
Particle Convolution for High Energy Physics

Chase Shimmin
Department of Physics

Yale University
New Haven, CT 06511

chase.shimmin@yale.edu

November 4, 2021

Abstract

We introduce the Particle Convolution Network
(PCN), a new type of equivariant neural network layer
suitable for many tasks in jet physics. The particle
convolution layer can be viewed as an extension of
Deep Sets and Energy Flow network architectures, in
which the permutation-invariant operator is promoted
to a group convolution. While the PCN can be imple-
mented for various kinds of symmetries, we consider
the specific case of rotation about the jet axis the
η − φ plane. In two standard benchmark tasks, q/g
tagging and top tagging, we show that the rotational
PCN (rPCN) achieves performance comparable to
graph networks such as ParticleNet. Moreover, we
show that it is possible to implement an IRC-safe
rPCN, which significantly outperforms existing IRC-
safe tagging methods on both tasks. We speculate
that by generalizing the PCN to include additional
convolutional symmetries relevant to jet physics, it
may outperform the current state-of-the-art set by
graph networks, while offering a new degree of control
over physically-motivated inductive biases.

1 Introduction

A common problem in high energy physics is the de-
sire to use state-of-the art machine learning methods
to solve real-world problems encountered in physics
experiments. Often, the leading edge of machine learn-
ing is driven by a standard suite of problems which are
motivated by the practical interests of tech industries.
For example, convolutional neural networks (CNNs)
for image processing and Recurrent Neural Networks
(RNNs) for natural language processing are some of
the most well-studied and developed areas in deep
learning. In an effort to reap the benefits of these ad-
vances, physicists have been systematically studying
the efficacy of these existing methods when applied

to typical problems in our field such triggering, event
reconstruction, and object tagging.[1, 2, 3, 4, 5, 6, 7, 8]

However, the structure and underlying processes of
the data for which these architectures were developed
are often fundamentally different from those present
in physics experiments. In order to bridge this gap,
physicists have often resorted (with a few exceptions[9,
10, 11, 12]) to remedial measures by re-structuring
or re-formatting experimental data from its natural
representation to conform with the format required
by a specific existing model architecture.
We consider the problem of jet-tagging[13, 14, 15],

in which the goal is to discriminate between various
types of hadronic decays based on the detailed struc-
ture of energy and tracking measurements from the
detector. Hadronic jets are the most abundant prod-
ucts of proton collisions at the LHC and are formed
when energetic quarks or gluons fragment recursively
into lower-energy quarks and gluons until stable par-
ticles form, a process known as hadronization. These
particles are then observed by the particle detector.
Experimentally, jets are defined by a specific clus-
tering algorithm[16] which groups together energy
deposits localized within a certain angular scale set
by a chosen radius parameter. Jets can be initiated
directly from hard QCD processes as well as rare parti-
cle decays[17, 18, 19, 20]. The exceedingly large QCD
cross sections often lead to a scenario where the rate
of background jets overwhelms the signal of interest.
In this work, we will consider two common tasks:

quark/gluon (q/g) identification[21, 14, 22, 23, 24],
and top-quark tagging[25, 15, 13]. In q/g identifica-
tion, the goal is to determine whether a jet originated
from a final-state quark or gluon, which subsequently
fragmented into the pattern of radiation observed by
the detector. Top quarks decay before hadronization
can occur, and frequently result in three collinear
jets, which may overlap significantly in the detector
when produced at high momentum. The goal of top-

1

ar
X

iv
:2

10
7.

02
90

8v
1 

 [
he

p-
ph

] 
 5

 J
ul

 2
02

1



h = ∑
i

ϕ (Ei, qi, ⃗xi )

h = ∑
i

Ei ϕ ( ⃗xi )
= ⟨ϕ |E⟩

PFN

EFN

(Hilbert inner prod.)

IRC-safe

Quasi-

IRC-safe

Group Equivariant / Convolutional

Translation Equivariant / Convolutional

Discrete

Inputs

Generalizations

This Work

Re
st

ric
tio

ns

restrict 
   linear in Eϕ

restrict 
    on grid⃗xi

generalize 
proj. to conv.

generalize 
proj. to conv.

generalize 
energy to 

observable(s) Z

restrict 
    on grid, 

G = translation
⃗xi

factorize 
covariant and invariant 

observables

h = ∑
ij

ϕij Eij

= ⟨ϕT, E⟩F

???

(Frobenius inner prod.)

hkl = ∑
ij

ϕij E(i−k)( j−l)

= ϕ ⋆
2D

E

Jet 
Images

(Discrete 2D conv.)

hij = ∑
ij

ϕij Z(i−k)( j−l)

= ϕ ⋆
2D

Z

Jet 
Images 
(RGB)

= ⟨ϕ |Gt |E⟩
h(t) = ∫ d2 ⃗x ϕ ( ⃗x ) E (t−1 ⃗x )

(Continuous group conv.)
= ⟨ϕ |Gt |Z⟩

h(t) = ∫ d2 ⃗x ϕ ( ⃗x ) Z (t−1 ⃗x )
PCN

generalize 
energy to 

observable(s) Z

restrict 
    on grid, 

G = translation
⃗xi

PCN

Figure 1: Conceptual map indicating the relationship between ParticleFlow, EnergyFlow, and Jet Image
architectures. Particle Convolution (this work) can be seen as a generalization of jet images to continuous
space. It can also be seen as a generalization of the EnergyFlow network, where Hilbert space projection has
been promoted to (arbitrary) group convolution. Mathematical definitions are provided in section 3.

tagging is to determine whether or not a large-radius
jet pattern originated from a top quark.
In data, a jet is most naturally represented by

a variable-sized collection of four-vectors represent-
ing momentum as measured by calorimeter deposits
and/or charged particle trajectories. These vectors
may also be annotated with additional information,
such as charge or particle type. The precision with
which these constituents are measured depends on the
detector properties. For example, charged particle tra-
jectories yield very precise directional measurements
but do not include neutral particles, while calorimeter
deposits have coarser directional precision but better
energy precision.
While the field of HEP has used certain machine

learning methods, such as Multilevel Perceptrons[26,
27, 28] and Boosted Decision Trees[29], for decades,
these models are not directly amenable to the data in
question. Instead, physicists have constructed a large
number of mathematical and heuristic jet substructure
observables which quantify various properties on a per-
jet level.[30, 24, 31, 32, 33, 34, 35] These observables
may then be used in standard multivariate analysis
techniques.

Developments in the field of deep learning have led
to a reexamination of the problem of jet tagging, as
new architectures have emerged which can operate on
constituent-level data. Alternative proposals include
casting the particle data into a 2D pixel image in order
to apply to a CNNs[4, 5], passing the particle’s fea-

tures one at a time as a sequence into an RNN[2, 1, 9],
or embedding groups of nearby constituents into a
graph for use in a Graph Neural Networks[36]. While
RNNs in particular have seen successful application in
experiments, more recently the field has been moving
to permutation-invariant set based networks[37, 12]
which are easier to train and achieve comparable per-
formance.
Until now, the question of equivariance properties

has not received much attention from the field. The
CNN-based jet image approach, which respects an ap-
proximate 2D translational symmetry, was for a long
time the only example of an equivariant architecture
that had been studied. While translation equivariance
has proved highly useful in image processing tasks,
it is unclear whether it is physically meaningful in
the context of jet substructure. Very recently, it has
been proposed to consider a more physically-relevant
class of equivariance, specifically, the Lorentz Group
Network[10]. The LGN architecture operates at the
constituent level and is fully equivariant with respect
to arbitrary lorentz transformations. However, the
LGN has not yet proved to work as well as exist-
ing methods, possibly due to the exceedingly large
memory structures required to implement sufficiently
complex networks.
In this paper, we turn our attention to the curi-

ous gap between the PFN and CNNs. PFNs, which
are the current state-of-the-art in most experimental
applications, generally perform as well as any other

2



methods (with the possible exception of the newly-
proposed GNNs), but they possess no particular type
of equivariance. On the other hand, the CNN ap-
proach which does exhibit equivariance, is generally
outperformed by the other methods mentioned, pos-
sibly due to the sparsity/discretization or due to the
equivariance being of the wrong type.
It turns out there is a specific connection between

the PFN and the CNN architectures. They can be
viewed from a common mathematical perspective, il-
lustrated schematically in Fig. 1. This mathematical
connection, which is elaborated in Sec. 3 and 4, is
essentially that with a subtle modification, PFNs can
be viewed as the geometrical operation of projection.
This projection operation then can be easily promoted
to a convolution, which we call Particle Convolution.
The Particle Convolution allows us to build networks
which feature equivariance with respect to a much
larger class of symmetry groups, while operating di-
rectly on the constituent-level data. We show that
the jet image method is a special case of Particle Con-
volution in the case of a discrete shift operator and
binned coordinates, while the EFN is a special case
in which the operator is nullary.

In Sec. 2 we will discuss the concept of equivariance,
and motivate the particular case of rotational equivari-
ance for the problem of jet tagging. We then consider
in Sec. 3 a formal connection between the permutation-
invariant set-based models and the notion of Hilbert
space projection. In Sec. 4, we demonstrate how to
promote these projective operations to convolutions
possessing equivariance properties by construction,
using the particular example of rotation. In Sec. 5,
we consider some of the technical challenges in im-
plementing Particle Convolution, and detail a more
efficient solution based on the notion of steerable func-
tions. In Sec. 6 we provide details for experiments
conducted on the two benchmark tasks, q/g tagging
and top-tagging, and in Sec. 7 we present results and
conclusions.

2 Equivariance
In this section, we begin with a formal definition of the
mathematical concept of equivariance. Then, before
proceeding to the technical details of how this defini-
tion can be applied, we present an intuitive argument
for how equivariance can benefit machine learning
models in the specific application of jet tagging.

A map f : X → Y is equivariant with respect to a
group G acting on X if for every g ∈ G, there exists
some Πg : Y → Y such that:

f(g · x) = Πgf(x) , ∀x ∈ X . (1)

In other words, given an equivariant function f , it is
possible to determine the result of f(g ·x) by applying
either g to the input, or Πg to the output of the
function. Note that invariance is a special case of
equivariance: the function f is said to be invariant
when Πg is equal to the identity for every g.

The most commonly known equivariant neural archi-
tecture is the Convolutional Neural Network (CNN).
These networks are equivariant with respect to dis-
crete translational shifts in one or more dimensions. In
particular, two dimensional CNNs excel at computer
vision tasks. The intuitive reason behind this is that
CNNs can learn generic features, such as textures or
edges, and is able to match any of its learned features
at any location on an image. If a particular feature is
shifted to another location in the image, the CNN’s re-
sponse to that feature will be shifted a corresponding
amount. In contrast, a simple fully-connected neural
network would need to re-learn a new instance of each
feature
Many recent developments in the field of machine

learning have focused on the analysis and design
of equivariance properties of neural networks. In
many cases, equivariance can be generalized to ari-
brary homogeneous spaces via group convolution, and
these architectures often lead to improved perfor-
mance when a relevant symmetry of the data can
be exploited[38, 39, 40].

In the context of jet tagging, we propose to consider
the specific case of rotation. The rotational Particle
Convolution Network (rPCN), detailed in Sec. 4, eval-
uates a different kind of convolution with respect to
rotation about the jet axis in the η − φ plane. This
case is physically relevant and also happens to be
mathematically simple. The rationale for this partic-
ular equivariance stems from the physical processes
governing jet formation, which are approximately in-
variant under rotation about the jet axis. Therefore,
common features may emerge in radiation patterns
which differ only in arbitrary rotation about the jet
axis.
To address this, some works [4] have proposed re-

moving the rotational degree of freedom via a pre-
processing step that imposes a standardized reference
orientation for all jets. This technique can in some
cases improve performance of non-equivariant models,
although in other cases it can have a detrimental ef-
fect. In any case, it effectively manages to render the
entire model invariant under global rotations.

In many applications we do in fact desire an invari-
ant network response; for example, when determining
whether a jet originated from a boosted Z boson decay,
we expect the same answer regardless of the random
orientation of the parent particle’s decay axis. How-

3



ever, rather than constructing an invariant input to
eliminate the rotational variation in the data, we can
instead attempt to preserve the structure of the under-
lying symmetry within the network itself by enforcing
equivariance at each layer. This allows a deep network
to build rich representations to examine and compare
the angular structure of various features.
In the following sections, we will describe one way

in which a rotationally-equivariant network can be
constructed. This architecture, which we call a Parti-
cle Convolution Network, can be generalized to effect
equivariance with respect to additional types symme-
try as well.

Raw stimuli:

Pre-processed stimuli:

Invariant Features Matched:

Equivariant Features Matched:

Figure 2: Illustration of invariant vs. equivariant
feature matching. Colors correspond different learned
filter channels. In this example, the input stimuli
are a superposition of two radiation patterns, each of
which has an arbitrary angular rotation. The invariant
approach is able to match inputs differing by a global
rotation; however, it must learn different features for
each relative orientation. A network with equivariant
filters can match each pattern regardless of relative
orientation.

Figure 2 illustrates this point. In this example, we
consider two independent features that might appear

in a jet: a diffuse blob of low-energy particles, and a
pair of high-pT subjets. If the diffuse particles and the
hard subjets are produced at different stages during
parton showering, their relative angular orientations
about the jet axis could be largely random and un-
correlated. Rotational pre-processing does effectively
limit the amount the network needs to learn in the
case where two jets differ only by a global rotation.
However, such a network still needs to learn a com-
pletely different set of features to recognize various
relative orientations between the hard and soft parti-
cles. On the other hand, an equivariant network might
learn a single feature representing “two subjets” and
one feature for “diffuse lobe”, and by construction un-
derstands that these two features independently have
a rotational degree of freedom. Having learned such
features, the equivariant model would easily detect
either element of the substructure at arbitrary angles,
and can pass this information to deeper layers within
the network. Subsequent layers could then proceed to
execute computations which reason about either the
absolute or relative angular position of the features.

This is precisely the intuition behind the rotational
convolution: features in the jet may be matched by
evaluating the projection of the jet onto a series of
filters representing learned features. These projections
are sampled along a range of rotational orientations,
resulting in a periodic “waveform” representing each
individual filter’s response as a function of angle. At
this point, the network has formed a representation
consisting of a discrete 1D waveform with multiple
channels corresponding to the different filters.

3 Particle Projection

In order to define the Particle Convolution, we begin
by examining the structure of the “Deep Sets”-based
Energy Flow and Particle Flow networks (EFN and
PFN). These networks operate on a jet S represented
by a set S = {s1, . . . , s|S|} of observations si. We
shall assume the observations si = (~xi, qi) are com-
posed of a 2D coordinate ~xi representing the direc-
tion of particles relative to the jet axis in the η − φ
plane1, and some non-coordinate quantities qi. The
non-coordinate observable qi = (ei, . . . ) is composed
of at least an energy ei and may be supplemented by
additional observables such as charge, mass, etc.
The EFN depends only on the particle coordinate

1To simplify notation, we will always assume jets have
been centered in the η − φ plane, so that the coordinate
~x = (∆η,∆φ) = (η, φ).

4



~xi and energy ei, and is defined as:

EFN(S) = F

 |S|∑
k=1

ekΦ(~xk)

 , (2)

where F and Φ are arbitrary continuous functions,
generally represented by neural networks.
Since the learnable function Φ is defined over (ap-

proximately) Euclidean spatial coordinates, we might
consider it as an element of the Hilbert space L2(R2).
If we likewise consider the values of the non-coordinate
observables of the jet S to be represented as a func-
tion on R2, we can “expand” the jet in the continuous
basis |~x〉. That is, for each collection S, we define an
associated representation |Z〉S such that

〈~x|Z〉S = ZS(~x) :=

|S|∑
k=1

Z(qk)δ(~x− ~xk) , (3)

where Z denotes some arbitrary function of the non-
coordinate observable(s) q. That is, in the coordinate
basis, |Z〉S corresponds to a function ZS : R2 →
R which represents the spatial distribution of the
quantity Z(q) within the jet S. This function, ZS ,
is of course not continuous, and also highly sparse.
Strictly speaking, it is not an element of L2(R2), but
rather a generalized function. Nonetheless, we shall
show that this analytic expression of the jet and its
observables provides a useful mathematical tool.

For instance, if we consider an arbitrary continuous
function Φ : R2 → R, we may exploit the definition
of the delta function in order to evaluate the Hilbert
space inner product

〈Φ, Z〉S =

∫
d2~x Φ(~x)ZS(~x) (4)

=

∫
d2~x Φ(~x)

∑
k

Z(qk)δ(~x− ~xk) (5)

=
∑
k

Z(qk)Φ(~xk) . (6)

In the special case Z = E where E(qk) = ek simply
returns the energy of the particle k, we have:

〈Φ,E〉S =
∑
k

ekΦ(~xk) . (7)

This last equality can immediately be recognized as
the inner term of Eq. 2. In other words, we may con-
sider the EFN to be an arbitrary function F acting on
the projection of a jet’s empirical energy distribution
|E〉S onto a learned filter |Φ〉:

EFN(S) = F
(
〈Φ,E〉S

)
. (8)

In the following section, we will exploit this inter-
pretation in order to define general equivariant convo-
lution operators. But first, we will consider the PFN
from this perspective. The PFN as defined in [12] is
given by

PFN(S) = F

(∑
k

Φ(~xk, qk)

)
. (9)

Comparing with Eq. 2, it is clear that the EFN is
a special case of this PFN, where Φ is linear in the
particle energy ek. It is this linearity which guarantees
IRC-safety in the EFN case. However, it is the fact
that Φ depends only on ~x that allows the projection
Eq. 4 to be related to the EFN. This is because the
inner product is defined in terms of an integral with
respect to a meaningful topological measure – in this
case, two dimensional Euclidean space. As we shall
see, this is important for defining convolution with
respect to locally compact groups, such as rotation
and translation.

Therefore, in order to extend the concept of projec-
tion to the more general case, we define a modified
version of the PFN directly in terms of the projection
operator of Eq. 4:

PFN′(S) = F (〈Φ, Z〉S) (10)

= F

(∑
k

Z(qk)Φ(~xk)

)
. (11)

Here, F , Z, and Φ are all arbitrary continuous func-
tions that could be implemented via neural networks.
This network is equivalent to a PFN where the per-
particle function is required to be separable into terms
depending on the coordinate and non-coordinate ob-
servables. In principle, this represents a strictly less
general model than the original PFN. However, in
this form the PFN′ readily admits generalization via
convolution, which we shall find can result in much
more effective models.

3.1 Equivariant Projections

Before proceeding to define the Particle Convolution,
we first make some observations about the potential
for equivariance in the EFN and PFN′ architectures,
which are based on projection. In particular, it is
straightforward to show that whenever Φ possesses a
specific form of equivariance, so does its projection.
Suppose Φ is equivariant with respect to G so that
Φ(g · x) = ΠgΦ(x) for all x ∈ X and g ∈ G. Then, if

5



|Z〉S → g |Z〉S , we have:

〈Φ|Z〉S →〈Φ|g|Z〉S (12)

=

∫
dx Φ(g · x)ZS(x) (13)

=

∫
dx ΠgΦ(x)ZS(x) (14)

= Πg 〈Φ|Z〉S . (15)

So we can see that the projection is also equivariant
to transformations g applied to the particles of |Z〉S .

In practice this is often of limited utility. For exam-
ple, if Φ is constant on the η − φ plane, it is invariant
w.r.t. translations, and clearly so is the projection. If
Φ has some specific periodic behavior under rotations,
so that in polar coordinates Φ(r, θ + δ) = Φ(r, θ) for
some δ, then the projection will also have this peri-
odicity. However, such filters are able to express only
limited pattern-matching ability, and may not lead
to sufficiently complex representations for the task at
hand.

In the following section, we will see that by working
with convolutions, arbitrary filters can be learned
while retaining equivariance.

4 Particle Convolution

Having re-cast the core operation of Particle Flow
Networks in terms of the geometric concept of projec-
tion, we can immediately generalize the network by
promoting projection to convolution. In this section,
we demonstrate this concretely with the example of
rotational convolution.
The rotational Particle Convolution between a jet

|Z〉S and filter 〈Φ| is defined as the function:

h(∆; Φ, Z, S) := [Φ ? Z]S(∆) (16)
= 〈Φ|R∆|Z〉S (17)

=

∫
d2~x Φ(R∆~x)ZS(~x) (18)

=
∑
k

Z(qk)Φ(R∆~xk) , (19)

where ∆ is the angle about the jet axis, and R∆ ∈
SO(2) is the corresponding rotation operator. We
give the convolution the handle h(∆), omitting the
independent arguments (Φ, Z, S) when convenient,
to emphasize that the result of the convolution is a
function of angle.
Let us examine the equivariance of this operation

with respect to a rotation of the input particles |Z〉S :

|Z〉S →Rδ|Z〉S =⇒ (20)

h(∆)→〈Φ|R∆

[
Rδ|Z〉S

]
(21)

=〈Φ|R∆+δ|Z〉S (22)
=h(∆ + δ) (23)
=T−δ h(∆) , (24)

where T is the coordinate shift operator acting on the
function h, defined by Tyf(x) = f(x− y).
Since this is true for every Rδ ∈ SO(2) and every

∆, we have established the equivariance of the convo-
lution h(∆) with respect to the group SO(2) acting
on the jet |Z〉S . Moreover, we see that rotation of the
input particles corresponds to a shift of the output
convolution.

This convolution operation comprises the first layer
of the rPCN. The network parameters of this layer
are encoded by the functions Φ and Z, which could
for instance be themselves neural networks. Generally,
we would like to pass the result of this first layer to
additional layers in a deep neural network. However,
it is not clear what to do with a continuous function.
In practice, the convolution can be sampled at n

discrete points ∆i = 2πi/n. In this case, we can
represent the convolution h as a tensor with index i
representing the sampled points of the convolutional
“waveform”:

hi = 〈Φ|R∆i |Z〉S =
∑
k

ZS(qk)Φ(R∆i~xi) . (25)

The sampled convolution is now, strictly speaking,
equivariant with respect to the subgroup of discrete
rotations by 2πi/n:

|Z〉S →R 2πj
n
|Z〉S =⇒ (26)

hi →〈Φ|R 2π(i+j)
n
|Z〉S = hi+j . (27)

Hence, a discrete rotation of the particles in S corre-
sponds to a cyclic permutation of the indices hi+j .
By sampling a larger number of points n, the net-

work can approximate continuous equivariance. Con-
versely, by limiting the number of samples in accor-
dance with the Shannon-Nyquist theorem, the net-
work can be designed so as to ignore high frequency
information which might be considered noise.

Having obtained a shift-equivariant tensor hi, it is
straightforward to build deeper equivariant represen-
tations by apply the standard 1D CNN layer. The
discrete 1D convolution layer is shift equivariant; how-
ever, care must be taken to also enforce the cyclic
boundary conditions. This can be done by appropriate
padding of the inputs: for a convolution with kernel

6



Input Jet

Project onto 
rotated filters

Convolution waveform

Filter channel 2Filter channel 1

Figure 3: Illustration of the particle convolution of an example jet, represented as a point cloud, and two
different filters.

size k, the tensor h = (h1, . . . , hn) should be extended
as follows:

h+ = (h(n−k+1)/2, . . . , hn

∣∣∣h1, . . . , hn

∣∣∣h1, . . . , h(k−1)/2) .

(28)
Note that in contrast to conventional CNNs, the num-
ber of samples in the convolution output is not re-
duced, but rather stays the same due to the periodic
boundary condition. However, it is possible to reduce
the tensor along its sample axis via downsampling.
After processing by any number of additional con-

volutional layers, an invariant representation may be
formed by a global pooling operation. For example, it
is clear that taking the maximum or average value of
hi along the sample axis yields an invariant quantity.
After the pooling operation, each filter channel yields
a single quantity describing an invariant feature of the
input jet. Once the invariant is formed, any additional
functions applied will also result in invariants. For
example, the collection of invariant filter responses
may be passed to densely connected layers, and finally
to whatever output is suitable for the task objective.

5 Steerable Convolutions
In Sec. 4, we defined the rotational Particle Convo-
lution operation. This convolution can in principle
be sampled by applying a series of rotations to the

particle coordinates R∆i
~xk, and re-evaluating Φ in the

projection of Eq. 25. In practice, this can be problem-
atic as a sizeable neural network may be required to
model Φ. For example, in some experiments described
in Sec. 6, we consider architectures in which Φ must
be applied to up to 150 particles, and re-sampled at
up to 21 orientations. Therefore, even at a moderate
batch size of 64 jets, a single network layer of 128
units results in a 32-bit tensor occupying nearly one
GiB in memory. This means that models based on
direct sampling of convolutions cannot scale well due
to memory limitations of current GPUs, and are also
very time-intensive to train and optimize.

In this section, we show how the convolution may
be implemented more efficiently using steerable func-
tions[41, 39]. A function is said to be steerable if it
can be expressed as a linear combination of equivari-
ant functions[41]. By structuring a PCN such that
the learnable filters Φ are expressed in an appropriate
equivariant basis, it is possible to efficiently sample
convolutions at arbitrary points by evaluating Φ only
once.
This works by imposing some particular structure

on our learnable filters. Again, we will demonstrate
with the specific case of rotation. Consider for exam-
ple, a filter ψ of the form:

φm(~x) = ρm(r)eimθ , (29)

7



where m is an arbitrary integer, ρm is a arbitrary
function, and r and θ are polar coordinates about the
jet axis in the η − φ plane. For any filter of this form,
we can see that the rotation operator acts as:

φm(R−1
∆ ~x) = ρm(r)eim(θ−∆) = e−im∆φm(~x) . (30)

We can easily sample the convolution with this
function at any point ∆ in terms of the un-rotated
projection:

h(∆;φm, Z, S) = 〈φm|R∆|Z〉S (31)

=
∑
k

φm(R∆~xk)Z(qk) (32)

=
∑
k

eim∆φm(~xk)Z(qk) (33)

= eim∆ 〈φm|Z〉S . (34)

In other words, we need only compute h(0) once and
then use h(∆) = eim∆h(0). This is, of course, an
example of an equivariant projection as described in
Sec. 3.1.
Unfortunately, the filter φm has a definite angular

frequency m. As mentioned in Sec. 3.1, the pattern-
matching ability of such a filter is quite limited. How-
ever, this suggests we could exploit a similar type of
equivariance by imposing a specific structure related
to Eq. 29 to construct a more general Φ.

In particular, let us re-define Φ in terms of a series
of functions φm:

Φ(~x) = Φ(r, θ) =

M∑
m=−M

φm(r, θ) =
∑
m

ρm(r)eimθ .

(35)
Here, the hyperparameter M represents a cutoff for
angular frequencies captured by the filter. The 2M+1
radial functions ρm are now the arbitrary learnable
components of Φ, which could be represented by ordi-
nary neural networks, radial basis functions, etc. The
relationship between Φ and this hyperparameter is
depicted in Fig 4.

Note that in Eq. 35, Φ is generally complex-valued,
and so are the functions ρm. For our purposes, we
shall constrain it to be real-valued by imposing the
condition ρ−m = ρ?m. Alternatively, we could define
Φ in terms of sines and cosines; however, the present
form allows for simpler mathematical manipulation.
Each of the component functions φm are rotation-

ally equivariant via Eq. 30. However the filter Φ,
which combines arbitrarily many frequency modes,
does not. The trick is to instead associate Φ with a
column vector

Φ̃ = (φm, ..., φ−m)T , (36)

related via:

Φ(~x) = 1TΦ̃(~x) =
∑
m

φm(~x) . (37)

Now under a rotation R∆, we have:

Φ̃(R−1
∆ ~x) =

(
φM (R−1

∆ ~x), . . . , φ−M (R−1
∆ ~x)

)T (38)

=
(
e−iM∆φM (~x), . . . , eiM∆φ−M (~x)

)T
(39)

= A(∆)Φ̃(~x) , (40)

where the square matrix

A(∆) = diag{e−iM∆, . . . , eiM∆} . (41)

In other words, while the function Φ is not equivariant,
the vector of functions Φ̃ is, transforming as Φ̃ →
A(∆)Φ̃ under a rotation of coordinates by ∆.

Therefore, in order to perform a convolution with
Φ, the network should compute the projection:

〈Φ̃|Z〉S :=
(
〈φM |Z〉S , . . . , 〈φ−M |Z〉S

)T
, (42)

once for the un-rotated case, and sample additional
rotations at points ∆i via

h̃i = 〈Φ̃|R(∆i)|Z〉S = A(∆i)〈Φ̃|Z〉S . (43)

Finally, the sampled vectors h̃i can be “collapsed”
into a single numerical value by summing over the
m-components:

hi = 1Th̃i (44)

Note that given a fixed set of sample points ∆i, the
operators A(∆i) are simply constant, diagonal ma-
trices, and the matrix multiplication of Eq. 43 is a
trivial operation for GPUs.
The network based on steerable convolutions is

depicted schematically in Figure 5.
Having re-formulated our filter Φ in terms of the

equivariant functions φm, we can revisit the question
of efficiency and scalability for practical networks.
Note that in either case, for a filter Φ to capture
information about given angular frequency M , we
require 2M + 1 samples for hi. In Eq. 25, we do
this by re-evaluating the projection with Φ 2M + 1
times. In Eq. 43, we evaluate the projection only once,
but there are 2M + 1 functions φm which must be
evaluated. Therefore, it may seem that nothing has
been gained.

However, in practice, the functions ρm can be collec-
tively implemented by a single neural network which
shares most of its weights. As long as the number
of samples required, 2M + 1, is generally less than
the size of hidden layers for typical dense networks,

8



Φ ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6
Hyper-


parameter

M=6

M=4

M=2

η

φ
0

+

-

Legend:

(rel. to jet axis)

Figure 4: Visualization of the series representation of learned filter instances Φ(~x) =
∑
m φm(r, θ) for various

values of the cutoff hyperparameter M .

then the network should have a substantially smaller
memory footprint. This is because the intermediate
tensors for the hidden layers need only be computed
for the un-rotated case, as opposed to being calcu-
lated at every orientation as in Eq. 25. This allows
for smaller networks which are faster to train.
Moreover, the functions ρm only need to learn a

radial profile, rather than a response on the full 2-
dimensional η−φ plane. Therefore, it is reasonable to
expect that simpler, smaller networks could be able to
achieve equivalent results. Lastly, since Φ in Eq. 35 is
expressed in terms of functions with a definite cutoff
frequency M , this acts as low-pass filter for angu-
lar structure. Without this cutoff, higher frequency
information may be aliased to lower modes during
sampling, which could lead to a network sensitive to
undesirable artifacts.
We find empirically that in either the direct sam-

pling or steerable case, rPCNs of comparable angu-
lar resolution and depth achieve similar performance.
Therefore, when optimizing hyperparameters for the
experiments in section 6, the more efficient steerable
convolution architecture is used; however, it is possi-
ble that a more exhaustive optimization would find
better results via the direct sampling approach.

6 Experiments

We conduct experiments in training the rotational Par-
ticle Convolution Network for two benchmark prob-
lems in jet physics: quark/gluon identification, and

top tagging. The details of these datasets are de-
scribed in Sec. 6.1. For both tasks, we train a general
PCN as well as the IRC-safe variant. The coordinates
~x are centered about the jet axis in the η − φ plane,
as described in [12], and the scalar feature for each
particle is the particle’s transverse momentum, i.e.
qk = pT,k, which is invariant w.r.t. the coordinate-
centering operation. In the case of the q/g tagging
task, we also test the performance of models when
supplied with per-particle identification information
as well, qk = (pT,k,PIDk).

6.1 Datasets

For reference, we consider two typical benchmark
problems: q/g identification and top-quark tagging,
using the same datasets as in Refs. [12, 36]. The q/g
dataset, described in Ref.[12] is comprised of Z(νν)+q
events (signal) and Z(νν) + g events (background).
The events are simulated using Pythia8[42], which
performs parton showering and hadronization. No
detector simulation is performed for this sample. Par-
ticles (excluding neutrinos) are clustered using the
anti-kT algorithm[16] with radius parameter R = 0.4.
The 4-momenta and particle ID of particles within
the leading jet are saved for jets with pT ∈ [500, 550]
GeV and |η| < 2. The dataset is split into 1.2 million
training events and 400k each of validation and test
events. In our experiments, we truncate events with
greater than 68 particles by discarding those with the
lowest pT.

For the top-tagging benchmark, we use the dataset

9



⃗x k ∈ ℝ2qk ∈ ℝQ

Zjk = zj(qk) Rcmk = ρcm(rk)

rk θk

Tmk = eimθk

Pjcm = ∑
k

ZjkRcmkTmk = ⟨Φcm |Zj⟩S

hjct = ∑
m

PjcmeimΔt = ⟨Φ̃c |RΔt
|Zj⟩S

S = {(qk, ⃗x k) : k = 1...NS}
Scalar


features
Coordinate


features

Constituents of input jet S

Angular

terms

Project onto

frequency modes

Sample convolution

via interpolation

zj(q)
Per-filter

feature


embeddings ρcm(r)
Per-filter


radial

functions

Cyclic padding

of waveforms

To 1D CNN

Figure 5: Schematic representation of the rotational
Particle Convolution layer as described in Sec. ??.
The functions zc and ρcm can be specifically chosen
(e.g. when setting zc = pT for IRC-safety), or can be
implemented as neural networks.

available at Ref.[43]. The events are generated with
Pythia8 and passed into Delphes[44] fast detector
simulation, without pileup. The signal process is
tt̄ and the background is inclusive QCD. Jets are
reconstructed using Delphes EFlow module, with anti-
kT radius parameter R = 0.8, and are required to have
pT ∈ [550, 650] GeV and |η| < 2. For each jet, we
record the 4-momenta for the leading 140 particle-flow
constituents.

6.2 Architectures

In previous sections, the discussion has focused on
projection and convolution of a jet with a single filter
Φ. In practice, we allow a neural network to learn
a moderate number of independent filter channels
Φc(r, θ) =

∑
m ρcm(r)eimθ and feature embeddings

Zq. By convolving each feature embedding with each
filter, the network produces a convolution waveform
〈Φc|R(∆)|Zj〉 with C ×J feature channels, which can

be passed on as multi-feature input to a standard 1D
CNN architecture. Hence, to define the architecture of
a particular rPCN, we must to specify the following:

• The number of filter channels, C;

• The number of feature embeddings, J ;

• The maximum angular frequency mode, M ;

• The feature embedding function(s), Zj(q);

• The radial activation function(s), ρcm(r);

• The remaining 1D convolutional network struc-
ture.

Except in the IRC-safe case, we implement both Zj
and ρcm as densely-connected neural networks. There-
fore, Zj and ρcm are specified by the number of hidden
layers and their units, as well as their nonlinearies.
We apply a ReLU nonlinearity at the output of Zc, so
that it can more naturally act as an “attention” mech-
anism which can learn to ignore particles based on
their scalar features qk in the region where the ReLU
response is zero. The complex-valued network ρcm
is implemented by a single network which learns real
and imaginary parts separately, ρcm = αcm + iβcm.
We impose the constraint ρ−m = ρ∗m so that Φc are
real by construction; therefore it is sufficient to learn
αcm for m ≥ 0 and βcm for m ≥ 1.
When particle ID is included as part of the scalar

input, we follow the “experimentally plausible” label-
ing scheme of [12], where particles are categorized
into one of eight types: photons, neutral hadrons, and
positively- and negatively-charged muons, electrons,
and hadrons. These labels are input to the network
via a trainable 3-dimensional embedding layer, which
are concatenated with the particle’s pT and passed as
a triplet into the Zc network.
In the IRC-safe case, the function Zc is simply re-

placed with the transverse momentum of each particle.
Since the majority of trainable parameters in the Par-
ticle Convolution network tend to be from the Zc and
ρcm sub-networks, the IRC-safe networks will usu-
ally have substantially fewer parameters than their
non-IRC-safe counterparts.
In our experiments, the remainder of the network

can be specified by:

• The nonlinearity following the Particle Convolu-
tion layer;

• The number of 1D convolution layers, their kernel
size, and stride;

• The global pooling operation (maximum or aver-
age);

10



• Any remaining hidden layers, units, and nonlin-
earity;

• A final 2-unit softmax output layer representing
the categorical prediction.

We found that a resnet-like [?] convolutional archi-
tecture worked best. We pass the particle convolution
output without nonlinearity as a “skip connection”
across residual blocks consisting of ReLU activation
and batch normalization preceding two 1D CNN lay-
ers.

6.3 Training
In all experiments, the data are split into train, valida-
tion, and test samples in a 6:1:1 ratio. Networks are
implemented using Tensorflow v2 [45] and Keras [46].
The loss function used for training is the categorical
crossentropy, optimized via Adam[47] with learning
rate 10−4 and batch size 128. The validation loss is
used to determine training convergence; training is
stopped when the validation loss has not improved
for 16 consecutive epochs. The model epoch with the
lowest validation loss is evaluated on the test set to
report unbiased AUC and rejection metrics.
After training networks by randomly sampling a

wide range of hyperparameter configurations, we se-
lected the best-performing architecture for each task
based on the validation loss. These configurations
were then frozen, and the networks were retrained ten
times. The values reported in tables 1 and 2 are the
test scores for the specific network whose validation
score was nearest to the median value on each task.
The errors quoted are the standard deviation of the
test scores over the series of ten retrainings.

6.4 Inspection
It is possible to visualize the learned functions Φc(~x)
in the η − φ plane. Moreover, we can visualize the
learned behavior of the nonlinear feature embedding,
Zj(pT). Each convolution represents a learned spa-
tial pattern as well as a gated response based on
momentum. Interestingly, it seems that the network
often spontaneously learns a sort of binning in pT, as
shown in Figure 6. It also tends to ignore many of the
lowest-pT particles, suggesting those particles could
potentially be pruned from the input to further speed
up the network.

7 Results & Conclusions
The rPCN performance on the two benchmark tasks
are given in Tables 1 and 2. These results show that

10 2 10 1 100 101 102 103

particle pT [GeV]

10 5

10 3

10 1

101

a.
u.

Figure 6: Colored lines representing functions Z(pT)
learned by a network on the q/g tagging task. The
shaded histogram indicates the distribution of particle
pT over the training dataset.

by promoting the permutation-invariant architectures
EnergyFlow and ParticleFlow to include rotational
convolution significantly improves their performance.
In particular, the rPCN significantly improves the
state-of-the-art for IRC-safe taggers. When IRC safety
can be dispensed with, the rPCN can achieve perfor-
mance comparable to the current state-of-the-art set
by graph-based models such as ParticleNet.
From a practical perspective, the rPCN is much

more similar to deep-sets based architectures already
in production use by LHC experiments, as compared
to the relatively novel graph architectures. The rPCN
model also requires minimal preprocessing, is com-
patible with arbitrary-length collections of particles,
and is permutation-equivariant. PCNs in general are
conceptually analogous to the jet image approach
in the limit of infinitely small pixels and continuous
filter kenels, although the rPCN targets rotational
rather than translational equivariance as a physically-
motivated inductive bias.

Moreover, by careful design of the filter representa-
tion Φ, the PCN approach can admit further general-
ization by constructing convolutional operations that
can endow additional equivariance properties to jet
tagging models. For example, in forthcoming work we
study whether a PCN which is equivariant w.r.t. to
scaling in the η − φ plane could potentially be useful
to capture similar substructure properties across a
wide range of jet pT.

8 Acknowledgements

The author would like to especially thank Paul Tip-
ton for many iterations of feedback throughout this

11



project. He thanks Aishik Ghosh, Daniel Whiteson,
Dan Guest, and Ema Smith for helpful conversations
and comments on this manuscript. Training experi-
ments were made possible by the Grace GPU cluster
operated by Yale Center for Research Computing.
This work was supported by grant DE-SC0017660
funded by the U.S. Department of Energy, Office of
Science.

References
[1] Taoli Cheng. Recursive Neural Networks in

Quark/Gluon Tagging. Comput. Softw. Big Sci.,
2(1):3, 2018.

[2] Shannon Egan, Wojciech Fedorko, Alison Lister,
Jannicke Pearkes, and Colin Gay. Long Short-
Term Memory (LSTM) networks with jet con-
stituents for boosted top tagging at the LHC. 11
2017.

[3] Hui Luo, Ming-xing Luo, Kai Wang, Tao Xu,
and Guohuai Zhu. Quark jet versus gluon
jet: fully-connected neural networks with high-
level features. Sci. China Phys. Mech. Astron.,
62(9):991011, 2019.

[4] Luke de Oliveira, Michael Kagan, Lester Mackey,
Benjamin Nachman, and Ariel Schwartzman. Jet-
images — deep learning edition. JHEP, 07:069,
2016.

[5] Josh Cogan, Michael Kagan, Emanuel Strauss,
and Ariel Schwarztman. Jet-Images: Com-
puter Vision Inspired Techniques for Jet Tagging.
JHEP, 02:118, 2015.

[6] Dan Guest, Kyle Cranmer, and Daniel White-
son. Deep Learning and its Application to LHC
Physics. Ann. Rev. Nucl. Part. Sci., 68:161–181,
2018.

[7] Boosted jet identification using particle candi-
dates and deep neural networks. Nov 2017.

[8] Jonathan Shlomi, P. Battaglia, and Jean-Roch
Vlimant. Graph neural networks in particle
physics. arXiv: High Energy Physics - Exper-
iment, 2020.

[9] Gilles Louppe, Kyunghyun Cho, Cyril Becot, and
Kyle Cranmer. QCD-Aware Recursive Neural
Networks for Jet Physics. JHEP, 01:057, 2019.

[10] Alexander Bogatskiy, Brandon Anderson, Jan
Offermann, Marwah Roussi, David Miller, and
Risi Kondor. Lorentz group equivariant neural
network for particle physics. In Proceedings of
the 37th International Conference on Machine
Learning, volume 119. PMLR, 2020.

[11] Eric A. Moreno, Olmo Cerri, Javier M. Duarte,
Harvey B. Newman, Thong Q. Nguyen, Avikar
Periwal, Maurizio Pierini, Aidana Serikova,
Maria Spiropulu, and Jean-Roch Vlimant. JEDI-
net: a jet identification algorithm based on in-
teraction networks. Eur. Phys. J. C, 80(1):58,
2020.

12



Model AUC 1/εb|εs=50%

IRC-safe
EFN 0.8824 28.6± 0.3

rPCN (Ours) 0.8944 32.5± 0.4
w/o PID

PFN 0.8911 30.8 ±0.4
ResNeXt-50 0.8960 30.9

P-CNN 0.8915 31.0
ParticleNet-Lite 0.8993 32.8

ParticleNet 0.9014 33.7
rPCN (Ours) 0.8997 34.2± 0.4

w/ PID
P-CNN 0.9002 34.7
PFN-Ex 0.9005 34.7

ParticleNet-Lite 0.9079 37.1
rPCN +Ex (Ours) 0.9081 38.6± 0.5

ParticleNet 0.9116 39.8± 0.2

Table 1: Comparison of known network architectures on the quark-gluon tagging dataset of Ref. [12]. ResNeXt
is a deep 2D CNN adapted for jet images in [36], while P-CNN [7] is a 1D convolution operating on ordered
lists of particles, also implemented in [36]. Our IRC-safe rPCN model is substantially more sensitive than
the EFN. When including a nonlinear pT function, the rPCN model achieves comparable performance to
ParticleNet.

[12] Patrick T. Komiske, Eric M. Metodiev, and Jesse
Thaler. Energy Flow Networks: Deep Sets for
Particle Jets. JHEP, 01:121, 2019.

[13] Roman Kogler et al. Jet Substructure at the
Large Hadron Collider: Experimental Review.
Rev. Mod. Phys., 91(4):045003, 2019.

[14] Jason Gallicchio and Matthew D. Schwartz.
Quark and Gluon Tagging at the LHC. Phys.
Rev. Lett., 107:172001, 2011.

[15] Andrew J. Larkoski, Ian Moult, and Benjamin
Nachman. Jet Substructure at the Large Hadron
Collider: A Review of Recent Advances in Theory
and Machine Learning. Phys. Rept., 841:1–63,
2020.

[16] Matteo Cacciari, Gavin P. Salam, and Gregory
Soyez. The anti-kt jet clustering algorithm.
JHEP, 04:063, 2008.

[17] Tilman Plehn, Gavin P. Salam, and Michael Span-
nowsky. Fat Jets for a Light Higgs. Phys. Rev.
Lett., 104:111801, 2010.

[18] A. Abdesselam et al. Boosted Objects: A Probe
of Beyond the Standard Model Physics. Eur.
Phys. J. C, 71:1661, 2011.

[19] Jonathan M. Butterworth, Adam R. Davison,
Mathieu Rubin, and Gavin P. Salam. Jet sub-

structure as a new Higgs search channel at the
LHC. Phys. Rev. Lett., 100:242001, 2008.

[20] Chase Shimmin and Daniel Whiteson. Boosting
low-mass hadronic resonances. Phys. Rev. D,
94(5):055001, 2016.

[21] Patrick T. Komiske, Eric M. Metodiev, and Jesse
Thaler. An operational definition of quark and
gluon jets. JHEP, 11:059, 2018.

[22] Mrinal Dasgupta, Lorenzo Magnea, and Gavin P.
Salam. Non-perturbative QCD effects in jets at
hadron colliders. JHEP, 02:055, 2008.

[23] Jason Gallicchio and Matthew D. Schwartz.
Quark and Gluon Jet Substructure. JHEP,
04:090, 2013.

[24] Andrew J. Larkoski, Jesse Thaler, and Wouter J.
Waalewijn. Gaining (Mutual) Information about
Quark/Gluon Discrimination. JHEP, 11:129,
2014.

[25] Andrea Banfi, Gavin P. Salam, and Giulia Zan-
derighi. Infrared safe definition of jet flavor. Eur.
Phys. J. C, 47:113–124, 2006.

[26] Hermann Kolanoski. Application of artificial neu-
ral networks in particle physics. Nucl. Instrum.
Meth. A, 367:14–20, 1995.

13



Model AUC 1/εb|εs=50% 1/εb|εs=30%

IRC-safe
EFPs 0.9803 184 384
EFN 0.9789 181 619

rPCN (Ours) 0.9821 257± 6 1038± 41
w/o PID

P-CNN 0.9803 201 759
PFN 0.9819 247 888

ResNeXt-50 0.9837 302 1147
ParticleNet-Lite 0.9844 325 ±5 1262 ±49
rPCN (Ours) 0.9845 364 ±9 1642± 93

ParticleNet 0.9858 397± 7 1615± 93

Table 2: Comparison of similar network architectures on the top tagging dataset of Ref. [12]. ResNeXt is
a deep 2D CNN adapted for jet images in [36], while P-CNN [7] is a 1D convolution operating on ordered
lists of particles, also implemented in [36]. As with the q/g task, the rPCN sets a new state-of-the-art for
IRC-safe tagging, while achieving comparable performance to the graph-based ParticleNet model.

[27] S. A. Bass, A. Bischoff, J. A. Maruhn, Horst
Stoecker, and W. Greiner. Neural networks for
impact parameter determination. Phys. Rev. C,
53:2358–2363, 1996.

[28] M. Milek and M. P. Patel. Neural network tagging
in a toy model. Nucl. Instrum. Meth. A, 425:577–
588, 1999.

[29] Byron P. Roe, Hai-Jun Yang, Ji Zhu, Yong Liu,
Ion Stancu, and Gordon McGregor. Boosted
decision trees, an alternative to artificial neural
networks. Nucl. Instrum. Meth. A, 543(2-3):577–
584, 2005.

[30] Jesse Thaler and Ken Van Tilburg. Identify-
ing Boosted Objects with N-subjettiness. JHEP,
03:015, 2011.

[31] Patrick T. Komiske, Eric M. Metodiev, and Jesse
Thaler. Energy flow polynomials: A complete
linear basis for jet substructure. JHEP, 04:013,
2018.

[32] Ian Moult, Lina Necib, and Jesse Thaler. New
Angles on Energy Correlation Functions. JHEP,
12:153, 2016.

[33] Andrew J. Larkoski, Ian Moult, and Duff Neill.
Power Counting to Better Jet Observables. JHEP,
12:009, 2014.

[34] Mrinal Dasgupta, Alessandro Fregoso, Simone
Marzani, and Gavin P. Salam. Towards an un-
derstanding of jet substructure. JHEP, 09:029,
2013.

[35] Andrew J. Larkoski, Simone Marzani, Gregory
Soyez, and Jesse Thaler. Soft Drop. JHEP,
05:146, 2014.

[36] Huilin Qu and Loukas Gouskos. ParticleNet:
Jet Tagging via Particle Clouds. Phys. Rev. D,
101(5):056019, 2020.

[37] Manzil Zaheer, Satwik Kottur, Siamak Ravan-
bakhsh, Barnabas Poczos, Ruslan Salakhutdinov,
and Alexander Smola. Deep Sets. arXiv e-prints,
page arXiv:1703.06114, Mar 2017.

[38] Taco S Cohen, Mario Geiger, and Maurice Weiler.
A general theory of equivariant cnns on homo-
geneous spaces. Advances in neural information
processing systems, 32:9145–9156, 2019.

[39] M. Weiler, F. Hamprecht, and Martin Storath.
Learning steerable filters for rotation equivariant
cnns. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 849–858,
2018.

[40] Nathaniel Thomas, Tess Smidt, Steven Kearnes,
Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-
and translation-equivariant neural networks
for 3D point clouds. arXiv e-prints, page
arXiv:1802.08219, February 2018.

[41] Patrick Cheng-San Teo. THEORY AND AP-
PLICATIONS OF STEERABLE FUNCTIONS.
PhD thesis, stanford university, 1998.

[42] Torbjörn Sjöstrand, Stefan Ask, Jesper R. Chris-
tiansen, Richard Corke, Nishita Desai, Philip Il-
ten, Stephen Mrenna, Stefan Prestel, Christine O.

14



Rasmussen, and Peter Z. Skands. An introduc-
tion to PYTHIA 8.2. Comput. Phys. Commun.,
191:159–177, 2015.

[43] Gregor Kasieczka, Tilman Plehn, Jennifer
Thompson, and Michael Russel. Top quark tag-
ging reference dataset, March 2019.

[44] J. de Favereau, C. Delaere, P. Demin, A. Gi-
ammanco, V. Lemaître, A. Mertens, and M. Sel-
vaggi. DELPHES 3, A modular framework for
fast simulation of a generic collider experiment.
JHEP, 02:057, 2014.

[45] Martín Abadi, Ashish Agarwal, Paul Barham,
Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan-
delion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vi-
jay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensor-
flow.org.

[46] François Chollet et al. Keras. https://keras.
io, 2015.

[47] Diederik P. Kingma and Jimmy Ba. Adam: A
Method for Stochastic Optimization. arXiv e-
prints, page arXiv:1412.6980, December 2014.

15

https://keras.io
https://keras.io

	1 Introduction
	2 Equivariance
	3 Particle Projection
	3.1 Equivariant Projections

	4 Particle Convolution
	5 Steerable Convolutions
	6 Experiments
	6.1 Datasets
	6.2 Architectures
	6.3 Training
	6.4 Inspection

	7 Results & Conclusions
	8 Acknowledgements

