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INVARIANT GRAPH AND RANDOM BONY ATTRACTORS

F. H. GHANE∗, M.RABIEE, AND M. ZAJ

Abstract. In this paper, we deal with random attractors for dynamical systems forced by a

deterministic noise. These kind of systems are modeled as skew products where the dynamics

of the forcing process are described by the base transformation. Here, we consider skew

products over the Bernoulli shift with the unit interval fiber. We study the geometric structure

of maximal attractors, the orbit stability and stability of mixing of these skew products under

random perturbations of the fiber maps. We show that there exists an open setU in the space

of such skew products so that any skew product belonging to this set admits an attractor

which is either a continuous invariant graph or a bony graph attractor. These skew products

have negative fiber Lyapunov exponents and their fiber maps are non-uniformly contracting,

hence the non-uniform contraction rates are measured by Lyapnnov exponents. Furthermore,

each skew product ofU admits an invariant ergodic measure whose support is contained in

that attractor. Additionally, we show that the invariant measure for the perturbed system is

continuous in the Hutchinson metric.

1. Introduction

The qualitative study of dynamical systems is concerned with the study of attractors.

Knowledge of the attractors may indicate the long time behavior of the orbits. In the most

simple cases, an attractor of a dynamical system is a union of finite set of smooth manifolds.

There are interesting examples of locally dynamical systems having more complicated at-

tractors. For example in [20], Kudryashov introduced a new type of attractors so-called

bony attractors, then he presented an open set in the space of step skew products over the

Bernoulli shift such that any of them had a bony attractor. Following [20], an attractor A

of a skew product is bony if A is the union of the graph of a continuous function on some

subset of the base and an uncountable set of vertical closed intervals (bones) contained in

the closure of the graph. This feature is similar to porcupine horseshoes discovered by Diaz

and Gelfert in [10]. Indeed, from a topological point of view, a porcupine is a transitive set

that looks like a horseshoe with infinitely many spines attached at various levels and in a

dense way.

The objective of this article is to extend aforementioned result from [20] to the random

case, where the skew products are general ( not necessarily step). One novelty here is that,

in our context, in contrast the Kudryashov’ case, fiber maps are non-uniformly contracting,

therefore the contraction rates are non-uniform and hence measured by Lyapunov exponents.
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We will discuss maximal attractors of this kind of skew products and show that they are

either a continuous invariant graph or a bony attractor. Moreover, maximal attractors, carry

an invariant ergodic measure that projects to the Bernoulli measure in the base.

Notice that, in general, dynamical systems under the external forcing are modeled, in

discrete time, as skew products,

F : Ω ×M→ Ω ×M, F(ω, x) = (θω, fω(x)), (1)

where the dynamics of the forcing process are described by the base transformationθwhich is

assumed to be a measure-preserving transformation of a probability space (Ω,F ,P) (random

forcing). An invariant graph of F is the graph of a measurable function γ : Ω → M which

satisfies fω(γ(ω)) = γ(θ(ω)), for P-almost all ω ∈ Ω.

In the study of forced dynamical systems of the above form, invariant graphs play a central

role since they are the natural substitutes of a stable fixed point to the case of forced systems.

Furthermore, the existence of such invariant graphs considerably simplifies the dynamics

of the forced systems. Moreover, Lyapunov exponents yield additional information about

the stability and attractivity of invariant graphs. Attracting invariant graphs have a wide

variety of applications in many branches of nonlinear dynamics (e.g. [8, 9, 16, 17, 21, 24,

25] etc.). A context in which the attractivity of invariant graphs plays a central role is

generalised synchronisation, a phenomenon that has been widely studied in theoretical

physics. In [22] Stark provides the conditions for the existence and regularity of invariant

graphs and discusses a number of applications. His results include some generalizations

to the case of non-uniform contraction. We mention that in skew product systems with

uniformly contracting fiber maps, there exist continuous invariant attracting sets for the

overall dynamics, see [14], Theorem 6.1a, [15]. Results in the non-uniform case, when the

fiber map possesses negative Lyapunov exponents in the fibre [3, 11, 12, 29, 30], are very

recent and invariant graphs are very sensitive to perturbations.

This work is organized as follows: In Subsections 1.1 and 1.2 we recall some standard

definitions. Then we state our main result in Subsection 1.3. The proof of our main result,

Theorem A below, is given in Section 2.

1.1. Preliminaries. Assume that X is a metric measure space. Denote by int(D) and Cl(D),

respectively, the interior and the closure of any set D.

Let (X;B;µ; f ) be a measure preserving dynamical system. If f is invertible then, based

on [6, 26], the system is Bernoulli if it is isomorphic to a Bernoulli shift. Clearly invertible

systems cannot be isomorphic to non-invertible systems. But there is a construction to make

a non-invertible system invertible, namely by passing to the natural extension. For non-

invertible case, being Bernoulli means that the natural extension is isomorphic to a Bernoulli

shift.

The map f is mixing (or strong mixing) if

µ( f−n(A) ∩ B)→ µ(A)µ(B), as n→ +∞,

for every A,B ∈ B. Every mixing system [26] is necessarily ergodic.
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For a metric space X, putting

Lip1(X) = { f : X→ R : | f (x) − f (y)| ≤ d(x, y) for all x, y ∈ X},

define the Hutchinson metric on the setM(X), the space of all Borel probability measures, by

dH(ν, µ) = sup{|

∫

X

f dν −

∫

X

f dµ : f ∈ Lip1(X)|}. (2)

In [19, Thm. 3.1], the author proved that for every metric space X, the topology T onM(X)

generated by dH(ν, µ) coincides with the topology W of weak convergence if and only if

diam(X) < ∞. Moreover, the space M(X) is complete in the metric dH if and only if X is

complete (see [19, Thm. 4.2]).

The concept of a weak contraction map was introduced in 1997 by Alber and Guerre-

Delabriere [2]. We say that a continuous map f is weak contraction (or distance decreasing [4])

whenever for each x, y ∈ X with x , y, d( f (x), f (y)) < d(x, y).

It is a well-known fact [18, Coro. 3] (see also [4]) that if f is weak contraction and X is compact

then there exists a unique fixed point x ∈ X of the map f . Furthermore, for every y ∈ X,

limk→∞ f k(y) = x uniformly. Then we say that x is a weak attracting fixed point. Clearly if f is

a weak contraction map then

d( f n(y), f n(z))→ 0, as, n→∞,

for each y, z ∈ X.

1.2. Random maps and skew products. A random map with base (Ω,F ,P, θ), in the sense of

Arnold [1], is a skew product of the form (1) where (Ω,F ,P) is a probability space, θ : Ω→ Ω

is a bi-measurable and ergodic measure-preserving bijection and M is a measurable space.

If M is a smooth manifold and all fibre maps fω are Cr, we call F a random Cr-map.

Take Σ+
k
= {0, . . . , k − 1}N and Σk = {0, . . . , k − 1}Z endowed with the product topology

and equip them with the Bernoulli measures ν+ and ν, respectively, corresponding to some

distribution of probabilities p0, . . . , pk−1, which gives us the probability with which we apply

fi. Here, assume that the probabilities pi, i = 0, . . . , k − 1, are the same and equal to 1/k. Let

σ : Σk → Σk and σ+ : Σ+
k
→ Σ+

k
denote the one-sided and two-sided left shift. It is well

known that [28] σ+ and σ are ergodic transformations preserving the probabilities ν+ and ν,

respectively.

Let M be a compact smooth manifold. Here, we consider skew products of the form

F : Σk ×M→ Σk ×M; (ω, x)→ (σω, fw(x)) (3)

which is called a skew product over the Bernoulli shift, whereω ∈ Σk, x ∈M and the maps fω are

Cr diffeomorphisms on M. The space Σk is called the base, the space M is called the fiber, and

the maps fω are called the fiber maps. Thus each skew product of the form (3) is a random

Cr-map.

A skew product over the Bernoulli shift is a step skew product if the fiber maps fω depend

only on the digit ω0 and not on the whole sequence ω. We emphasise, in contrast to step

skew products, the fiber maps of (general) skew products of the form (3) depend on the
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whole sequence ω. When treating a step skew product for one sided timeN, this results in

the skew product system F+ on Σ+
k
×M:

F+ : Σ+k ×M→ Σ+k ×M; (ω, x)→ (σ+ω, fw0(x)). (4)

We denote iterates of a skew product system F of the form (3) as Fn(ω, x) = (σn(ω), f n
ω(x)).

Here, for n ≥ 1

f n
ω(x) := fσn−1ω ◦ . . . ◦ fω(x).

For a step skew product system this becomes

f n
ω(x) := fωn−1

◦ . . . ◦ fω0(x),

where ω = (. . . , ω−1, ω0, ω1, . . . , ωn, . . .) ∈ Σk.

In the rest of this article we assume that the fiber M is always the unit interval I.

TakeC(I) the space of all random C2-maps (general skew products) acting onΣk×I defined

by C2 interval diffeomorphisms. We equip C(I) with the following metric:

distC2 (F,G) := sup
ω∈Σk

(distC2( f±1
ω , g

±1
ω )), for each F,G ∈ C(I), (5)

where fω and gω are the fiber maps of F and G, respectively.

Let F : Σk × I → Σk × I be a homeomorphism onto its image, but suppose its image is

contained strictly in Σk × I. The (global) maximal attractor of F is defined as:

Amax(F) :=

∞⋂

n=0

Fn(Σk × I). (6)

1.3. Main results. To state the main result precisely, the concept of a bony attractor may

need to be introduced.

Definition 1.1. Following [20], an attractor Λ of a skew product F is a bony graph attractor if Λ is

the union of the graph of a continuous function γ defined on some set of full measure of the base and

a set of vertical closed intervals (”bones”) contained in the closure of the graph.

In this article, we will show that maximal attractors of a certain class of general skew

products (random maps) are either a continuous invariant graph or a bony attractor. Our

novelty here is that the fiber maps of such systems depend on the whole sequence ω and

hence they are not necessarily step skew products. Moreover, the fiber contraction rates are

non-uniform and hence measured by Lyapunov exponents, in addition, the attractors carry

an ergodic measure. Our result thus extends work by Kudryashov in [20] who treated step

skew products over the Bernoulli shift having bony attractors.

Theorem A. There exists an open nonempty setU in the space C2 random maps C(I) given by (5)

such that any system G belonging to this set has a maximal attractor Amax(G) satisfies the following

properties:

(1) the maximal attractor Amax(G) is either a continuous invariant graph or a bony graph

attractor;
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(2) there exists an invariant ergodic measure µG whose support is the closure of the graph ΓG,

in particular, (G, ΓG, µG) is Bernoulli and therefore it is mixing, additionally, the invariant

measure for the perturbed system is continuous in the Hutchinson metric;

(3) the fiber Lyapunov exponent of G is negative;

Moreover, the set of random maps ofU which admit a bony graph attractor is nonempty.

2. Proof of Theorem A

To prove Theorem A, we provide a single step skew product F, and show that every skew

product (random map) G ∈ C(I) (not necessarily step) which is close enough to F (with

respect to distC2 given by (5)) satisfies the conclusion of the theorem.

Consider the interval I = [0, 1] and let { f0, . . . , fk−1} a finite family of orientation preserving

(strictly increasing) C2-diffeomorphisms defined on I enjoying the following conditions:

(a) The mappings fi, i = 0, . . . , k − 1, bring the unit interval I strictly into itself and they

are C2 close to the identity.

(b) f0 is a weak contraction with a unique weak attracting fixed point p0, i.e. D f0(p0) = 1.

(c) fi, i = 1, . . . , k− 1, are uniformly contracting maps such that any of them has a unique

attracting fixed point pi.

(d) We have ”contraction on average”, i.e. for each x ∈ I,
∏k−1

i=0 D fi(x) < 1.

(e) The fixed points pi, i = 0, . . . , k − 1, are pairwise disjoint, pi , 0, 1 and satisfy the

no-cycle condition, i.e. fi(p j) , pk for each distinct indices i, j and k.

(f) Let p0 < p1 < . . . < pk−1 and J = [p0, p1]. Assume we have ”covering property”, i.e.

there exists the points x0 and x1 such that p0 < x0 < x1 < p1 and the interval B =

(x0, x1) ⊂ int(J) for which the following holds: ∀x ∈ [x0, x1], ‖D fi(x)‖ < 1 and Cl(B) ⊂

f0(B) ∪ f1(B).

Write the step skew product

F : Σk × I → Σk × I; (ω, x)→ (σω, fw0(x)) (7)

whose fiber maps are the mapping fi, i = 0, . . . , k − 1, which satisfy the properties listed

above. Fix the skew product F and take a small open ball U around F in the space C(I). To

prove Theorem A, we show that any system G belonging to this set satisfies the conclusion

of the theorem.

We define the Transfer Operator T :M(I)→M(I) by the formula,

T(µ)(B) :=
1

k

k∑

i=1

µ( f−1
i (B)),

for any Borel subset B and for each measure µ ∈ M(I), whereM(I) is the space of all Borel

probability measures on I. If a measure µ ∈ M(I) is a fixed point of the transfer operator we

say that µ is a stationary measure.

Remark 2.1. The following two facts hold:
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(1) The contraction on average condition given by (d) ensuring [23] the existence of a unique

attractive stationary probability measure m in the sense that Tnµ converges weakly to m, for

any probability measure µ ∈ M(I).

(2) For the skew product F+ of the form (4) with the fiber maps fi, i = 0, . . . , k − 1, the product

measure ν+ × m is an ergodic invariant measure. The skew product F given by (7) is the

natural extension of F+. Invariant measures for F+ with marginal ν+ and invariant measures

for F with marginal ν are in one to one relationship, as detailed in [1]. A stationary measure

m thus, through the invariant measure ν+ × m for F+, gives rise to an invariant measure µ

for F, with marginal ν.

2.1. Fiber Lyapunov exponents. For each Lipschitz map f : I→ I we define the norm ‖.‖ by

‖ f ‖ := sup
x,x′

| f (x) − f (x′)|

|x − x′|
. (8)

It is easily seen that, whenever f is C1, by Mean value theorem for real-valued functions,

‖ f ‖ = sup{‖D f (x)‖ : x ∈ I}.

For the skew product F(ω, x) = (σω, f (ω, x)) = (σω, fω0(x)) given by (7), consider a sequence

of functions ϕn defined by ϕn(ω) = ‖ f n(ω, .)‖. It is simply verified that the family of func-

tions {an} defined by an(ω) = log(ϕn(ω)) is subadditive. By definition of the mappings fi,

i = 0, . . . , k − 1, and the functions ϕn one has that log+(ϕ1) ∈ L1(ν), hence by Kingman’s

Subadditive Theorem [26, Thm. 3.3.3], the limit

λ(ω) := lim
n→∞

1

n
log ‖ f n(ω, .)‖ (9)

exists at ν-almost every point. Moreover, the function λ ∈ L1(ν) and

lim
n→∞

1

n
log ‖ f n(ω, .)‖ = inf

n

1

n
log ‖ f n(ω, .)‖. (10)

By ergodicity of ν, the limit (9) is constant, denoted byλ. The contraction on average property

given by condition (d) ensures that λ is negative. The constantλ is called the m-fiber Lyapunov

exponent with respect to ν.

Lemma 2.2. There exists an open subset U ⊂ C(I) containing F such that any skew product G

belonging to this set admits a negative m-fiber Lyapunov exponents with respect to ν.

Proof. Take small neighborhoods Ui ⊂ Diff2(I) of the fiber maps fi, i = 0, . . . , k − 1, of F and

letU ⊂ C(I) a small open neighborhood of F enjoying the following property: there exists a

constant C > 0 such that for any G ∈ U with G(ω, x) = (σω, g(ω, x)) = (σω, gω(x)) one has that

∀ω ∈ Σk, the map gω ∈ Uω0 , and distC2 (gω, gω′) < Cd(ω,ω′), for any ω,ω′ ∈ Σk. (11)

Then, by this fact and (10), for given a sufficiently small ε > 0 there exists δ > 0 such that if

diam(Ui) < δ then

lim
n→∞

1

n
log‖gn(ω, .)‖ = λ + ε < 0, for ν a.e. ω ∈ Σk. (12)

In particular, G possesses a negative m-fiber Lyapunov exponent. �
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2.2. Maximal attractors and invariant graphs. For the step skew product F given by (7)

and any general skew product G ∈ U, consider the maximal attractors Amax(F) and Amax(G),

respectively, defined by

Amax(F) :=
⋂

n≥0

Fn(Σk × I), Amax(G) :=
⋂

n≥0

Gn(Σk × I). (13)

A first main step in the proof of Theorem A is to show that the attractor is an invariant graph.

For that, we get the next proposition which is an analogue of [7, Thm. 5], [22, Thm. 1.4] and

[5, Pro. 2.3] to our setting.

Proposition 2.3. Consider the skew product F given by (7). For each general skew product G ∈ U,

given by Lemma 2.2, there exists a measurable function γG : Ω ⊆ Σk → I, with ν(Ω) = 1 such that

ΓG the graph of γG is invariant under G. The closure of the graph ΓG is the support of an invariant

ergodic measure µG, in particular, (G, ΓG, µG) is Bernoulli and hence it is mixing. Furthermore, ΓG

is attracting in the sense that for ω ∈ Ω, limn→∞ |πx(Gn(ω, x))−γG(σnω)| = 0 for every x ∈ I, where

πx is the natural projection from Σk × I to I.

Proof. By Lemma 2.2, each G ∈ U has negative m-fiber Lyapunov exponent. By (12), given

ε > 0 there exists a measurable function C : Σk → R
+ such that for ν a.e. ω ∈ Σk, we have

‖gn(ω, .)‖ < C(ω)e(λ+ε)n, for all n > 0. (14)

Since the Bernoulli shift σ is ergodic and invertible hence σ−1 is ergodic with respect to ν and

has the same spectrum of Lyapunov exponents by Furstenberg-Kesten Theorem [13]. Thus

if we define

hn(ω, x) := gn(σ−nω, x)

then by (12)

lim
n→∞

1

n
log‖hn(ω, .)‖ = λ + ε < 0, for ν a.e. ω ∈ Σk.

Hence there exists ℓ(ω) such that

‖hn(ω, .)‖ < en(λ+ε) ∀n ≥ ℓ(ω).

Thus given ε > 0 there exists a measurable function C : Σk → R
+ such that for ν a.e. ω ∈ Σk,

we have

‖hn(ω, .)‖ < C(ω)e(λ+ε)n, for all n > 0. (15)

Applying the approach used in the proof of [5, Pro. 2.3], we conclude that the sequence

{hℓ(ω, x)} is a Cauchy sequence for every x ∈ I and a.e. ω ∈ Σk. Indeed, let

α(x) := sup
ω∈Σk

|x − g(ω, x)|

and note that for x fixed α(x) is finite as Σk is compact and g is continuous. Given any ε′ > 0,

choose ℓ∗(ω) sufficiently large that

α(x)C(ω)

∞∑

j=ℓ∗(ω)

e j(λ+ε) < ε′.
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Then if m > ℓ > ℓ∗(ω)

|hm(ω, x) − hℓ(ω, x)| ≤ α(x)

∞∑

j=ℓ

‖h j(ω, .)‖ ≤ α(x)c(ω)

∞∑

j=ℓ

e j(λ+ε) < ε′.

To see this note that

|hm(ω, x) − hℓ(ω, x)| = |hm(ω, x) − hm−1(ω, x) + . . . + hℓ+1(ω, x) − hℓ(ω, x)|.

Note that applying G once to (σ−k(ω), x), gives G(σ−k(ω), x) = (σ−(k−1)(ω), g(σ−k(ω), x)). Thus,

hk(ω, x) − hk−1(ω, x) = hk−1(ω, g(σ−k(ω), x))) − hk−1(ω, x). As a result,

|hk−1(ω, x) − hk(ω, x)| ≤ ‖hk−1(ω, .)‖|x − g(σ−k(ω), x))|.

Hence

|hm(ω, x) − hℓ(ω, x)| ≤ |hm(ω, x) − hm−1(ω, x)| + . . . + |hℓ+1(ω, x) − hℓ(ω, x)|

=
∑m

j=ℓ+1 |h j(ω, x) − h j−1(ω, x)|

≤
∑m

j=ℓ+1 ‖h j−1(ω, .)‖|x − g(σ− j(ω), x))|

≤
∑∞

j=ℓ+1 ‖h j−1(ω, .)‖α(x).

Thus

|hm(ω, x) − hℓ(ω, x)| ≤ α(x)
∑∞

j=ℓ+1 ‖h j−1(ω, .)‖

= α(x)C(ω)
∑∞

j=ℓ+1 e( j−1)(λ+ε) < ε′

as ℓ > ℓ∗(ω). Thus there exists a subset Ω ⊆ Σk, with ν(Ω) = 1, so that for each ω ∈ Ω the

sequence {hm(ω, x)} is a Cauchy sequence for every x ∈ I. Define

γG : Ω→ I, γG(ω) := lim
n→+∞

hn(ω, 0). (16)

Since

G(ω, hℓ(ω, 0)) = (σω, hℓ+1(σω, 0)),

we see that

G(ω, γG(ω)) = (σω, γG(σω))

and hence ΓG, the graph of γG is invariant under G. Furthermore, by construction, for every

ω ∈ Ω, one has

lim
n→+∞

|gn(ω, x) − gn(ω, γG(ω))| = lim
n→+∞

|gn(ω, x) − gn(ω, 0)| = 0. (17)

This is because

|gn(ω, x) − gn(ω, 0)| ≤ ‖gn(ω, .)‖|x|

and ‖gn(ω, .)‖ → 0 as n→ +∞.

Therefore, for every ω ∈ Ω,

lim
n→+∞

gσ−1ω ◦ . . . ◦ gσ−nω(I) = lim
n→+∞

gσ−1ω ◦ . . . ◦ gσ−nω(0) = γG(ω). (18)

Hence, γG induces an invariant graph for G which is an attracting set by (18).
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Consider the projection pG : ΓG → Σk, pG(ω, γG(ω)) = ω, which is an isomorphism onto its

image and the measure

µG = (pG)∗ν = ν ◦ (id × γG)−1. (19)

Then the mixing properties of the base transformation (σ,Σk, ν) lift to the transformation

(G, ΓGΓ, µG). In particular, µG is Bernoulli which implies that it is mixing. Every system that

is mixing is also ergodic. Hence µG is an ergodic measure. �

We now point out that the previous proposition with together the next two results establish

assertions (1) and (2) of the main result of this article, Theorem A.

Proposition 2.4. For each skew product G ∈ U the maximal attractor Amax(G) is either a continuous

invariant graph or a bony attractor.

Proof. Take a skew product G ∈ U with G(ω, x) = (σω, g(ω, x)) = (σω, gω(x)). By the previous

proposition there exists a measurable function γG : Ω ⊆ Σk → I, with ν(Ω) = 1, such that ΓG

the graph of γG is invariant under G. We claim that ΓG ⊂ Amax(G).

Indeed, since Aω := Amax(G) ∩ Iω =
⋂

n≥0 I(ω, n), where I(ω, n) := gσ−1ω ◦ . . . ◦ gσ−nω(I) and

Iω := {ω} × I, and by using (18), one has

lim
n→+∞

gσ−1(ω) ◦ · · · ◦ gσ−n(ω)(I) = lim
n→+∞

gσ−1(ω) ◦ · · · ◦ gσ−n(ω)(0) = γG(ω),

for each ω ∈ Ω, hence we observe that ΓG ⊂ Amax(G), as claimed.

Note that I(ω, n) is a sequence of nested intervals, and thus Aω = Amax(G) ∩ Iω is either

an interval or a single point. Also note that if some sequences ω and ω′ are close enough to

each other, say,

ω′−n = ω−n, . . . , ω
′
−1 = ω−1

then, using I(ω′, n) ⊃ Aω′ , we deduce I(ω, n) ⊃ Aω′ . This implies the upper-semicontinuity of

Aω. This semicontinuity, will immediately imply the continuity of its graph part.

Now there are two possibilities: eitherΩ = Σk and hence Amax(G) is a continuous invariant

graph, or the bones exist. In the later case, to verify that Amax(G) is actually a bony attractor,

it is enough to show that the set of bones contained in the closure of the graph. This will be

done in the following lemma which completes the proof of the proposition. �

Lemma 2.5. Let G ∈ U be a small perturbation of the skew product F given by (7) such that its

maximal attractor Amax(G) contains the bones with a graph function γG defined on a full measure

subset Ω ⊂ Σk. Then the bones are contained in the closure of the graph ΓG.

Proof. To prove the lemma it is enough to show that the maximal attractor Amax(G) coincides

with the closure of the intersection Amax(G) ∩ (Ω × I).

First, we notice that the fiber maps fi, i = 1, . . . , k− 1, of F are uniformly contracting maps,

by condition (c), and the skew product G is C2-close to F, hence, by (11), every sequence

ω ∈ Σk without a tail of 0’s to the left belong toΩ. Assume (ω, x) ∈ Amax(G) with ω ∈ Σk \Ω.

Then the sequenceω has a tail of 0’s to the left (i.e. there exists n0 ∈N so that for each n > n0,

one has ω−n = 0). We denote the set of sequences ω′ such that ωi = ω
′
i

for i ∈ [−N,N] by
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UN(ω) and the ε-neighborhood of the point x by Vε(x). Take n > n0 > N with n = n0 + 2m for

large enough m and h = g−1
σ−(n0+m)ω

◦ . . . ◦ g−1
σ−1ω

. Note that σ−(n0+m)ω has the following form

σ−(n0+m)ω = (. . . , 0, . . . , 0; 0, . . . , 0︸  ︷︷  ︸
m−times

, ω−n0 , . . . , ω−1, ω0, ω1, ω0, . . .).

Then the point (ω′, x′) = (σ−(n0+m)(ω), h(x)) ∈ Amax(G). Now we take the sequence

ω̃ = (. . . , 1, 1, 0, . . . , 0︸  ︷︷  ︸
2m−times

, ω−n0 , . . . , ω−1;ω0, ω1, . . .)

which has a tail of 1’s to the left. Since f1 is a uniformly contracting map, G is C2-close

to F and by (11), we conclude that diam(gω̃−n
, . . . , gω̃−1

(I)) → 0 whenever n → +∞. Thus

ω̃ ∈ Ω. Moreover, for 0 < δ < ε < 1 small and large enough k, one has diam(gσ−n0−2m−kω̃ ◦ . . . ◦

gσ−n0−2m−2kω̃(I)) < δ < ε. Let us take Iδ = gσ−n0−2m−kω̃ ◦ . . . ◦ gσ−n0−2m−2kω̃(I). Then for large enough

m, we have

gσ−n0−m−1ω̃ ◦ . . . ◦ gσ−n0−2mω̃(Iδ) ⊂ h(Vε(x)).

Thus, the pair (ω̃, γG(ω̃)) belongs to the intersection Amax(G) ∩ (Ω × I) ∩ (UN(ω) × Vε(x)) and

hence the conclusion of the lemma holds. �

The next result ensures that the subset of all skew products G ∈ U having a bony attractor

is nonempty.

Lemma 2.6. There exists a small perturbation G ∈ U of F which admits a bony graph attractor in

the sense of Definition 1.1. In particular, the subset of bones has the cardinality of the continuum and

is dense in the attractor.

Proof. Consider the fiber map f0 satisfies conditions (a) and (b) in the beginning of Section 2

with a weak attracting fixed point p0, and take a map g, C2-close to f0, such that g = id on a

small neighborhood U of the point p0. Now take a small perturbation G of F so that for the

sequence ω = (. . . , 0, 0, 0, . . .) ∈ Σk one has gω = g. As you have seen before, for Iω = {ω} × I,

and I(ω, n) = gσ−1(ω) ◦ · · · ◦ gσ−n(ω)(I), one has Amax(G)
⋂

Iω =
⋂

n≥0 I(ω, n). Thus, we get

I(ω, n) = gσ−1(ω) ◦ · · · ◦ gσ−n(ω)(I) = g ◦ . . . ◦ g
︸     ︷︷     ︸

(n)−times

(I) = gn(I)

which ensures that Amax(G)
⋂

Iω =
⋂

n≥0 I(ω, n) is an interval, hence Amax(G) is a bony attrac-

tor. Moreover, for each sequence ω′ ∈ Σk of the form ω′ = (. . . , 0, 0;ω′
1
, ω′

2
, . . .), it is not hard

to see that Amax(G)
⋂

Iω′ is an interval.

Furthermore, by construction, for any finite wordα of the alphabets {0, 1, . . . , k−1} and a se-

quence ρ of the form ρ = (. . . , 0, 0, α, 0, 0, . . .) withα standing at the zero position, Amax(G)
⋂

Iρ
contains an interval. Thus the subset of bones has the cardinality of the continuum and is

dense in the attractor Amax(G). �

In what follows, we show that the maximal attractor Amax(F) is thick, this means that the

projection of Amax(F) on the fiber has positive Lebesgue measure.
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Lemma 2.7. Consider the skew product F given by (7). Then the maximal attractor Amax(F) is thick.

Proof. First, we recall conditions (a) − ( f ) in the beginning of this section. By Proposition 2.3

and conditions (b) and (c), the maximal attractor Amax(F) is a continuous invariant graph.

Consider the graph function γF : Σk → I and let K = γF(Σk). We apply the covering property

from condition ( f ) and show that the interval B with B ⊂ J = [p0, p1] introduced by ( f ) is

contained in K. By this fact, Remark 2.1, the definition of measure µF given by (19) and by

construction, the maximal attractor Amax(F) is thick. For that, we show that for each x ∈ B,

there exists a sequence (ω−n)n≥1 of {0, 1} so that

x = lim
n→+∞

fω−1
◦ . . . ◦ fω−n(I). (20)

First, we define, inductively, a sequence (ω−n)n≥1 of {0, 1} so that

x = lim
n→+∞

fω−1
◦ . . . ◦ fω−n(B). (21)

Assume that we have found ω−1, . . . , ω−n ∈ {0, 1} so that x ∈ fω−1
◦ . . . ◦ fω−n(B). Then the

covering property implies that

x ∈ fω−1
◦ . . . ◦ fω−n(B) ⊂

1⋃

i=0

fω−1
◦ . . . ◦ fω−n ◦ fi(B),

hence we can find ω−(n+1) such that x ∈ fω−1
◦ . . .◦ fω−n ◦ fω−(n+1)

(B). Take any sequenceω′ ∈ Σk

so that for each n ≥ 1, we have ω′−n = ω−n. Then it is easily seen that

x = lim
n→∞

fω−1
◦ . . . ◦ fω−n(B) = lim

n→∞
fω−1
◦ . . . ◦ fω−n(I) = lim

n→∞
fω′
−1
◦ . . . ◦ fω′−n

(I),

as we claimed. �

The next proposition is an analogue of [5, Thm. 3.1] to our setting. It asserts that the

invariant measure for the perturbed system is continuous in the Hutchinson metric.

Proposition 2.8. Suppose G ∈ U with G(ω, x) = (σω, g(ω, x)). Then for given ε > 0, by shrinking

U, for ν almost every ω ∈ Σk and all x ∈ I, one has that

d(Fn(ω, x),Gn(ω, x)) < ε,

except for at most a fraction ε of times n, where the distance d between two points of Σk × I is the sum

of the distances between their projections onto the base and onto the fiber.

Furthermore, dH(µF, µG) < ε, where dH is Hutchinson metric given by (2) and µF and µG are the

measures obtained from Proposition 2.3 for F and G.
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