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Abstract

Non-pharmaceutical interventions(NPIs) play an important role in the early stage control

of COVID-19 pandemic. Vaccination is considered to be the inevitable course to stop the

spread of SARS-CoV-2. Based on the mechanism, a SVEIR COVID-19 model with vaccination

and NPIs is proposed. By means of the basic reproduction number R0, it is shown that the

disease-free equilibrium is globally attractive if R0 < 1, and COVID-19 is uniform persistence

if R0 > 1. Taking Indian dates for example in the numerical simulation, we find that our

dynamical results fits well with the statistical dates. Consequently, we forecast the spreading

trend of COVID-19 pandemic in India. Furthermore, our results imply that improving the

intensity of NPIs will greatly reduce the number of confirmed cases. Especially, NPIs are

indispensable even if all the people were vaccinated when the efficiency of vaccine is relatively

low. By simulating the relation ships of the basic reproduction number R0, the vaccination

rate and the efficiency of vaccine, we find that it is impossible to achieve the herd immunity

without NPIs when the efficiency of vaccine is lower than 76.9%. Therefore, the herd immunity

area is defined by the evolution of relationships between the vaccination rate and the efficiency

of vaccine. In the study of two patchy, we give the conditions for India and China to be open

to navigation. Furthermore, an appropriate dispersal of population between India and China

is obtained. A discussion completes the paper.

Keywords: COVID-19; SASR; Reproduction numbers; Vaccination; NPIs;

AMS Subject Classification (2010): 34D20; 37B55; 92D30

∗Supported by NSF of China 11501269 and 11731005.
†E-mail address:wangbinguo@lzu.edu.cn
‡E-mail address:huangshunxiang@mail.iap.ac.cn
§Contributed equally to this article

1

ar
X

iv
:2

10
7.

02
96

2v
1 

 [
q-

bi
o.

PE
] 

 7
 J

ul
 2

02
1



1 Introduction

Coronavirus disease 2019 (COVID-19), caused by a novel virus of the coronavirus genus (SARS-

CoV-2), has been spreading globally. As of 28 June, 2021, there have been 180,817,269 confirmed

cases of COVID-19, including 3,923,238 deaths [44]. The ongoing COVID-19 pandemic has caused a

Once-in-a-Century global crisis [45]. Despite scientists worldwide racing to develop antiviral drugs,

curative treatments are unavailable at the time of writing. the global economy is experiencing the

worst plunge in recent history amid fears of further deterioration of the COVID-19 situation [11].

Non-pharmaceutical interventions (NPIs) such as quarantine, isolation, and social distancing

play an important role in the control of SARS-CoV-2. Since the outbreak of COVID-19 was first

detected in December 2019 in Wuhan, China [20], many authors have discussed the effects of

various measures on the control of COVID-19 pandemic. For example, Tian et al. [32] suggested

that the Wuhan travel ban or the national emergency response would have decreased to 744,000 (±
156,000) confirmed COVID-19 cases outside Wuhan. Since the airborne transmission by droplets

and aerosols is important for the spread of viruses, face masks are a well-established preventive

measure. Cheng et al. [6] found that most environments and contacts are under conditions of

low virus abundance (virus-limited) where surgical masks are effective at preventing virus spread.

More advanced masks and other protective equipments are required in potentially virus-rich indoor

environments including medical centers and hospitals. Hu et al. [12] based on individual records

of 1178 potential SARS-CoV-2 infectors and their 15,648 contacts in Hunan, China. Their results

showed that SARS-CoV-2 susceptibility to infection increases with age, while transmissibility is not

significantly different between age groups and between symptomatic and asymptomatic individuals.

Contacts in households and exposure to first-generation cases are associated with higher odds of

transmission. Considered the infectivity of individuals with, and susceptibility to, SARS-CoV-2

infection differs by age, schools were closed in the early months of the pandemic in most countries

[34, 43], so that the low proportion of cases notified in young individuals [28] could be attributed

to a low probability of developing symptoms [23, 24], a low susceptibility to infection [14, 36, 38],

and/or few contact opportunities relative to other age groups. Senapati et al. [29] investigate that

higher intervention effort is required to control the disease outbreak within a shorter period of time

in India.

The transmission mechanism of SARS-CoV-2 makes it more difficult to fight against the disease.

As far as the situation is concerned, vaccines are considered to be the most effective defense to

control the disease completely. Various deployment strategies were being proposed to increase

population immunity levels to SARS-CoV-2. In Saad-Roy et al. [30], the authors explored three

scenarios of selection and found that a one-dose policy may increase the potential for antigenic

evolution under certain conditions of partial population immunity. At same time, they highlighted

the critical need to test viral loads and quantify immune responses after one vaccine dose, and

to ramp up vaccination efforts throughout the world. In consideration of limited initial supply of

SARS-CoV-2 vaccine, Bubar et al. [2] used a mathematical model to compare five age-stratified

prioritization strategies. Following some of the WHO-SAGE recommendations, Acuña-Zegarraa

et al. formulated an optimal control problem with mixed constraints to describe vaccination

schedules [1].
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According to the transmission mechanism of COVID-19, combining NPIs and vaccines, the

population is divided into the following categories: susceptible individuals (S), vaccinated indi-

viduals(V), exposed individuals (E), infectious individuals (I) and recovered/removed individuals

(R). Hence, a SVEIR model for COVID-19 is proposed. The SEIR model and its updates were

successful in predicting the SARS epidemic in 2003-2004 [4], the H1N1 influenza pandemic in

2009 [21], and the MERS epidemic in 2012-2015 [15]. Recent studies have tried to use the SEIR

model to predict the spread of COVID-19 in China. Raed et al. (2020) found that there would

be approximately 21,022 (95% CrI 11,090-33,490) total infections by February 22 in Wuhan [16],

while Wu et al. estimated that there would be 75,815 COVID-19 cases (95% CrI 37,304-130,330)

in Wuhan by January 25, 2020 [33].

The basic reproduction number (ratio) R0 is a crucial threshold parameter in the study of

disease transmission. In epidemiology, it is defined as the expected number of secondary cases

produced by a single (typical) infection in a completely susceptible population and is used to

measure the infection potential of an infectious disease [7,22]. At the beginning of the transmission

of coronavirus, based on likelihood and model analysis, Tang et al. [31] revealed that the basic

reproduction number may be as high as 6.47, which showed that COVID-19 is highly infectious.

By means of the basic reproduction number, Bubar et al. [2] found a highly mitigated spread

during vaccine rollout. Riley et al. [27] used a model of constant exponential growth and decay,

and quantified this fall and rise in prevalence in terms of halving and doubling times and the

basic reproduction number. Noting that an important quantity in epidemiological models, the

basic reproduction number, Cuevas-Maraver et al. [5] discussed in the realm of the model what

consequences different additional intervention measures would have had at the level of deaths and

of cumulative infections.

In the face of vaccine dose shortages and logistical challenges, how to deploy the strategies of

NPIs and viccination to increase population immunity levels to SARS-CoV-2 have not been fully

considered in most of the above published. Mathematical models and field observations show that

population dispersal can exert strong pressure on many infectious diseases [10, 19, 35]. Therefore,

we choose a spatially discrete environment consisting of n patches, where a patch may represent a

country or a city, and population movements between patches. Based on the infection mechanism

of SARS-CoV-2, a novel susceptible-asymptomatic-symptomatic-recovered model with NPIs and

viccination (SASR) model in a patchy environment is proposed in Section 2. On the basis of

the existence of the disease-free equilibrium, the definition and computation formulae of the basic

reproduction number R0 are established. Drawing support from the basic reproduction number,

the extinction and uniform persistence are shown in Section 3. The numerical simulation results

not only consider the intensity of the intervention, the vaccination rate and the efficiency of vaccine

but also incorporate the relationship between them and the basic reproducing number so as to get

the control strategy of COVID-19 in Section 4. A brief discussion completes the paper.

2 SASR Compartmental Model

A matrix M is said to be nonnegative if all entries of M are nonnegative. If all off-diagonal
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entries of M are nonnegative, then we say M is cooperative.

A n×n matrix A = (aij)n×n is said to be irreducible if for every nonempty, proper subset I of

the set N = {1, 2, · · · , n}, there is an i ∈ I and j ∈ J = N\I such that |aij | > 0.

Let Si be the number of susceptible individuals in patch i, Vi be the number of the vaccinated

individuals, E1i be the number of the exposed individuals who are not contagious in the early

stages in patch i, E2i be the number of the exposed individuals who can infect the susceptible

in patch i, and I1i be the number of the infectious individuals in patch i who are contagious,

I2i be the number of the infectious individuals in patch i who are not contagious, Ri be the

number of recovery individuals in patch i, Ni be the total population in patch i, that is, Ni =

Si + Vi +E1i +E2i + I1i + I2i +Ri. Furthermore, we suppose that Ni is constant. The population

growth process can be described as in Figure 1.

Figure 1: Compartmental diagram of COVID-19 transmission dynamics

The model is given by an autonomous system of ordinary differential equations

dSi

dt = Λi − βi(1− Cai)SiE2i

Ni
− βi(1− Csi)SiI1i

Ni
− ξiSi − µiSi +

n∑
j=1

AijSj ,

dVi

dt = ξiSi − βi(1− Cai)(1− τi)ViE2i

Ni
− βi(1− Csi)(1− τi)ViI1i

Ni
− µiVi +

n∑
j=1

AijVj ,

dE1i

dt = βi(1− Cai)SiE2i

Ni
+ βi(1− Csi)SiI1i

Ni
+ βi(1− Cai)(1− τi)ViE2i

Ni
+ βi(1− Csi)(1− τi)ViI1i

Ni

− E1i

DE1i
− µiE1i +

n∑
j=1

BijE1j ,

dE2i

dt = E1i

DE1i
− E2i

DE2i
− µiE2i − diE2i +

n∑
j=1

CijE2j ,

dI1i
dt = E2i

DE2i
− I1i

DI1i
− µiI1i − diI1i,

dI2i
dt = I1i

DI1i
− I2i

DI2i
− µiI2i,

dRi

dt = I2i
DI2i

− µiRi +
n∑
j=1

DijRj ,

(2.1)

where Λi is the recruitment rate of susceptible class in patch i, Cai and Csi denote the intensity

of NPIs for incubation with infectiousness and infection with infectiousness individuals in patch i,

respectively. βi denotes the effective contact rate in patch i, ξi denotes the vaccination coverage
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rate in patch i, µi is the natural death rate of the population in patch i, DE1i and DE2i are

lengths of the incubation with non-infectiousness and incubation with infectiousness in patch i,

respectively. 0 ≤ τi ≤ 1 denotes the vaccine efficacy in patch i(τi = 1 represents a vaccine that

offers 100% protection against infection, τi = 0 models a vaccine that offers no protection at all).

DI1i and DI2i are lengths of the infection with infectiousness and infection with non-infectiousness

in patch i, respectively. di denotes the disease-induced mortality rate. Aij stand for the dispersal

rate form patch j to patch i of the susceptible and the vaccination. Bij , Cij and Dij stand for

the dispersal rates from patch j to patch i of the incubation with non-infectiousness, incubation

with infectiousness, and recovery individuals, respectively. Biologically, we could suppose that the

number of total human population in patch i stabilizes at Ni > 0.

Moreover, we assume

(A1) Aij , Bij , Cij and Dij are nonegative constant, ∀1 ≤ i 6= j ≤ n, and [Aij ]n×n, [Bij ]n×n,

[Cij ]n×n and [Dij ]n×n are irreducible.

(A2)
n∑
j=1

Aji =
n∑
j=1

Bji =
n∑
j=1

Cji =
n∑
j=1

Dji = 0, ∀i = 1, · · · , n.

Note that (A1) assures that the immigration always occurs between two groups which are the

arbitrary separation of n patches; (A2) means that deaths and births are neglected during the

dispersal process.

For simplicity, set ψt(x
0) be the solution of (2.1) with initial date ψ0(x0) = x0 ∈ R7n

+ . By [9,

Theorem 2.1], we have the following.

Theorem 2.1 For any x0 ∈ R7n
+ , system (2.1) has a unique nonnegative solution ψt(x

0) with

initial value ψ0(x0) = x0, and all solutions are ultimately bounded and uniformly bounded.

3 Basic Reproduction Number

In this section, we establish the definition and computation formulae of the basic reproduction

number for system (2.1).

We first consider the disease-free solution of system (2.1). Let E1i = E2i = I1i = I2i = 0,

i = 1, · · · , n, then we have

dSi

dt = Λi − ξiSi − µiSi +
n∑
j=1

AijSj ,

dVi

dt = ξiSi − µiVi +
n∑
j=1

AijVj .
(3.1)

By the similar arguments to those in [37], system (3.1) has a positive equilibrium (S∗, V ∗) =

(S∗1 , S
∗
2 , · · · , S∗n, V ∗1 , V ∗2 , · · · , V ∗n ), which is globally attractive. Linearizing system (2.1) at the
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disease-free equilibrium (S∗, V ∗, 0, 0, 0, 0, 0), we get

dE1i

dt = βi(1− Cai)S
∗
i E2i

Ni
+ βi(1− Csi)S

∗
i I1i
Ni

+ βi(1− Cai)(1− τi)V
∗
i E2i

Ni
+ βi(1− Csi)(1− τi)V

∗
i I1i
Ni

− E1i

DE1i
− µiE1i +

n∑
j=1

BijE1j ,

dE2i

dt = E1i

DE1i
− E2i

DE2i
− µiE2i − diE2i +

n∑
j=1

CijE2j ,

dI1i
dt = E2i

DE2i
− I1i

DI1i
− µiI1i − diI1i.

(3.2)

Define

F1 =


β1(1− Ca1)

S∗
1+(1−τ1)V ∗

1

N1
0 · · · 0

0 β2(1− Ca2)
S∗
2+(1−τ2)V ∗

2

N2
· · · 0

...
...

. . .
...

0 0 · · · βn(1− Can)
S∗
n+(1−τn)V ∗

n

Nn

 ,

F2 =


β1(1− Cs1)

S∗
1+(1−τ1)V ∗

1

N1
0 · · · 0

0 β2(1− Cs2)
S∗
2+(1−τ2)V ∗

2

N2
· · · 0

...
...

. . .
...

0 0 · · · βn(1− Csn)
S∗
n+(1−τn)V ∗

n

Nn

 ,

V1 =


1

DE11
+ µ1 −B11 −B12 · · · −B1n(t)

−B21
1

DE12
+ µ2 −B22 · · · −B2n

...
...

. . .
...

−Bn1 −Bn2 · · · 1
DE1n

+ µn −Bnn

 ,

V2 =


1

DE21
+ µ1 + d1 − C11 −C12 · · · −C1n

−C21
1

DE22
+ µ2 + d2 − C22 · · · −C2n

...
...

. . .
...

−Cn1 −Cn2 · · · 1
DE2n

+ µn + dn − Cnn

 ,

V3 = diag( 1
DI11

+ µ1,
1

DI12
+ µ2 · · · , 1

DI1n
+ µn),

V4 = diag( 1
DE11

, 1
DE12

, · · · , 1
DE1n

)

and

V5 = diag( 1
DE21

, 1
DE22

, · · · , 1
DE2n

).

Let

Y =

 0 F1 F2

0 0 0

0 0 0

 , Z =

 V1 0 0

−V4 V2 0

0 −V5 V3

 ,
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then (3.2) can be written by
du

dt
= (Y − Z)u. (3.3)

Motivated by the concept of next generation matrices introduced in [7,22], we define the basic

reproduction number of system (2.1) as

R0 := ρ(Y Z−1), (3.4)

where ρ(A) denotes the spectral radius of a matrix A.

Let s(A) denotes the maximum real part of all the eigenvalues of the matrix A (the spectral

abscissa of A). By a similar arguments to those in [7], we have the following statements.

Theorem 3.1 R0 − 1 has the same sign as s(Y − Z).

The following two theorems give a threshold-type result on the extinction and uniform persis-

tence of COVID-19 in terms of R0.

Theorem 3.2 Assume (A1)-(A2) holds and R0 < 1, then the disease-free equilibrium E∗ =

(S∗, V ∗, 0, 0, 0, 0, 0) of system (2.1) is globally attractive.

Proof. It is easy to see that S(t) and V (t) satisfy

dSi
dt
≤ Λi − ξiSi − µiSi +

n∑
j=1

AijSj

and

dVi
dt
≤ ξiSi − µiVi +

n∑
j=1

AijVj ,

respectively. Since system (3.1) has a unique positive constant solution (S∗1 , · · · , S∗n, V ∗1 , · · · , V ∗n ),

which is global asymptotically stable, by the comparsion theorem, for any x0 ∈ R7n
+ and ε > 0,

there exists t0 > 0 such that

Si(t) ≤ S∗i + ε, Vi(t) ≤ V ∗i + ε, ∀t ≥ t0, i = 1, · · · , n.

It then follows that

dE1i

dt ≤ βi(1− Cai) (S∗
i +ε)E2i

Ni
+ βi(1− Csi) (S∗

i +ε)I1i
Ni

+ βi(1− Cai)(1− τi) (V ∗
i +ε)E2i

Ni

+ βi(1− Csi)(1− τi) (V ∗
i +ε)I1i
Ni

− E1i

DE1i
− µiE1i +

n∑
j=1

BijE1j ,

dE2i

dt ≤ E1i

DE1i
− E2i

DE2i
− µiE2i +

n∑
j=1

CijE2j ,

dI1i
dt ≤ E2i

DE2i
− I1i

DI1i
− µiI1i.

we consider the following system

dE1i

dt = βi(1− Cai) (S∗
i +ε)E2i

Ni
+ βi(1− Csi) (S∗

i +ε)I1i
Ni

+ βi(1− Cai)(1− τi) (V ∗
i +ε)E2i

Ni

+ βi(1− Csi)(1− τi) (V ∗
i +ε)I1i
Ni

− E1i

DE1i
− µiE1i +

n∑
j=1

BijE1j ,

dE2i

dt = E1i

DE1i
− E2i

DE2i
− µiE2i +

n∑
j=1

CijE2j ,

dI1i
dt = E2i

DE2i
− I1i

DI1i
− µiI1i.

(3.5)
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Let λi = βi(1 − Cai)( (N∗
i +2ε)−τi(V ∗

i +ε)
Ni

) and ηi = βi(1 − Csi)( (N∗
i +2ε)−τi(V ∗

i +ε)
Ni

), i = 1, 2, ..., n.

Denote

F ε1 =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

 , F ε2 =


η1 0 · · · 0

0 η2 · · · 0
...

...
. . .

...

0 0 · · · ηn

 .

Let

Y ε =

 0 F ε1 F ε2
0 0 0

0 0 0

 .

Since R0 < 1, then s(−Z +Y ) < 0. By the continuity of spectral bound, there exists a sufficiently

small ε1 > 0 such that s(−Z+Y ε) < 0 for 0 < ε < ε1, which implies that the trivial solution of the

system (3.5) is globally asymptotically stable. By the comparison theorem of ordinary differential

equation, we deduce that E1i → 0, E2i → 0, I1i → 0 as t → ∞, ∀i = 1, 2, · · · , n. It then follows

that system (3.1) is the limiting system of Si, Vi equation in system (2.1). We also could get that

I2, R equation admit the limiting system

dI2i
dt

= − I2i
DI2i

− µiI2i,

dRi
dt

=
I2i
DI2i

− µiRi +

n∑
j=1

DijRj .
(3.6)

It is easy to see that the solutions in (3.6) convergence to (0, · · · , 0, 0, · · · , 0). Finally, by the theory

of asymptotically autonomous systems (see, e.g. [3] ), we conclude that the solution of system (2.1)

converges to (S∗1 , · · · , S∗n, V ∗1 , · · · , V ∗n , 0, · · · , 0, 0, · · · , 0). This confirms the global attractivity of

E∗ for system (2.1) under the condition R0 < 1, and hence completes the proof.

�

Theorem 3.3 If R0 > 1, then there exists ε̃ > 0 such that the solution (S(t), V (t), E1(t), E2(t), I1(t),

I2(t), R(t)) of system (2.1) with initial data x0 in R7n
+ and (E1(0), E2(0), I1(0)) > 0̂ satisfies

lim inf
t→∞

E1i(t) > ε̃, lim inf
t→∞

E2i(t) > ε̃, lim inf
t→∞

I1i(t) > ε̃, ∀i = 1, · · · , n.

Proof. Define

X = R7n
+ ,

X0 := {(S, V,E1, E2, I1, I2, R) ∈ X : E1i > 0, E2i > 0, I1i > 0, 1 ≤ i ≤ n}

∂X0 := X\X0

Then X0 and ∂X0 are relatively open and closed in R7n, respectively. For any x0 ∈ X0, let ψt(x
0)

be the unique solution of system (2.1) with initial data x0. It is easy to see that X0 is a positively

invariant set. According to the arguments in Section 2, the solution of (2.1) is ultimately bounded
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in X, which implies that ψt : X → X is point dissipative on X. It follows from [17, Theorem 3.4.8]

that ψt has a global compact attractor A.

Define

M∂ := {x0 ∈ ∂X0 : ψt(x
0) ∈ ∂X0,∀t ≥ 0}

and

M := {x0 ∈ X : x01i = S∗i , x
0
2i = V ∗i , x

0
3i = x04i = x05i = 0,∀i = 1, · · · , n}.

We now show that

M∂ =M.

For any x0 ∈ M, the solution ψt(x
0) satisfies E1i(t, x

0) = 0, E2i(t, x
0) = 0, I1i(t, x

0) = 0, i =

1, · · · , n for all t ≥ 0. Hence, x0 ∈M∂ and M⊂M∂ .

For any x0 ∈ ∂X0\M, there is a i∗ such that (x03i∗ , x
0
4i∗ , x

0
5i∗) = (E1i∗(0), E2i∗(0), I1i∗(0)) >

(0, 0, 0).

Case 1 Let E1i∗(0) > 0. Since Bij is cooperative, the third equation of system (2.1) satisfies

dE1i∗

dt
≥ − E1i∗

DE1i∗
− µiE1i∗ +Bi∗i∗E1i∗ .

Furthermore, the fact that the matrix Bij is irreducible implies that there exists a t0 > 0 such that

E1i(t) > 0 for all i = 1, · · · , n and t ≥ t0.

From the third equation of system (2.1), we can get E2i(t) > 0 ∀i = 1, · · · , n, t ≥ t0 + 1.

Then, from the fourth equation of system (2.1), we deduct that I1i(t) > 0 for all i = 1, · · · , n and

t ≥ t0 + 2.

Case 2 Let E2i∗(0) > 0. By the fourth equation of system (2.1), we have

dE2i∗

dt
≥ − E2i∗

DE2i∗
− µiE2i∗ + Ci∗i∗E2i∗ ,

which is deduced from the fact that Cij is cooperative. Thus, we can get E2i∗(t) > 0,∀t > 0. Now,

the third equation satisfies

dE1i∗

dt
≥ βi∗(1− Cai∗)

Si∗E2i∗

Ni∗
− E1i∗

DE1i∗
− µiE1i∗ +Bi∗i∗E1i∗ .

It is easy to see that E1i∗(t) > 0 for t > 1. By the arguments in Case 1, we can obtain that

(E1(t), E2(t), I1(t))� (0, · · · , 0, 0 · · · , 0, 0, · · · , 0) for all t > t0 + 3.

Case 3 Let I1i∗(0) > 0. By the fifth equation of system (2.1), we have

dI1i∗

dt
≥ − I1i∗

DI1i∗
− µiI1i∗ .

Hence, we can get I1i∗(t) > 0,∀t > 0. Now, the second equation of system (2.1) satisfies

dE1i∗

dt
≥ βi∗(1− Csi∗)

Si∗I1i∗

Ni∗
− E1i∗

DE1i∗
− µiE1i∗ +Bi∗i∗E1i∗ .

It is easy to see that E1i∗(t) > 0 for t > 1. By the arguments in Case 1, we can obtain that

(E1(t), E2(t), I1(t))� (0, · · · , 0, 0 · · · , 0, 0, · · · , 0) for all t > t0 + 3.
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Then M∂ ⊂M. Hence, M∂ =M.

We claim that W s(M) ∩ X0 = ∅, where W s(M) is the stable manifold of M. Let λ̄i =

βi(1− Cai)( (N∗
i −2ε)−τi(V

∗
i −ε)

Ni
) and η̄i = βi(1− Csi)( (N∗

i −2ε)−τi(V
∗
i −ε)

Ni
), ∀i = 1, 2, ..., n. Denote

F̄ ε1 =


λ̄1 0 · · · 0

0 λ̄2 · · · 0
...

...
. . .

...

0 0 · · · λ̄n

 , F̄ ε2 =


η̄1 0 · · · 0

0 η̄2 · · · 0
...

...
. . .

...

0 0 η̄n

 .

Let

Ȳ ε =

 0 F ε1 F ε2
0 0 0

0 0 0

 .

Since R0 > 1, then s(Y −Z) > 0. By the continuity of spectral bound, there exists a sufficiently

small ε1 > 0 such that s(Ȳε − Z) > 0 for 0 < ε ≤ ε1.

Claim. If x0 ∈ X0, then

lim sup
t→∞

d(ψt(x
0),M) ≥ ε1

On the contrary, we assume that there exists x̄0 ∈ X0 such that lim sup
t→∞

d(ψt(x̄
0),M) < ε1. It

then follows that there exists t0 > 0 such that

S∗i − ε1 < Si(t) < S∗i + ε1, V
∗
i − ε1 < Vi(t) < V ∗i + ε1

for all t ≥ t0 and i = 1, · · · , n. Hence, we have

dE1i

dt ≥ βi(1− Cai) (S∗
i −ε1)E2i

Ni
+ βi(1− Csi) (S∗

i −ε1)I1i
Ni

+ βi(1− Cai)(1− τi) (V ∗
i −ε1)E2i

Ni

+ βi(1− Csi)(1− τi) (V ∗
i −ε1)I1i
Ni

− E1i

DE1i
− µiE1i +

n∑
j=1

BijE1j ,

dE2i

dt ≥ E1i

DE1i
− E2i

DE2i
− µiE2i +

n∑
j=1

CijE2j ,

dI1i
dt ≥ E2i

DE2i
− I1i

DI1i
− µiI1i.

(3.7)

Since −Z + Ȳε is irreducible and essentially nonnegative, it has a positive eigenvector associated

with s(−Z + Ȳε) > 0. By the comparison theorem of ordinary differential equations, we have

lim
t→∞

E1i(t) =∞, lim
t→∞

E2i(t) =∞, lim
t→∞

I1i(t) =∞, a contradiction. The claim is proved.

The set M∂ = M is an isolated invariant set and acyclic. By [26, Theorem 4.6], we conclude

that system (2.1) is uniformly persistent in X0 whenever R0 > 1. That is, there is a ε̃ > 0 such

that

lim inf
t→∞

E1i(t) > ε̃, lim inf
t→∞

E2i(t) > ε̃, lim inf
t→∞

I1i(t) > ε̃,∀i = 1, · · · , n.

This completes the proof. �

Remark 3.4 System (2.1) considers the dynamics of COVID-19 model with NPIs and viccination.

If we take τi = 0 in the above discussion, then system (2.1) implies that NPIs for incubation

with infectiousness and infection with infectiousness individuals is the only measure. Similarly, let

Csi = 0 and Cai = 0 in the above discussion, system (2.1) implies that the vaccination is considered

only.
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4 Numerical simulation

By the actual dates showed in [13], let βi = 0.7, DE1i = 2.9 Day, DE2i = 2.3 Day, DI1i = 2.9

Day, DI2i = 12 Day, ∀i = 1, 2, ..., n. In the case of one patchy, we take the data of India to estimate

the roles of NPIs and viccination in the prevention and controlling of COVID-19. In the case of

two patchy, we give the conditions for India and China to be open to navigation. Furthermore, an

appropriate dispersal of population between India and China is obtained.

4.1 The case of one patchy

Let n = 1 in system (2.1), it then follows from (3.4) that the basic reproduction number is

R0 =
β1Λ1(µ1 + ξ1(1− τ1))(DE21

(µ1 + 1
DI11

)(1− Ca1) + 1− Cs1)

µ1N1DE11
DE21

(ξ1 + µ1)(µ1 + 1
DE11

)(µ1 + 1
DI11

)(d1 + µ1 + 1
DE21

)
. (4.1)

We estimate d1 = 0.00013 Day−1. According to the dates in [47,48], we take N1 = 1380004000

µ1 = 0.00004 Day−1 and Λ1 = 65786 People/Day. It follows from the references [39–41] that the

vaccine efficacy of Pfilzer-BioNTech COVID-19 Vaccine, Moderna COVID-19 Vaccine and Janssen

COVID-19 Vaccine are 95%, 94% and 66%, respectively. Hence, we get the average efficacy of

vaccine is 85%. The following is the cumulative and active cases of COVID-19 in India from April

1, 2021 to June 28, 2021 [46]. Take the average efficiency of vaccine τ1 = 0.85 and ξ1 = 0.05

which is the date in Indian on April 1 [46]. Considering the existing prevention and control

intensity, we assume that Ca1 = Cs1 = 0.2. According to the data of cumulative and active

cases on April 1 in India, taking the initial value is (S(0), V (0), E1(0), E2(0), I1(0), I2(0), R(0)) =

(1297600506, 70104203, 129660, 102834, 115020, 475941, 11475836). Thus, the numerical simulation

results are shown in Figure 2.

Figure 2: Numerical simulation of active and cumulative cases

The discrete points represent the real data of active and cumulative cases from April 1 to June

28, 2021 in India. We found that the dynamical results fit well with the statistical data(see Figure

11



2). If the existing protection intensity and vaccine injection schedule are maintained, the numerical

simulation forecasts the trend of COVID-19 In India and the active cases will reach 100000 in July

25, 10000 in August 25 and 1000 in September 19.

Figure 3: The decrement of numbers of infectious with the increase of Cs1 and Ca1.

In the following, we investigate the role of NPIs in the controlling of COVID-19. Keeping other

parameters unchanged, Figure 3 shows that Cs1 and Ca1 can effectively reduce the number of

cumulative cases. Let P be the decrement of numbers of infectious with the increase of Cs1 and

Ca1. More intuitively, we have listed the specific numbers under the different intensity of NPIs(see

Table 1 ).

Table 1: The relationship between P and Cs1 and Ca1

Cs1

P Ca1
0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.2 1769611 4115444 6091986 7757921 9162980 10349134 11351706

0.25 4246751 6219307 7879821 9278475 10457744 11453237 12294780

0.3 6346002 8001037 9393367 10565718 11554108 12388618 13094313

0.35 8121646 9507596 10673095 11654365 12481781 13180634 13771950

0.4 9621232 10779821 11754026 12574353 13266301 13851057 14346209

0.45 10885953 11853052 12666328 13351389 13929545 14418491 14832893

0.5 11951462 12757688 13435882 14007466 14490192 14898792 15245468

It then follows from the dates in Table 1 if Cs1 remains unchanged and Ca1 is raised from 0.2 to

0.3, then there will be 6091986 fewer infected individual. Supposing that Ca1 remains unchanged

and Cs1 is raised from 0.2 to 0.3, then there will be 6346002 fewer infected individual. If both Ca1

12



and Cs1 are increased to 0.3, then there will be 9393367 fewer infected individual. According to

the disease-induced mortality rate in Indian, if we take Cs1 = 0.2, Ca1 = 0.3, then 62566 people

are saved; If Cs1 = 0.3, Ca1 = 0.2, then 65174 people are saved; If Cs1 = 0.3 and Ca1 = 0.3, then

96471 people are saved.

At present, the efficiency of vaccine is not relatively low. In the following, we assume that all

people are vaccined Janssen COVID-19 Vaccine and consider the relationship between R0 and Cs1,

Ca1(see Figure 4).

Figure 4: When τ1 = 0.66 and ξ1 = 1, the image in three dimensions of relationship among R0,

Cs1 and Ca1.

It can be seen from the above discussion that NPIs play a very significant role for the disease

control. Figure 5 is the projection of Figure 4 on the Cs1 × Ca1 plane. The red and green area

boundary line in Figure 5 represents R0 = 1. Figure 5 shows if (Ca1, Cs1) belongs to the green area,

R0 < 1 while R0 > 1 in the red area. Our numerical results shows that NPIs are indispensable

even if all the people were vaccinated when the efficiency of vaccine is relatively low. In other

words, in order to control the spread of the disease, NPIs must be strengthened to make Cs1 and

Ca1 in the green area A even if each people is vaccinated. In particular, we suggest that NPIs

should be strengthened, not weakened in India.
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Figure 5: When τ1 = 0.66 and ξ1 = 1, the relationship between Cs1 and Ca1.

The herd immunity is our ultimate goal. In the following, we study the role of the vaccine in

the absence of NPIs.

Figure 6: When Cs1 = 0 and Ca1 = 0, the relationship between ξ1 and τ1 and R0.

It then follows from Figure 6 that R0 decreases with the improvement of ξ1, and finally R0

is less than 1 when τ1 = 0.95. R0 is decreases and bigger than 1 even if ξ1 = 1 when τ1 = 0.66.

Let R0 = 1, Ca1 = Cs1 = 0 and ξ1 = 1, it then follows from (4.1) that τ1 = 0.769. In other

words, R0 > 1 always holds when τ1 < 0.769. Hence, we have gotten a minimum standard of the

efficiency of vaccine.

In the face of vaccine dose shortages and logistical challenges, it’s impossible for all people to be

vaccinated in a shorten time. It is easy see that τ1ξ1 indicates the proportion of antibody produced

after vaccination. Let Ca1 = Cs1 = ξ1 = τ1 = 0, which implies that COVID-19 transmits without

NPIs and vaccines. It then follows from (4.1) that R0 = 4.3356. Furthermore, we conclude if
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1− 1
R0

< τ1ξ1 is satisfied( [8]), then the herd immunity is formed.

Figure 7: When Ca1 = 0 and Cs1 = 0, the relationship between herd immunity and τ1 and ξ1

From Figure 7, it reveals that ξ1 = 0.769 when τ1 = 1, and τ1 = 0.769 if ξ1 = 1. The intersection

of the area C and D is called the herd immunity line which satisfies τ1ξ1 = 0.769 and C is the

herd immunity area where the condition τ1ξ1 > 0.769 is satisfied.

4.2 The case of two patches

In this subsection, we take India and China for example and investigate the conditions for two

countries to be open to navigation. Let n = 1 in system (2.1) to denote the case of India, while

the case of China corresponds to n = 2. For simplicity, let

G =

(
G11 G12

G21 G22

)
:=

(
1

DE21
+ µ1 + d1 − C11 −C12

−C21
1

DE22
+ µ2 + d2 − C22

)−1(
1

DE21
0

0 1
DE12

)
×

(
1

DE11
+ µ1 −B11 −B12

−B21
1

DE12
+ µ2 −B22

)−1

H =

(
H1 0

0 H2

)
:=

(
1

DI11
+ µ1 0

0 1
DI12

+ µ2

)−1

It then follows from (3.4) that
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R0 =
1

2
((G11β1

S∗1 + (1− τ1)V ∗1
N1

(Ca1 − 1 +
H1

DE21

(Cs1 − 1))−G22β2
S∗2 + (1− τ2)V ∗2

N2
×

(Ca2 − 1 +
H2

DE22

(Cs2 − 1)))2 + 4G12G21β1β2
(S∗1 + (1− τ1)V ∗1 )(S∗2 + (1− τ2)V ∗2 )

N1N2
×

(Ca1 − 1 +
H1

DE21

(Cs1 − 1))(Ca2 − 1 +
H2

DE22

(Cs2 − 1)))
1
2 − 1

2
G11β1

S∗1 + (1− τ1)V ∗1
N1

×

(Ca1 − 1 +
H1

DE21

(Cs1 − 1))− 1

2
G22β2

S∗2 + (1− τ2)V ∗2
N2

(Ca2 − 1 +
H2

DE22

(Cs2 − 1)),

(4.2)

where (S∗1 , S
∗
2 , V

∗
1 , V

∗
2 ) is the disease-free solution with

S∗1 =
−Λ1ξ2 − Λ1µ2 −A12Λ2 +A22Λ1

A11ξ2 +A22ξ1 +A11µ2 +A22µ1 − ξ2µ1 − ξ1µ2 − µ1µ2 − ξ1ξ2
,

S∗2 =
−Λ2ξ1 − Λ2µ1 −A11Λ2 +A21Λ1

A11ξ2 +A22ξ1 +A11µ2 +A22µ1 − ξ2µ1 − ξ1µ2 − µ1µ2 − ξ1ξ2
,

V ∗1 =
−A12S

∗
2ξ2 +A22S

∗
1ξ1 − S∗1ξ1µ2

A11µ2 +A22µ1 − µ1µ2
,

V ∗2 =
−A21S

∗
1ξ1 +A11S

∗
2ξ2 − S∗2ξ2µ1

A11µ2 +A22µ1 − µ1µ2
.

First, we consider the conditions for free navigations. By the dates in [42], let Λ2 = 32954

People/Day, N2 = 1411780000 People, µ2 = 0.000036 Day−1. We estimate the d2 = 0.00016

Day−1. According to the dates in [49], the efficacy of Sinopharm COVID-19 Vaccine is 0.73 and

Tianjin CanSino COVID-19 Vaccine is 0.66. Take the average efficacy of vaccine is 0.70. We

estimate that the number of people traveled from China to India is 250000 and from India to

China is 1400000 annually. Thus, A21 = 2.78 × 10−6 Day−1, B21 = 2.78 × 10−6 Day−1, C21 =

2.78×10−6 Day−1, D21 = 2.78×10−6 Day−1, A12 = 4.85×10−7 Day−1, B12 = 4.85×10−7 Day−1,

C12 = 4.85 × 10−7 Day−1 and D12 = 4.85 × 10−7 Day−1. In the situation of without NPIs and

vaccines, i.e., the other parameters are defined as the above and τ = τi = ξ = ξi = Cai = Csi = 0,

i = 1, 2, it then follows from (4.2) that R0 = 4.0843. By the formula of the herd immunity

1− 1
R0

< τξ, the relationships between τ and ξ are shown in the following(see Figure 8).
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Figure 8: The relationship between herd immunity and ξ and τ .

It is easy to see from Figure 8 that ξ = 0.755 when τ = 1, and τ = 0.755 if ξ = 1. The area

E is the herd immunity area. The above arguments imply that it is impossible to achieve the

herd immunity since the average efficacy of vaccine τ = 0.70. In other words, India and China do

not meet the conditions for free navigations unless it is recommended to improve the efficiency of

vaccinate or strengthen NPIs even if ξ reaches 100%.

In the following, we consider the influence of dispersal rate on the transmission of the disease.

Let Ca1 = Cs1 = 0.2, Ca2 = Cs2 = 0.6, τ1 = 0.85, τ2 = 0.7, ξ1 = 0.23, ξ2 = 0.82 and assume

A21 = B21 = C21, A12 = B12 = C12, the following is the relationship among A21, A12 and R0(see

Figure 9).

Figure 9: The relationships among A21, A12 and R0 .
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Figure 10: The projection of Figure 9.

Figure 10 implies that the basic reproduction number R0 may increase or decrease with the

increase of dispersal rate. Let A12 = A21 = 0 and the other parameters be unchanged. It then

follows from (4.1) that R0 = 0.5208 in India and R0 = 0.2831 in China. Let A12 = 4.85 × 10−7

and A21 = 0, then R0 = 0.5247. Let A12 = 0 and A21 = 2.78 × 10−6, then R0 = 0.4870. Let

A12 = 4.85 × 10−7 and A21 = 2.78 × 10−6, then R0 = 0.4910. Fixed A21, Figure 9 implies that

there exists an A12 such that R0 takes the minimum value. The green line in Figure 10 is the set

of all such points. Furthermore, we can ascertain that the smallest value R0 = 0.0.4035 which is

corresponded by the point in the plane of A12 = 2.8820∗10−9 and A21 = 1.1636∗10−5 (see Figure

10). In other word, the appropriate dispersal of population of China to India is 1486 people, and

the population of India to China is 5861071 people every year.

5 Discussion

Emphasizing non-pharmaceutical interventions(NPIs) and vaccines, the dynamics of a SVEIR

COVID-19 model is considered by means of the basic reproduction number. In the case of one

patchy, we considered the situations in India. Our numerical result predicts that the Indian

epidemic will be controlled until October if the existing intensity of NPIs and vaccine injection

schedule are maintained. If the outbreak occurs repeatedly, we suggest that NPIs should be

strengthened. Furthermore, it is shown that NPIs are indispensable even if all the people were

vaccinated when the efficiency of vaccine is relatively low. In order to obtain the herd immunity,

we speculate in numerical simulation that the minimum standard of vaccine efficiency is 76.9%.

In the face of vaccine dose shortages and logistical challenges, the herd immunity area is given. In

the case of two patchyes, we conclude that India and China do not meet the conditions for free

navigation under nowadays situations. In order to prevent the disease outbreaks, the appropriate

dispersal implies that people in the countries or regions with serious epidemic situation should be

allowed to enter into the countries or regions where the epidemic situation is mild. Certainly, the
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optimal strategy is that the counties affected slightly by COVID-19 supply medical supplies for the

countries where COVID-19 is worst. We expect that COVID-19 will die out as soon as possible by

the efforts of people of all over the world.
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