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Abstract. We consider interacting Bose particles in an external local potential. It is shown that 

large class of external quasicrystal potentials cannot sustain any type of Bose-Einstein 

condensates. Accordingly, at spatial dimensions D ≤ 2 in such quasicrystal potentials a supersolid 

is not possible via Bose-Einstein condensates at finite temperatures. The latter also hold true for 

the two-dimensional Fibonacci tiling. However, supersolids do arise at D ≤ 2 via Bose-Einstein 

condensates from infinitely long-range, nonlocal interparticle potentials.  

 

1. Introduction 

In a recent paper [1], the question of the existence of a Bose-Einstein condensate (BEC) in a 

supersolid was investigated. It was shown that an external crystalline lattice potential could not by 

itself sustain a condensate and so a crystalline lattice potential cannot give rise to a supersolid via a 

BEC. In addition, it was found that for spatial dimensions D ≤ 2 self-crystallization occurs if the 

interparticle interaction between bosons is nonlocal and of infinitely long-range. In what following, 

we consider the same issues but now addressing quasicrystals, as well as, the 2-dimensional square 

Fibonacci tiling, which does not posses one of the “forbidden” n-fold rotational symmetries, n ≥ 5, 

that are characteristic of quasicrystals and incompatible with translational periodicity. 

2. Crystals  

The Hamiltonian for the interacting Bose gas is 

 
where Vext(r) is an arbitrary, external potential, V (r1; r2; r3; r4) is a general two-particle interaction 

potential, and  and  are bosonic field operators that destroy or create a particle at spatial 

position r, respectively. 

Macroscopic occupation in the single-particle state  result in the non-vanishing [2] of the 

quasi-average =< > and so the boson field operator 

 
where 
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with the condensate wavefunction 

 
and normalization 

 

where N0  is the number of atoms in the condensate, V(D) is the D-dimensional “volume,”  

are the creation (annihilation) operators with commutation relations , and 

= 0. The operator  has no Fourier components with momenta {k '} that are 

macroscopically occupied and so  =  0. The separation of  into two parts gives 

rise to the following (gauge invariance) symmetry breaking term [2] associated with the 

interparticle potential in the Hamiltonian (1) 

 

 
Recall that the interaction potential between bosons indicates that macroscopic occupation in a 

single-particle linear momentum state, viz., a spatially uniform condensate, does not give rise to 

additional macroscopic occupation in any other single-particle linear momentum states owing to the 

conservation of linear momentum by the interaction [1]. However, macroscopic occupation in two 

or more single-particle linear momentum states give rise to a denumerably infinite, macroscopically 

occupied states. For instance, macroscopic occupation in the single-particle momenta states k , 

k±q1, and k±q2, where q1 x q2 ≠ 0 , gives rise to additional macroscopic occupation in the single-

particle momenta states k  + n1q1 + n2q2, with n1 ,  n2  = 0, ±1, ±2, • • • owing to the symmetry 

breaking term .  

Accordingly, the condensate wave function gets augmented and is of the Block form given 

by 

 
 

with uk(r + r0) = uk(r), where 

 

 
 

 

3. Quasicrystals 
 

We now consider the replacement (2) in the term in (1) associated with the external, local 

potential Vex t(r).  One obtains the symmetry breaking Hamiltonian 
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Consider the local, finite two-dimensional quasicrystal lattice potential, 

 
 

where g(k) is the Fourier transform, a and b are arbitrary two-dimensional vectors in the x-

y plane with a × b ≠ 0, (αia + βib) × (αja+ βjb) ≠ 0, αi and βi are irrational 

numbers, and n ≥ 3. In (10), we have projected a periodic structure in n-dimensional space 

into a D-dimensional quasicrystal space (n > D). Cases n = 1, 2 reduce to a one- and two-

dimensional crystals, respectively. One obtains that  

 
where k ≡  k2 - k1, which follows with the aid of (3), (4), and (10). Recall that 

 
Note that k1  ≠  k2 , that is, k ≠  0 , since k2  is in the condensate and k1  is not in the condensate. 

Therefore,  vanishes for arbitrary BEC in the macroscopically large aperiodic lattice limit 

whichever order the limits are taken. Therefore, one cannot generate a two-dimensional supersolid 

via a BEC at temperatures T ≥  0 from an external aperiodic lattice potential. However, a two-

dimensional supersolid at finite temperatures can be generated via long- range, nonlocal potentials 

provided by the interparticle interaction which results in self-organization [1], much as Wigner 

crystallization or Wigner lattice, electrons moving in a uniform background of positive charge that 

restore electric neutrality [3]. 

The embedded spaces of D-dimensional quasiperiodic structures are abstract spaces whose 

dimensions are more than three. The dimensions of the embedded space are dependent on the 

symmetry of the quasicrystal (D  > 1) [4, 5]. For example, the quasicrystals with 5, 8-, 10-, and 12-

fold symmetry need to be embedded into four-dimensional space, n  = 4. While for the 

quasiperiodic structures with 7-, 9-, 18-fold symmetry, the dimension of the embedding spaces 

increases [4-6] to six, n  = 6. 

The Fibonacci tiling [7, 8] does not fall in the above class of lattice potentials given by (10). 

However,  the  Fourier  transform  of  the  Fibonacci  sequence  has  δ-function  peaks  at                 

k = 2π (m + m'τ)/ , where τ = (1 + )/2 is the golden mean and m  and m'  are integers [9]. 

Expressed in terms of Fourier transforms (9) becomes 

 

 
where 

 

 
Consider the case where Ṽe x t(k' -  k) is given by a sum of Dirac δ -functions, which is the case for 

the Fibonacci tiling [9]. Now the vector k ՛ - k  must lie either in the condensate or outside the 

condensate. In either case, vanishes for arbitrary BEC since the vector k  is not in the 

condensate while the vector k ՛ is in the condensate. 
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4. Quasicrystal condensate 

 

The necessity that a BEC has the Bloch form and represents a self-organized supersolid for     

D  ≤  2 requires that the interaction between the atoms be nonlocal and of infinitely long-range [10]. 

This proof also applies for the existence of an aperiodic condensate. For instance, macroscopic 

occupation in the single-particle momenta states 0 , q1, α1q1, q2, and α2q2, where α1  and α2  are 

irrational numbers and q1 x q2 ≠ 0 , gives rise to additional macroscopic occupation in the single-

particle momenta states (m1 + α1m2)q1 + (n1 + α2n2)q2, with m1 ,  m2 ,  n1 ,  n2  = 0, ±1, ±2, • • • owing 

to the symmetry breaking term  and the linear momentum conservation of the interparticle 

potential. 

Accordingly, the condensate wave function gets augmented and is given by 

 

 
 

where q1 and q2 are crystallographic directions. 
 

5. Summary and Discussion  
 

We have established that supersolids in D ≤ 2 cannot be generated via Bose-Einstein condensates 

in a wide class of quasicrystal potentials that includes the Fibonacci tiling. However, supersolids do 

arise via Bose-Einstein condensates from infinitely long-range, nonlocal interparticle potentials.  
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