
Pairwise Comparison Evolutionary Dynamics with
Strategy-Dependent Revision Rates: Stability and δ-Passivity

(Expanded Version)
Semih Kara, Nuno C. Martins

Abstract— We report on new stability conditions for evo-
lutionary dynamics in the context of population games.
We adhere to the prevailing framework consisting of many
agents, grouped into populations, that interact noncoop-
eratively by selecting strategies with a favorable payoff.
Each agent is repeatedly allowed to revise its strategy at
a rate referred to as revision rate. Previous stability results
considered either that the payoff mechanism was a memo-
ryless potential game, or allowed for dynamics (in the pay-
off mechanism) at the expense of precluding any explicit
dependence of the agents’ revision rates on their current
strategies. Allowing the dependence of revision rates on
strategies is relevant because the agents’ strategies at any
point in time are generally unequal. To allow for strategy-
dependent revision rates and payoff mechanisms that are
dynamic (or memoryless games that are not potential), we
focus on an evolutionary dynamics class obtained from a
straightforward modification of one that stems from the
so-called impartial pairwise comparison strategy revision
protocol. Revision protocols consistent with the modified
class retain from those in the original one the advantage
that the agents operate in a fully decentralized manner
and with minimal information requirements –they need to
access only the payoff values (not the mechanism) of the
available strategies. Our main results determine conditions
under which system-theoretic passivity properties are as-
sured, which we leverage for stability analysis.

I. INTRODUCTION

In this article, we investigate methods to characterize the sta-
bility of a continuous-time dynamical system that models the
dynamics of noncooperative strategic interactions among the
members of large populations of bounded rationality agents.
Each agent follows one strategy at a time, but repeatedly
(at instants called revision opportunity times) it is allowed
to reassess its choice to decide whether to follow a different
strategy offering a higher payoff. The decisions of the agents
are coupled by a mechanism that determines the payoff vector,
whose entries are the payoffs of the strategies available to
the populations. We refer to the rate with which the revision
opportunity times occur for an agent as revision rate. In §II-C
we describe the revision rate concept in more detail because
it is central to our main results.
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nmartins@}umd.edu. This work is supported in part by AFOSR Grant
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A. Overview Of The Technical Framework And Goals
In our analysis, we adopt the deterministic approach de-

scribed in [1], [2], which generalizes that used in most
previous work to study population games [3] and evolutionary
games [4], [5]. As is explained in [2, Section III] and [6],
[7], the approach is well-suited to analyze large multi-agent
systems for which determining the set of stable equilibria (of
the dynamical model used) is important because it is a predic-
tor of the long term aggregate strategic behavior of the agents.
Specifically, we seek to obtain a systematic methodology to es-
tablish global asymptotic stability (GAS) of the said equilibria
for a type of payoff mechanism denoted as δ-antipassive [8],
or more generally δ-antidissipative [9]. Important particular
cases of these types of payoff mechanism include contractive1

games or, more generally, weighted contractive [9] games and
their appropriate dynamic modifications [8], which we will
later define and call payoff dynamic models (PDM) [1], [2].

B. Existing Work For The IPC Protocol
Although the above-mentioned work for δ-antipassive and

δ-antidissipative PDMs is rather general, it presumes that the
agents’ revision rates do not depend directly on their current
strategies. In the dynamical model, this constraint is present
in the bounded rationality rules (or protocols) describing the
process by which the agents revise their strategies. The so-
called impartial pairwise comparison (IPC) [11, §7.1] pro-
tocol, which is particularly relevant for this article2, has this
limitation. The qualifier impartial is introduced in [11, §7.1]
to indicate that the revision rates may depend on the current
strategy only indirectly through its payoff. Specifically, under
an IPC protocol, two agents will have the same revision rate
when their strategies have the same payoff.

C. Motivation And Objectives
At the expense of restricting the payoff mechanism to be a

memoryless potential game [12] it is possible to use Lyapunov
theory [13]3 to study the stability of the evolutionary dynamics
stemming from a general (not necessarily impartial) pairwise
comparison protocol [16]. Hence, from [13] and the work

1Contractive games were originally called stable games in [10]. The
possibility that calling games stable could cause confusion with notions of
system-theoretic stability prompted the nomenclature change.

2As we will explain later in Remark 4, the IPC class will be a particular
case of the protocols analyzed in this article.

3See also [14], [15].
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discussed in §I-B, we conclude that existing stability results
involving pairwise comparison protocols will either (i) restrict
the payoff mechanism to be a memoryless potential game,
or (ii) for payoff mechanisms that are dynamic (such as δ-
antidissipative PDMs) or memoryless weighted contractive
games (which includes concave potential games as a particular
case) require the IPC protocol.

In this article, we seek to obtain results that would bridge
the gap between (i) and (ii). Specifically, we will general-
ize the approaches in [8], [9], which consider the types of
payoff mechanisms mentioned in (ii), so as to allow pairwise
comparison protocols that are not necessarily impartial. Our
focus on pairwise comparison protocols [16] is justified by
their desirable incentive properties [16, §2.5] and inherently
fully decentralized operation. As a case in point, the so-called
Smith (pairwise comparison) protocol [17] has been widely
used to study traffic assignment problems.

D. Preview Of RM-PC Protocols And Main Contributions
In order to allow for pairwise comparison protocols with

strategy-dependent revision rates, in §IV we propose a
straightforward modification of the IPC protocol class, which
will be referred to throughout this article as the rate-modified
pairwise comparison (RM-PC) protocol class. The section
also includes a key theorem used in §V to specify conditions
on the revision rates for which suitable stability properties
are assured. Specifically, when the payoff mechanism is a
weighted contractive game4 or a δ-antidissipative PDM, our
technical approach uses system-theoretic passivity [8] concepts
to leverage the results in [9] to guarantee for RM-PC protocols
satisfying the said conditions that the Nash equilibria set
(appropriately defined for the payoff mechanism) is GAS.
The hassle vs price game example described in §II, in which
allowing strategy-dependent revision rates will be essential,
will illustrate the relevance of our results throughout the
article.
Informational Requirements: Protocol classes have inherent
informational requirements for implementation [16, §2.3]. It
will be clear from §IV that an agent needs only the payoff
vector to implement an RM-PC protocol (see also Remark 5).
Namely, an agent with access to the payoff vector can imple-
ment an RM-PC protocol in a decentralized manner without
any knowledge about how the payoff vector is generated and
it also does not require any information about the strategic
choices of the other agents.

II. FRAMEWORK DESCRIPTION AND MOTIVATION

In our framework, each agent belongs to one out of a finite
number of populations {1, . . . , ρ}, and each agent follows
one strategy at a time, which it can change when given a
revision opportunity. At every instant, each strategy has a
payoff and, at the revision opportunity times, the agents are
more likely to switch to strategies whose payoff is higher.
Although the set of available strategies is the same for the
members of a population, the agents can concurrently follow
distinct strategies.

4In §III-C, we will revisit and adapt to our context the concepts of weighted
contractive game and δ-antidissipative PDM.

A. Hassle vs. Price Game (HPG) Example
A motivating example of application of our framework,

which we will be invoking throughout this article to illustrate
our contributions, is that of a ”hassle vs. price” game (HPG).
In this example, each agent operates a machine that uses a
component that must be replaced when it fails. There are
several manufacturers that make the component to varying
degrees of reliability. Specifically, each component has an
exponentially distributed lifetime and its failure rate depends
on the manufacturer. The available strategies are the manufac-
turers, and the payoff of each strategy combines two non-
positive terms: (i) a hassle (disruption) cost that increases
with the failure rate and (ii) the price of the component,
which is higher for more reliable manufacturers. The revision
opportunity time occurs when the component fails and the
agent must decide based on the available information, such as
the current payoffs ascribed to the strategies, whether to keep
the current strategy (buy again from the same manufacturer)
or follow a different strategy (decide on another manufacturer
to buy from). The agents are partitioned into populations, each
uniquely associated to a machine type and/or the undertaking
for which the machine is used.

In Example 1 (in §II-D.1) we will describe in detail a mem-
oryless payoff mechanism for the HPG, and in Appendix A
we will describe a PDM that generalizes Example 1.

B. Population State, Social State and Payoff Vector
The agents of a population, say population r, are nonde-

script, hence, their strategy choices at time t can be described
by the so-called population state Xr(t) whose entries are
proportional to the number of agents selecting the available
strategies. In most existing work [3], the sum of the entries of
Xr is a positive constant quantifying the population ”mass.”
Although, to simplify our notation, we consider unit mass
populations, our results hold for any population mass after
appropriate scaling. Consequently, if Nr is the number of
agents in population r then Nr×Xr

i (t) is the number of agents
following strategy i at time t in population r. The state of the
r-th population takes values in the following simplex:

Xr := {xr ∈ Rn
r

≥0 | xr1 + . . .+ xrnr = 1},

where we use nr to denote the number of strategies. The pay-
offs ascribed at time t to the available strategies of population
r are the entries of the payoff vector P r(t). Namely, P ri (t)
is the payoff of the i-th strategy for population r at time t.
The so-called social state X(t) at time t is the concatenation
of the states of all populations at time t, and, similarly, P (t)
is the concatenation of the payoff vectors of all populations.
Hence, X(t) and P (t) take values in X := X1×· · ·×Xρ and
Rn, respectively, where n := n1 + · · ·+ nρ.

A causal payoff mechanism determines P := {P (t) | t ≥ 0}
in terms of X := {X(t) | t ≥ 0}. The simplest mechanism is
memoryless, acting as F : X(t) 7→ P (t), where F : X→ Rn
is a continuously differentiable map referred to as game. The
payoff mechanism may be intrinsic to the problem or it may
be influenced by one or more coordinators seeking to steer the
social state towards desirable configurations.
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C. Strategy-Dependent Revision Rates: Key Concepts
1) Strategy-Dependent Revision Rates: We assume that, for

each i in {1, . . . , nr}, a positive constant λri characterizes
the rate at which the agents in population r currently fol-
lowing the i-th strategy are allowed to revise their strategy.
Specifically, the probability that some agent of population r
currently following the i-th strategy is allowed to revise its
strategy within an infinitesimal time interval of duration δ is
δ×λri×N

r×Xr
i (t∗), where t∗ is in the interval and precedes

the revision opportunity time [1], [2]. Moreover, the event
that a revision opportunity occurs for a given agent during
this period is conditionally independent, given its own current
strategy, of the revision opportunity events of all other agents.
This independence property holds for our HPG since it is safe
to assume that once a new component is installed, the time
when it fails depends only on its manufacturer and the agent’s
population, and not on the choices of the other agents or when
the components they currently own fail.

We refer to {λr1, . . . , λrnr} as the strategy-dependent revi-
sion rates for population r and denote the nr-dimensional
vector with its i-th index given by λri as λr.

2) Revision Protocols: Following the standard approach
in [3, Section 4.1.2], the bounded rationality rule governing
how the agents in population r revise their strategies is mod-
eled by a Lipschitz continuous map T r : Xr×Rnr → Rnr×nr

≥0
referred to as the revision protocol. When the total number of
agents is finite, δ×Nr×Xr

i (t∗)×T rij(Xr(t∗), P r(t∗)) is the
probability that some agent of population r switches from
strategy i to j, with i 6= j, during a time interval of infinites-
imally small duration δ containing t∗ (see [3, Section 4.1.2]
for more details). Specifically, although each agent follows one
strategy at a time, the switching strategy may be randomized.
We interpret T as having the following structure:

T rij(xr, pr) = λri τ
r
ij(x

r, pr), (xr, p) ∈ Xr ×P (1)

where we invoke the fact explained in §II-D.1 that P takes
values in a bounded set P ⊆ Rn and pr, xr are respectively
the sub-vectors of p and x corresponding to a possible payoff
and population state for population r. Equally important,
τrij(X

r(t∗), P r(t∗)) would quantify the probability that an
agent of population r following the i-th strategy will switch
at time t∗ to strategy j 6= i, conditioned on the event that
it is allowed to revise its strategy at time t∗. Here τ models
probabilistically the bounded rationality decision mechanism
of the agents and must satisfy:

nr∑
j=1,j 6=i

τrij(x
r, pr) ≤ 1, (xr, p) ∈ Xr ×P, 1 ≤ r ≤ ρ (2)

3) Deterministic Approximation For Very Large Nr: If a game
F determines P from X as F : X(t) 7→ P (t) and each
agent revising its strategy at time t∗ does so based only on
information it has about X(t∗) and P (t∗) then X is a Markov
jump process for which the deterministic large-population
approximation in [18] applies. Specifically, as the number of
agents Nr of each population r tends to infinity, X(t) and
P (t) converge in probability to deterministic limits x(t) and
p(t) that we denote as mean social state and deterministic

payoff, respectively. Naturally, we use xri (t) to denote the
proportion of agents in population r following strategy i at
time t and pri (t) is the payoff ascribed to the i-th strategy in
population r at time t.

According to [1], [2], the deterministic limits are well-
defined even when the payoff mechanism is a so-called payoff
dynamics model (PDM) whose definition we will include
subsequently. Furthermore, x(t) and p(t) are the solutions of
the initial value problem of the so-called mean closed loop
model that we will soon describe in §II-D.

4) Modes Of Convergence and Equilibria: Specifically, ac-
cording to [2, Section V] and [1, Section IV.A], it follows from
[18, Theorem 2.11] that, as the numbers of the populations’
agents tend to infinity, X and P converge in probability to
x and p uniformly over any finite time interval. More impor-
tantly, the discussions in [2, Section V] and [3, Appendix 12.B]
indicate that the convergence of X towards equilibria, in the
limit of large populations, can be established by doing so for x.

These facts justify our decision to investigate the stability
(in the GAS sense) of the equilibria of the mean closed loop
model.

D. Mean Closed Loop Model And Its Components
It follows that, for the deterministic approximation [3,

Section 4.1.2], the rate at which a proportion xri (t
∗) of the

population r currently following strategy i switches to j at
time t∗ is xri (t

∗)×T rij(xr(t∗), pr(t∗)). Namely, the following
evolutionary dynamics model (EDM) governs the dynamics
of x:

ẋr(t) = Vr
(
xr(t), pr(t)

)
, t ≥ 0, 1 ≤ r ≤ ρ (3)

where each of the nr components of Vr, say the i-th compo-
nent, is defined as:

Vri
(
xr(t), pr(t)

)
:=

nr∑
j=1,j 6=i

T rji
(
xr(t), pr(t)

)
xrj(t)︸ ︷︷ ︸

inflow switching to strategy i

−
nr∑

j=1,j 6=i
T rij
(
xr(t), pr(t)

)
xri (t)︸ ︷︷ ︸

outflow switching away from strategy i

(4)

1) Memoryless Payoff Mechanism: In the memoryless case,
the payoff mechanism is specified by a continuously differen-
tiable game F : x(t) 7→ p(t). Notice that since X is compact
and F is continuous, p will take values in a bounded set P.

Example 1: The payoff mechanism of our HPG example
would be characterized by:

Fri (x) :=
HPG

−βrλri︸ ︷︷ ︸
hassle

(replacement) cost

− Ci
(
Di(x)

)︸ ︷︷ ︸
component price

, x ∈ X (5)

where
- {β1, . . . , βρ} are positive constants quantifying the costs of

replacing a component for the respective population,

3



- {1, . . . , κ} is the set of available manufacturers (this is also
the strategy set equally available to all5 populations),

- {λr1, . . . , λrκ} are the failure rates of the components for the
r-th population according to manufacturer, which we assume
are ordered as λr1 > . . . > λrκ > 0 (manufacturer κ makes
the most reliable components),

- D : X → [0, d̄]κ gives the (effective) demand from each
manufacturer as:

Di(x) :=

ρ∑
r=1

αrxri , 1 ≤ i ≤ κ (6)

Here, {α1, . . . , αρ} are positive constants that quantify the
relative weight of each population on the demand. These
constants may reflect, for instance, the relative sizes of the
populations. Finally, Ci : R≥0 → [ci,∞) is a continuously
differentiable surjective function (of the demand) that quanti-
fies the cost of a component made by the i-th manufacturer.

Assumption 1: (Properties of C for Example 1)
We assume that C has the following properties:

a) {C1, . . . , Cκ} are increasing.
b) More reliable components are more expensive, i.e., if

i > j then Ci(d) > Cj(d), for d in [0, d̄]κ.
As we will explain in III-C, the game (5) will satisfy a

soon to be defined weighted contractivity property when C
satisfies Assumption 1.a. In economic theory, Assumption 1.a
is referred to as demand-pull inflation [19] that occurs when
the supply of a product is limited6, the manufacturer discounts
the price when the demand is weak (and gradually eliminates
the discount as demand rises), or when the manufacturer raises
the price with increasing demand as a way to increase profits
when the product becomes popular. Higher cost (decrease in
payoff) for a strategy with higher demand, as measured by
the portion of the population following it, is common in many
other applications, such as congestion games [20].

Remark 1: (A labour-market example) We could model
the effect of the contract value on employee turnover in a way
that would lead to another example analogous to Example 1.
In such an example, a population’s agents would be the busi-
nesses wishing to hire and retain an employee for a specific
job type. Each population would comprise businesses with
comparable characteristics from the employees’ viewpoint,
such as location, structure and size. The strategies available to
a population’s agents would be the different types of contracts
they can offer. In this case, Ci in (5) would determine the
cost of contract i as a function of the demand. Cheaper
contracts offering worse benefits and/or lower salary would
lead to a higher turnover rate (quantified by λri ) and associated
increased cost for retraining and rehiring (quantified by βri λ

r
i ).

2) Payoff Dynamics Model (PDM): More generally, the pay-
off mechanism is modeled by a payoff dynamics model (PDM)

5This means that all populations have the same strategy set and same
number of strategies (n1 = · · · = nρ = κ).

6Factors restricting supply may include scarcity of raw materials, when
manufacturer strategically opts to limit production to keep prices up (as
DRAM manufacturers have been doing in the last 3 years), difficulty in
ramping up production fast enough to meet demand and sanctions to name a
few.
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Fig. 1: Diagram representing a feedback interconnection be-
tween a PDM (or game F) and an EDM. The resulting system
is referred to as mean closed loop model.

with the following structure:

q̇(t) = G
(
q(t), x(t)

)
p(t) = H

(
q(t), x(t)

), t ≥ 0, q(0) ∈ Q0 (7)

where Q0 ⊆ Rm is a bounded set, G : Rm × X → Rn is
Lipschitz continuous and H : Rm × X→ Rn is continuously
differentiable and Lipschitz continuous.

Hence, (7) specifies a PDM that operates as a causal
nonlinear dynamical system with input x and output p. As
discussed in [1], [2], PDMs can be used to account for dynamic
behaviors inherent to certain payoff mechanisms, such as
delays, pricing inertia, agent-level learning, and also to isolate
long-term trends [8].

The analysis in this article presumes, as was the case in [1],
[2], that the state q remains in a bounded set Q. Notice
that input to state stability [21] of the PDM would suffice
to guarantee that q remains in a bounded set because x
takes values in a bounded set. Furthermore, the fact that H
is Lipschitz continuous also guarantees that p remains in a
bounded set P. Finally, we consider that there is a game FG,H
that equals H in the stationary regime:

G(x, q) = 0 =⇒ FG,H(x) = H(x, q), x ∈ X, q ∈ Rn
(8)

In Appendix A, we describe a PDM example constructed
as a dynamic modification of Example 1.

3) Mean Closed Loop Model: The EDM and the payoff
mechanism interact in feedback according to the so-called
mean closed loop model (see Fig.1), which after substitut-
ing p(t) = F(x(t)) into (3) has the following structure
when the payoff mechanism is memoryless and specified by
a game F :

ẋr(t) = Vr
(
xr(t),Fr

(
x(t)

)︸ ︷︷ ︸
pr(t)

)
, r ∈ {1, . . . , ρ} (9)

More generally, if the payoff mechanism is a PDM, then
after substituting (7) into (3) the mean closed loop model is
specified as follows:

4



q̇(t) = G
(
q(t), x(t)

)
, t ≥ 0 (10a)

ẋr(t) = Vr
(
xr(t),Hr

(
q(t), x(t)

)︸ ︷︷ ︸
pr(t)

)
, r ∈ {1, . . . , ρ} (10b)

III. NASH STATIONARITY, WEIGHTED CONTRACTIVITY,
AND PROBLEM FORMULATION

Our analysis will focus on establishing the global asymp-
totic stability (GAS) of the equilibria of (9) or (10) by
analysing the solutions of the initial value problem that are
guaranteed by the Picard-Lindelöf theorem to exist and be
unique for each x(0) in X, or each pair

(
x(0), q(0)

)
in X×Q0,

respectively.

A. Nash Equilibria Set and Nash Stationarity
We start by defining the Nash equilibria set for a game F

as follows:

NE(F) :=
{
x ∈ X

∣∣∣ xTF(x) ≥ yTF(x), y ∈ X
}

As explained in [3], there are important classes of protocols
satisfying the so-called Nash stationarity property defined
below. Fortunately, as we observe in §IV, RM-PC protocols
are Nash stationary.

Definition 1: Given r in {1, . . . , ρ}, a protocol for popula-
tion r satisfies the Nash stationarity property, if the following
equivalence holds for the EDM (4) for all pr in Rn

r

:

(xr)T pr = max
y∈Xr

yT pr ⇔ Vr(xr, pr) = 0 (11)

Thus, Nash stationarity implies that xr at an equilibrium must
be a best response to pr.

Hence, if Nash stationarity holds for all populations, then
x at an equilibrium of the mean closed loop will be either
in NE(F) when the payoff mechanism is F : x(t) 7→ p(t),
or x will be in NE(FG,H) when the payoff mechanism is a
PDM. In these cases, x is guaranteed to converge to a Nash
equilibrium when the equilibria set of the mean closed loop
is globally asymptotically stable (GAS). Notably, when it is
GAS, the Nash equilibria set predicts the long-term behavior
of both x and X in the limit of large populations, as noted
in §II-C.4.

Subsequently, we discuss why GAS assuages some of the
well-known criticism of the Nash equilibrium concept and
gives it a well-motivated role in our context.

B. Global Asymptotic Stability and Nash Equilibria
We start by observing that Nash equilibria7 in our context

should be interpreted in the mass-action sense described
in [23], which was originally proposed by Nash in [24].

We proceed by arguing that our results establishing GAS
of the Nash equilibria set for our framework may mitigate
some of the criticism [25] of the Nash equilibrium concept.
Specifically, RM-PC protocols governing/modeling the agents’
decisions follow bounded rationality rules that rely solely on

7See [22] for various interpretations of the Nash equilibrium concept.

knowledge of the payoff vector (see §IV for the informational
requirements of RM-PC protocols). Hence, notwithstanding
the exiguous informational requirements of RM-PC protocols,
when the conditions for our GAS results are met, they will
assure convergence of x to the Nash equilibria set, in which
case the prevalent criticism that Nash equilibria are viable only
when the agents know each others’ strategies does not apply.

Lack of uniqueness is another common reason to claim
that any prediction of the long-term behavior of x based on
the Nash equilibria set is uncertain. However, in applications
it often suffices to predict that x will satisfy a property
shared by all such equilibria. One example is when F has
a concave potential that we seek to maximize, in which case
the Nash equilibria are exactly the optima. Moreover, price of
anarchy [26], [27] upper-bounds provide provable guarantees
on the degree to which the Nash equilibria are sub-optimal
with respect to the population average payoff (see also [3,
§3.1.6 and §3.1.7]). Alternatively, if F is to be used by a
coordinator to spur desirable behavior by the population then
it may be possible to design it in a way that limits the ”size”
of the Nash equilibria set.

C. Key Assumptions

In §V, we will be able to use the results in §IV in
conjunction with [9, Corollary 1] to guarantee the stability
of NE(F) for (9) under the following assumption.

Assumption 2: If the payoff mechanism is a memoryless
map F : x(t) 7→ p(t), then we assume that there are positive
weights {w1, . . . , wρ} for which the following holds:

ρ∑
r=1

wr
(
Fr(xr)−Fr(x̃r)

)T
(xr− x̃r) ≤ 0, x, x̃ ∈ X (12)

The inequality in (12) coincides with contractivity [10] when
the weights are identical, and can be viewed, more generally,
as weighted contractivity [9] with respect to a block-diagonal
matrix W := diag (w1In1×n1 , . . . , wρInρ×nρ) with unequal
weights.

Remark 2: By following an approach analogous to that
of [9, §IV.A], one can show that Example 1 is weighted
contractive with wr = αr, for r in {1, . . . , ρ}.

More generally, we will be able to use [9, Theorem 2]
to ascertain GAS of NE(FG,H) for (10) when the payoff
mechanism is a PDM (7) satisfying the following assumption.

Assumption 3: If the payoff mechanism is a PDM, then we
assume that there are positive weights {w1, . . . , wρ} for which
it satisfies the δ-antidissipativity conditions in [9, (39)-(40)]
with respect to Π constructed as in [9, (18)].

Remark 3: One can appropriately modify the steps in the
proof of [9, Proposition 3] to show that the PDM example de-
scribed in Appendix A satisfies Assumption 3 with wr = αr,
for r in {1, . . . , ρ}.

Several additional examples of contractive games, weighted
contractive games, δ-antipassive and δ-antidissipative PDMs
can be found in [3], [9], [8,1,2], and [9], respectively.
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D. Technical Approach
In order to leverage the results in [9] to establish GAS

of NE(F) for (9), or GAS of NE(FG,H) for (10) we will
also need that the protocol for each population is δ-passive
according to the following definition.

Definition 2: (protocol δ-passivity) Given r in {1, . . . , ρ},
the protocol for population r is δ-passive if there are functions
Sr : Xr × Rn

r → R≥0 and Sr : Xr × Rn
r → R≥0 such that

the following holds:

∂Sr(xr,pr)
∂xr Vr(xr, pr) + ∂Sr(xr,pr)

∂pr ur

≤ −Sr(xr, pr) + Vr(xr, pr)Tur (13a)

Sr(xr, pr) = 0⇔ Vr(xr, pr) = 0 (13b)
Sr(xr, pr) = 0⇔ Vr(xr, pr) = 0 (13c)

for all xr in Xr, pr, ur in Rn
r

. Following the convention in [1],
[2], we will refer to Sr as a δ-storage function. Note that
∂Sr/∂xr and ∂Sr/∂pr denote respectively the transpose of
the gradient of Sr with respect to its first and second argument.

See [9, Remark 3] for a comparison between δ-passivity
as defined above, δ-dissipativity and δ-passivity as proposed
in [8]. One can readily repurpose the proofs of [8, Theo-
rem 4.5]8 to conclude that the IPC protocols are δ-passive
according to Definition 2. These conclusions can also be
recovered as a particular case of our analysis establishing δ-
passivity for the broader class of RM-PC protocols proposed
and analyzed in §IV.

E. Problem Formulation
We start by defining the following worst-case ratios that

will be used throughout this article to quantify the relative
discrepancies among the revision rates of each population.

Definition 3: Given r in {1, . . . , ρ} and the revision rates
{λri | 1 ≤ i ≤ nr} for population r, we define the worst-case
revision rate ratio for the r-th population as follows:

λrR := max

{
λri
λrj

∣∣∣∣∣ i, j ∈ {1, . . . , nr}
}

(14)

Notice that λrR ≥ 1 holds by definition and λrR = 1 if and
only if the revision rates for the r-th population are identical.

In order to develop a methodology that can cope with
the case in which λrR > 1 for one or more populations
(unequal revision rates), in §IV we seek to solve the following
subproblems:

i) Propose practicable modified protocols that are compati-
ble with any pre-selected revision rates. (As we already
mentioned, the modified class of protocols RM-PC will
be our answer to this subproblem.)

ii) Determine conditions on {λrR | 1 ≤ r ≤ ρ}, and other
parameters, under which the RM-PC protocols are δ-
passive. Under the assumptions in §III-C, this will allow
us to leverage [9, Corollary 1] or [9, Theorem 2] to

8See [2, Proposition 4] for a more general proof, and [2], [28], [29] for a
complete analysis of δ-passivity for this and other protocols.

establish GAS of NE(F) for (9) or GAS of NE(FG,H)
for (10), respectively.

IV. RM-PC PROTOCOL AND MAIN RESULTS

In this section, we address the problem formulation goals
listed in §III-E for the protocol class we propose below:

Definition 4: (RM-PC protocol) Given r in {1, . . . , ρ}, the
protocol (1) of the r-th population is of the rate-modified
pairwise comparison (RM-PC) class if τr can be written as:

τrij(x
r, pr) = 1

τ̄r φ
r
j(p

r
j − pri ) (15)

where τ̄r is a positive normalization constant for which (2)
holds, while φrj : R→ R≥0 is Lipschitz continuous and sign-
preserving, meaning that φrj(δ) > 0 for δ > 0 and φrj(δ) = 0
for δ ≤ 0.

By substituting (15) into (4), we obtain the following
RM-PC EDM model for the r-th population for each i
in {1, . . . , nr}:

(VRM-PC
i )r(xr, pr) :=

nr∑
j=1,j 6=i

λrj
1
τ̄r φ

r
i (p

r
i − prj)xrj

−
nr∑

j=1,j 6=i
λri

1
τ̄r φ

r
j(p

r
j − pri )xri (16)

Remark 4: (IPC is an RM-PC subclass) In the particular
case in which the revision rates for the r-th population are
equal (λr1 = · · · = λrnr ), an RM-PC protocol becomes of
the IPC class considered in previous work characterizing δ-
passivity [8].

Example 2: (RM-Smith protocol) As an example of a RM-
PC protocol, we can define the rate-modified Smith protocol
(RM-Smith) by substituting φrj(·) = [·]+ in (15) and (1),
leading to:

T rij(xr, pr) =
RM-Smith

λri
1
τ̄r [prj − pri ]+, (xr, p) ∈ Xr ×P (17)

and the following EDM after substitution in (16):

(VRM-Smith
i )r(xr, pr) :=

nr∑
j=1,j 6=i

λrj
1
τ̄r [pri − prj ]+xrj

−
nr∑

j=1,j 6=i
λri

1
τ̄r [prj − pri ]+xri (18)

Consequently, the probability that, at a revision opportunity
time, an agent following the RM-Smith protocol switches
from strategy i to j is proportional to the positive part of the
payoff difference. Notice that when the revision rates are equal
(λr1 = · · · = λrnr ) the RM-Smith protocol reduces to the well-
known Smith protocol originally proposed in [17] to analyze
the dynamics of traffic assignment strategies.

Remark 5: (RM-PC: Informational Requirements) It fol-
lows from (15) that, other than knowledge of the payoff of the
available strategies for the population it is a part of, each agent
following an RM-PC protocol does not need to coordinate with
other agents and it does not require any additional information
about the social state or the strategic choices of the other
agents.
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A. RM-PC Protocol: Nash Stationarity And δ-passivity

In this subsection, we establish Nash stationarity and iden-
tify δ-passivity properties of RM-PC protocols. Theorem 1 is
the main result of this section, which will allow us to invoke
results in [9] to draw important conclusions on the stability of
the mean closed loop (see §V for more details).

1) Pairwise Comparison Protocols and Nash Stationarity:
The RM-PC class is a particular case of the so-called pairwise
comparison protocol class defined in [16, § 4.1]. It is relevant
to recognize this because, although previous contractivity [11]
and δ-passivity [8] results that we seek to generalize were
restricted to IPC protocols only, there is existing work estab-
lishing other useful properties for the much broader pairwise
comparison protocol class. Notably, [16, Theorem 1] states
that a pairwise comparison protocol is Nash stationary, which
leads directly to the following lemma.

Lemma 1: (RM-PC protocol is Nash stationary) Given r
in {1, . . . , ρ}, if the r-th population’s protocol is of the RM-PC
class, then (11) holds for any positive revision rates {λri | 1 ≤
i ≤ nr}.

2) Conditions for δ-passivity: Main Theorem and Analysis:
We now proceed to determine conditions for which a RM-PC
protocol is δ-passive. Inspired by the Lyapunov and storage
functions introduced respectively in [30] and [8], we choose
the δ-storage function we proceed to describe. Given a popula-
tion r ∈ {1, . . . , ρ} with a protocol T r of the RM-PC class, we
set our δ-storage function to be (SRM-PC)r : Xr × Rn

r → R≥0

specified below:

(SRM-PC)r(xr, pr) :=

nr∑
i=1

1

τ̄r
λrix

r
i

(
nr∑
k=1

ψrk(prk − pri )

)
(19)

where for all k, i ∈ {1, . . . , nr}, ψrk : Rn
r → R is defined as

ψrk(prk − pri ) :=

∫ prk−p
r
i

0

φrk(s)ds

Denoting
∑nr

k=1 ψ
r
k(prk−pri ) by γri (pr) we can write (SRM-PC)r

in a more compact form as

(SRM-PC)r(xr, pr) =

nr∑
i=1

1

τ̄r
λrix

r
i γ
r
i (pr)

The following is the main result of this section.

Theorem 1: Given r in {1, . . . , ρ}, consider that the r-th
population follows an RM-PC protocol specified by a given
φr and a worst-case revision rate ratio λrR (see (14)). The
RM-PC protocol for population r is δ-passive if (i) nr = 2 or
(ii) nr ≥ 3 and the following inequality holds:

λrR < λ̄φr (n
r) (20)

where λ̄φr is determined from φr as follows:

λ̄φr (n
r) := min

1≤k≤nr
inf

pr∈Rnr

{
γrk(pr)

∑nr

i=1 φ
r
i (p

r
i − prk)∑nr

i=1 φ
r
i (p

r
i − prk)γri (pr)

}
(21a)

Although (to avoid cumbersome notation) we do not explicitly
indicate in (21a), the infimum is computed subject to the
following constraint on pr:

nr∑
i=1

φri (p
r
i − prk)γri (pr) 6= 0 (21b)

In Appendix B.1 we will prove Theorem 1 by showing that
(SRM-PC)r satisfies (13).

Remark 6: (When to compute (21)) According to Theo-
rem 1, an RM-PC protocol is always δ-passive for a population
with two strategies, irrespective of the revision rates. Hence,
only when nr ≥ 3 will one need to compute (21) to test
whether (20) holds.

Below, we will state a proposition (proved in Appendix B.2)
that introduces a simple lower bound for λ̄φr (nr) that is valid
for RM-PC protocols satisfying the following assumption for
population r.

Assumption 4: There is a non-decreasing function
φ̄r : R→ R≥0 such that the following holds:

φri (p̃) = φ̄r(p̃), p̃ ∈ R, i ∈ {1, . . . , nr} (22)

Proposition 1: Consider that a population r in {1, . . . , ρ}
(with nr ≥ 3) follows an RM-PC protocol. If the protocol
satisfies Assumption 4 then the following holds for nr ≥ 3:

λ̄φr (n
r) ≥ nr − 1

nr − 2
(23)

The proposition’s proof given in Appendix B.2 introduces
an alternative way to compute λ̄φr (nr) for the case in which
Assumption 4 holds (see (31)). We make use of (31) to
simplify our computation of λ̄φr for the RM-Smith protocol
in §IV-B.

Remark 7: We can conclude from (23) that, for the pro-
tocols satisfying the conditions of Proposition 1, λ̄φr (nr) is
strictly greater than 1, which, according to Theorem 1, affords
some δ-passivity robustness with respect to λrR regardless of
the number of strategies. This fact is in contrast to previous
results establishing δ-passivity only for protocols in which λrR
was exactly 1 (see Remark 4).

The following counterexample illustrates why we need
Assumption 4 in Proposition 1.

Counterexample 1: Consider that nr = 3 and population r
adopts an RM-PC protocol specified by φr1(·) = [·]2+, φr2(·) =
φr3(·) = [·]+. This protocol violates Assumption 4 and, as we
proceed to show, it will infringe (23) with λ̄φr (3) = 1. To do
so, consider the following inequality that we obtain by using
pr1 = 0, pr2 = −ε, pr3 = −ε+ε7/4, with ε > 0, when computing
the infimum in (21a):

λ̄φr (3) ≤ lim
ε→0+

(2ε3 + 3ε7/2)(ε2 + ε7/4)

2(ε− ε7/4)3ε7/4
= 1

B. Numerical Evaluation of λ̄φr for RM-Smith
We start by denoting λ̄φr for the RM-Smith protocol as

λ̄RM-Smith, which we determine by computing (21a) numerically
[31]. In Fig. 2, we plot λ̄RM-Smith and the lower bound in (23)
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for 1 ≤ nr ≤ 10. Notice that since the RM-Smith protocol
satisfies Assumption 4, the lower bound in (23) holds for
λ̄RM-Smith, for any nr ≥ 3.
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Fig. 2: Comparing λ̄RM-Smith with the lower-bound in (23).

The plots in Fig. 2 illustrate that the lower-bound in (23)
may be conservative – a feature of it being valid for a
large subclass of RM-PC protocols. Notably, from the values
of λ̄RM-Smith plotted in Fig. 2 we observe that the RM-Smith
protocol satisfies (20) even if the revision rates of the r-th
population vary by a multiplicative factor exceeding 9 when
nr = 3. For nr = 10, the revision rates of the r-th population
is allowed to vary by a multiplicative factor of nearly 3.

V. ESTABLISHING GAS OF THE EQUILIBRIA

We proceed to use Lemma 1 and Theorem 1 in conjunction
with [9] to draw conclusions about the equilibrium stability of
the mean closed loop.

A. GAS For Memoryless F
Given a payoff described by a game F (memoryless), the

following theorem establishes conditions for GAS of NE(F)
under the mean closed loop (9) formed by F and an EDM
whose populations follow RM-PC protocols. We state the
theorem without proof because it follows directly from [9,
Corollary 1] in conjunction with Lemma 1 and Theorem 1.

Theorem 2: Consider that a game F is given and that
each population follows an RM-PC protocol. If the protocols
satisfy the conditions of Theorem 1 and the game is weighted-
contractive (see Assumption 2), then NE(F) is a GAS equi-
libria set of (9).

Notice that Theorem 2 generalizes [11, Theorem 7.1] in two
ways. In comparison to the latter, which presumes that the
game is contractive and the revision rates are identical within
each population, the former allows for weighted-contractive
games and it contends with unequal revision rates so long
as they satisfy the conditions of the theorem. The stability
theorems in [9] allow for weighted-contractive games but the
article lacks the results needed to consider the case in which
the revision rates within each population are different.

B. GAS For PDM

The following theorem is the counterpart of Theorem 2
for the case in which the payoff mechanism is a PDM. We

state it without proof as the theorem follows directly from [9,
Theorem 2], with Π selected as in [9, (8)], in conjunction with
Lemma 1 and Theorem 1.

Theorem 3: Consider that a PDM is given and that each
population follows an RM-PC protocol. If the protocols satisfy
the conditions of Theorem 1 and the PDM satisfies Assump-
tion 3, then the equilibria set of (10) is GAS. In addition,
NE(FG,H) are the x components of the equilibria.

The theorem above exemplifies how our results can extend
the applicability of [9, Theorem 2] to the case in which each
population follows an RM-PC protocol.

C. Generalizing Theorems 2 and 3
It is useful for exploring possible generalizations of Theo-

rems 2 and 3 to observe that they remain valid for any protocol
satisfying (13). For instance, we could have stated Theorems 2
and 3 more generally by requiring that each population follows
either an RM-PC protocol satisfying the conditions of Theo-
rem 1 or a so-called excess payoff target (EPT) protocol [32]
whose δ-passivity is stated in [8, Theorem 4.4], and discussed
more generally in [1, §VI.B] and references therein. It should
be noted that, in such theorems, the EPT protocol would not
be rate-modified (hindering its applicability in our context of
strategy-dependent revision rates), which justifies our decision
to not commit space to proving it rigorously here. (See future
directions in §VII.)

VI. NUMERICAL EXAMPLES

As industrial-grade data-driven processing centers and vehi-
cle to vehicle networks are becoming more prevalent, life cy-
cles of DRAMs used in these applications emerge as important
benchmarks. To provide examples of how our results can come
into play, we look into the HPG and its smoothed version,
introduced respectively in Example 1 and Appendix A, in the
context of the DRAM market.

A. A DRAM Market HPG
We proceed by introducing an HPG in the context of the

DRAM market. There are two populations, each representing
a class of systems in which DRAMs are commonly used.
Namely, classes 1 and 2 are respectively industrial and au-
tomotive systems. We assume that there are 3 manufactur-
ers producing DRAMs with failure rates in these utilization
classes given by λ1

1 = 5, λ2
1 = 10, λ1

2 = 4, λ2
2 = 9

and λ1
3 = 3, λ2

3 = 5, where λji is the failure rate of
DRAMs produced by manufacturer i when utilized in class j.
Moreover, we assume that the replacement costs for industrial
and automotive DRAMs are β1 = 2 and β2 = 1, respectively.

We assume that the component price from manufacturer i ∈
{1, 2, 3}, which is the Ci in (5), is determined as the sum of
a fixed production cost, C0i, and a term reflecting the pull-
back inflation, Cpi. In order to reflect the pull-back inflation
on the cost we will use a quadratic term given by Cpi(Di(x)) =
(Di(x))2 = (α1x1

i +α2x2
i )

2, where αr is in proportion to the
share of class-r in the DRAM market. Finally, we set α1 = 1
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Fig. 3: Trajectory of distribution of DRAM buyers on manu-
facturers under the HPG and RM-Smith protocol.
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Fig. 4: Time domain plots of the distribution of DRAM buyers
on manufacturers under the HPG and RM-Smith protocol.

and α2 = 2, and the fixed DRAM production costs to be
C01 = 1, C02 = 1.2 and C03 = 1.5, which completes the
construction of F , as in (5), for our DRAM market HPG.
Note: We would like to clarify that the functions and param-
eters selected in this section are for illustration purposes, and
they are not estimated from data.

B. Dynamics Under the RM-Smith Protocol
Now we describe how Theorem 2 can be utilized. Consider

the mean closed loop (9) with F constructed in §VI-A and
the RM-Smith EDM (18). Assume that initially the buyers are
distributed on the manufacturers according to x1(0) = x2(0) =
(2/3, 1/6, 1/6).

Since the failure rates satisfy the condition of Theorem 1
and F satisfies Assumption 2, we can invoke Theorem 2 to
conclude that x converges to NE(F), which in this case is
the singleton (x1)∗ = (0, 1, 0), (x2)∗ = (0, 0, 1) [31]. For
this example, the trajectory and the time domain plot of x are
portrayed respectively in Fig. 3 and Fig. 4.

C. Smoothed HPG for the DRAM Market and Dynamics
Under the RM-Smith Protocol

We also carried out an analysis that is analogous to that
in §VI-B, but for the mean closed loop (10) with the RM-
Smith EDM (18) and the smoothed HPG PDM specified in
Appendix A. We selected a = 5 in (24) and we kept all the
other parameters unchanged from §VI-B.

Since the failure rates satisfy the condition of Theorem 1,
we can invoke Remark 3 to conclude from Theorem 3 and
Remark 8 (Appendix A) that, like in §VI-B, x will converge
to NE(F). The time evolution of the PDM’s state q and the
social state x are plotted in Fig. 5, indicating that x1 and x2

indeed converge respectively to (0, 1, 0) and (0, 0, 1).
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Fig. 5: Time domain plots of the PDM’s state and distribution
of DRAM buyers on manufacturers under the smoothed HPG
and RM-Smith protocol.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this article we were able to generalize the approach in [8]
and [9] to a class of pairwise comparison protocols we called
RM-PC for which the agents’ revision rates may depend on
their current strategies. We stated and proved two theorems
establishing global asymptotic stability of the equilibria of the
mean closed loop for the cases when the payoff mechanism
is a memoryless game or a payoff dynamics model (PDM).
These results rely on Theorem 1 establishing conditions for
δ-passivity of the RM-PC protocol. Proposition 1 establishes
for an RM-PC protocol sub-class a rather simple (but more
conservative) sufficient condition for δ-passivity.
Future Direction 1: Motivated by the discussion in §V-C,
a meaningful next step would be to propose a rate-modified
version of the excess payoff target (EPT) protocol whose δ
passivity we would then study by appropriately generalizing
the approach [8] and [9].
Future Direction 2: Although Theorem 1 guarantees δ-
passivity of an RM-PC protocol for any revision rates when
there are two strategies (undoubtedly a strong result), if there
are three or more strategies it only provides a sufficient
condition. Considering that we were unable to construct an
example of an RM-PC protocol that is not δ-passive when
the condition fails, we believe that it would be important
to continue to investigate whether such an example exists or
whether the condition could be weakened.

APPENDIX

A. Smoothed HPG: A PDM Example

The following is an example of a PDM that can be viewed
as a dynamic version of Example 1. Our construction parallels
that in [9, §VI.A].
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Example 3: Given a positive time constant a and parame-
ters as defined in Example 1, the following is the ”smoothed9”
HPG PDM:

aq̇(t) = −q(t) +


C1
(
D1

(
x(t)

))
...

Cκ
(
Dκ
(
x(t)

))
 , q(0) ∈ Q0, t ≥ 0

(24a)
pri (t) = −βrλri − qi(t), 1 ≤ i ≤ κ, 1 ≤ r ≤ ρ (24b)

Here Q = Q0 := [0, d̄]κ. We can also specify a set P that
includes all possible p as follows:

P :=
{
p ∈ Rκρ

∣∣∣ pri = −βrλri − qi, for some q in Q
}

Remark 8: It follows immediately from (24), (5) and (8)
that, for the smoothed HPG, F is identical to FG,H.

B. Proofs of Theorem 1 and Proposition 1

Before presenting the proofs of Theorem 1 and Proposi-
tion 1, we define a partial order � (respectively �) on elements
of Rnr as follows. Given any x, y ∈ Rnr we write x � y
(respectively x � y) if and only if xi > yi (respectively
xi ≥ yi) for all i ∈ {1, . . . , nr}. Moreover, given λr ∈ Rnr

and ur, lr ∈ R with ur > lr, we use a slight abuse of
notation and let ur � λr � lr (respectively ur � λr � lr)
denote ur > λri > lr (respectively ur ≥ λri ≥ lr) for all
i ∈ {1, . . . , nr}.

1) Proof of Theorem 1: We want to show that the candidate
storage function (SRM-PC)r, given by (19), satisfies δ-passivity
for RM-PC protocols that meet either nr = 2 or condition
(20). To establish notational convenience, in the rest of the
proof we drop the superscript r.

Recall that the component of the EDM corresponding to a
population following an RM-PC protocol is given by

VRM-PC
i (x, p) =

n∑
j=1,j 6=i

λj
1
τ̄ φi(pi − pj)xj

−
n∑

j=1,j 6=i
λi

1
τ̄ φj(pj − pi)xi, i ∈ {1, . . . , n}

and the proposed storage function corresponding to this pop-
ulation is given by

SRM-PC(x, p) =

n∑
i=1

1

τ̄
λixi

(
n∑
k=1

ψk(pk − pi)

)

where we note the omission of the r superscript in both
expressions.

9In [8], the authors argue that this type of dynamical modification smooths
short-term fluctuations and isolates longer-term trends.

With our choice of δ-storage function we have

∂SRM-PC

∂x
(x, p)VRM-PC(x, p) +

∂SRM-PC

∂p
(x, p)u

=

n∑
i=1

1

τ̄
λiVRM-PC

i (x, p)γi(p)+[
u

VRM-PC(x, p)

]T [
0 1/2I

1/2I 0

] [
u

VRM-PC(x, p)

]

Hence, setting

−SRM-PC(x, p) =
1

τ̄

n∑
i=1

λiVRM-PC
i (x, p)γi(p) (25)

it follows that, in order to show RM-PC protocols satisfying
n = 2 or (20) are δ-passive, we can prove under n = 2 or
(20) that SRM-PC and SRM-PC are non-negative and satisfy (13b),
(13c). From the non-negativity of τ̄ , φ, x and λ we see that
SRM-PC is non-negative. Moreover, plugging SRM-PC to [2, Lemma
4] it follows that SRM-PC satisfies (13b). Thus we are left with
the analysis of non-negativity of SRM-PC and conditions under
which SRM-PC satisfy (13c).

Remainder of the proof is partitioned to 2 steps. Step (i)
discusses non-negativity of SRM-PC and step (ii) examines the
validity of (13c).

Step i: In this step we discuss non-negativity of SRM-PC.
Under our choice of δ-storage function, results that we get
for n = 2 and n ≥ 3 differ and we split our analysis for these
two cases.

n = 2: Under n = 2 we will show that SRM-PC is non-negative
for all λ � 0. For this instance we have

−SRM-PC(x, p) =
1

τ̄
(λ1(x2λ2φ1(p1 − p2)

− x1λ1φ2(p2 − p1))ψ2(p2 − p1)

+ λ2(x1λ1φ2(p2 − p1)

− x2λ2φ1(p1 − p2))ψ1(p1 − p2)) (26)

Let us analyze the cases p1 = p2, p1 > p2 and p1 < p2

separately. When p1 = p2, (26) becomes 0 by the sign
preservation of φ. If we assume p1 > p2, then (26) becomes
−λ2

2x2φ1(p1 − p2)ψ1(p1 − p2)/τ̄ which is non-positive for
all x ∈ X and λ � 0. If p1 < p2, then (26) becomes
−λ2

1x1φ2(p2 − p1)ψ2(p2 − p1)/τ̄ which is again non-positive
for all x ∈ X and λ � 0.

n ≥ 3: Results that we have for the n = 2 and n ≥ 3
differ in the sense that, when n ≥ 3 we show non-negativity
of SRM-PC only for RM-PC protocols satisfying (20). Hence,
in what follows we assume that (20) holds. Let us denote
u = maxi∈{1,...,n}{λi} and l = mini∈{1,...,n}{λi}, so (20)

10



can be written as u/l < λ̄φ. Notice that

−SRM-PC(x, p)

=
1

τ̄

n∑
i=1

γi(p)λi

 n∑
j=1

xjλjφi(pi − pj)


− 1

τ̄

n∑
i=1

γi(p)λi

 n∑
j=1

xiλiφj(pj − pi)


=

1

τ̄

n∑
i=1

n∑
j=1

xjφi(pi − pj)λj(λiγi(p)− λjγj(p))

=
1

τ̄


∑n
i=1 φi(pi − p1)λ1(λiγi(p)− λ1γ1(p))

...∑n
i=1 φi(pi − pn)λn(λiγi(p)− λnγn(p))


T

x

Since x � 0 it follows that −SRM-PC(x, p) is non-positive for all
u � λ � l, x ∈ X and p ∈ Rn if and only if for all u � λ � l,
p ∈ Rn and k ∈ {1, . . . , n},

n∑
i=1

φi(pi − pk)λk(λiγi(p)− λkγk(p)) ≤ 0

which is equivalent to

sup
k∈{1,...,n},p∈Rn,u�λ�l

{ ∑
i∈{1,...,n}\{k}

φi(pi − pk)

λk(λiγi(p)− λkγk(p))

}
≤ 0 (27)

We can take supremum with respect to one set of the variables,
and then take the supremum of the resulting expression with
respect to the ones left [33]. We first choose to take supremum
with respect to λ. Fixing any k ∈ {1, . . . , n} and p ∈ Rn,
since γi and φi are non-negative for all i ∈ {1, . . . , n},
the expression on the left-hand side of (27) is maximized
with respect to λ when λi/λk is maximized for all i ∈
{1, . . . , n}\{k}. Due to the box constraint u/l ≥ λi/λk ≥ l/u,
we have that for any i ∈ {1, . . . , n}, supremum of λi/λk is
reached when λi/λk = u/l. Thus (27) holds if and only if the
following holds:

n∑
i=1

φi(pi − pk)
(u
l
γi(p)− γk(p)

)
≤ 0,

k ∈ {1, . . . , n}, p ∈ Rn (28)

Notice that if
∑n
i=1 φi(pi−pk)γi(p) = 0, then (28) is satisfied,

meaning (28) holds if and only if

u

l
≤ inf

k∈{1,...,n},p∈Rn∑n
i=1 φi(pi−pk)γi(p)6=0

{
γk(p)

∑n
i=1 φi(pi − pk)∑n

i=1 φi(pi − pk)γi(p)

}
(29)

On the account that (20) holds we get (29) is satisfied with
strict inequality, in turn implying SRM-PC(x, p) ≥ 0 for all x ∈ X
and p ∈ Rn.

Step ii: In the second step we discuss under what conditions
SRM-PC satisfies (13c). Similar to that of the conclusions on non-
negativity of SRM-PC, under our choice of δ-storage function,

results that we obtain for the n = 2 and n ≥ 3 cases differ.
We divide our analysis for these two cases.
n = 2: Assuming n = 2, we show that SRM-PC(x, p) = 0

if and only if VRM-PC(x, p) = 0 for all λ � 0. We present a
proof by analyzing the cases p1 = p2, p1 > p2 and p1 < p2

separately. Recall that when n = 2, SRM-PC is given by (26). If
p1 = p2, then (26) is 0, but in this case VRM-PC(x, p) = 0. Now
assume p1 > p2. Then, SRM-PC(x, p) becomes −λ2

2x2φ1(p1 −
p2)ψ1(p1−p2)/τ̄ , but since φ1(p1−p2) > 0 and ψ1(p1−p2) >
0 we see that SRM-PC(x, p) = 0 implies x2 = 0. Moreover, from
p1 > p2, we have φ2(p2 − p1) = 0. These combined yield
VRM-PC(x, p) = 0. For the case p2 > p1, SRM-PC(x, p) becomes
−λ2

1x1φ2(p2 − p1)ψ2(p2 − p1)/τ̄ . But since φ2(p2 − p1) > 0
and ψ2(p2 − p1) > 0 we see that SRM-PC(x, p) = 0 implies
x1 = 0. From p2 > p1, we also have φ1(p1 − p2) = 0.
These combined again yield VRM-PC(x, p) = 0. Hence, we arrive
at SRM-PC(x, p) = 0 implies VRM-PC(x, p) = 0. For the other
direction, assume VRM-PC(x, p) = 0. Then, since SRM-PC(x, p) =∑n
i=1 λiVRM-PC

i (x, p)γi(p), it follows that SRM-PC(x, p) = 0. As
a result SRM-PC(x, p) = 0 if and only if VRM-PC(x, p) = 0.
n ≥ 3: Now assume n ≥ 3. We will show that for all RM-

PC protocols satisfying (20) we have SRM-PC(x, p) = 0 if and
only if VRM-PC(x, p) = 0. Recall that

SRM-PC(x, p) = −
n∑
i=1

n∑
j=1

xj
τ̄
φi(pi − pj)λj(λiγi(p)− λjγj(p))

Given any j ∈ {1, . . . , n}, there are three possibilities: out of
p1, . . . , pn it must be that, pj is the largest, pj is the second
largest, or there exist l,m ∈ {1, . . . , n} \ {j} such that pm >
pl > pj . We analyze these three cases separately. If j is such
that pj is the largest, then for all i ∈ {1, . . . , n}, φi(pi −
pj)λj(λiγi(p) − λjγj(p)) = 0, and any xj gives xjφi(pi −
pj)λj(λiγi(p)−λjγj(p))/τ̄ = 0. In the second case, pj is the
second largest. Let us denote I = {i ∈ {1, . . . , n} : pi > pj},
so I is the set of strategies having greater payoff than that of
j. For any l ∈ I we have that γl(p) =

∑n
k=1 ψk(pk − pl) = 0

and γj(p) =
∑n
k=1 ψk(pk − pj) ≥ ψl(pl − pj) > 0. However,

for any k ∈ {1, . . . , n}\I we have φk(pk−pj) = 0, implying
φk(pk − pj)λk(λkγk(p)− λjγj(p)) = 0. Therefore,

n∑
i=1

φi(pi − pj)λj(λiγi(p)− λjγj(p))
1

τ̄

=
∑

k∈{1,...,n}\I

φk(pk − pj)λk(λkγk(p)− λjγj(p))
1

τ̄

+
∑
l∈I

φl(pl − pj)λl(λlγl(p)− λjγj(p))
1

τ̄

< 0

Finally, if j is such that there exist l,m ∈ {1, . . . , n} \ {j}
with pm > pl > pj , then γl(p) =

∑n
k=1 ψk(pk − pl) >

0, thus
∑n
i=1 φi(pi − pj)γi(p) ≥ φl(pl − pj)γl(p) > 0.

Consequently, (20) can be utilized to arrive at the following.
For all p ∈ Rn such that there exists l,m ∈ {1, . . . , n} \ {j}
with pm > pl > pj , it holds that (u/l) < (γj(p)

∑n
i=1 φi(pi−

pj))/(
∑n
i=1 φi(pi−pj)γi(p)). This implies that for all p ∈ Rn
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with l,m ∈ {1, . . . , n} \ {j} satisfying pm > pl > pj we have
n∑
i=1

φi(pi − pj)λj(λiγi(p)− λjγj(p))
1

τ̄

≤
n∑
i=1

φi(pi − pj)l
(u
l
γj(p)− γi(p)

) 1

τ̄

< 0

From the analysis of these three cases on pj , it be-
comes evident that SRM-PC(x, p) =

∑n
j=1 xj

∑n
i=1 φi(pi −

pj)λj(λiγi(p) − λjγj(p))/τ̄ = 0 if and only if xj > 0 only
when j ∈ arg maxk∈{1,...,n}{pk}. Hence, SRM-PC(x, p) = 0

if and only if x ∈ arg maxy∈X y
T p. Finally, by the Nash

stationarity of RM-PC protocols we arrive at SRM-PC(x, p) if
and only if VRM-PC(x, p) = 0. �

2) Proof of Proposition 1: We assume that nr ≥ 3 and
drop the r superscript for notational convenience. Under
Assumption 4, we can substitute φi with φ̄ (also denote
ψ̄(p̃) = ∫ p̃0 φ̄(s)ds for p̃ ∈ R and γ̄i(p) =

∑n
k=1 ψ̄(pk − pi)

for i ∈ {1, . . . , n}, p ∈ Rn) to rewrite (21) as

λ̄φ(n) = min
1≤k≤n

inf
p∈Θk

O(k, p) (30)

where

O(k, p) :=
γ̄k(p)

∑n
i=1 φ̄(pi − pk)∑n

i=1 φ̄(pi − pk)γ̄i(p)
,

Θk :=

{
p ∈ Rn

∣∣∣ n∑
i=1

φ̄(pi − pk)γ̄i(p) 6= 0

}
In what follows, we derive a lower bound to (30) that is greater
than 1. Our approach consists of three steps. (i) First, we show
that without loss of generality we can fix k in (30) to be n,
effectively discarding the minimization over k. Specifically,
we will show that λ̄φ(n) = infp∈Θn O(n, p). (ii) Then, we
prove that the value of infp∈Θn O(n, p) is unchanged when
we introduce the additional constraint p1 ≥ p2 ≥ · · · ≥ pn.
(iii) Finally, by exploiting the fact that φ̄ is non-decreasing,
we derive a lower bound to the value of infp∈Θn O(n, p) with
the additional constraint p1 ≥ p2 ≥ · · · ≥ pn.
Step i: We begin by showing that (30) is equal to
infp∈Θn O(n, p). Fix any k, l ∈ {1, . . . , n} and p ∈ Θk. Let us
construct p̃ by swapping the values of the k-th and l-th indices
of p. Then, it follows that p̃ ∈ Θl and O(k, p) = O(l, p̃).
Therefore, infimum of O(k, p) over p ∈ Θk is independent of
k, implying that without loss of generality we can fix the k in
(30) to be n and discard the minimization over k. Hence, we
can conclude from (30) that λ̄φ(n) = infp∈Θn O(n, p).
Step ii: Now we prove that the value of infp∈Θn O(n, p)
does not change when the additional constraint p1 ≥ p2 ≥
· · · ≥ pn is imposed on the problem. First, observe that for
any given p in Θn, we have that O(n, p) = O(n, p̃) for
any p̃ constructed from p by arbitrarily permuting the first
n−1 entries and leaving the n-th entry unchanged. Therefore,
imposing the additional constraint p1 ≥ p2 ≥ · · · ≥ pn−1

would not change infp∈Θn O(n, p). Second, we will show
that the infimum is unchanged even if we impose the more
stringent constraint p1 ≥ p2 ≥ · · · ≥ pn−1 ≥ pn. Specifically,

we will show that given any p in Θn with p1 ≥ · · · ≥ pn−1,
there exists a p̃ in Θn satisfying p̃1 ≥ · · · ≥ p̃n−1 ≥ p̃n
for which O(n, p) = O(n, p̃). To do so, take an arbitrary
p in Θn satisfying p1 ≥ · · · ≥ pn−1. From p ∈ Θn,
it follows that p1 ≥ pn, since otherwise we would have∑n
i=1 φ̄(pi − pn)γ̄i(p) = 0. Thus, for any p ∈ Θn we either

have pn−1 ≥ pn, or there is m in {2, . . . , n − 1} such that
p1 ≥ p2 ≥ · · · ≥ pm−1 ≥ pn > pm ≥ · · · ≥ pn−1. If p
is such that pn−1 ≥ pn, then taking p̃ = p gives the desired
result. On the other hand, if there is m in {2, . . . , n− 1} such
that p1 ≥ p2 ≥ · · · ≥ pm−1 ≥ pn > pm ≥ · · · ≥ pn−1,
then we construct p̃ by setting p̃i = pn for all i in {m, . . . , n}
and p̃j = pj for all j in {1, . . . ,m− 1}. One can now verify
by direct substitution that for the constructed p̃ it holds that
O(n, p) = O(n, p̃) and p̃ is in Θn, which concludes our proof
of the second step.

Thus, defining the vectors φ̃n(p) and γ̄(p) as

φ̃n(p) :=

(φ̃n)1(p)
...

(φ̃n)n(p)

 =


φ̄(p1−pn)∑n−1
i=1 φ̄(pi−pn)

...
φ̄(pn−pn)∑n−1
i=1 φ̄(pi−pn)

 ; γ̄(p) :=

γ̄1(p)
...

γ̄n(p)


we have shown up to this point that

λ̄φ(n) = inf
φ̃Tn (p)γ̄(p)6=0
p1≥···≥pn

1

φ̃Tn (p)γ̄(p)/γ̄n(p)
(31)

Note that for p ∈ Rn satisfying φ̃Tn (p)γ̄(p) 6= 0 and p1 ≥ · · · ≥
pn, there is m ∈ {1, . . . , n− 1} such that pm > pn, which in
turn implies γ̄n(p) =

∑n
k=1 ψ̄(pk − pn) ≥ ψ̄(pm − pn) > 0.

Step iii: As for the final step, we will derive a lower bound
to (31) that is greater than 1. From the proof of [3, Theorem
7.2.9] it is known that for any i, j ∈ {1, . . . , n}, pi ≥ pj
implies γ̄i(p) ≤ γ̄j(p), meaning under the constraint p1 ≥
· · · ≥ pn we have 0 = γ̄1(p) ≤ · · · ≤ γ̄n(p). Thus, for all
p ∈ Rn such that p1 ≥ · · · ≥ pn and

∑n
i=1 φ̄(pi−pn)γ̄i(p) 6= 0

we have

φ̃Tn (p)γ̄(p)/γ̄n(p) = (φ̃n)1(p) · 0 + (φ̃n)2(p)
γ̄2(p)

γ̄n(p)

+ · · ·+ (φ̃n)n−1(p)
γ̄n−1(p)

γ̄n(p)
+ 0 · 1

≤ 0 + (φ̃n)2(p) + · · ·+ (φ̃n)n−1(p) + 0

=

n−1∑
i=2

(φ̃n)i(p)

= 1− (φ̃n)1(p) (32)

The function φ̄ being non-decreasing implies under the con-
straints p1 ≥ · · · ≥ pn and

∑n
i=1 φ̄(pi − pn)γ̄i(p) 6= 0 that

(φ̃n)1(p) ≥ 1/(n− 1). As a result

φ̃Tn (p)γ̄(p)/γ̄n(p) ≤ 1− 1

n− 1

=
n− 2

n− 1

meaning (n− 1)/(n− 2) is a lower bound to (31).�
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