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Abstract. We provide evidence of the existence of KAM quasi-periodic attractors for
a dissipative model in Celestial Mechanics. We compute the attractors extremely close
to the breakdown threshold.

We consider the spin-orbit problem describing the motion of a triaxial satellite around
a central planet under the simplifying assumption that the center of mass of the satellite
moves on a Keplerian orbit, the spin-axis is perpendicular to the orbit plane and coin-
cides with the shortest physical axis. We also assume that the satellite is non-rigid; as a
consequence, the problem is affected by a dissipative tidal torque that can be modeled
as a time-dependent friction, which depends linearly upon the velocity.

Our goal is to fix a frequency and compute the embedding of a smooth attractor with
this frequency. This task requires to adjust a drift parameter.

We have shown in [CCGdlL20b] that it is numerically efficient to study Poincaré
maps; the resulting spin-orbit map is conformally symplectic, namely it transforms the
symplectic form into a multiple of itself. In [CCGdlL20b], we have developed an ex-
tremely efficient (quadratically convergent, low storage requirements and low operation
count per step) algorithm to construct quasi-periodic solutions and we have implemented
it in extended precision. Furthermore, in [CCdlL20] we have provided an “a-posteriori”
KAM theorem that shows that if we have an embedding and a drift parameter that sat-
isfy the invariance equation up to an error which is small enough with respect to some
explicit condition numbers, then there is a true solution of the invariance equation. This
a-posteriori result is based on a Nash-Moser hard implicit function theorem, since the
Newton method incurs losses of derivatives.

The goal of this paper is to provide numerical calculations of the condition numbers
and verify that, when they are applied to the numerical solutions, they will lead to the
existence of the torus for values of the parameters extremely close to the parameters
of breakdown. Computing reliably close to the breakdown allows to discover several
interesting phenomena, which we will report in [CCGdlL20a].

The numerical calculations of the condition numbers presented here are not com-
pletely rigorous, since we do not use interval arithmetic to estimate the round off error
and we do not estimate rigorously the truncation error, but we implement the usual
standards in numerical analysis (using extended precision, checking that the results
are not affected by the level of precision, truncation, etc.). Hence, we do not claim a
computer-assisted proof, but the verification is more convincing that standard numerics.
We hope that our work could stimulate a computer-assisted proof.

§1. Introduction

Kolmogorov-Arnold-Moser (hereafter KAM) theory ([Kol54, Arn63, Mos62]) concerns
the existence of quasi-periodic motions in non-integrable dynamical systems. In its ori-
ginal formulation, it was applied to nearly-integrable Hamiltonian systems.
An important recent development is the a-posteriori KAM theory (see [dlLGJV05,

dlL01]) that does not require that the system is close to integrable, but rather that there
is an approximate solution of an invarance equation that satisfies some non-degeneracy
conditions. Given an a-posteriori KAM theorem, one does not need to justify the way
that the approximate solution is constructed (it could be done by formal expansions or
just by numerical tries), but one must provide rigorous estimates on the error of the
invariance equation and the condition numbers involved in the theorem statement.
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The KAM theory has been extended to general systems (see, e.g., [Mos67]). This theory
fixes the frequency of the quasi-periodic orbit searched, but adjusting parameters in the
system. This general KAM theory is even more effective if the system preserves some
geometric structures ([BHTB90, BHS96, CLHB05]). From the mathematical point of
view, the number of parameters to adjust may be reduced (e.g., in the Hamiltonian case,
there are no parameters to be adjusted). Numerically, one can use identities coming from
the geometry to develop fast algorithms that also require small storage space and enjoy
good stability properties. For the purposes of our paper, the most relevant development
is [CCdlL13], which established an a-posteriori KAM theorem and presented efficient
numerical algorithms for conformally symplectic systems (that is, systems that transform
the symplectic form into a multiple of itself). Conformally symplectic systems appear in
a variety of applications, including Euler-Lagrange equations of exponentially discounted
Lagrangians, thermostats, etc.
The goal of this paper is to study the applicability of a-posteriori KAM theory for a

specific model of Celestial Mechanics known as the spin-orbit problem with tidal torque.
This model describes the rotational motion of a non-rigid triaxial ellipsoid orbiting around
a point-mass planet. We assume that the planet moves in a Keplerian orbit, the rotation
axis is perpendicular to the orbital plane and aligned with the shortest physical axis of the
satellite. Furthermore, we assume that the system experiences a tidal force proportional
to the velocity, which makes it into a conformally symplectic system. This model has
been studied in [CC09, Mas19, SL12].
Efficient numerical methods to find quasi-periodic orbits in the spin-orbit model were

implemented in [CCGdlL20b]. Taking advantage of the extreme efficiency of the methods,
modern programming tools and the power of modern hardware. The calculations of
[CCGdlL20b] were run in high precision and produced the parameterization of quasi-
periodic orbits and adjusted parameters that solve the invariance equations with very
high accuracy, even very close to the breakdown1.
The goal of this paper is to study the application of the a-posteriori theorem in

[CCdlL13] to the calculations in [CCGdlL20b]. We take the calculations in [CCGdlL20b],
and evaluate numerically the condition numbers required in [CCdlL13]. Similar results
for an explicitly given mapping appear in [CCdlL20]. In the present problem, the map
considered is not given by an explicit formula, but is obtained by integrating an ordinary
differential equation. This requires new analysis and numerical studies of the variational
equations.
The results presented here come short of a full computer-assisted proof, since the

evaluation of the error and the condition numbers are not completely rigorous. We do
not take into account round-off or truncation errors.
We certainly hope that the present effort could serve as inspiration for others to close

the gap and provide a true computer-assisted proof and, needless to say, we would be
happy to provide detailed data and encouragement. Even if not the final word on exist-
ence, we think that the work presented goes beyond the regular standards of numerical

1As a matter of fact, there is no alternative numerical method that can compute as close to the
breakdown, so that the estimates of this paper are the best estimates for the threshold, since the
solutions we can compute have all the signs of being very deteriorated.
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computations and is a significant progress in the area of the computations of tori, even
close to the breakdown. We think that it is rather remarkable that the algorithms inspired
by the theory are also the most efficient ones.
Computing close to the breakdown and being able to trust the computation is not just

an affectation, but uncovers new phenomena that present a challenge to mathematics.
We note that, even if the computation is doable, but delicate for values of the per-

turbation close to the threshold, it remains extremely reliable and easy for many values
of astronomical interest, so that KAM theory and their algorithms become a relevant
tool to astronomers, overcoming the concerns –relevant at the time they were written–
of [H6́6].

This paper is organized as follows. The equation of motion describing the dissipative
spin-orbit problem is shortly recalled in Section §2. We study the Poincaré map asso-
ciated to such a model in Section §3; in this way we obtain a spin-orbit map, which
is conformally symplectic, and we compute the corresponding conformally symplectic
factor, which is the term by which the symplectic form gets multiplied, when the map
is applied to the the symplectic form. Then, we use the KAM theorem for conformally
symplectic maps formulated in [CCdlL20] (see Section §4). Contrary to the implement-
ation to the standard map, the application of the theorem to the spin-orbit problem is
more complex and it requires a careful computation of some constants as described in
Section §5. This procedure leads to the final results that we present in Section §6 for
two different frequencies: the golden ratio and a second frequency between one and the
golden ratio.

§2. The spin-orbit problem with tidal torque

For the sake of motivation, in this section we present the physical basis of the model
considered. Even if this motivates the questions asked, it is logically independent of the
analysis.
Consider the motion of a non-rigid satellite S that we assume to have a triaxial shape

and principal moments of inertia A ă B ă C. We assume that the barycenter of the
satellite S moves on an elliptic Keplerian orbit with semimajor axis a, eccentricity e,
and with the planet P in one focus. The satellite rotates around the smallest physical
axis, in such a way that the spin-axis is perpendicular to the orbit plane (see, e.g.,
[Bel01, Cel90, Cel10, CL04, WPM84]).
We normalize the units of measure of time so that the orbital period Torb is equal to 2π,

which implies that the mean motion is n “ 2π{Torb “ 1; we introduce the perturbative

parameter ε, which measures the equatorial ellipticity of the satellite:

ε –
3

2

B ´ A

C
. (1)

We denote by x the angle between the largest physical axis of the triaxial satellite and the
periapsis line. The equation of motion of the spin-orbit problem, using the formulation
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in [Mac64, Pea05] for the tidal torque, is given by

d2xptq

dt2
` ε

ˆ
a

rptq

˙3

sin
`
2xptq ´ 2fptq

˘
“ ´η

ˆ
a

rptq

˙6ˆ
dxptq

dt
´
dfptq

dt

˙
, (2)

where rptq “ rpt; eq and fptq “ fpt; eq are the orbital radius and the true anomaly of
the Keplerian ellipse, and η ą 0 is the dissipative constant depending on the physical
features of the satellite. Denoting by u the eccentric anomaly, then

r “ ap1 ´ e cosuq , tan

ˆ
f

2

˙
“

c
1 ` e

1 ´ e
tan

ˆ
u

2

˙
.

For η “ 0 the model becomes conservative and takes a nearly-integrable form with ε

being the perturbing parameter. We also introduce the spin-orbit problem with tidal
torque averaged over one orbital period (see, e.g., [Pea05, CCGdlL20b]) as given by the
equation

d2xptq

dt2
` ε

´ a

rptq

¯3

sin
`
2xptq ´ 2fptq

˘
“ ´ηL̄peq

ˆ
dxptq

dt
´
N̄peq

L̄peq

˙
, (3)

where

L̄peq –
1

p1 ´ e2q9{2

ˆ
1 ` 3e2 `

3

8
e4
˙
,

N̄peq –
1

p1 ´ e2q6

ˆ
1 `

15

2
e2 `

45

8
e4 `

5

16
e6
˙
.

§3. The conformally symplectic spin-orbit map

Following [CCGdlL20b], we introduce a discrete system, which is obtained by comput-
ing the Poincaré map Pe associated to (2). Precisely, setting y “ 9x, we can write the
map as

Pepx0, y0; εq –

ˆ
xp2π; x0, y0, εq
yp2π; x0, y0, εq

˙
, (4)

where xp2π; x0, y0, εq and yp2π; x0, y0, εq denote the solution of (2) at time t “ 2π with

initial conditions px0, y0q at t “ 0. Writing Pe in components, say Pe ” pP
p1q
e , P

p2q
e q, the

spin-orbit Poincaré map becomes:

x̄ “ P p1q
e px, y; εq ,

ȳ “ P p2q
e px, y; εq .

(5)

For numerical reasons, it is better to consider the change of coordinates

Ψe – 2π

ˆ
1 0
0 1 ´ e

˙
(6)

and define the map Ge – Ψe ˝Pe ˝ Ψ´1
e which can be computed accurately by numerical

integrators such as [HNW93, JZ05].
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The map (5), equivalently Ge, inherits several properties of the continuous system (2).
In particular, the map is conformally symplectic, which means that it transforms the
symplectic form into a multiple of itself, according to the following definition.

Definition 3.1. Let M “ Tn ˆ U with U Ď Rn an open and simply connected domain
with smooth boundary. We endow M with a symplectic form Ω. A diffeomorphism
f : M Ñ M is conformally symplectic, if there exists a function λ : M Ñ R such that

f˚Ω “ λΩ , (7)

where f˚ denotes the pull–back of f .

We will call λ the conformal factor. For λ “ 1 we have a symplectic diffeomorphism. In
the following, we will consider the family Pe : M Ñ M, defined in (4), of diffeomorphisms
depending on a parameter e P r0, 1q to which we refer as the drift parameter. In this case
(7) is replaced by

P ˚
e Ω “ λΩ . (8)

The definition of conformally symplectic continuous systems is given as follows.

Definition 3.2. A vector field X is a conformally symplectic flow if, denoting by LX the
Lie derivative, there exists a function λ : R2n Ñ R such that

LXΩ “ λΩ . (9)

If Φt denotes the flow at time t, then (9) implies that

pΦtq
˚Ω “ exppλtqΩ .

The dissipative spin-orbit model (2) is an example of a conformally symplectic vector
field. An important result for our purposes is that the Poincaré map associated to a
conformally symplectic vector field is a conformally symplectic map. As a consequence,
the spin-orbit Poincaré map defined in (5) is conformally symplectic with the conformally
symplectic factor given by

λpx, yq “ σ| detDPepx, y; εq|, σ “ ˘1 , (10)

where σ denotes the orientation of Pe.
As shown in [CCGdlL20b], the conformal factor is given explicitly in terms of the

orbital eccentricity and the dissipative parameter:

λ “ exp

ˆ
´ ηπ

3e4 ` 24e2 ` 8

4 p1 ´ e2q9{2

˙
. (11)

When η ą 0 we have a contractive system, if η ă 0 we have an expansive system and if
η “ 0 we have a symplectic system. In the following we will just consider the contractive
case with η ą 0.
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§4. KAM theorem and invariant attractors

The statement of the KAM theorem that we will apply to the spin-orbit problem
requires a set of preliminary notations and notions. We start to give, in Section §4.1,
the definition of the norms and some results on Cauchy estimates on the derivatives. In
Section §4.2 we give the definition of Diophantine frequency and we present some results
on the solution of the cohomology equation. The definition of KAM attractor and the
invariance equation to be satisfied is given in Section §4.3. Finally, the statement of the
KAM theorem, borrowed from [CCdlL20], is given in Section §4.4.

§4.1. Norms and Cauchy estimates. The norm of a vector v “ p v1
v2 q P R

2 is defined
as

}v} – |v1| ` |v2| .

The norm of a matrix A “ p a11 a12
a21 a22 q P R2 ˆ R2 is defined as

}A} – max
 

|a11| ` |a21|, |a12| ` |a22|
(
.

Next, we consider the norm of functions and vector functions. To this end, for ρ ą 0 we
introduce the complex extensions of a torus T, a set B and the manifold M “ T ˆB as

Tρ – tx ` iy P C{Z : x P T , |y| ď ρu , (12)

Bρ – tx ` iy P C : x P B , |y| ď ρu ,

Mρ – Tρ ˆ Bρ .

By Aρ we denote the set of functions analytic in the interior of Tρ and extending con-
tinuously to the boundary of Tρ. This set is endowed with the norm

}f}ρ – sup
zPTρ

|fpzq| . (13)

Similarly, for a vector valued function f “ pf1, f2, . . . , fnq, n ě 1, we define the norm

}f}ρ – }f1}ρ ` }f2}ρ ` ¨ ¨ ¨ ` }fn}ρ . (14)

If F denotes an n1 ˆ n2 matrix valued function, then we define its norm as

}F }ρ –
n1ÿ

i“1

sup
j“1,...,n2

}Fij}ρ . (15)

The following classical lemma gives a bound on the derivatives on smaller domains
than the initial function (see, e.g., [CCdlL20] for its proof).

Lemma 4.1. Given a function h P Aρ, its first derivative can be bounded as

}Dh}ρ´δ ď δ´1 }h}ρ , (16)

where 0 ă δ ă ρ.
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§4.2. Diophantine frequency and the cohomology equation. One of the main
assumptions in KAM theory is that the frequency satisfies a Diophantine assumption
that, in view of the application of KAM theory to the spin-orbit map (5), we introduce
as follows.

Definition 4.2. Let ω P R and let τ ě 1, ν ą 0. The number ω is said Diophantine
of class τ and constant ν, ω P Dpν, τq, if for all q P Z and k P Zzt0u, it satisfies the
following inequality

|ω k ´ q| ě ν|k|´τ . (17)

Another important ingredient at the basis of the proof of the KAM theorem is the
solution of a cohomology equation of the form

ϕpθ ` ωq ´ λϕpθq “ ϑpθq , (18)

where θ P T and ϑ is a Lebesgue measurable function.
The following lemmas yield the existence of a solution of (18) given by a Lebesgue

measurable function ϕ. The first result, Lemma 4.3, is valid when |λ| ‰ 1 and ω P R. It
gives an estimate on the solution which depends on λ and indeed explodes as |λ| tends
to 1. The second result, Lemma 4.4, is valid for any λ and Diophantine frequency ω.
It provides a uniform estimate of the solution. We refer to [CCdlL13, CCdlL20] for the
proofs of the Lemmas 4.3 and 4.4.
In [CCdlL13], one can find also estimates that are uniform for λ P rA´1, As for A ą 1

and, hence allow to study the (singular) limit of zero dissipation. These estimates are
very similar to the estimates in Lemma 4.4 (they use the Diophantine condition and they
entail a loss of domain).

Lemma 4.3. Let |λ| ‰ 1 and ω P R. Given any Lebesgue measurable function ϑ, there
exists a Lebesgue measurable function ϕ which satisfies (18) and which is bounded by

}ϕ}ρ ď
ˇ̌
|λ| ´ 1

ˇ̌´1
}ϑ}ρ .

The derivatives of ϕ with respect to λ are bounded by

}Dj
λϕ}ρ ď

j!ˇ̌
|λ| ´ 1

ˇ̌j`1
}ϑ}ρ , j ě 1 .

Lemma 4.4. Assume that λ P rA0, A
´1

0 s for some 0 ă A0 ă 1 in (18) and let ω P Dpν, τq.
Let ϑ P Aρ, ρ ą 0, be a function such that

ż

T

ϑpθq dθ “ 0 .

Then, there exists one, and only one, solution of (18) with zero average:
ż

T

ϕpθq dθ “ 0 .

Moreover, if ϕ P Aρ´δ for 0 ă δ ă ρ, then we have

}ϕ}ρ´δ ď C0 ν
´1 δ´τ}ϑ}ρ , (19)
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where

C0 “
1

p2πqτ
π

2τp1 ` λq

c
Γp2τ ` 1q

3
(20)

and Γ denotes the gamma function.

We remark that [FHL17] provides a better estimate for the constant C0 in the sym-
plectic case. Its expression is more complicated than (20). However, for our parameter
values, it seems that the estimate (20) suffices to reach the final result of getting analytic
estimates close to the break-down.

§4.3. KAM attractor and the invariance equation. In this Section, we introduce
the definition of a KAM attractor with Diophantine frequency ω for a family fe of con-
formally symplectic maps. We call e the drift parameter, since we recognize that the
drift is related to the eccentricity, although the drift might in principle coincide with
a different parameter. This will require to satisfy the invariance equation (21) below,
which will be the centerpiece of the KAM theorem of Section §4.4.

Definition 4.5. Let fe : M Ñ M be a family of conformally symplectic maps. A KAM
attractor with frequency ω is an invariant torus which is described by an embedding
K : T Ñ M and a drift parameter e, which satisfy the following invariance equation
for θ P T:

fe ˝ Kpθq “ Kpθ ` ωq . (21)

We remark that solving equation (21) will require to determine both K and e.
Denoting by Tω the shift by ω such that for a function K, we have pK ˝ Tωqpθq “

Kpθ ` ωq, then the invariance equation (21) can be written as

fe ˝ K “ K ˝ Tω .

§4.4. The KAM theorem. The KAM statement provided in [CCdlL20] applies to two-
dimensional maps and, although it has been applied to the dissipative standard map, the
formulation of the KAM theorem was given for a general system. Therefore, we can apply
the main theorem stated in [CCdlL20] to the Poincaré map of the spin-orbit problem (2).
The KAM theorem in [CCdlL20] gives explicit conditions that ensure that, given an

approximate solution, there is a true solution. This requires the computation of several
constants that we list in Appendix §A to make the paper self contained. If the map was
given by an explict formula (as it was the case in [CCdlL20]) some of the constants can
be obtained using calculus. In our case, since the map is obtained integrating an ODE,
we obtain the estimates integrating the equation in a complex domain.
Having fixed a Diophantine frequency ω and after computing the value of the conformal

factor λ, we look for an embedding K and a drift parameter e which satisfy the invariance
equation (21). The solution can be obtained under a non-degeneracy condition (see H3

in Theorem 4.6).
In the spin-orbit problem, the description of the computation of the solution is given

in Section §4.6, while the verification of the KAM conditions is provided in Section §6.
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Let us assume that we start with an approximate solution pK0, e0q which satisfies the
invariance equation (21) up to an error term E0, that is,

E0pθq “ fe0 ˝ K0pθq ´ K0pθ ` ωq . (22)

Before stating the main theorem, we need to introduce the following auxiliary quantities:

N0pθq – pDK0pθqJDK0pθqq´1 ,

M0pθq – rDK0pθq | J´1 ˝ K0pθq DK0pθqN0pθqs ,

S0pθq – ppDK0N0q ˝ TωqJpθqDfe0 ˝ K0pθqJ´1 ˝ K0pθqDK0pθqN0pθq ,

(23)

where the superscript J denotes transposition and the matrix J is the matrix represent-
ation of the symplectic form,

Ωzpu, vq “ xu, Jpzqvy,

with z P M. For the applications we have in mind, J is constant and it is defined as

J “

ˆ
0 1

´1 0

˙
. (24)

Theorem 4.6 is a constructive version of Theorem 20 in [CCdlL13] and it applies to
mapping systems, like the Poincaré map Pe defined in (4) associated to (2). In this case
the conformal factor λ only depends on the dissipation η and the eccentricity e, and the
map Pe depends on the three parameter η, ε, and e.

Theorem 4.6. Let Λ be an open subset of R and for all e P Λ, let fe : M Ñ M be a
conformally symplectic map defined on the manifold M “ B ˆ T; here B Ă R denotes
an open and simply connected domain with smooth boundary. Assume that fe is analytic
on an open connected domain C Ă C ˆ C{Z. Assume the following hypotheses.

H1. The frequency ω is Diophantine as in (17), namely ω P Dpν, τq.
H2. The approximate solution pK0, e0q, K0 P Aρ0 for some ρ0 ą 0 and e0 P Λ, satisfies

(21) up to an error function E0 “ E0pθq as in (22). We denote by ε0 the size of
the error function, that is,

ε0 – }E0}ρ0 .

H3. Assume that the following non–degeneracy condition is fulfilled:

det

˜
S0 S0pBb0q0 ` rAp1q

0

λ ´ 1 rAp2q
0

¸
‰ 0 ,

where S0 is defined in (23), rAp1q
0 , rAp2q

0 are the first and second elements of

rA0 “ M´1

0
˝ TωDefe0 ˝ K0 ,

pBb0q0 is the solution (with zero average in the λ “ 1 case) of the equation

λpBb0q
0 ´ pBb0q0 ˝ Tω “ ´p rAp2q

0 q0 ,

and p rAp2q
0

q0 is the zero average part of rAp2q
0
.
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Then, let T0 be the twist constant defined as

T0 –

››››››

˜
S0 S0pBb0q0 ` rAp1q

0

λ ´ 1 rAp2q
0

¸´1
››››››
.

H4. Assume that for some ζ ą 0 we have

distpe0, BΛq ě ζ , distpK0pTρ0q, BCq ě ζ .

H5. Let δ0 be such that 0 ă δ0 ă ρ0. Introduce the quantity κe – 4Cσ0 with Cσ0

constant (see Appendix §A). Define the quantities

Qz – sup
zPC

|Dfe0pzq| ,

Qe – sup
zPC,ePΛ,|e´e0|ă2κeε0

|Defepzq| ,

Qzz – sup
zPC

|D2fe0pzq| ,

Qez – sup
zPC

|DDefe0pzq| ,

Qzzz – sup
zPC

|D3fe0pzq| ,

Qezz – sup
zPC,ePΛ,|e´e0|ă2κeε0

|D2Defepzq| ,

Qze – sup
zPC,ePΛ,|e´e0|ă2κeε0

|DeDfepzq| ,

Qee – sup
zPC,ePΛ,|e´e0|ă2κeε0

|D2

efepzq| ,

Qzze – sup
zPC,ePΛ,|e´e0|ă2κeε0

|DeD
2fepzq| ,

Qeez – sup
zPC,ePΛ,|e´e0|ă2κeε0

|DD2

efepzq| ,

Qeee – sup
zPC,ePΛ,|e´e0|ă2κeε0

|D3

efepzq| ,

QE0 –
1

2
max

!
}D2E0}ρ0´δ0, }DDeE0}ρ0´δ0 , }D

2

eE0}ρ0´δ0

)
.

(25)

Assume that ε0 is such that the following smallness conditions are satisfied for
real constants Cη0, CE0, Cd0, Cσ0, Cσ, CW0, CW and CR (see Appendix §A):

Cη0 ν
´1δ´τ

0
ε0 ă ζ , (26)

23τ`4CE0 ν
´2 δ´2τ

0 ε0 ď 1 , (27)

4Cd0ν
´1δ´τ

0
ε0 ă ζ , (28)

4Cσ0ε0 ă ζ , (29)

}N0}ρ0 p2}DK0}ρ0 ` DKq DK ă 1 , (30)

4Qze0Cσ0ε0 ă Qz , (31)
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4QeeCσ0ε0 ă Qe , (32)

Cσ DK ď Cσ0 , (33)

DKpCW0 ` }M0}ρ0CW ` CWDKq ď Cd0 , (34)

DK

´
CW νδ´1`τ

0
` CR

¯
ď CE0 , (35)

where DK is given by

DK – 4Cd0 ν
´1δ´τ´1

0
ε0 . (36)

Then, there exists an exact solution pK˚, e˚q of (21) satisfying

fe˚
˝ K˚ ´ K˚ ˝ Tω “ 0 .

The following inequalities show that the quantities pK˚, e˚q are close to pK0, e0q:

}K˚ ´ K0}ρ0´δ0 ď 4Cd0ν
´1δ´τ

0
}E0}ρ0 ,

|e˚ ´ e0| ď 4Cσ0}E0}ρ0 ,
(37)

where Cd0 and Cσ0 are given explicitly in Appendix §A.

For simplicity of exposition, we report the explicit expressions of the constants entering
Theorem 4.6 in Appendix §A. They are obtained making a constructive version of the
KAM proof given in [CCdlL13]. We refer to [CCdlL20] for the proof of Theorem 4.6.

§4.5. A sketch of the proof of Theorem 4.6. We present a sketch of the proof of
Theorem 4.6 that we split into five main steps, all of them giving explicit estimates of
the quantities involved. Although we do not enter into the details of the proof, which
is quite long and technical (see [CCdlL20]), we provide an overview of the proof which
motivates the assumptions H1-H5 as well as the smallness conditions (26)-(35).

§4.5.1. Step 1: the approximate solution. We denote by pK, eq an embedding function
and a drift term satisfying approximately the invariance equation with an error term E:

fe ˝ Kpθq ´ Kpθ ` ωq “ Epθq . (38)

All one-dimensional tori are Lagrangian invariant tori, namely they satisfy K˚Ω “ 0,
which in coordinates is given by

DKT pθq J ˝ Kpθq DKpθq “ 0 .

This expression implies that the tangent space can be decomposed as the sum of the
range of DKpθq and the range of V pθq, where V is given by

V pθq “ J´1 ˝ Kpθq DKpθqNpθq

with Npθq “ pDKpθqJDKpθqq´1.
Next, we define the quantity M as a juxtaposition of DK and V , i.e.,

Mpθq “ rDKpθq | V pθqs . (39)
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Then, it can be shown that, up to a remainder R, the action of the derivative of the
map over M is just a shift of M multiplied by a matrix. Precisely, one can prove that
([CCdlL20]):

Dfe ˝ Kpθq Mpθq “ Mpθ ` ωq

ˆ
Id Spθq
0 λId

˙
` Rpθq . (40)

This result will be used in Step 2 to reduce (38) to a constant coefficient equation, that
will be solved under assumptions H1 and H3.

§4.5.2. Step 2: a new approximation. Starting from the initial approximation pK, eq, we
introduce a new approximation pK 1, e1q defined adding to pK, eq some corrections pW,σq
as K 1 “ K ` MW and e1 “ e ` σ. We denote by E 1 the error function associated to
pK 1, e1q, satisfying the equation:

fe1 ˝ K 1pθq ´ K 1pθ ` ωq “ E 1pθq . (41)

Next, we proceed to expand (41) in Taylor series, which gives:

fe ˝ Kpθq ` Dfe ˝ Kpθq MpθqW pθq ` Defe ˝ Kpθqσ

´Kpθ ` ωq ´ Mpθ ` ωq W pθ ` ωq ` h.o.t. “ E 1pθq .

Using (38), we can guarantee that E 1 is quadratically smaller provided that the following
relation is satisfied:

Dfe ˝ Kpθq MpθqW pθq ´ Mpθ ` ωq W pθ ` ωq ` Defe ˝ Kpθqσ “ ´Epθq . (42)

We remark that condition (26) provides an estimate of the error E 1 associated to pK 1, e1q.
Using (42) and (40), we obtain that

Dfe ˝ Kpθq Mpθq “ Mpθ ` ωq

ˆ
Id Spθq
0 λId

˙
` Rpθq ,

which provides the following equations for W and e:

Mpθ ` ωq

ˆ
Id Spθq
0 λId

˙
W pθq ´ Mpθ ` ωq W pθ ` ωq “ ´Epθq ´ Defe ˝ Kpθqσ . (43)

Next, we multiply by Mpθ ` ωq´1 and write (43) for the components W1, W2, Ẽ1, Ẽ2,
Ã1, Ã2, of W , Ẽ, and Ã as

ˆ
Id Spθq
0 λId

˙ˆ
W1pθq
W2pθq

˙
´

ˆ
W1pθ ` ωq
W2pθ ` ωq

˙
“

ˆ
´Ẽ1pθq ´ Ã1pθqσ

´Ẽ2pθq ´ Ã2pθqσ

˙
, (44)

where we define

Ẽjpθq “ ´pMpθ ` ωq´1Eqj

Ãjpθq “ pMpθ ` ωq´1Defe ˝ Kqj ,

for j “ 1, 2. We now make explicit (44) for the components W1, W2 and σ, so to obtain
the following cohomological equations:

W1pθq ´ W1pθ ` ωq “ ´ rE1pθq ´ SpθqW2pθq ´ rA1pθq σ

λW2pθq ´ W2pθ ` ωq “ ´ rE2pθq ´ rA2pθq σ .
(45)
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§4.5.3. Step 3: Determination of the new approximate solution. The solution of equations
(45) allow us to determine the unknowns W1, W2 and σ that give the corrections to
determine the new approximate solution.
To solve the first equation of (45), we use assumption H1 on the Diophantine property

of the frequency and assumption H3, expressing the non-degeneracy that allows us to
solve the linear system (46) below. The second equation of (45) can instead be solved by
an elementary contraction mapping argument for any |λ| ‰ 1 and for all real frequencies.

Let us write W2 asW2 “ xW2y `B0 ` B̃0σ. Taking the average of both equations (45),
we obtain the equations

ˆ
xSy xSB0y ` x rA1y

pλ ´ 1qId x rA2y

˙ˆ
xW2y
σ

˙
“

˜
´xSB̃0y ´ x rE1y

´xĂE2y

¸
, (46)

which can be solved to give xW2y and σ under the non-degeneracy condition H3.
Once the solution of (46) is obtained, we proceed to solve the second of (45) to de-

termine W2; such equation can be solved for any |λ| ‰ 1 by a contraction mapping
argument.
Then, we proceed to solve the first equation of (45) for W1: since it involves small

divisors, we can solve the equation under the Diophantine assumption H1. The quant-
ities }W1}ρ´δ and }W2}ρ´δ can be bounded by }E}ρ by using Cauchy estimates for the
cohomological equations (45).
The error E 1 associated to the new solution can be bounded on a domain of size ρ´ δ

by the square of the error E on the domain of size ρ as

}E 1}ρ´δ ď CEδ
´2τ}E}2ρ , CE ą 0 ,

showing that the new error of the procedure is quadratic in the original error. Assumption
H4 is needed to obtain such a bound.

§4.5.4. Step 4: iteration and convergence. We proceed to iterate the procedure presen-
ted in Step 3 to obtain a sequence of new solutions, say tKj , eju, and their associated
invarance equation error, say Ej. We prove that the errors tends to zero (in suitable
norms) as j Ñ 8 and thus the solution sequence converges to the true solution. The
proof consists in implementing an abstract implicit function theorem, alternating the it-
eration with carefully chosen smoothing operators for analytic functions. The smoothing
is obtained by rescaling domains where the functions are defined at each step. In par-
ticular, we can define as ρj the size of the analyticity domain associated to the solution
tKj, eju by introducing a shrinking parameter δj and setting

ρ0 “ ρ , δj “
ρ0

2j`2
, ρj`1 “ ρj ´ δj , j ě 0 .

Then, we can show that for a, b ą 0 and C 1
E ą 0, we have

}Ej`1}ρj`1
ď C 1

E νaδbj }Ej}
2

ρj
.

If the quantity ε0 ” }E0}ρ0 is sufficiently small, then we conclude that

}Kj ´ K0}ρj ď CKε0 , |ej ´ e0| ď Cµε0 (47)
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for some constants CK , Cµ ą 0. The inequalities (26)-(35) of Theorem 4.6 allow to obtain
(47) as well as to ensure that the procedure can be iterated and that it converges to the
true solution.

§4.5.5. Step 5: local uniqueness. Under smallness conditions, one can prove that, if there
exist two solutions pKa, eaq, pKb, ebq, then there exists ψ P R such that

Kbpθq “ Kapθ ` ψq and ea “ eb .

§4.6. The algorithm and the initial invariant curve. Theorem 4.6 provides an ex-
plicit algorithm working as follows: for a fixed frequency ω and from an approximate
solution pK0, e0q satisfying the invariance equation with error term E0, one can construct
a new approximation pK1, e1q satisfying the invariance equation with a new error term
E1 which is quadratically smaller than E0, just taking derivatives and performing algeb-
raic operations. The new approximation is obtained by solving suitable cohomological
equations, under the non-degeneracy condition H3. The algorithm is presented in detail
in [CCGdlL20b] for the spin-orbit problem and it is recalled in Appendix §B.

In the following, we will consider two frequencies defined as

ω1 – γ`
g (48)

and

ω2 – 1 `
1

2 ` γ´
g

, (49)

where γ˘
g –

?
5˘1

2
. Both frequencies are Diophantine, in the sense of Definition 4.2, with

constant ν “ p3´
?
5

2
q´1 and exponent τ “ 1.

The application of Theorem 4.6 consists in the steps given below.

(i) We fix the Diophantine frequency as one of the choices in (48) or (49).

(ii) We provide the initial values K0 and e0, selecting the eccentricity and the initial
condition as follows. First, we select the eccentricity by choosing the value that
corresponds to the fixed frequency. This is achieved by integrating equation (2)
with an initial guess of e0 and initial conditions xp0q “ 0 and we fix yp0q “
N̄pe0q{L̄pe0q, which is the value that we obtain when the dissipation disappears
in the averaged model (3). After a transient time t (so that the system evolves
on the attractor), we compute the frequency over Nit additional iterations as

ω “ 1

Nit

řNit

j“1
ypt`2πjq. Once the approximated initial eccentricity for the desired

frequency has been obtained, we iterate the Poincaré map (after another suitable
transient) and we obtain the initial approximation of the invariant curve by fitting
the discrete points.

(iii) We iterate Algorithm B.1 to obtain a more accurate approximation pKa, eaq sat-
isfying the invariance equation with an error whose norm is sufficiently small.



16 R. CALLEJA, A. CELLETTI, J. GIMENO, AND R. DE LA LLAVE

(iv) We compute the norms of the quantities appearing in Theorem 4.6 and detailed
in Appendix §D for ω1 and Appendix §E for ω2.

(v) We check the conditions (26)-(35) in Theorem 4.6. If they are satisfied, we con-
clude the procedure, otherwise we change some of the parameters (e.g., ρ and δ)
and we try to optimize the final result.

Further details of the steps (ii) and (iii) can be found in [CCGdlL20b], which contains
also the computation of the variational equations with respect to the initial conditions
and the parameter e in (2). The rotation number in (ii) can be computed more efficiently
(with smaller Nit) by [DSSY17]. The variational equations are needed in step 7 of the
Algorithm B.1 in Appendix §B as well as for some of the quantities in (iv).

§4.7. Continuation method. Algorithm B.1 can be used as a corrector for a continu-
ation method of the invariant torus and its drift. In the spin-orbit problem, we use the
eccentricity e as the adjustable parameter required by the quasi-Newton method and
the perturbative parameter ε in (2) as the continuation parameter. The continuation
consists in increasing ε by a stepsize, say εh, and run the Algorithm B.1 again with a
given Newton’s tolerance ǫ̃. Thus at each continuation step, it succeed, we obtain a new
embedding of the torus and a new corrected eccentricity.
If ε ` εh converges, we increase εh for the next continuation step. Otherwise, we do

not accept ε ` εh as a solution, we decrease εh, and we use Algorithm B.1 with the new
value of ε ` εh. In both cases we perform a Lagrange interpolation of the previous two
or three steps in order to provide a better initial guess of K and e for the next iteration.
In all the above process, a refinement of the grid in the coordinate θ may be required. In

our implementation, we consider necessary to increase the number of Fourier coefficients
when some of the following two cases arise.
The first one is when the accuracy tests, detailed in Section 5.3 of [CCGdlL20b], fail.

In short, the accuracy tests are aimed to control different sources of error, precisely:

(1) the error of the invariance equation on a table of values;

(2) the error in the numerical integration, for which we introduce absolute and relative
tolerances;

(3) the error in the grid over the coordinate θ, which is controlled by checking the
last coefficients of the truncated Fourier series as well as the Sobolev norm of the
tail;

(4) the interpolation error, which is controlled by providing an estimate of it and by
changing the size of the grid, when the error becomes too large.

The second situation is when the continuation step fails consecutively two times which
may require to decrease the stepsize εh, especially when we are getting close to the
breakdown. Thus, the continuation procedure will stop when the maximum number of
remeshing is reached, in our case 214 Fourier modes.
Figure 1 displays the results of the KAM torus (black curve) after a continuation

starting at ε “ 10´4 and a fixed dissipation η “ 10´3. The computation has been done
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with a multi-precision arithmetic with 170 bits, i.e. around 50 digits of accuracy, a
Newton’s tolerance of ǫ̃ “ 10´35, and a parallelization of the integration of the Poincaré
map as detailed in Section 5.5 of [CCGdlL20b].
We emphasize that we checked the final result by changing the number of digits of ac-

curacy; in other words, keeping the same Newton’s tolerance ǫ̃ and the same integration’s
tolerance, we have performed the last continuation step, checking that it is satisfied with
50, 55, and 60 digits of accuracy.
The values of the Fourier modes nθ, the dissipation η, the eccentricity e, and the

perturbing parameter ε are reported below for the Diophantine frequencies ω1 in (48)
and ω2 in (49).
For ω1, the last successful Newton continuation step was reached in less than 3 min using
32 CPUs with final values:

nθ “ 16384 ,

η “ 10´3 ,

e “ 0.31675286891174832107186084513865661761571784973618 ,

ε “ 0.011632963641877116367716112642948530559675531382297 .

(50)

For ω2 we got the last successful torus in less than 5 min using 35 CPUs and with values:

nθ “ 4096 ,

η “ 10´3 ,

e “ 0.24824740823563165902227100091869770425731996450084 ,

ε “ 0.012697630024415883032123830013667613509009950826168 .

(51)

Figure 1 provides also the basins of the rotation numbers, namely the frequency given
through a color scale for different initial conditions px0, y0q. In particular, we take a
grid of 500 ˆ 500 initial conditions within the window r0, 2πq ˆ r1, 2s and we compute
the frequency as described in step (ii) of Section §4.6. We remark that the computation
of the frequency has been optimized using the method described in [DSSY17] which is
implemented and detailed for the spin-orbit case in the companion paper [CCGdlL20a].

§5. Estimates on the Q quantities of the KAM theorem 4.6

The main difference in the explicit derivation of the KAM estimates presented in
[CCdlL20] between the standard map and the spin-orbit problem is the computation of
the Q constants defined in (25) of Theorem 4.6. Almost all of them are zero for the
standard map, while for the spin-orbit problem we need to compute them as detailed in
Sections §5.1 and §5.2 below.
It is also important to describe carefully the boundary of the domain C and, in partic-

ular, the value ζ in H4 which is needed for the inequalities (26)–(35).

§5.1. The computation of QE0. We need to give a bound of the quantity

QE0
–

1

2
max

 
}D2E0}ρ0´δ0 , }DeDE0}ρ0´δ0 , }D

2

eE0}ρ0´δ0

(
, (52)
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Figure 1. Basins of rotation number given by color-scale for the para-
meters in (51) (left) and (50) (right) joined with the of Algorithm B.1 that
show the invariant attractor (in black) after a continuation of ε starting
with ε “ 10´4 and e “ 0.3150628 (left) and e “ 0.2502068 (right).

where E0 is defined in terms of the numerical approximated solution pK0, e0q of The-
orem 4.6. In the case of the spin-orbit problem, E0 is given by

Epθq – pΨ´1

e0
˝Ge0q1pΨe0 ˝ K0pθqq ´ K1

0 pθ ` ωq ,

E1

0
pθq – Epθq ´ tEpθq ` 0.5u , (53)

E2

0
pθq – pΨ´1

e0
˝Ge0q2pΨe0 ˝ K0pθqq ´ K2

0
pθ ` ωq , (54)

where t ¨ u denotes the floor function, e0 is the eccentricity value, Ge0 “ Ψe0 ˝ Pe0 ˝ Ψ´1
e0

with Pe0 being the 2π-time flow of (2) and Ψe0 given in (6). The superscripts 1 and 2

mean the components of the vectors in R
2. Note that the floor function in (53) is needed

since xptq in (2) is given modulus 2π, that due to Ψe0, in fact, it is modulus 1. Therefore
E1

0
gives values in r´1{2, 1{2s.

To compute D2E0 we can either differentiate the Fourier series with respect to θ or to
use jet transport, which, roughly speaking, means to overload the numerical integrator
with a multivariate polynomial manipulator. We are going to use the jet transport
because we also need to get the variation with respect to the eccentricity, i.e., DeDE0

and DeE0. In order to get the quantities automatically, we use jets2 of 2 symbols, say
ps1, s2q, and up to degree 2, see Appendix §F. Indeed, for each θ in a mesh of T, we
compute the flow given by

Ψ´1

e0`s2
˝ Ge0`s2 ˝ Ψe0`s2pK0pθ ` s1qq , (55)

2We follow the convention that a jet is encoded by the Taylor’s coefficients at 0.
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where

K0pθ ` s1q “ K0pθq ` BθK0pθqs1 ` 1

2
B2

θK0pθqs2
1
.

Remark 5.1. Jet transport will provide the normalized derivative of (55), so the 1{2 in
(52) is automatically included in the coefficients of degree 2 of (55). Notice that here, we
can use the ad hoc polynomial manipulator described in Appendix §F.

Remark 5.2. The term t ¨`0.5 u in (53) refers to the round function, namely the function
that returns the nearest integer, but round halfway cases away from zero, regardless of
the current rounding direction, and instead of the nearest integer in the rint function.
Note that round has zero derivative except in p1

2
Zqzt0u, where the derivative is not

well-defined. However, we will consider (numerically) derivative zero also in these dis-
continuity points.

Remark 5.3. About the 2nd derivatives for the term K0pθ`ωq, the ones with respect to
e are zero and the computation of B2

θK0pθ ` ωq is straightforward in the Fourier repres-
entation.

Remark 5.4. The computation of (55) is fully parallelizable for each of the different
values of θ, which gives us a clear speed-up in the performance. Specially when the
quantity is computed near to the breakdown parameter value that, generically, requires
more Fourier modes.

§5.2. The computation of the complex Q’s in Theorem 4.6. The quantities in the
hypothesis H5 of Theorem 4.6 require to perform the integration of complex numbers,
since the initial conditions are in the complex domain C, in fact, in its boundary. The
complexification of the spin-orbit model leads to the complex spin-orbit problem, see
Section §5.2.1, which is given as a real 4-dimensional ODE system. This system describes
the evolution in time of the real and imaginary parts of each of the variables in (2).
To address some of the freedoms in Theorem 4.6, we devote our attention in Sec-

tion §5.2.2 to provide a definition of a possible domain C such that we can fulfill the
hypothesis H4. The strategy will be to move this original freedom on C to two new
parameters, ξ and α, which are going to be easier to handle.
Finally, we detail in Section §5.3 the different steps to approximate the Q quantities

of H5.

§5.2.1. Complex spin-orbit problem. The Q quantities in (25) are considered over the
complex domain C of Theorem 4.6. This implies the need of the complexification of the
spin-orbit problem (2), which leads to a new system called the complex spin-orbit problem
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given by the real ODE system

d

dt
xRptq “ yRptq ,

d

dt
xIptq “ yIptq ,

d

dt
yRptq “ ´ε

´ a

rptq

¯3

sin
`
2xRptq ´ 2fptq

˘
coshp2xIptqq ´ η

´ a

rptq

¯5`
yRptq ´

d

dt
fptq

˘
,

d

dt
yIptq “ ´ε

´ a

rptq

¯3

cos
`
2xRptq ´ 2fptq

˘
sinhp2xIptqq ´ η

´ a

rptq

¯5

yIptq ,

(56)

where (56) has been deduced by taking the complex numbers x “ xR`iyI and y “ xR`iyI
in (2). To obtain the above equations, we use the relation

sinpαR ` iαIq “ sinαR coshαI ` i cosαR sinhαI .

Similarly to the real spin-orbit problem, see [CCGdlL20b], we consider the temporal
change of coordinates t “ u´ e sin u to make u the independent variable, i.e.,

xRpu ´ e sin uq — βRpuq , yRpu ´ e sin uq — γRpuq{p1 ´ e cosuq ,

xIpu ´ e sin uq — βIpuq , yIpu ´ e sin uq — γIpuq{p1 ´ e cosuq .
(57)

Thus, if pGe is the 2π-time flow of the complex spin-orbit problem with the coordin-
ates pβR, βI, γR, γIq, then we can recover the normalized 2π-time flow pPe of (56) by the
conjugacy given by

pΨe – 2π

¨
˚̊
˝

1 0 0 0
0 1 0 0
0 0 1 ´ e 0
0 0 0 1 ´ e

˛
‹‹‚ .

Explicitly, we obtain:
pPe – pΨ´1

e ˝ pGe ˝ pΨe . (58)

Therefore to get the different high variational flows involved in the Q quantities of H5,
we can use the jet transport technique, see [CCGdlL20b], with jets of 5 symbols and up
to order 3.

§5.2.2. Definition of the boundary of the complex domain C. The Q quantities of the
hypothesis H5 depend on the boundary BC, because the ODE (2) as well as (56) are
analytic. The only restriction on this set BC is given in H4 which relates the distance of
the set

K0pTρ0q –

"ˆ
θ ` iσ

0

˙
` K0pθ ` iσq : θ P T and |σ| ď ρ0

*

with K0 denoting the periodic part of the mapping K0 which is continuously extented
to the boundary of the set Tρ0 defined in (12).
Recall that the distance between sets is defined by

distpK0pTρ0q, BCq – inftdpx, yq : x P K0pTρ0q and y P BCu .
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Hence, we consider C given in terms of a real region Ξ in the plane and a real value
α ą 0, as

C – tpz1, z2q P C{Z ˆ C : Repz1, z2q P Ξ, | Im z1| ď α, | Im z2| ď αu .

The region Ξ is bounded and we assume to be of the form

Ξ – tpθ, σq P T ˆ R : ψ´pθq ď σ ď ψ`pθqu

for some real curves ψ´ and ψ` such that

ψ´ ˝K1

0
pθq ď K2

0
pθq ď ψ` ˝ K1

0
pθq for all θ P T .

For instance, fixed ξ ą 0, one can try to find ψ˘ solving

ψ˘ ˝ K1

0
pθq “ K2

0
pθq ˘ ξ for all θ P T .

Then, K0pθq P Ξ for all θ in T. Heuristically, K1
0
pθq “ θ ` K

1

0
pθq « θ, if K

1

0
is small and

the composition by K1
0 may be neglected. In fact, if we allow constant values for ψ˘, we

can just consider

ψ´ – min
θPT

K2

0pθq ´ ξ , ψ` – max
θPT

K2

0 pθq ` ξ (59)

with a suitable value of ξ.
Let us assume that (depending on α and ψ˘)

BC – A˘ Y B˘ Y C˘ , (60)

where

A˘ – tpθ ` ix, ψ˘pθq ` iyq : θ P T, |x| ď α, |y| ď αu ,

B˘ – tpθ ˘ iα, v ` iwq : θ P T, ψ´pθq ď v ď ψ`pθq, |w| ď αu ,

C˘ – tpθ ` iσ, v ˘ iαq : θ P T, ψ´pθq ď v ď ψ`pθq, |σ| ď αu .

We have different cases to get a lower bound on distpK0pTρ0q, BCq. Let us consider generic
points

x “
`
θ ` iσ ` K

1

0
pθ ` iσq , K

2

0
pθ ` iσq

˘
P K0pTρ0q ,

a˘
1

“ pθ1 ` ix1, ψ˘pθ1q ` iy1q P A˘ ,

b˘
1 “ pθ1 ˘ iα, v1 ` iw1q P B˘ ,

c˘
1

“ pθ1 ` iσ1, v1 ˘ iαq P C˘ .
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If we use ψ˘ constants, as those defined in (59), then we need to compute the Υi quantities
given by

|x ´ a`
1

| ě inf
θ`iσPTρ0

|ReK2

0
pθ ` iσq ´ ψ`| — Υ1 ,

|x ´ a´
1

| ě inf
θ`iσPTρ0

|ReK2

0
pθ ` iσq ´ ψ´| — Υ2 ,

|x´ b`
1 | ě inf

θ`iσPTρ0

| ImK1

0 pθ ` iσq ´ α| — Υ3 ,

|x´ b´
1 | ě inf

θ`iσPTρ0

| ImK1

0 pθ ` iσq ` α| — Υ4 ,

|x ´ c`
1

| ě inf
θ`iσPTρ0

| ImK2

0
pθ ` iσq ´ α| — Υ5 ,

|x ´ c´
1

| ě inf
θ`iσPTρ0

| ImK2

0
pθ ` iσq ` α| — Υ6 .

(61)

Thus, if we take Υ – mintΥ1,Υ2,Υ3,Υ4,Υ5,Υ6u, then

distpK0pTρ0q, BCq ě Υ . (62)

Therefore, we can choose ζ so that Υ ě ζ ą 0. Finally, we can set Λ – pe0 ´ ϕ, e0 ` ϕq
with ϕ ě maxtζ, 2κeε0u and κe given in H5.
Note that the computation of Υi in (61) does not need to be rigorous, because we can

take ζ further smaller than the approximated Υ.
A second remark in the computation of Υi is that we can use the complex version of

the FFT to make the computation faster. Indeed, using Appendix §C, we complexify
the real representation of the Fourier coefficients of K0 and then use the FFT to get the
corresponding table of values in an equispaced complex plane Tρ0 . This process makes the
computation of an approximated Υ efficient, easily running in a today’s laptop without
a strong need of concurrency.

§5.3. Steps to approximate the Q quantities. Once we obtain the initial numerical
approximate solution pK0, e0q of the invariance equation (21) via the Newton Algorithm
B.1, we choose 0 ă ρ0 ă 1 to compute the different quantities involved in the KAM
estimates of the Theorem 4.6. That means to compute the quantities of H5 and the
constants in Appendix §A. The constants only depend on norms of functions from the
Algorithm B.1 like }DK0}ρ0, }DK´1

0 }ρ0 , }N}ρ0, }S}ρ0, etc. The Q quantities require more
effort and we will use the procedure described in Section §5.2.
The first Q quantity QE0

in Section §5.1 requires to choose 0 ă δ0 ă ρ0. For the other
Q quantities in Section §5.2 we need first to choose ξ to get ψ˘ from (59) and α for (60).
Then we compute the Υ such that (62) is satisfied. Finally, we can choose ζ which is the
last crucial value that fixes all the other quantities to check the inequalities (26)–(35).
We note that the complex quantities of Q, which in fact are the hardest ones, do not

need to be extremely rigorous because especially for those involving high order variational
flows, they are always affected by the multiplication of small values, like the ε0, as one
can realize looking at (26)–(35) and the Appendix §A. Therefore, our approach will just
consider the quantities in a mesh of the six sets in (60), rather than a rigorous enclosure.
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In fact, we also compensate the correctness of our numbers using multiprecision, that
was already needed to reach parameter values close to the numerical break-down.

§6. KAM estimates for the spin-orbit problem

The application of Theorem 4.6 requires to check the conditions (26)–(35) that depend
on the choice of some parameters. We did not found a general procedure to select ρ0, δ0, ξ,
α and ζ , so that we can ensure a priori that the inequalities will be fulfilled. Nevertheless,
we provide the values of these numbers for the cases ω1 and ω2 with respective spin-orbit
parameters given in (50) and (51).
In the two cases ω1 in (50) and ω2 in (51), by trial and error we have made the following

choice:

ρ0 “ 7.629394531250000 ¨ 10´6 “ 2´17 ,

δ0 “ 9.536743164062500 ¨ 10´7 “ 2´20 ,

ξ “ 0.0054 ,

α “ 0.000016 ,

ζ “ 9.3132257461547851562500 ¨ 10´10 “ 2´30 .

(63)

Note that ρ0, δ0, and ζ are just a power of 2, which means that they have an exact
numerical representation in a computer.
From the choice of values in (63), we compute ψ˘ and Υ in Section §5.2.2 using just

double precision:

ω1 ω2

ψ´ 2.468595425049463e ´ 01 2.093861593414215e ´ 01

ψ` 2.682454746721682e ´ 01 2.306499653402554e ´ 01

Υ 1.833012143471895e ´ 06 1.842114896678543e ´ 06

Then, the Q quantities can be computed following Section §5.3. In this computation,
we parallelize the different evaluations in a grid of 16 ˆ 16 ˆ 16 points with a final CPU
time of around 33h with 31 threads and 18h with 54 threads. As in the solution computed
in Section §4.7, we perform all the computations with 170 bits of precision. In particular,
we know that the error in the invariance equation, the ε0 in Theorem 4.6, is at most 10´45

because it is the requested tolerance in the Newton’s process. Moreover, once all the Q
quantities are computed, we perform the final checks of inequalities (26)–(35) using a
little bit more bits, say 250, to prevent possible overflows in the comparisons.

We conclude by saying that the conditions of the theorem are satisfied for the values
given in (50) for ω1 and (51) for ω2. The values of the quantities needed to prove
Theorem 4.6 for ω1 and ω2 are listed, respectively, in Appendix §D and §E. The values
of ε that we obtain are essentially coinciding with the numerical break-down values,
which are computed in [CCGdlL20a]. This result shows the efficacy of KAM theorem in
providing a constructive method to follow the invariant attractors up to break-down.
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Appendix §A. List of the constants of Theorem 4.6

The explicit expressions of the constants used in Theorem 4.6 are given below (see
[CCdlL20] for their derivation).

Cσ0 – T0

”
|λ ´ 1|

´ 1

||λ| ´ 1|
}S0}ρ0 ` 1

¯
` }S0}ρ0

ı
}M´1

0 }ρ0 ,

CW20 –
1

||λ| ´ 1|

´
1 ` Cσ0Qe

¯
}M´1

0
}ρ0 ,

CW20 – 2T0

´ 1

||λ| ´ 1|
}S0}ρ0 ` 1

¯
Qe }M´1

0
}2ρ0 ,

CW10 – C0

´
}S0}ρ0pCW20 ` CW20q ` }M´1

0
}ρ0 ` Qe}M

´1

0
}ρ0Cσ0

¯
,

CW0 – CW10 ` pCW20 ` CW20qνδτ
0
,

Cη0 – CW0}M0}ρ0 ` Cσ0νδ
τ
0 ,

CR0 – QE0p}M0}2ρ0C
2

W0
` C2

σ0ν
2δ2τ

0
q ,

CE0 – CW0νδ
´1`τ
0 ` CR0 ,

Cd0 – CW0 }M0}ρ0 ,

κe – 4Cσ0 ,

DK – 4Cd0 ν
´1δ´τ´1

0 ε0 ,

D2K – 4 Cd0ν
´1δ´τ´2

0 ε0 ,

CN – }N0}
2

ρ0

2}DK0}ρ0 ` DK

1 ´ }N0}ρ0DKp2}DK0}ρ0 ` DKq
,

CM – 1 ` Je

”
CNp}DK0}ρ0 ` DKq ` }N0}ρ0

ı
,

CMinv – CNp}DK0}ρ0 ` DKq ` }N0}ρ0 ` Je ,

CS – 2JeQz

!
p}N0}ρ0 ` CNDKq

”
DKp}N0}ρ0 ` CNDKq

` }DK0}ρ0}N0}ρ0 ` }DK0}ρ0CNDK

ı

` CN}DK0}ρ0

”
DKp}N0}ρ0 ` CNDKq ` }DK0}ρ0}N0}ρ0 ` }DK0}ρ0CNDK

ı

` }N0}ρ0}DK0}ρ0p}N0}ρ0 ` CNDKq ` CN}N0}ρ0}DK0}
2

ρ0

)
,

CSB –
1

||λ| ´ 1|
Qe}M

´1

0
}ρ0CS ` 2JeQz }N0}2ρ0 }DK0}

2

ρ0

1

||λ| ´ 1|
CMinv Qe

` 2CS

1

||λ| ´ 1|
CMinv Qe DK ,

Cτ – max
!
CS, CSB ` 2CMinvQe

)
DK ,
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CT –
T 2
0

1 ´ T0Cτ

max
!
CS, CSB ` 2CMinvQe

)
,

Cσ – CT

!
|λ ´ 1|

” 1

||λ| ´ 1|
p}S0}ρ0 ` CSDKq ` 1

ı

`
´

}S0}ρ0 ` CSDK

¯) ´
}M´1

0 }ρ0 ` CMinvDK

¯

` T0

!
|λ ´ 1|

” 1

||λ| ´ 1|
p}S0}ρ0 ` CSDKq ` 1

ı
CMinv

` |λ ´ 1|
1

||λ| ´ 1|
}M´1

0 }ρ0CS ` CS

´
}M´1

0 }ρ0 ` CMinvDK

¯
` CMinv}S0}ρ0

)
,

CW2
– 4CT

” 1

||λ| ´ 1|
p}S0}ρ0 ` CSDKq ` 1

ı
Qep}M´1

0
}ρ0 ` DKq2

` 4T0Qe

1

||λ| ´ 1|
CS p}M´1

0
}ρ0 ` DKq2

` 4T0 Qe

” 1

||λ| ´ 1|
p}S0}ρ0 ` CSDKq ` 1

ı
pDK ` 2}M´1

0
}ρ0q

CR – QE0

”
p2CM}M0}ρ0 ` C2

MDKqpCW0 ` CWDKq2 ` }M0}
2

ρ0
pC2

WDK ` 2CW0 CW q

` pC2

σDK ` 2Cσ0Cσqν2δ2τ
0

ı
` CQ

”
p}M0}ρ0 ` CMDKq2pCW0 ` CWDKq2

` pCσ0 ` CσDKq2ν2δ2τ
0

ı
δ´1

0
,

CW2
–

1

||λ| ´ 1|

”
1 ` 2Qe}M

´1

0 }ρ0Cσ ` 2QeCσ0 ` 2QeCσDK

ı
,

CW1
– C0

”
}S0}ρ0CW2

` CSCW20 ` CSCW2
DK ` }S0}ρ0CW2

` CSCW20 ` CSCW2
DK ` 1 ` 2Qe}M

´1

0 }ρ0Cσ ` 2QeCσ0 ` 2QeCσDK

ı
,

CW – CW1
` CW2

νδτ0 ` CW2
νδτ0

CQ –
1

2
max

!
1 ` sup

zPC
|D3fe0pzq| }DK0}

2

ρ0
δ2
0

` sup
zPC,ePΛ,|e´e0|ă2κeε0

|DeD
2fepzq| }DK0}

2

ρ0

Cσ0

Cd0

δτ`2

0

` sup
zPC

|D2fe0pzq| }DK0}ρ0 δ0

` sup
zPC

|D3fe0pzq| }DK0}ρ0 4Cd0ν
´1δ´τ`1

0 ε0

` sup
zPC,ePΛ,|e´e0|ă2κeε0

|DeD
2fepzq| }DK0}ρ0 4Cσ0δ0ε0

` sup
zPC

|D2fe0pzq| }D2K0}2ρ0 δ
2

0
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` sup
zPC,ePΛ,|e´e0|ă2κeε0

|DeDfepzq| }D2K0}ρ0
Cσ0

Cd0

νδτ`2

0

` sup
zPC

|D2fe0pzq| p}DK0}ρ0 ` DKq δ0

` sup
zPC

|D3fe0pzq| p}DK0}ρ0 ` DKq4Cd0 ν
´1δ´τ`1

0
ε0

` sup
zPC,ePΛ,|e´e0|ă2κeε0

|DeD
2fepzq| p}DK0}ρ0 ` DKq 4Cσ0δ0ε0

` sup
zPC

|Dfe0pzq| ` sup
zPC

|D2fe0pzq| p4Cd0ν
´1δ´τ

0
q ε0

` sup
zPC,ePΛ,|e´e0|ă2κeε0

|DeDfepzq| κeε0 ,

sup
zPC

|DDefe0pzq| δ0 ` sup
zPC

|D2Defe0pzq| δ20 p}DK0}ρ0 ` DKq

` sup
zPC,ePΛ,|e´e0|ă2κeε0

|DD2

efepzq|
Cσ0

Cd0

νδτ`2

0 p}DK0}ρ0 ` DKq,

sup
zPC,ePΛ,|e´e0|ă2κeε0

|D3

efepzq|
Cσ0

Cd0

νδτ`2

0

)
.

Appendix §B. Newton’s algorithm

In this Section, we provide Newton’s algorithm for finding an invariant attractor of the
spin-orbit problem; the algorithm is fully detailed in [CCGdlL20b].

Algorithm B.1 (Newton’s method for finding a torus in the spin-orbit problem).

‹ Inputs: A fixed frequency ω, the conformally symplectic map Pe given in (4)
for fixed values of the parameters ε and η. Initial values of the unknowns; the
eccentricity e and the embedding K : T Ñ T ˆ R.

‹ Output: New K and e satisfying the invariance equation (21) up to a given
tolerance.

‹ Notation: If A is a function defined in T, A –
ş
T
A and A0 – A´ A.

1. E Ð Pe ˝ K ´ K ˝ Tω denote the components E – pE1, E2q,
E1 Ð E1 ´ roundpE1q.

2. α Ð DK.

3. N Ð pαtαq´1.

4. M Ð
“
α J´1αN

‰
.

5. rE Ð pM´1 ˝ TωqE.

6. λ given in (11).
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7. P Ð αN ,
S Ð pP ˝ TωqtDPe ˝ KJ´1P ,
rA Ð M´1 ˝ TωDePe ˝ K denote the components rA – p rA1, rA2q.

8. pBaq0 solving λpBaq0 ´ pBaq0 ˝ Tω “ ´p rE2q
0,

pBbq
0 solving λpBbq

0 ´ pBbq
0 ˝ Tω “ ´p rA2q

0.

9. Find W 2, σ solving the linear system
˜

S SpBbq0 ` rA1

λ ´ 1 rA2

¸ˆ
W 2

σ

˙
“

˜
´ rE1 ´ SpBaq0

´ rE2

¸

10. pW2q0 Ð pBaq0 ` σpBbq
0.

11. W2 Ð pW2q
0 ` W 2.

12. pW1q0 solving pW1q
0 ´ pW1q

0 ˝ Tω “ ´pSW2q
0 ´ p rE1q

0 ´ p rA1q
0σ.

13. K Ð K ` MW ,
e Ð e ` σ.

14. Iterate from (1 ) until convergence in E with a prescribed tolerance ǫ̃.

Appendix §C. Complexification of a Fourier series

If x : T Ñ R is a periodic and smooth mapping of period 1, it admits an N -th order
truncated Fourier series with Fourier coefficients txkuN´1

k“0
Ă R:

xpθq “
x0

2
`
xN{2
2

cospπNθq `

N{2´1ÿ

k“1

x2k cosp2πkθq ` x2k`1 sinp2πkθq . (64)

For simplicity and easy notation we assume N to be an even positive integer in (64).
The complexification process of the map x consists in lifting the spaces T and R to the
complex numbers such that it coincides with x when it is restricted to the real values.
To make it simpler, it is convenient to extend the quantity of real numbers in (64) and

make explicit the symmetry in the complex version. In other words, (64) is equivalent to

xpθq “ x0 ` 2

N{2ÿ

k“1

px2k ´ ix2k`1qe2πkiθ ` px2k ` ix2k`1qe
´2πkiθ

with xN`1 “ 0. Now, if ρ ą 0, then

xpθ ` iρq “ x0 ` 2

N{2ÿ

k“1

px2k ´ ix2k`1qe2πkipθ`iρq ` px2k ` ix2k`1qe´2πkipθ`iρq,

which allows one to provide the Fourier coefficients tpx2k ˘ ix2k`1qe˘2πkρu making the
initial real Fourier expression to a complex one.
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Appendix §D. KAM quantities for the frequency ω1

We list below the quantities needed to implement Theorem 4.6 to get the existence of
an invariant attractor with frequency ω1.

N = 16384 ,

ε = 1.1632963641877116367716112642948530559675531382297e ´ 02 ,

η = 10´3 ,

e = 3.1675286891174832107186084513865661761571784973618e ´ 01 ,

ρ0 = 2´17 ,

δ0 = 2´20 ,

}DK}ρ0 = 6.2076969839032564048438325650777912419214845002300e ` 00 ,

}DK´1}ρ0 = 1.8328129957258449874460075408233923038434712690096e ` 05 ,

}D2K}ρ0 = 1.1686089945113448858821651745887573374665126081719e ` 02 ,

QE0
= 1.9132315264792576102165122788680383078808432879626e ` 00 ,

}N}ρ0 = 9.8051171808495981670035137469708799108365949325248e ` 00 ,

}N´1}ρ0 = 1.0113946410899826227827056006594783412357401114959e ` 01 ,

}S}ρ0 = 5.7223321830936249091412643788103653938262105245420e ` 01 ,

}E0}ρ0 = 5.7356559781857403764979281930553140398186337716656e ´ 48 ,

λ = 9.8689359923042965027116069623508749107899367134535e ´ 01 ,

}M}ρ0 = 1.2040958250027560141817737598227413458417075907998e ` 01 ,

}M´1}ρ0 = }M}ρ0 ,

T0 = 9.9819949009440259228900924748534932771289016437641e ` 01 ,

8Cσ}E0}ρ0 = 6.3125418322117269519458608993574236031175483317508e ´ 42 ,

ζ = 2´30 ,

Qz = 6.6101300016209423195423975547239258176432851802452e ` 00 ,

Qe = 1.4175899711779293156363275537004756604799008098606e ´ 01 ,

Qzz = 2.7720843711101391648970926156205952547296169675164e ` 01 ,

Qez = 1.8953747809385677544688739634954194030662439685438e ` 00 ,

Qzzz = 1.0724765398115262597036815561828324853342846787822e ` 03 ,

Qezz = 3.5749217993717541990122718539427749511142822626074e ` 02 ,

Qze = 1.8953747809385677544688739634954194030663082259039e ` 00 ,

Qee = 5.0662817916743259572206058032898398336985496305233e ´ 01 ,

Qzze = 3.5749217993717541990122718539427749511143316805187e ` 02 ,

Qeez = 6.5647293504204776520816015502477982907961893178051e ` 01 ,
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Qeee = 1.1476657592536890159871266106814665145940757444159e ` 00 .

Appendix §E. KAM quantities for the frequency ω2

We list below the quantities needed to implement Theorem 4.6 to get the existence of
an invariant attractor with frequency ω2.

N = 4096 ,

ε = 1.2697630024415883032123830013667613509009950826168e ´ 02 ,

η = 10´3 ,

e = 2.4824740823563165902227100091869770425731996450084e ´ 01 ,

ρ0 = 2´17 ,

δ0 = 2´20 ,

}DK}ρ0 = 6.2401368092989368560939911390480948796213323884872e ` 00 ,

}DK´1}ρ0 = 9.7663343052106062599854114524341354648300957997991e ` 04 ,

}D2K}ρ0 = 1.2599262190633202679574003877751236478676849823924e ` 02 ,

QE0
= 3.7283183855924988259949473978598408908275342300333e ` 00 ,

}N}ρ0 = 9.7219870102188805011710709653101075119387149314734e ` 00 ,

}N´1}ρ0 = 1.0224486155736666017813494196253391421224297676866e ` 01 ,

}S}ρ0 = 5.6566290718009094885071045850417592994899924965064e ` 01 ,

}E0}ρ0 = 4.5110963829895625372478056855241916107240582063354e ´ 45 ,

λ = 9.9012510148807761346816298772561891586174978261238e ´ 01 ,

}M}ρ0 = 1.2040013601997889491301308242283364695245420720597e ` 01 ,

}M´1}ρ0 = }M}ρ0 ,

T0 = 6.0557474279802520066531787357919583737990862560932e ` 01 ,

8Cσ}E0}ρ0 = 2.9770931760274406778788288754482772991065644242739e ´ 39 ,

ζ = 2´30 ,

Qz = 6.5592165251990406445369341061622617126571276578225e ` 00 ,

Qe = 1.5083817512231203986293089732663386692582367665897e ´ 01 ,

Qzz = 2.7092396727127668081914126144670011929964472351248e ` 01 ,

Qez = 2.7606921497436169824355915345916507538567998407721e ` 00 ,

Qzzz = 1.0002777586041620153665189720104193672993532271333e ` 03 ,

Qezz = 3.3342591953472067178883965733680645576645107571111e ` 02 ,

Qze = 2.7606921497436169824355915345916507538735860805555e ` 00 ,

Qee = 2.8395238802380805094507234385691115589067408070788e ´ 01 ,

Qzze = 3.3342591953472067178883965733680645576942037378572e ` 02 ,
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Qeez = 7.2062924226872994236028388252435296803169026567968e ` 01 ,

Qeee = 5.7795906592094838240953693819846769451926848120880e ´ 01 .

Appendix §F. Multivariate polynomials of degree 2

Let us consider a polynomial with d variables and degree 2, namely

ppxq “ p0 `
ÿ

|k|“1

pkx
k `

ÿ

|k|“2

pkx
k, k P N

d, x “ px0, . . . , xd´1q (65)

with the multi-index conventions |k| “ k0 ` ¨ ¨ ¨ ` kd´1 and

xk “ xk00 x
k1
1 ¨ ¨ ¨x

kd´1

d´1
. (66)

Note that in the case of degree 2, the multi-index k can be encoded with the canonical
vector el “ p0, . . . , 1, . . . , 0q with 0 ď l ă d in Rd. That is, either ei for |k| “ 1 or ei ` ej
with i ě j for |k| “ 2.
Let us now define χpiq “ #tk P Ni : |k| “ 2u, which is computable by the recurrence

χp0q “ 0,

χpiq “ χpi´ 1q ` i, i ě 1.
(67)

Thus the number of elements to store in a computer for (65) is χpdq ` d ` 1.
The crucial operation for an arithmetic of elements like (65) is the product, in which

the key step is the product of the two homogenous polynomials of degree 1, since the
other terms are just multiplications by the independent term of each of the polynomials
involved. To this end, we must fix a monomial order to encode the physical index of each
of the monomials of degree 2. Among all of them, we consider the reverse lexicographical
order, which is illustrated in Table 3 up to 5 variables.
Thus, the location in the array corresponding to k “ ei ` ej with i ě j is given by

χpiq ` j. We implement this procedure in the function ex2pl(i,j) given below.
On the other hand, to know the i and j for a given index l in the vector of coefficients,

one first performs a binary search to know k such that χpkq ď l ă χpk ` 1q, then i “ k

and j “ l ´ χpkq.
A possible pseudo code to compute the product pq of two homogeneous polynomials p

and q with d variables and of degree 1 can then be

int ex2pl(i,j): return chi(max(i,j)) + min(i,j)

void php1(d,p,q,flag,pq):

if (flag==0) for (i = 0; i < chi[d]; i++) pq[i]=0

for (i = 0; i < d; i++) for (j = 0; j < d; j++)

pq[ex2pl(i,j)]+= p[i] * q[j]

Once the product of multivariate polynomials of degree 2 is clear, the other elementary
operations such as division, power, trigonometric operations and hyperbolic trigonometric
operations can be derived in a recurrence manner, see [HCF`16]. For instance, the
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Monomial Multi-index Index

χp1q “ 1 x20 e0 ` e0 0

χp2q “ 3
x1x0 e1 ` e0 1

x2
1

e1 ` e1 2

χp3q “ 6

x2x0 e2 ` e0 3

x2x1 e2 ` e1 4

x2
2

e2 ` e2 5

χp4q “ 10

x3x0 e3 ` e0 6

x3x1 e3 ` e1 7

x3x2 e3 ` e2 8

x23 e3 ` e3 9

χp5q “ 15

x4x0 e4 ` e0 10

x4x1 e4 ` e1 11

x4x2 e4 ` e2 12

x4x3 e4 ` e3 13

x24 e4 ` e4 14

Table 3. Bijection encoding between the exponent xk with x “
px0, . . . , xd´1q, k “ ei ` ej , i ě j, where el “ p0, . . . , 1, . . . 0q and the
location on the array containing the terms pk of (65).

division of rpxq “ ppxq{qpxq has the following terms

r0 “
p0

q0
,

rk “
pk ´ r0qk

q0
, |k| “ 1 ,

rk “
1

q0

„
pk ´ r0qk ´

ˆÿ

|j|“1

qjx
j

˙ˆÿ

|j|“1

rjx
j

˙

loooooooooooooomoooooooooooooon
call to the php1 function


, |k| “ 2 .

(68)
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