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A TRAJECTORY-DRIVEN ALGORITHM FOR DIFFERENTIATING
SRB MEASURES ON UNSTABLE MANIFOLDS*

ADAM A. SLIWIAKT AND QIQI WANG

Abstract. SRB measures are limiting stationary distributions describing the statistical behavior
of chaotic dynamical systems. Directional derivatives of SRB measure densities conditioned on
unstable manifolds are critical in the sensitivity analysis of hyperbolic chaos. These derivatives,
known as the SRB density gradients, are by-products of the regularization of Lebesgue integrals
appearing in the original linear response expression. In this paper, we propose a novel trajectory-
driven algorithm for computing the SRB density gradient defined for systems with high-dimensional
unstable manifolds. We apply the concept of measure preservation together with the chain rule on
smooth manifolds. Due to the recursive one-step nature of our derivations, the proposed procedure is
memory-efficient and can be naturally integrated with existing Monte Carlo schemes widely used in
computational chaotic dynamics. We numerically show the exponential convergence of our scheme,
analyze the computational cost, and present its use in the context of Monte Carlo integration.
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1. Introduction. Due to their seemingly irregular and quasi-random behavior,
a mathematical description of chaotic dynamical systems might be challenging. A
major breakthrough in the analysis of chaos was the introduction of the SRB (Sinai-
Ruelle-Bowen) measure p [26]. This scalar quantity, defined on a compact Riemannian
manifold, contains a coherent statistical description of the dynamics. Intuitively, the
SRB measure represents the likelihood of the trajectory passing through a non-zero-
volume region of a strange attractor. Although the concept of SRB measures was
originally applied to Axiom A systems, several rigorous studies extended this idea
even beyond the universe of uniformly hyperbolic systems [34, 11, 12].

Lebesgue integrals with respect to u, which represent expected values of certain
smooth observables, are fundamental in the analysis of chaos. Under the assumption of
ergodicity, they equal the time-average of an infinitely-long sequence generated along
a trajectory. Integrals of this type can thus be approximated using a Monte Carlo
method. If the integrand involves highly-oscillatory derivatives, then the Monte Carlo
integration might be prohibitively expensive due to a large variance of the sample
[31]. In case of derivatives of functions evaluated at a future time (see examples of
such integrands in [10, 29, 15, 2]), the direct use of any integration scheme might be
impossible due to the butterfly effect. Indeed, the application of the chain rule results
in a product of the system’s Jacobian matrices whose norms increase exponentially
in time. A remedy for this computational difficulty is integration by parts, which
moves the differentiation operator away from the problematic function to the SRB
measure. This is in fact a consequence of the generalized fundamental theorem of
calculus. In addition to the boundary term, we effectively obtain a new Lebesgue
integral involving a product of the antiderivative of the original integrand and the
SRB density gradient g = dlogp = dp/p, where p denotes the density of y (i.e., the
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Radon-Nikodym derivative [23]).

The SRB density gradient is critical in the sensitivity analysis of chaos. The ma-
jor implication of Ruelle’s linear response theory is a closed-form expression for the
parametric derivative of long-time averages (a.k.a. the system’s sensitivity) [27, 28].
The space-split sensitivity (S3) method [8, 10] reformulates Ruelle’s formula to a
computable form by splitting the perturbation vector and performing integration by
parts on unstable manifolds. Using the S3 formula, one can construct an efficient
and provably convergent Monte Carlo algorithm for sensitivities in uniformly hyper-
bolic systems. This algorithm requires computing the SRB density gradient defined
as a directional derivative of p conditioned on the unstable manifold. Indeed, the
SRB measure is generally singular with respect to Lebesgue measure in the stable
direction [34]. This approach of the regularization of Ruelle’s integrals on unstable
manifolds has also been applied in [24] to derive a fast linear response algorithm for
differentiating SRB states. Several algorithms for sensitivity analysis that stem from
the Fluctuation-Dissipation Theorem (FDT) [17] also require g [2, 1]. Motivated by
empirical data of certain chaotic models, some FDT-based methods assume Gaussian
distribution of measure [15]. Such an assumption reduces the FDT linear response
operator to a simple time autocorrelation function, which dramatically facilitates the
sensitivity computation for the cost of limited applicability. The density gradient can
also be used as an reliable indicator of the differentiability of statistical quantities
[30] in chaotic systems. In particular, the slope of the distribution tail of g have
been shown to be strictly associated with the existence of parametric derivatives of
statistics. Therefore, we seek a numerical procedure for g that does not make any
assumptions about the statistical behavior of the system and is thus generalizable to
any chaotic dynamical system that admits SRB measures.

There already exist algorithms for the SRB density gradient derived for systems
with one-dimensional unstable manifolds. In case of simple one-dimensional maps, one
can derive an exponentially convergent recursion for g using the measure preservation
property [29]. The same formula can be inferred using the fact the SRB density is an
eigenfunction of the Frobenius-Perron operator with eigenvalue 1 [30]. The authors
of [9] propose an ergodic-averaging algorithm for self-derivatives (i.e., directional de-
rivatives along one-dimensional expanding directions) of covariant Lyapunov vectors
(CLVs) corresponding to the only positive Lyapunov exponent, which are tangent to
unstable manifolds at any point on the attractor. Using the chain rule on smooth
manifolds, one can show g depends on the self-derivative of CLV at the previous time
step, and this relation is governed by a second-order tangent equation [9, 30]. In a
recent work, Ni [24] proposes an algorithm for divergence on the unstable manifold
using approximate shadowing coordinates instead of the full basis of the expanding
subspace, as opposed to the S3 method.

In this paper, we systematically derive a trajectory-driven algorithm for the SRB
density gradient by extending the measure preservation property to high-dimensional
smooth manifolds. Using the density-based parameterization of unstable manifolds
and the chain rule, it is possible to establish a recursive relation for the evolution of
first- and second-order parametric derivatives of the coordinate chart. By definition,
this chart is strictly associated with g and can be interpreted as an SRB inverse
cumulative distribution (quantile function). This type of parameterization, motivated
by popular methods of statistical inference [13], has been thoroughly explained by the
authors in [31] in the context of simple Lebesgue measures. Through the relation of g,
the coordinate map and its parametric derivatives, we show the density gradient can
be computed by solving a collection of first- and second-order tangent equations. We
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also show that the recurring problem of the butterfly effect, which leads to exploding
norms of tangent solutions, can be eliminated by iterative orthonormalization of the
chart gradient. The major benefit of our derivation is that it is naturally translatable
to a practicable algorithm that can be easily integrated with existing methods for
sensitivity analysis of chaos.

This paper is structured as follows. In Section 2, we introduce the SRB measure,
its gradient, and highlight their importance in the field of chaotic dynamics. Subse-
quently, in Section 3, we apply the density-based parameterization for the description
of unstable manifolds to derive recursive relations for the SRB density gradient. This
derivation is followed by a numerical example involving a chaotic map with straight
one-dimensional expanding subspaces. Section 4 generalizes all the concepts to high-
dimensional chaotic maps with an arbitrary number of positive Lyapunov exponents
(LEs). Based on the systematically derived iterative relations, a practicable algorithm
for g is thoroughly described. We analyze its cost, memory requirements and conver-
gence. In the same section, we also demonstrate a numerical example of Monte Carlo
integration, which requires the computation of g. Section 5 summarizes this work.

2. SRB measure and its gradient: definitions and significance. Consider
a diffeomorphic map ¢ : M — M, M € R*, n € Z* with an Axiom A attractor. The-
orem 1 of [34] asserts that there exists an invariant and physical probability measure
u (and its density p), which satisfies:
1. Invariance/conservation of measure condition:

(2.1) 1(A) = p(e~"(4))

for any Borel subset A C M.
2. Physicality condition: for any smooth f: M — R,

N-1

@2) [ f@du) = [ 1) pla)dufe) = Jim 1 3 Foet (o)

M M —oo N P
where dw denotes the Riemmanian volume element. The initial state xq is
assumed to be p-typical and ¢*(-) = o(¢*~1(+)), p! = ¢, ° =1d.

3. Absolute continuity: Conditional measure of 1 denoted by fi,, and defined on
the unstable manifold U, at point = € U, is absolutely continuous (analogous
property applies to the conditional density gy ).

4. Singularity with respect to Lebesgue measure: g is generally sharp in the
stable direction (across unstable manifolds).

5. Unit measure axiom (probability universe):

[ duta) = [ pta) dte) = (i) = 1.
M M

The measure p and its density p are respectively known as the SRB measure and
SRB density distribution. We listed their properties most important in the context
of this paper; however, the reader is referred to [34] for a detailed description of other
significant features. One can think about Property (1) as the mass conservation law.
For example, consider a Borel subset B C M with a uniform measure that is mapped
to ¢(B) € M. If we divide p(B) into a finite number of subsets occupying the
same volume, each of them generally has a different measure. In other words, each
subset generally has its unique weight unless ¢ represents a simple translation and/or
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F1a. 1. This figure graphically represents the measure preservation property. The localization
of green bullets represents the SRB density on some 1D subspace of a 2D manifold M. All green
bullets are equally weighted. In this sketch, we observe u(By) = p(Bg+1) and Bri1 = ¢(Bk),
where By, C M and Bipi1 C M are parameterized by smooth charts, z(€) : [0,1] — By and
41(8) : [0,1] = Bjg41, respectively.

rotation. Property (2) states that the SRB measure is physical, which means that by
observing the system’s evolution for an infinitely long period of time we can assign a
weight (density) to each non-zero-volume region of the attractor. The expected value
of any smooth function defined on M can be computed as a simple volume integral
over M of that function multiplied by the density function. Figure 1 graphically
explains Property (1), while the remaining four properties and their consequences are
further explained and illustrated in the following sections.

As mentioned above, SRB measures are guaranteed to exist in Axiom A (or,
uniformly hyperbolic) systems. Different rigorous studies indicate that uniform hy-
perbolicity is in fact not required for the existence of u. For example, partially hy-
perbolic systems that have a mostly expanding [3] or contracting [7] central direction
also admit SRB measures. In addition, many high-dimensional systems arising from
discretization of real-world PDE models behave as uniformly hyperbolic systems, per
the hyperbolicity hypothesis [14].

In many engineering applications, the expected value of some physically relevant
quantity f € L'(p), i.e., fM fdu, is usually of interest. The major challenge in the
field of sensitivity analysis of chaos is to find a parametric derivative of the expected
value, which is critical in grid adaptation [20], optimization design [16] and uncer-
tainty quantification [32]. Ruelle rigorously derived a closed-form expression for that
derivative [27, 28],

(23) i [ 1@ @ =3 [ prost@) o)

where y denotes the derivative of ¢ with respect to the map parameter s, while
D is a phase space differentiation operator. One could potentially apply a Monte
Carlo algorithm to the integrals on the RHS of Eq. 2.3. However, owing to the
butterfly effect, the direct evaluation of the integrand for a higher ¢ is computationally
infeasible. To illustrate this problem, let us consider the 2D Arnold’s cat map ¢ :
[0,1]% — [0, 1] defined as

(2.4) Tpy1 = Azpmodl, A= E ﬂ ,
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FIG. 2. Evaluation of the composite function f o @t(x) on the manifold M = [0,1]% at four
consecutive steps t. In this case, the map ¢ is the Arnold’s cat map (Eq. 2.4), while f(z() () =
sin(7rx<1)) sin(ﬂx(Q)). This particular ¢ is a classical representative of an Anosov diffeomorphism.

and some smooth function f(z). In Figure 2, we observe that even for a low ¢, f o ¢!
becomes highly-oscillatory, which implies that || D(fo!)|| grows very fast (||-|| denotes
the Euclidean norm in R™). Due to the presence of positive Lyapunov exponents in
chaotic systems, the rate of growth is in fact exponential. It means that Ruelle’s
formula is impractical for a direct Monte Carlo computation.

To circumvent this problem, one can apply integration by parts to move the
differentiation operator away from the composite function. This idea was originally
applied in the novel S3 method [8, 10], and later also in Ni’s approximate method [24]
for sensitivity analysis. In case of integrals with respect to a non-uniform measure,
integration by parts requires differentiating the measure itself. However, according
to Property (3) and Property (4), Dp generally does not exist. In this section, let
us assume X equals a unit vector ¢ that is tangent to the one-dimensional unstable
manifold at every point on the manifold M. Thus, every integral from the RHS of
Eq. 2.3 can be regularized through partial integration as follows,

(25) 1= /M Dfi(x) - a(x) du(x)
(2.6) - /M/U /U Di(5) - 4(s) dfia(s) di)

(2.7) - /M/U [ 010 e(0) ds djo)
(2.8) - /M/U | 9ets9) o(s(6)) d dio)
(2.9) =— /M/U /U, f1(8) Oyps(s) ds dji(x) + (boundary term)

= — saqﬁISNSAx undar rm
(2100 - /M/U/UI Fuls) 22 (5) diic(s) i) + (boundany term)
(2.11) =— /M fi(x) g(x) du(z) + (boundary term),

Tn a general case, x # q and thus an extra step is required to regularize Ruelle’s formula.
This step involves a splitting of x into two terms, such that one term belongs to unstable manifolds
everywhere on M. The reader is referred to [8, 10] for a detailed description of this process.
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where fi(x) := f o (¢'(x)). To derive the final form of I, we perform the following
steps. First (Step 2.6), we disintegrate 1 on a measurable partition U determined by
the geometry of unstable manifolds. The quotient measure ji is defined such that for
all Borel sets B C M,

u(B) = /M/U (B O U,) di(),

where [i, is a conditional SRB measure with density p,. Subsequently, in Step 2.7, we
use the measure-density relation, dfi, = p, ds, where s denotes the path length as we
move along U,. In Step 2.8, we parameterize U,, which gives rise to ds = ||2/(§)|| d€.
Note the multiplicative factor is absorbed by the parametric derivative of f, because
Ocf = ||/ (€)]| Os f. Integration by parts is applied in Step 2.9, where the differentiation
operator is moved from f to p. In Steps 2.10-2.11, we reshuffle terms and use the above
identities again to simplify the final expression. Integration by parts also gives rise to
a boundary term, which involves two integrals with respect to the quotient measure
of f p, evaluated at £ = 0 and { = 1, respectively. From now on, we shall drop the
subscript notation for conditional distributions; the tilde (-) notation shall imply the
given distribution is restricted to a local unstable manifold. Note the boundary term,

(2.12) (borundasy term) = [ | 1P SO, i),

can be expressed in terms of a regular volume integral over M of the divergence on
unstable manifolds, which vanishes according to Theorem 3.1(b) of [27]. This is indeed
a direct consequence of the fact the boundary terms across two neighboring rectangles
of the Markov partition of M cancel out. To visualize this property, let us consider
the Arnold’s cat map (Eq. 2.4), for example. Despite its “artificial” discontinuities
due to the modulo operator, this nonlinear transformation in fact maps a smooth
torus to itself. One could arbitrarily change the boundaries of the square M in both
phase space directions without modifying the map itself, and still describe the same
torus.

Since fM Dfy-qdu=— fM fr gdu, we can thus alternatively apply Monte Carlo
to the RHS that involves the SRB density gradient g [10, 30, 29],

Ol 0gpe)
(2.13) gla) = ~I0T = LS = 0ylog ().

Note that the integrand appearing in the regularized version of I does not grow
exponentially with ¢ if f is bounded, which makes the sensitivity formula computable
(immune to the butterfly effect). The integration by parts, as presented above, is
generally useful if the integrand involves highly-oscillatory functions. The Monte
Carlo integral example presented in [31] shows that the partial integration may reduce
the number of samples a few orders of magnitude to achieve the desired approximation
error. Therefore, the computation of g might be beneficial not only in the context of
the Ruelle/S3/FDT-based method for sensitivity approximation, but also in a general
setting when the expected value of an ill-behaved quantity of interest in a chaotic
system is needed. The following two sections focus on the computation of g for
systems with an arbitrary number of positive LEs. The primary goal is to derive a
recursive procedure compatible with Monte Carlo algorithms, which are widely used
in the field.
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3. Computing SRB density gradient for systems with one-dimensional
unstable manifolds. In this section, we consider a generic n-dimensional, n € Z™,
uniformly hyperbolic dynamical system with one-dimensional unstable manifold gov-
erned by the C? diffeomorphic map ¢ : M — M. M is thus a Riemannian manifold
immersed in R™. There exists a measurable partition U of M such that each member
of that partition, U,, coincides with the unstable manifold that contains z € M. In
this particular case, each U, C M is geometrically represented by a curve embedded
in R™. We strive to compute the directional derivative of the logarithmic SRB density
g defined by Eq. 2.13.

3.1. Derivation of the iterative formula. The following notation is used
throughout this section. Let (¢) : [0,1] — Uy C M denote a C? chart (diffeomorphic
map) that describes the unstable manifold Uy, k € Z. For any k, two charts x(§)
and z41(§), defined respectively on Uy and U1, are related as follows,

(3.1) zrt1(§) = p(zk(§))

for all € € [0, 1] (see Figure 1 for an illustration of an n = 2 case). We use Dy and D%y
to respectively denote the Jacobian (n x n matrix) and Hessian (n x n x n third-order
tensor) of p. Since ¢ is invertible, Eq. 3.1 can be viewed as a mathematical description
of the evolution of SRB measure. For any observable f defined on M, evaluated
along a certain trajectory, we use the following short-hand notation, f o zg(&) := fk.
Derivatives of the chart with respect to the parameter ¢ are denoted using the prime
(") symbol. A reference to the i-th component of a vector /matrix/tensor is indicated
inside round brackets located in the superscript; for example, ¢(¥ denotes the i-th
component of ¢. Finally, we use 9; to denote differentiation with respect to the i-th
coordinate of phase space.
Let us parameterize Uy such that

(3.2) £= p(xk(§)) ds,
Ci(§)

where Ci(€) represents the segment of Uy between zx(0) and zx(€), which implies
that C(1) = Ug. Consequently, gy is the conditional SRB density restricted to Uy
satisfying pr = pr/ ka prds. We call it a measure-based parameterization, as the
value of the parameter £ coincides with the value of SRB measure at x(£) € Ug. The
variable transformation between £ and the arc length s implies that

(3-3) k() lzi (Ol = 1.

Note Eq. 3.3 is in fact a formula for the density change from a uniform to nonuniform
distribution due to the nonlinear variable transformation x (). Since £ € [0,1], pr,
&, xp, can be respectively viewed as a probability density function (PDF), cumulative
distribution (CDF), and inverse cumulative distribution (quantile function). Using
the measure-based parametrization as described above, the SRB density gradient,
defined in Eq. 2.13, can be expressed in terms of parametric derivatives of the chart,
ie.,
DyPr; 2y, () - 2y (§)

for any ¢ € [0,1]. Here, the derivative J, is computed in the direction of increasing
value of €. The reader is referred to the authors’ previous work in [31], where Eq.
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3.4 is derived by differentiating Eq. 3.3, and comprehensively described using various
numerical examples.
We notice z}.(§) = ||z, (&) ¢(zx(§)), and rewrite Eq. 3.4 to

' m = —a(@x () - alzr(€)) = ~ax - k-

Eq. 3.5 indicates that the magnitude of the SRB density gradient equals the length
of the projection of the (re-scaled) curve acceleration vector on the line tangent to
the curve. We now use Eq. 3.1, differentiate it twice with respect to £, and apply the
chain rule to obtain the following expression,

(3.6) 2 41(€) = D*p(xk(€)) (4(8), 24(€)) + Dp(a(€)) 2K (€),

which means that

(3.5) 9(wx(§)) = —q(zr(§))

L ©

MG

|24 PD2¢(wr(€)) (a(wr(€)). a@r(€))) | Diplan()e(€)
EAG]E EGE

The bilinear form that appears in the first term on the RHS of Eq. 3.7 can be expressed
using Einstein’s summation convention, i.e., [D?p(q, q)]¥*) = 81-8]-@(’“) q ¢\,

Given ||, (€)| = aax(€)) 2}, (€, where a(z(€)) = [ De(zr) alzx(€)]l, we
have

a(zk+1(€))
(3.7)

D?0)k(qr, qr) + (Do)k ak
(3.8) it = (D20)k( a% (Dy) '

From the parametric derivative of Eq. 3.1 and the definition of a(z(€)), the recursion

D
(39) Qg1 = Pk gk

automatically follows. We emphasize the fact the above procedure for g (involving Eq.
3.5, 3.8, 3.9) is completely analogous to the algorithm proposed in Section 4.2 of [31],
which was meant for simple Lebesgue measures evolving due to a generic non-chaotic
diffeomorphisms. Here, however, we consider the evolution of the SRB measure in
a chaotic system. Due to the butterfly effect, the tangent solution exponentially
increases in norm. Therefore, we need the normalizing factor « in the iterative formula
for a and ¢ along the trajectory. Since ¢ is uniformly hyperbolic, the solution to the
tangent equation in Eq. 3.9 converges exponentially in k£ to the backward Lyapunov
vector that is tangent to the unstable manifold regardless of the choice of the initial
condition gg. Under the same assumption, the recursion in Eq. 3.8 for the acceleration
vector a also converges uniformly in £ at an exponential rate to the true solution for
any initial condition ap bounded in norm. The reader is referred to Lemma 7.7 in [10]
for the proof of the preceding statement.

To summarize, using the measure-based manifold parameterization, we derived a
simple recursive procedure for the SRB density gradient that exponentially converges
in case of uniformly hyperbolic systems and does not depend on initial conditions.
As for now, we restrict ourselves to systems with one-dimensional unstable manifolds.
Our main intention here is to introduce basic concepts before we move to general
cases in Section 4.
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3.2. Numerical example: computing SRB density gradient on straight
unstable manifolds. As a pedagogical example, let us consider a family of n-
dimensional maps, n € Z™*, whose unstable manifolds are straight and, without loss of
generality, aligned with the first coordinate of the phase space. Certainly, this family
includes, but is not limited to, all one-dimensional chaotic maps. In this particular
case, ¢ = 601 where ¢ denotes the Kronecker delta. Consequently, the paramet-
ric derivative of the chart x4 (&), for any k, has all zero entries except the first one
and, therefore, o (€)) = |01 (2% (€))|. Thus, our recursive algorithm for g, which
involves Eq. 3.5, 3.8, and 3.9, reduces to a single scalar iterative formula,

I CR Q) I )
e (@(€))  (rpD (an(€)))?

for all £ € [0,1]. We were allowed to drop the absolute values, because z},(§) > 0,
which is a consequence of our choice of the manifold parameterization. In this simple
event of a straight unstable manifold, only two scalars are required to advance the
iteration, i.e., first- and second-order derivative (in phase space) of the first component
of ¢, since the map is expanding only in one direction. This result is fully consistent
with early non-systematic attempts to construct such a procedure for ¢ in [29, 30].
The previous studies used the measure preservation property to derive an analogous
version of Eq. 3.10.

To verify the correctness of our procedure, we consider the 2D perturbed Baker’s
map ¢ : M — M, with M = [0, 27]2, defined as follows [10],

(3.10) 9(zr41(8))

Qx(l)
Tpy1 = p(a)) = (Lf)ﬂ +I;L$k/7TJ] "

s1/2 sin(ay) /2) + 52/2 sin(2ay) sin(@) [\ o
83 sin(x,(f)) + 54/2 sin(2x,(€1)) sin(m,(f)) ’

(3.11)

where s1, o, 83, 84 are real-valued map parameters. If all of them are zero, we obtain
the classical Baker’s map (first term of the RHS of Eq. 3.11), which is named after
the kneading operation that bakers apply to a two-dimensional square dough. In
particular, the dough is first stretched horizontally (in the unstable direction) by
a constant factor, then compressed vertically (in the stable direction) by the same
factor, and so forth. The square-shaped domain is stretched to a 2 x 1 rectangle, cut
into two squares, which are subsequently stacked horizontally. The Baker’s map is an
invertible chaotic map with one positive and one negative Lyapunov exponent.

By introducing an extra term proportional to the four parameters, we perturb
the kneading operation in the direction not necessarily aligned with the phase space
directions. Indeed, by manipulating these parameters’ values, we can control the
shape of the unstable manifold, which gives us an excellent study case in the context
of the SRB gradient computation. Notice, for example, if s; = 0 and s3 is sufficiently
small, the iteration in Eq. 3.9 produces g whose second coordinate, q,(f), converges
exponentially to zero with k. In this case, therefore, unstable manifolds are straight
and aligned with the z()-axis. We use this observation to design our first numerical
test.

In the first experiment, we consider the Baker’s map defined by Eq. 3.11 with
s1 = s3 = s4 = 0 and sy = 0.4. The left-hand side plot in Figure 3 illustrates the
normalized SRB distribution corresponding to this parameter choice, which represents
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Fic. 3. SRB distribution of the Baker’s map with s1 = s3 = sq4 = 0, s2 = 0.4 (left plot) and
s1 =82 = 53 = 0, 84 = 0.4 (right plot). We divided M into 2562 rectangular bins of equal width and
counted the number of times the trajectory passed through each of these bins. In this experiment, we
generated 8000 trajectories of length 209, 715, 200, which gives us a total of approzimately 1.68 1012
samples.

the probability of the trajectory passing through each square bin everywhere on M
(see the caption of Figure 3 for more details; for completeness, we also included a case
with s4 # 0). We observe a smooth behavior of the SRB distribution with respect to
(M at any vertical level 2(?). However, as we travel vertically, in the stable direction,
the SRB distribution varies sharply. These radically different behaviors are typical
symptoms of Property (3) and Property (4) of u described in Section 2, and they can
also be observed in Figure 4, where the conditional and marginal SRB distributions
are plotted, using data from Figure 3.

In Figure 4, we also plot the SRB density gradients defined on five different
unstable manifolds. To compute g, the simplified recursion from Eq. 3.10 was directly
applied. To validate our computation, we approximated g by applying the central
finite-difference method to SRB densities plotted above. We observe a good agreement
between the results obtained with these two different approaches, which confirms the
correctness of our algorithm.

To conclude, in case of straight unstable manifolds, the SRB density gradient can
be computed using the simplified recursive relation along trajectory (Eq. 3.10), which
we verify through finite-differencing. This iteration is computationally cheap, as it
involves solving a scalar tangent equation featuring both the first and second derivative
of the first component of ¢. In Appendix A, we show Eq. 3.10 can also be applied
to popular one-dimensional maps that are non-injective. We argue that certain non-
measure-preserving transformations have their higher-dimensional analogs similar to
the classical Baker’s map. Appendix B presents a numerical study confirming the
hyperbolicity of the Baker’s map.

4. Computing SRB density gradient for systems with general unstable
manifolds. We shall generalize the concepts introduced in Section 3 to systems with
m-dimensional unstable manifolds, m € Z™. In other words, we consider general n-
dimensional chaotic systems that have m positive LEs, 1 < m < n. In this setting,
the chart 2 (€), k € ZT, is a diffeomorphism that maps an m-dimensional hypercube,
[0,1]™, to the local unstable manifold Uy C M. For example, if m = 2 and n = 3,
then the system has two positive LEs and its unstable manifolds are planes immersed
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F1G. 4. Upper left plot: conditional SRB distributions (SRB densities) corresponding to five
different unstable manifolds. The numbers 36,72,108,144,180 appearing in the legend represent
the index of the horizontal bin row. For example, the red line corresponds to the SRB density
defined on the unstable manifold at (2 = 72/256 - 2w &~ 1.76. Upper right plot: marginal SRB
distribution obtained through integrating the first coordinate out. Lower plot: SRB density gradient
g corresponding to SRB densities plotted in Figure . The g function was computed using two
distinct approaches: through the simplified trajectory-based recursion (Eq. 3.10)(solid lines), and
the central finite-difference method (dots). The oscillation of the finite-difference approzimation is
a manifestation of the statistical noise.

in R D M.

4.1. Derivation of the iterative formula. As introduced above, let us con-
sider an m-dimensional smooth unstable manifold Uy described by the chart xj(§) :
[0,1]™ — U, C M. The vectors zj = [x,(cl)7...,x,(cn)]T and ¢ = [€D) ., 0™]T have
n and m components, respectively, and 0 < ¢ < 1,4 =1,...,m. We use Vexp(€)
to denote the parametric gradient tensor of the chart. The i-th column of Vexy(§)
contains the derivative of x;(€) with respect to £, i.e., Oerxr(§). For any Borel
subset V' C [0,1]™ such that z,(V) = By C Uy, the SRB measure-density relation
can be expressed as follows,

(4.1) (V) = /B Pi(x) dw(z),

where dw(x) denotes the natural volume element defined everywhere on Uj. Anal-
ogously to the 1D case described in Section 3, pj represents the conditional SRB
density defined on Uy. If we QR-factorize the parametric gradient of xy(§),

(4.2) Ve (&) = Q(zr(§)) R(xk(§))
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at any £ € [0,1]™, the density conservation property can be expressed as

(4.3) plar(§)) | det R(zx(€))| = 1,

which is a generalization of Eq. 3.3. By differentiating Eq. 4.3 with respect to ¢ and
applying a non-trivial chain rule, we obtain

9D (21(8)) =0q o) (g ¢ 108 A1 (€)) =
(4.4) tr (QT (@k(8)) Oew Vern(§) R (zn(€)))
[0¢cr 2z ()] 7

or, equivalently,

QU (xk(€)) - D Deam i (€) (R™H)F) (2(€))
[[Ocor e (€)

for all £ € [0,1]™, where the repeated indices imply summation (Einstein’s conven-
tion), while the superscript : ¢ denotes the i-th column of a matrix. This expression
was obtained by employing the orthonogonality of () and upper-triangular structure
of R. It is computationally convenient as it does not involve parametric derivatives
of the determinant of R. The reader is referred to [31] for a step-by-step derivation
of Eq. 4.3-4.5.

The purpose of this section is to derive an iterative (trajectory-driven) procedure
for g. Analogously to the derivation in Section 3, we combine Eq. 4.5, the evolution
equation

(4.6) rr11(§) = p(zr(§)),

and apply the chain rule. The 1D case, however, was computationally simpler be-
cause the tangent equations for a and g were regularized by the scalar a every time
step preventing the tangent solutions from blow-ups due to the positive LE (i.e., the
butterfly effect). Note that here we need to compute all first- and second-order para-
metric derivatives of the chart to compute g. Since we strive to derive a recursive
relation, we regularize tangent equations in a fashion analogous to the approach in
Section 3. To achieve this goal, one can recursively orthonormalize the parametric
gradient through an iterative linear transformation of the parameterization and fixing
& = 0. In particular, we change variables from step k to k + 1 such that

(4.5) gD (@) = -

Ehr1 = Riq1 &p-

Note that at £ = 0 we stay on the same trajectory despite the transformation. This
particular choice of £ does not restrict our algorithm to concrete trajectories. Indeed,
we want to “visit” all infinitesimally small p-typical regions of the attractor after
an infinite number of time steps, regardless of the choice of the initial condition.
Therefore, we can always linearly re-scale the feasible space of £ such that & = 0
for our arbitrary choice of the initial condition. To simplify the notation, we skip
the argument in our notation whenever ¢ = 0; for example, we use the short-hand
notation z(0) = xg, Q(xx(0)) := Qk, and so forth. Thanks to this particular
transformation, the parametric gradient is automatically orthonormalized, because
the chain rule implies that

(4.7) Vern @it = Ve rn Bidy = Qry,
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or, equivalently,
(4.8) 8§I(Ci+)1xk+1 = 3§§cj)$k+1 (R]:_,’l_l)(ji) — Qéi)l

It means that the parametric gradient of the chart has an orthonormal basis of the
column space in the updated coordinate system. Note the R matrix represents the
Jacobian of the step-to-step parametric transformation, i.e., Rgy1 = 0&k+1/9&. In an
analogous manner, we can derive a similar relation for the Hessian of 51, represented
by an n X m X m tensor,

—1 \(pi —1 \(qj
(4.9) 551(63135]<j+>lxk+1 = 0w Oewrr1 (R 1)@ (R ).,
The major benefit of the variable change is a dramatic simplification of Eq. 4.5.
Indeed, in the orthonormalized system, the R matrix reduces to the identity matrix,
while the norm of each column of the parametric gradient equals 1. This gives rise to
the following expression for g,

gl =—tr (Qfﬂ ag(i)vkak-‘rl) =
(4.10) () ) G3) . (6.d)

- Qi '%L’La&iﬁlx’““ = Q-

Consequently, only two ingredients are necessary to compute the density gradient
function at £ = 0. First, we need the orthogonal basis of the column space of the
parametric gradient V¢, xx41. A recursive formula for the basis can be obtained by
differentiating the system in Eq. 4.6 and performing QR factorization, i.e.,

(411) V§k$k+1 = Dgok ngxk = Qk+1 Rk+1-

Therefore, per Eq. 4.7, we automatically obtain the orthonormal parametric gradient
at the next time step without the need of inverting Ry 1. Since the orthonormalization
is performed in a recursive manner, V¢, 2, = Q) by construction. To complete the
algorithm, we also need a recursion for a. This equation can be naturally derived by
differentiating Eq. 4.6 twice, which gives rise to

0 0 » i1 = D k(0,0 Tk, gt Tk) + Diph Oyt Oy
= D*0u(Qil, Q}) + Deoway”.

Note that in order to compute the SRB density gradient at step k£ + 1, we need to
apply the Hessian re-scaling described by Eq. 4.9 to retrieve agyi. We summarize
this algorithm and carefully analyse its computational properties in Section 4.2.

The procedure in Eq. 4.11 reduces to the recursion in Eq. 3.9 if m = 1. Regardless
of the choice of initial condition Qg, the column vectors of @ rigorously converge to
backward Lyapunov vectors as k — oo [18]. The set of these column vectors is in fact
an orthonormal basis of the unstable (expanding) subspace E}* of the tangent space
T Mj. Specific directions of backward Lyapunov vectors, however, depend on the
choice of QQg. Therefore, in this case, the “convergence” should be understood that,
for any orthonormal g, the column space of Q) is guaranteed to coincide with some
orthonormal basis of E} if & — oo. A similar procedure can be used to compute all
n Lyapunov vectors, including those corresponding to the negative LEs, spanning the
stable (contracting) subspace E7. In uniformly hyperbolic systems, TM;, = E}' & E;

(4.12)
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at every k, and both the subspaces are Dy-invariant (or covariant). The covariance
property implies that the product D@k, which we compute in Eq. 4.11, outputs
m vectors that belong to the unstable subspace of the tangent space at the next time
step, TMy41. In general, the new vectors are not orthonormal. By performing the
QR factorization, however, we obtain an orthonormal basis of the unstable subspace
at k+1. Therefore, the components of Ry contain projections of the column vectors
of Dy Q) onto the basis vectors of Ey .

We also observe the general recursion for the acceleration vector a in Eq. 4.12
can be simplified to its one-dimensional counterpart in Eq. 3.8 if m = 1. Using the
properties of uniform hyperbolicity, the authors of [10, 9] rigorously show the recur-
sion for a (a.k.a. unstable manifold curvature equation) in systems with one positive
LE rigorously converges at an exponential rate. To the best of our knowledge, no
rigorous results for higher-dimensional cases exist. The proof of convergence for sys-
tems with one-dimensional unstable subspaces uses the fact a; can be expressed as
Ci + Dpp_1...Dpg ao/Hf:_Ol a?_,, where C}, does not depend on ag (see Section 3
for the notation explanation). By the uniform expansion property, the ag-dependent
term exponentially converges to zero if k — oco. In case of general systems, we find
similar dependencies between a;” and all initial conditions for the second-order tan-
gent equation. Here, instead of re-scaling with respect to the length of the projection
of Dy, g, onto qiy1, we are re-scaling with respect to the collection of projections
included in the Rj4; matrix. Moveover, the process of computing a in the general
case involves inverting Rj.1, not just a scalar, which makes it hard to directly apply
the properties resulting from the uniform hyperbolicity assumption. Therefore, in
this paper, we resort to an empirical study of the convergence of our algorithm (see
Section 4.2). Note that even if the recursion converges, the specific direction of a is
not unique at any point on M, because @ is also not unique as discussed above. Their
product, however, that equals the SRB density gradient g is unique by construction.

4.2. General algorithm for high-dimensional systems. We provide a prac-
ticable algorithm based on the derivation presented in the previous section. In ad-
dition, we carefully analyse its computational cost, memory requirements, and nu-
merically investigate its convergence. Algorithm 1 summarizes all steps necessary to
numerically compute the SRB density gradient at N points along a trajectory ini-
tiated at zg € M C R"™. The only optional step is included in Line 1; this step is
meant to compute the dimension of the unstable subspace/manifold m. For many
chaotic maps, this parameter is known a priori and therefore Line 1 can be skipped.
If this is not the case, however, one can apply Benettin et al.’s numerical procedure
[5] to approximate a subset of the spectrum of Lyapunov exponents. This procedure
requires solving 4 € Z* homogeneous tangent equations to identity i largest LEs. The
parameter T represents the trajectory length and affects the accuracy of LE approxi-
mation. If the LE spectrum is evidently separated from the origin (i.e., the value of 0),
then T does not need to be large. Lines 3-22 of Algorithm 1 represent the main time
for-loop that computes the g vector at one point on the manifold per iteration. Inside
this loop, we distinguish five major stages: 1) advancing first-order tangent equation
and QR factorization (Eq. 4.11), 2) advancing second order tangent equations (Eq.
4.12), 3) inverting the R matrix and rescaling the acceleration vector a (Eq. 4.9),
4) evaluating g (Eq. 4.10), and 5) transitioning to the next time step; updating the
Jacobian and Hessian.

Table 1 summarizes the computational cost of Algorithm 1. The third column of
this table includes the number of the floating point operations required in each stage
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Algorithm 1: SRB density gradient
Input : N, T, zg, n = size(zo)
1 m = Benettin(7T) if m unknown;

N

Randomly generate Qy, a(()i’j ) such that ncol(Qo) = m,

nrow(Qp) = size(aff’j)) =n,QlQu=1,andi,j =1,....,m;

3 for k=0,..., N —1do // main time loop

4 | Sk = Doy Qx;

5 QR-factorize: Qgy1 Ri+1 = Sk;

6 Invert Ry41;

7 for i=1,..,m do // 2nd-order tangent equations
8 for j=1,...,ido

o | ay?) = D@7, Q7)) + Dy
10 end
11 end
12 fori=1,...,m do // re-scaling

13 for j=1,...,ido

14 | =an? RO R

15 end
16 end
17 fori=1,...,m do // evaluating g

o | ] o= ol el
19 end
20 | @py1 = o(Tp);
21 Evaluate: Dyy11 and D%y 1;

22 end
Output: g,(:), i=1,..mk=1,..N—-1

as a function of the trajectory length (N or T), system dimension n, and unstable
manifold dimension m. Note the third column includes only the leading term of the
flop count. The final two stages involve evaluations of nonlinear equations defined
by ¢ and thus their computational cost is problem-dependent. In many physics-
inspired chaotic systems the cost of Lines 20-21 is relatively low. Consider the Lorenz
‘63 system, for example. In this case, we can think of ¢ as a time discretization
operator of the continuous-in-time system. For Lorenz '63, the Jacobian Dy involves
a collection of linear terms proportional to the coordinates of 2, while the Hessian D%
is constant. In many scientific/engineering applications, PDE models are discretized
in space using schemes with local support (such as the finite element method), which
implies the resulting Jacobians and Hessians of the fully-discretized system are sparse.
Therefore, in these special cases, the cost of the most expensive stage of Algorithm 1,
which involves second-order tangent equations, can potentially be reduced to N nm?.
Table 1, however, reflects the worst-case scenario in which no sparsity patterns occur.
We also highlight the fact that in many high-dimensional chaotic systems m < n
[6]. Thus, if n is large, the re-scaling stage (Lines 12-16) is rather cheaper than the
second-order tangent equation stage (Lines 7-11).

We conclude that the leading term of the total flop count of Algorithm 1 is
proportional to N n®m? in a general chaotic system. In many real-world problems,
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TABLE 1
Computational cost of Algorithm 1.

’ Stage Name \ Line No. \ Total Cost ‘
Computing m (Benettin’s algorithm) 1 Tn’m
Generating initial conditions 2 —
Advancing first-order tangent equations 4 Nn?m
QR factorization (Householder) 5 Nnm?
Inverting R 6 Nm3
Advancing second-order tangent equations 7-11 Nn3m?
Re-scaling a 12-16 Nnm?
Computing g 17-19 Nnm?
Advancing primal equation 20 Varies
Evaluating Jacobian and Hessian 21 Varies

however, the final cost can be significantly reduced if one takes the advantage of a
system’s special structure. Our algorithm is moderately cheap in terms of the memory
requirements. The most memory-consuming structure is the Hessian which, in the
worst-case scenario, requires storing n3 floats. As we pointed out above, however, in
practical high-dimensional models, the actual “size” of the Hessian might be dramat-
ically smaller. Note also that, in order to advance tangent equations, we need to store
m n-dimensional basis vectors (i.e., column vectors of Q) and ~ 1/2m? acceleration
vectors. The 1/2 factor is a consequence of the assumed smoothness of the coordinate
chart, which implies (/) = a(%) everywhere on the manifold. Notice also that the
our procedure is in fact a one-step method, which means that all quantities at step
k + 1 require data only from step k. We do not need to store data generated at
previous time steps.

The final aspect of our algorithm is its convergence. As we mentioned in the pre-
vious sections, the convergence of the Lyapunov vector equation and the second-order
tangent (unstable manifold curvature) equation is rigorously guaranteed in uniformly
hyperbolic systems if m = 1. Moreover, the convergence rate is exponential in such
systems. Since we lack generalization of these theoretical studies, we perform a numer-
ical test to investigate convergence properties of Algorithm 1. For this purpose, we use
the Baker’s map introduced in Eq. 3.11, as well as its 3D version ¢ : [0, 27]®> — [0, 27]3
defined as

2901(;)
Tr1 = @(or) = 3392,2)
2P /6 + |z /7] + 7/3|2 /(27 /3))
51 sin(Qz,(cl)) sin(3/2 :cf))
+ | s sin(xg)) sin(3 xf)) mod 2,

sg sin(6 xk?’))

(4.13)

which we shall refer to as the 3D Baker’s map. This is an invertible chaotic map with
two positive and one negative LEs, and seemingly hyperbolic behavior (see Appendix
B for more details). This map has two expanding directions, along the =M and
2 axes, and one contracting direction along the third axis. Analogously to its
2D counterpart, this map models the kneading operation. The dough is extended
by the factor 2 and 3 along the two orthogonal directions on the (") — z(2) plane,
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FIG. 5. Relation between ||gr 1 — gk,2|| and the time step k in the semilogarithmic scaling. This
plot contains nine curves of three different colors. Each color corresponds to a different map: 2D
Baker’s map with curved unstable manifolds (blue), 2D Baker’s map with straight unstable manifolds
(red), and 8D Baker’s map with s1 =0, s2 = 0.9, s3 = 0.1 (green). In case of the 2D Baker’s map,
the parameter values are the same as those in Figure 3.

cut into 2 - 3 = 6 squares, which are subsequently stacked in the order defined by
the floor functions. These history-dependent floor functions are used to guarantee
the invertibility of the nonlinear transformation by periodically distributing the third
component of xj11 across [0, 27]. Higher-dimensional Baker’s maps have been widely
used in image encryption as a convenient generalization of Bernoulli shifts [25, 21].

To analyse the convergence, we generate three sufficiently long trajectories started
at randomly chosen initial conditions xq. For each of these trajectories, we run two
independent simulations with different, randomly chosen initial conditions for the
tangent equations (see Line 2 of Algorithm 1). Motivated by the rigorous studies, we
investigate if (and how) the difference between the SRB density gradients computed
along a single trajectory but using different initial conditions for tangent equations
decreases in norm as we advance the iteration. In particular, we compute ||gr1 —
gr2ll, & = 0,1,2,... for two random initial condition choices for tangent equations
per trajectory, labelled as 1 and 2. The relation between this norm and time step &
for three different chaotic models is plotted in Figure 5. The g function is generated
using Algorithm 1 for the 2D Baker’s map with m =1 (Eq. 3.11), as well as the 3D
Baker’s map with m = 2 (Eq. 4.13).

We observe the norm-versus-k relation is linear in the semilogarithmic scale, which
clearly indicates an exponential convergence of our algorithm if applied to the Baker’s
map. This result implies that a relatively small number of steps (k ~ 50) is required to
obtain the machine-precision value of the norm. Note also that the choice of trajectory
(z9) or model has a negligible effect on the error.

4.3. Numerical example: Monte Carlo integration. To validate Algorithm
1, we consider a square-integrable function f(z) € L?(x) and integrate it with respect
to the SRB measure p using a Monte Carlo procedure. By the Central Limit Theorem,
this integral can be approximated by taking the average of the sample distributed
according to p, while the approximation error is upper-bounded by +/Var(f)/N, i.e.,

N-1
(a.19 [ perante) S0 X s < 0 T,
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where C > 0 and xp41 = p(xr) € M. Therefore, by generating a sufficiently long
trajectory and evaluating f at every point along it, we gradually approach the sought-
after solution. Motivated by particular applications of the SRB density gradient
function (see Sections 1-2), we consider f(z) := Y 7" dgcnv(z), where v(z) : M — R
is some smooth function. In other words, we strive to integrate a sum of m directional
derivatives along m-dimensional unstable manifolds of the scalar function v(z). Note
integrals of this type are critical in the sensitivity computation using, for example,
the general S3 method [8, 10]. Thanks to the partial integration (see Eq. 2.5-2.11),
we can apply Monte Carlo to two alternative versions of the same integral, since

(4.15) /Za@;)v ) dp(w /Mzg“ dp(z).

Using this equation, we validate Algorithm 1 for g by comparing numerical approxi-
mations of the LHS and RHS. Due to its trajectory-driven structure, Algorithm 1 is
naturally compatible with the Monte Carlo procedure.

Two different maps shall be tested. First, we shall consider the 2D Baker’s map
(Eq. 3.11) with s4, = 0.4 and s1 = s2 = s3 = 0. As illustrated in Figure 3, its unstable
manifolds are curved and therefore the simplified version of the recursion for g (Eq.
3.10) cannot be used. In this particular case, ¢ has in fact two nonzero components.
Indeed, we numerically estimate that

(2)

(1) ~ 0.24rad ~ 14°,

max arctan
kel,2,....N

which is consistent with the illustration of unstable manifolds in Figure 3. The second
map is the 3D Baker’s map (Eq. 4.13) with s; = 0,s2 = 0.9, s3 = 0.1. One can easily
verify unstable manifolds of this map are flat surfaces aligned with the (" -z(2) plane.
These expanding surfaces could be curved by adding an z(*)-dependent perturbation
term to the third component of the map.

Figure 6 includes results of the integration test. Our primary conclusion is that
the Monte Carlo approximations of the LHS and RHS of Eq. 4.15 approach each other
as N — oo with the rate O(1/v/N), which directly confirms the correctness of Algo-
rithm 1. Recall we require g to regularize the linear response formula, as it involves
derivatives of strongly-oscillatory functions (see Section 2). The examples presented
in this section, however, include mildly-oscillatory functions v(z) with derivatives that
behave similarly (note they involve a combination of trigonometric, exponential and
linear functions). Nevertheless, we observe significantly smaller errors of the RHS
approximation in the 2D Baker’s map case. Note the approximation error of Monte
Carlo integration also depends on the variance of the integrand, which can be upper-
bounded by a quantity proportional to the L?(u)-norm of the SRB density gradient
g, denoted by ||g|| 2. Indeed, ||g|l 24 equals O(1072) and O(10') for the 2D and
3D Baker’s map, respectively. This explains the significantly better performance of
the Monte Carlo procedure in the former case. Therefore, if ||g||z2(,) exists and is
sufficiently small, Monte Carlo integration might be significantly cheaper if applied
to the regularized integrals of this type, regardless of the behavior of v(z). If g is not
even Lebesgue-integrable, i.e. g ¢ L'(u), the integrals in Eq. 4.15 do not converge,
as showed in [30].

5. Conclusions. Ruelle’s linear response formula is fundamental in the con-
struction of numerical methods for sensitivity analysis of n-dimensional hyperbolic
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F1G. 6. Error of the Monte Carlo approzimation of the LHS (blue dots) and RHS (orange dots)
of Eq. 4.15 versus the amount of data N used. Left: 2D Baker’s map. Here, we compute the relative
error with respect to the reference value -1.05335809 (which equals the approzimation of the RHS
integral at N = 10'3) for v(z) = sin(z(?) exp(x(?)). Right: 3D Baker’s map. Here, we compute
the absolute error with respect to the reference value of 0 for v(z) = sin(z(M) sin(3/2z) z(3), The
dashed lines represent the slope —1/2 in the logarithmic scaling.

chaotic systems. Its original form, however, is impractical for direct computation
due to the presence of derivatives of composite functions that grow exponentially in
time. Fortunately, it is possible to easily regularize this expression through partial
integration. In case of nonuniform measures describing the statistics of chaos, the
by-product of the integration by parts, per the generalized fundamental theorem of
calculus, involves the SRB density gradient g defined as the directional derivative of
conditional SRB density on m-dimensional unstable manifolds. Computation of g is
the price that must be paid for a computable version of Ruelle’s formula.

Using the measure-based coordinate parameterization, the time evolution of the
measure gradient is rigorously derived by applying the measure preservation property,
differentiating the coordinate charts with the chain rule on smooth manifolds. Indeed,
g can be computed in a recursive manner by solving a set of O(m) first- and O(m?)
second-order tangent equations, as well as step-by-step QR-factorization and inversion
of n x m and m X m matrices, respectively. While the total cost of approximating g
at N consecutive points along a trajectory is O(Nn3m?) in the worst-case scenario,
the actual computational cost may scale linearly with the dimension of the system
in many real-world models due to their sparse structure. Moreover, this procedure
requires storing O(m?) n-dimensional vectors only from the current time step to
advance the iteration in time. Therefore, in terms of the hardware requirements,
our algorithm would definitely be a reasonable choice for high-dimensional physical
systems since m < n.

The algorithm we propose is compatible with existing methods for sensitivity
analysis that stem from the linear response theory, including the space-split sensitiv-
ity (S3) and FDT-based methods. Many of them approximate sensitivities through
an ergodic-averaging Monte Carlo procedure and require knowledge of the directional
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derivative of conditional SRB measures. Moreover, g can be used to assess the differ-
entiability of statistical quantities in hyperbolic systems, which a recurring theme in
theoretical studies of chaos. Thus, we believe our method provides a new major tool
for both rigorous analysis and applied studies of large chaotic systems.

Acknowledgments. The authors acknowledge the MIT SuperCloud and Lincoln
Laboratory Supercomputing Center for providing HPC resources that have contrib-
uted to the research results reported within this paper.

Appendix A. Applying the simplified recursive formula for SRB density
gradient to 1D non-injective maps.

Throughout this paper, we assume ¢ is an invertible map. Based on this as-
sumption, we directly use the measure preservation property to derive a recursive
formula for g, including the simplified version for maps with straight unstable man-
ifolds, as described in Section 3.2. However, in the literature, one can find several
one-dimensional maps such as the sawtooth/Bernoulli map [29], cusp map [22], logis-
tic map [33], onion map [30], tent map [4], and so forth. All of them are scientifically
relevant, as they represent some simplified physics or feature interesting mathemat-
ical properties. However, most of them are non-injective, which violates the basic
assumption of our derivation. In this section, however, we argue that Eq. 3.10 can
still be used to compute g for such maps.

Many of the popular 1D chaotic maps (such as those listed above) are two-to-one.
Thus, we assume ¢ satisfies this condition; however, the argument we present can be
naturally extended to other types of surjection. Let us also assume, without loss of
generality, ¢ : [0,1] — [0,1] and ¢ is monotonic in [0,0.5) and (0.5,1]. Let us now
define a two-dimensional analog of ¢, denoted by ap : [0,1]> — [0, 1]? and satisfying

_ | e
(A1) Trt1 = pap(Tr) = [xl(cz)/Q + 01€.5L2x,(€1)J] :

Note @op is invertible and resembles the 2D Baker’s map (see Eq 3.11). The invert-
ibility is guaranteed by adding the floor function in <p(233). Analogously to the 2D /3D
Baker’s map, here the discontinuity point is located at z(!) = 0.5, which means that
the value of 0.5 is added to x,(f)/Q if x,(:) > 0.5. If the monotonicity breaking point
was different, then the coefficients of the floor function would need to be modified
accordingly. One of the main messages of this example is to point out that any sur-
jective 1D map can be represented as a higher-dimensional invertible map with one
positive Lyapunov exponent.

Note 1D unstable manifolds of psp are aligned with the first phase space coor-
dinate, per the argument given in Section 3.2. Thus, its SRB distribution is similar
to the one of Baker’s map presented in Figure 3. Note also that the horizontal de-
formation of the trajectory of pop is determined solely by ¢. This implies that the
SRB distribution of ¢ is in fact an integral of SRB distributions of ¢op restricted to
single unstable manifolds over all values of #(?). In other words, @ap scatters the SRB
measure of ¢ (which is supported on [0,1]) over an infinite set of vertically stacked
intervals [0, 1] (which geometrically coincide with unstable manifolds of ¢ap). This
further implies the SRB density of ¢ equals the SRB distribution of ¢op integrated
with respect to the vertical (second) coordinate.

In case of a map defined by Eq. A.1, the simplified recursive formula for g can be
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Fi1G. 7. SRB desity gradient generated for the sawtooth map xpy1 = 2xy + s sin(27 xy) mod 1
at s = 0.1 (left) and the onion map xi+1 = 0.97/1 — |1 — 2z|Y at v = 0.4 (right). The averaged
values (red dots) were computed by averaging the raw values (blue dots) in each of 2048 bins. The
FD Approzimation data points represent the central finite difference approzimation of the SRB
density gradient using the definition of g and empirically computed SRB densities. We generated a
trajectory of length N = 106 to compute the raw/averaged values of g.

expressed in terms of phase space derivatives of ¢ (see Section 3.2 for the derivation),

(A.2) glp(a)) = L& #@)

Here, the prime symbol (') denotes differentiation with respect to phase space. Let
p(x) be the SRB density of ¢. The g(z) function that satisfies Eq. A.2 is not the SRB
density gradient of ¢, defined as g®(z) := p/(z)/p(x). According to our discussion
in Section 3.2, g(z) is in fact a conditional SRB density gradient of yop associated
with the unstable manifold parameterized by z(?). However, as we discussed in the
previous paragraph, the SRB measure of ¢ can be computed by integrating “slices”
of the SRB measure of @op parallel to (). This implies that, given the definition of
the SRB density gradient, g¥(x) can be computed by Lebesgue-integrating the SRB
density gradients obtained in the above iteration along the vertical axis.

In practice, to construct a trajectory-based algorithm for ¢¥, we can directly
use the recursion in Eq. A.2. The algorithm we propose is the following. Divide
the phase space [0,1] in K € Z™ bins of equal width. Generate a sufficiently long
sequence {go, 91,92, ...} using Eq. A.2 starting from a random initial condition go.
For each bin, take the average of the members of the sequence that correspond to one
bin. Based on our discussion above, the obtained average value converges to g¥. This
algorithm in fact provides a piecewise constant approximation of g¥.

To verify our argument, we present a numerical experiment in which we apply the
algorithm to two different 1D maps, the sawtooth map and onion map. Both of them
are two-to-one and piecewise smooth. Figure 7 shows raw values of the sequence
{90,91, g2, ...} obtained using Eq. A.2, their averaged values, and finite-difference
(FD) approximation of g¥ using empirical SRB densities of these maps. We observe
there is a good agreement between the averaged values and FD approximations in
both cases.

Finally, we perform the relative error convergence test of the averaged values
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F1G. 8. Relative error of the approximation of g®(x) versus the trajectory length N. The error
was computed for the sawtooth map at s = 0.1 at two phase space coordinates, x =~ 0.4 (blue curve)
and © =~ 0.6 (orange curve). All error values were computed with respect to the reference value
generated using N = 3.3 - 101! samples. The reference dashed line represents the slope —1/2 in the
logarithmic scaling.

with respect to the trajectory length N. We focus on two different bins and compute
the relative error with respect to a reference value generated using significantly more
samples. Our results generated for the sawtooth map are shown in Figure 8. As
expected, the error decays and is upperbounded by O(1/ VN ), which is a consequence
of the Lebesgue-integration (or, equivalently, weighted averaging) of (conditional)
SRB density gradients. This example shows that a trajectory of minimum length
N = 10° should be generated in order to obtain an approximation with a relative
error smaller than 1%.

Appendix B. Probing the hyperbolicity of the Baker’s map. Hy-
perbolicity guarantees the tangent space can be decomposed into two Dyp-invariant
subspaces, where one is asymptotically expanding (unstable), while the other one is
asymptotically contracting (stable). If the expansion/contraction is uniform, then
such systems are uniformly hyperbolic. Hyperbolicity is the major assumption for
the dynamical systems we consider in this paper. Indeed, if the system is hyperbolic
and has absolutely continuous conditional measures on unstable manifolds, then the
SRB measure exists [11]. It is not always possible to analytically verify that a par-
ticular map is hyperbolic. Fortunately, there exist numerical procedures allowing for
an efficient assessment of hyperbolicity [18]. Most of them test the two basic criteria
of hyperbolicity: 1) No zero LEs, and 2) Strict separation of the stable and unstable
subspaces. Here, we apply the method proposed in [19], which computes the basis
vectors of the two subspaces and approximates the smallest angle between them at
different points of the manifold. If any of these angles is close to zero, then the stable
and unstable subspaces are (almost) tangent, which implies the systems is likely to be
non-hyperbolic. In Figure 9, we compute the PDF of d € [0, 1], which is a normalized
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F1G. 9. Hyperbolicity test performed for the 2D and 3D Bakers map. The parameter values are
the same as the ones used is the numerical examples in Section 3 (2D Baker’s) and Section J (3D
Baker’s). To generate the PDF, we computed N = 10% samples of d along a trajectory.

quantity associated with the smallest principal angle between the stable and unstable
subspace (our d equals k!dy; see the above reference for a rigorous definition of dy).
If the distribution is evidently separated from the origin (d = 0), then it is highly
likely there are no tangencies between the two subspaces. We observe the normalized
parameter d is highly unlikely to drop below the value of 0.97. As a by-product of
the applied algorithm, we computed the spectrum of Lyapunov exponents (alterna-
tively, one can use Benettin et al.’s algorithm [5]). The LEs approximately equal:
0.69 =~ log(2), —0.69 (2D Baker’s with straight unstable subspaces), 0.69 = log(2),
—0.71 (2D Baker’s with curved unstable subspaces), 1.09 & log(3), 0.69 ~ log(2),
—1.16 (3D Baker’s). Although a small change in the parameter value does not signif-
icantly impact the LE values, it may move the PDF of d closer to the origin. Based
on the empirical evidence presented in this section, we conclude the 2D/3D Baker’s
map is clearly hyperbolic at the chosen parameter values.
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