∫

|Fl(Sλ−tSbkµω
′)|νω ≥ ǫ

)

≤

∫ ∫

|Fl(Sλ−tSbkµω
′)|dνω dP

=

∫ ∫

|Fl(Sλ−tSbkµω)|dτ dP

≤

∫
(
∫

|Fl(Sλ−tSbkµω)|
2dτ

)1/2

dP.

Applying Lemma 2.4 with r = bk/2, it follows from the above that

ǫ · P

(

ω :

∫

|Fl(Sλ−tSbkµω
′)|νω ≥ ǫ

)

≤

∫
(

1

bk/2 · |l| · log λ−1
+

∫

Sbkµω(Bbk/2(y)) dSbkµω

)1/2

dP

=

∫
(

1

bk/2 · |l| · log λ−1
+

∫

µω(Bb−k/2(y)) dµω

)1/2

dP.
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For an arbitrary non-atomic measure µ we know that limk→∞

∫

µ(Bb−k/2(y)) dµ = 0. By item 2
from Proposition 2.1 we know that for P almost every ω the measure µω is non-atomic. Therefore
by choosing k sufficiently large we have

∫
(

1

bk/2 · |l| · log λ−1
+

∫

µω(Bb−k/2(y)) dµω

)1/2

dP < ǫ2.

Applying this inequality in the above we may conclude that

P

(

ω :

∫

|Fl(Sλ−zSbkµω
′)|νω ≥ ǫ

)

< ǫ.

This implies (2.9) and completes our proof of Theorem 1.2.
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