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Sampling the collective, dynamical fluctuations that lead to nonequilibrium pattern formation
requires probing rare regions of trajectory space. Recent approaches to this problem based on
importance sampling, cloning, and spectral approximations, have yielded significant insight into
nonequilibrium systems, but tend to scale poorly with the size of the system, especially near dynam-
ical phase transitions. Here we propose a machine learning algorithm that samples rare trajectories
and estimates the associated large deviation functions using a many-body control force by lever-
aging the flexible function representation provided by deep neural networks, importance sampling
in trajectory space, and stochastic optimal control theory. We show that this approach scales to
hundreds of interacting particles and remains robust at dynamical phase transitions.

Techniques from large deviation theory have provided
physical insight into both the steady state and fluctua-
tions of a diverse set of systems driven away from equi-
librium, including diffusive and colloidal systems [1–3],
glassy dynamics [4–7], interacting particle systems driven
by external reservoirs [8–10], and active matter [11–14].
Fluctuations of dynamical quantities, such as currents
and kinetic activities, provide information about complex
pattern formation and phase behavior that can emerge
in these systems when detailed balance is broken. The
study of nonequilibrium fluctuations has also led to the
discovery of fundamental results, such as the fluctuation
relation [15–17], which encodes symmetries in the dis-
tribution of the entropy production, and, more recently,
the thermodynamic uncertainty relation [18–20], which
connects current fluctuations to dissipation.

The likelihood of fluctuations is described in large de-
viation theory by functions playing the role of nonequilib-
rium potentials that are notoriously difficult to compute
for complex and high-dimensional systems. While ana-
lytical treatment is possible in some systems [21–23], we
must generally make numerical estimates of these func-
tions. Many algorithms have been proposed for this pur-
pose, based either on spectral methods or on sampling
rare trajectories using a combination of importance sam-
pling [24–27], cloning [28–31], and reinforcement learning
algorithms [32–34]. With most methods, it remains chal-
lenging however to obtain good convergence in systems
with many degrees of freedom, especially when probing
fluctuations near phase transitions [35].

Here we present an approach that combines impor-
tance sampling, path-space Monte Carlo methods, and,
crucially, the robust and flexible function representa-
tions offered by neural networks to calculate large de-
viation functions. The approach that we describe com-
bines control theory with recent developments using
machine learning to solve high-dimensional variational
PDEs [36, 37] to adaptively construct a many-body con-
trol force that drives a nonequilibrium system of interest
in an optimal way towards a given dynamical fluctua-
tion. Unlike other methods that construct a control force,
our approach is based on a direct stochastic optimiza-

tion of a cost functional in which gradients are computed
through the dynamics or via an adjoint stochastic dy-
namics, which is robust even over long trajectories [38].
Results obtained for two models, including a model of
active Brownian particles, show that our approach i) effi-
ciently scales to large, interacting particle systems which
are difficult to treat with spectral methods or cloning al-
gorithms, ii) is robust near dynamical phase transitions,
and iii) does not slow down in the low-noise limit.

We consider systems described by a stochastic differ-
ential equation (SDE) having the general form

dXt = b(Xt)dt+ σdW t, (1)

where Xt ∈ Rd is the state of the system, b : Rd →
Rd is the drift function, and W t is a Wiener process
acting as a noise source, which is multiplied by the noise
matrix σ. This model captures the diffusive dynamics
of many physical systems; b could be comprised of the
gradient of a many-body potential energy describing the
interactions among a large number of particles in addition
to non-conservative and hence nonequilibrium external
forces. For simplicity, we assume that σ is independent of
x and that the corresponding diffusion tensor D = σσT

is invertible. Moreover, we assume that Xt is ergodic,
which means that it has a unique probability stationary
density, reached from any initial distribution in the long-
time limit.

While there is no canonical form for the stationary
density when the drift or “force” b(x) is non-conservative,
the probability density of a large class of time-extensive
observables AT computed along trajectories is known to
satisfy a large deviation form and can thus be character-
ized in a general way by a so-called rate function, which
can be seen as a nonequilibrium analog of the entropy
function. These “dynamical” observables typically con-
sidered for diffusive systems have the form

AT =
1

T

∫ T

0

f(Xt)dt+
1

T

∫ T

0

g(Xt) ◦ dXt, (2)

and can represent many different physical quantities de-
pending on the choice of the function f : Rd → R, con-
nected with “density-like” observables, and g : Rd → Rd,
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connected with “current-like” observables. In this setting,
the probability density ρT (a) that AT realizes some fixed
value a ∈ R is known to scale for large observation times
T as

ρT (a) � e−TI(a), (3)

where the symbol � denotes asymptotic equality up to
logarithmic corrections and I : R → R is the rate func-
tion [39]. In most cases, this function is obtained not
directly from the density of AT , but from the Legen-
dre transform of the scaled cumulant generating function
(SCGF) of AT , defined as

ψ(λ) = lim
T→∞

1

T
logEXe

λTAT , (4)

where EX denotes an expectation over (1) and λ is a
real parameter conjugate to AT . The SCGF itself can, in
numerically tractable cases, be computed using spectral
methods, as it corresponds to the dominant eigenvalue of
a linear operator, called the tilted generator [40].

Computing rate functions has become a central prob-
lem in statistical physics as they provide a lens into the
phase behavior and symmetries of nonequilibrium sys-
tems [41, 42]. However, as is the case with the equilib-
rium entropy and the free energy, computing rate func-
tions is a difficult task, especially when dealing with
complex and high-dimensional systems, as it relies on
sampling exponentially rare events or, in the case of
the SCGF, on solving a high-dimensional, non-Hermitian
spectral problem. Many strategies have been deployed
recently to address these problems, including ones based
the power method [27], diffusion Monte Carlo [26, 28–31],
and reinforcement learning algorithms [32–34].

Any estimate of large deviations necessitates comput-
ing the probability of extremely rare events, which do
not occur spontaneously on timescales accessible to sim-
ulation and hence require importance sampling. With
an appropriate change of measure, the SCGF (4) can be
estimated by instead evaluating the tilted expectation

ψ(λ) = lim
T→∞

1

T
logEXu

(
eλTAT

dP[Xu]

dPu[Xu]

)
(5)

where Xu denotes a process controlled by a drift u 6= b.
The Radon-Nikodym derivative measures the relative
path weight in the unperturbed ensemble with the bi-
ased ensemble—this quantity can be computed explicitly
along a given path using the Girsanov theorem. While
this “tilting” of the path leads to an exact rewriting of (4),
the change of measure can reduce the variance of the ex-
pectation and potentially aid convergence of an estima-
tor.

This change of measure can be implemented as a mod-
ified dynamics that satisfies the SDE

dXu
t = ut(X

u
t )dt+ σdW t, (6)

in which the drift b(x) is replaced by the control drift
ut(x). This drift is chosen in such a way as to maximize

the cost function or Lagrangian

L[Xu, u] = λTAT −
1

2

∫ T

0

(us − b)D−1(us − b)(Xu
s )ds,

(7)
which we derive in Appendix A. This explicit objective
function offers a route to direct optimization of the con-
trol forces without reinforcement learning. In the limit
T →∞, it can be shown [43] that the maximizing control
drift is time-independent and that the maximum is the
SCGF, so that

ψ(λ) = lim
T→∞

1

T
sup
u

EXuL[Xu, u]. (8)

The expression (8) is a variational objective and, as such,
is amenable to Ritz-type methods that optimize a para-
metric representation u(x, λ; θ) with respect to some set
of variational parameters θ. The solution u∗ of the vari-
ational problem of maximizing (7) over control drifts can
be interpreted, as shown in Appendix A, as the optimal
change of process in importance sampling that yields the
SCGF: the first integral in the Lagrangian (7) enforces
the constraint AT = a—realizing the target rare event—
with a Lagrange multiplier λ, while the second term is
the Girsanov weight related to the change of drift that
measures the extent to which the controlled process devi-
ates from the unperturbed process [44]. Directly carrying
out this optimization is nontrivial, as it requires repre-
senting a potentially complex, many-body force, which
has motivated several sophisticated strategies that rely
on intricate basis functions, Malliavin weight sampling,
and reinforcement learning [32–34, 45].

Here, we solve the optimization problem directly us-
ing simulated trajectories of the controlled process by
representing the control drift with deep neural networks,
which are well-suited to this task [46–51] due to their
robust function approximation properties, even in high-
dimensional settings. To compute the necessary gradi-
ents, we differentiate through the solution of the SDE (6)
using recent developments in the machine learning liter-
ature [38, 52]. Over short times, we use direct back-
propagation of the dynamics through a Stratonovich
time-discretization of the SDE to compute ∇θL. The
computational graph that contains all the gradient in-
formation consumes significant memory resources in this
case, so over longer time scales, we calculate∇θL by solv-
ing instead an adjoint SDE, detailed in Appendix B 1.
This method is stable and only requires that we keep the
noise history and solve the SDE backward in time. Solv-
ing the adjoint SDE adds computational cost, but is not
prohibitive even for large systems.

We discuss the details of our optimization algorithm
and the exact representations of the networks that we
use, which are inspired by pioneering work on the deep
Ritz method [36], in Appendix B. The estimator of the
cost function that we use, which involves a collection or
“batch” of N trajectories {Xu

[0,t],i}Ni=1, is presented in
Appendix C. There we discuss the variance of the esti-
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Figure 1. The SCGF for Eq. (9) for decreasing temperatures ε.
The solid line represents the analytical exact solutions at zero-
noise limit: ψε→0(λ) = maxq{λ(q2 + q)− q6/4}, and inserted
figure shows the second derivative of the SCGF of ε = 0.01,
confirming a second order dynamical phase transition.

mator and show in numerical examples that short time
trajectories suffice when the batch size is large.

To obtain the rate function, the SCGF must be esti-
mated by training the neural network for multiple values
of λ either simultaneously or sequentially. In the first
case, which we term concurrent training, the loss func-
tion at each training step is evaluated as the mean of the
loss function with each λn from a set {λ1, λ2, · · · , λN}.
We find that the expressiveness of the neural networks we
use allows a single force function u(·, λ) to capture the
control forces, even when there are multiple dynamical
phases. For high dimensional systems, where the batch
size is limited, one may alternatively start with a given
λ, e.g., 0, and sequentially increase or decrease λ. This
sequential training approach, which is similar to transfer
learning [53], shows fast convergence.

In practice, we have found that sequential training is
better than concurrent training when dealing with dy-
namical phase transitions, which lead to rapid changes of
the optimal control forces as a function of λ. In this case,
we can increase the likelihood of sampling trajectories in
different phases, and therefore increase the accuracy of
the estimated SCGF, by employing a path space variant
of the replica exchange method [54], in which two trajec-
tories corresponding to different λ are swapped according
to a Metropolis-Hastings using the action functional in
place of an energy (see Appendix B).

To test our method, we first consider a 1D diffusion in
a quartic potential

dXt = −X3
t dt+

√
2εdWt, (9)

and focus on the observable

AT =
1

T

∫ T

0

Xt(Xt + 1)dt. (10)

For this model, the SCGF scaled by the strength ε of
the noise is known to display a second-order dynamical
phase transition in the small-noise limit, meaning that

the derivative of ψε(λ) = εψ(λ) is not differentiable at
λ = 0 when considering the additional limit ε → 0 [35].
Resolving this phase transition using cloning algorithms
is challenging, due to a critical slowing down of the dy-
namics, which can be alleviated to some degree by incor-
porating adaptive feedback methods [35].

The low-noise limit is not a bottleneck in our approach.
Using short-time trajectories, we concurrently trained a
single neural network with a set of λ in the range of
[−1, 1]—the numerical results for various ε are plotted in
Fig. 1 (see Appendix B for numerical details). For this
system, direct backpropagation and the adjoint state ap-
proach give indistinguishable results. Replica exchange
is not required to obtain good agreement with the exact
result even near the phase transition, this may be due
to the fact that the transition occurs at λ = 0, where no
control force is needed. Our numerical results at ε = 0.01
agree exceptionally well with the exact result in the zero-
noise limit. In addition, the exact result at ε→ 0 enables
us to analyze the estimated error. We found the normal-
ized mean squared error of our estimation (averaged over
the 40 points except λ = 0 in Fig. 1) is about 0.2%. This
error can be further reduced by training the network at a
single λ. Rapid convergence away from dynamical phase
transitions may be due to the fact that we employ over-
parameterized neural networks which do not suffer from
overfitting and converge to global minimizers in settings
where the loss function can be repeatedly sampled, a set-
ting known as online learning [47, 55, 56]. The results
here demonstrate the efficacy of our algorithm for sys-
tems with small noise, we next turn to study the high
dimensional interacting particle system.

Theoretical [57–59] and numerical [60] characteriza-
tions of active matter provide a compelling model for
nonequilibrium phenomena. Minimal models, for exam-
ple, actively driven Brownian particles with purely repul-
sive WCA interaction potentials (ABPs) exhibit a rich
spectrum of collective fluctuations, leading to nonequi-
librium phase separation. This motility induced phase
separation emerges from the impact of persistent, direc-
tional motion on the local diffusivity of the constituent
particles. The precise connection between energy dis-
sipation and pattern formation in these nonequilibrium
transitions remains a topic of intense research [61–63];
for example, the correlation between the structure for-
mation in ABPs and fluctuations in entropy production
was recently described by GrandPre et al. [64]. Prob-
ing the connection between rare dynamical behavior and
collective fluctuations, however, is extremely challenging
because the onset of clustering in ABPs requires large
system sizes and high densities and hence necessitates an
exponentially large number of replicas for cloning type
algorithms.

We examined our approach in the context of ABPs, a
model in which the motion of the ith particle is governed
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Figure 2. Small entropy production indicates particle clus-
tering. (a): The average entropy production at given λ for
different system sizes: N = 40 (blue lines), 80 (red lines), and
200 (yellow lines). (b): The corresponding rate functions.
The inserted figures show snap shots of typical behaviors in
the high entropy production phase (λ = 0) and low entropy
production phase (λ = −0.05), respectively. The arrow rep-
resents the direction of motion.

by the following equation,

dX
(i)
t = [−µ∂U(Xt)

∂x(i)
+ vb

(i)
t ]dt+

√
2DtdW

(i)
t ,

b(i) = [cosφ
(i)
t , sinφ

(i)
t ]>, dφ

(i)
t =

√
6DtdW

φ(i)

t .
(11)

The potential U(Xt), a purely repulsive WCA pair po-
tential that depends on the positions of all particles, con-
stitutes the conservative interparticle force. The non-
conservative self-propulsion term vb(i) represents the dis-
sipative “active” force. In the ABP model, b(i)t are unit
vectors which rotate diffusively and v is the magnitude
of the active force. Here, W (i)

t and W φ(i)

t are indepen-
dent standard Wiener processes. The phenomenology of
motility induced phase separation has been studied ex-
tensively (cf. [57]); at a high level, when the Péclet num-
ber and the density of particles are high enough, the sys-

tem will exhibit a motility induced phase transition in
which a macroscopic aggregate of particles forms.

This transition has a natural dynamical correlate with
the average entropy production

s =
1

NT

N∑
i=1

∫ T

0

vb
(i)
t D−1t ◦ dX(i)

t . (12)

When the system enters the phase separated state, much
of the directional motion also ceases, leading to a drop in
the average entropy production compared to an unclus-
tered trajectory. Indeed, several studies have pointed
to entropy production as a natural dynamical observable
for motility induced phase separation [64] and nonequi-
librium pattern formation in liquids [62, 63], though a
control-based approach has not been pursued on these
systems to date. We computed many-body control forces
for this system using Alg. 1, for a variety of system sizes
(N=40,80,200). For this system, it is crucial that we do
not include the director of the active particles φt in the
state, otherwise the entropy production rate can trivially
be reduced by learning control forces anti-parallel to the
direction of the active force; this choice has a physical
justification, namely the directors are in equilibrium and
are not reversed under time-reversal.

When the biasing field λ is sufficiently negative, parti-
cles start to aggregate as shown in Fig. 2 and the supple-
mentary movie. For all system sizes, the entropy produc-
tion rate changes dramatically as a function of λ, which
coincides with the onset of clustering. This sharp tran-
sition signifies a dynamical phase transition in the en-
tropy production rate, as shown in Fig. 2(b), where we
observe a singularity in the rate function at the tran-
sition point. The numerical results emphasize that the
method captures the dynamical phase transition in the
entropy production, but examining the learned controls
provides further insight into the microscopic origins of
the transition. As shown in the inset of Fig. 2 (b), the
learned control forces lead to net forces on the parti-
cles that favor the aggregated state. The nonequilibrium
fluctuations of active systems have been studied in a va-
riety of contexts [32, 64, 65], using unbiased sampling,
cloning, and reinforcement learning. The approach we
take considerably simplifies the computation compared to
reinforcement learning because we do not need to learn
an expected value function. Moreover, unlike cloning,
the algorithm considered here scales to high-dimensional
systems without incurring significant additional compu-
tational cost; training for various λ is easily parallelizable
and the integration of the trajectories can be carried out
on heterogeneous hardware.

Taken together, the results here demonstrate the ef-
ficacy of a machine learning algorithm that adaptively
learns optimal control forces to directly estimate large
deviation functions for systems extremely challenging for
conventional methods. The algorithm relies on direct
stochastic optimization based on a small number of tra-
jectories, which themselves may not need to have a long
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duration—a fact that requires further investigation. Im-
portantly, the Lagrangian that we optimize is explicit and
exact in the long time limit, requiring no additional ap-
proximation or optimization—only the control function
is learned. We show the approach is robust both near
the dynamical phase transitions and in the limit of small
noise. Like many methods based on machine learning,
the method we propose shows favorable performance in
high dimensional systems and still identifies many-body
control forces that realize the rare fluctuations defining
dynamical phase transitions.

The examples we explore here are continuous time
stochastic differential equations with a constant diffusion
term (and hence additive noise), but it is straightforward
to adapt our algorithm to other types of systems, in-

cluding those with multiplicative noise, or with discrete,
but innumerable state spaces such as unbounded Markov
jump processes where directly evaluating the principal
eigenvalue is not possible. This approach could be ex-
tended to finite-time large deviations, though we antici-
pate that this would require longer trajectories and there-
fore the adjoint state method would likely be mandatory.
Learning control forces that drive the system locally, and
hence can be transferred to systems of increasing size and
complexity is among the most attractive possibilities for
future investigation. For interacting particle systems, if
the form of the input and the architecture of the neural
network are carefully designed, it may be possible to ob-
tain the optimal control force for systems with thousands
of particles by training on smaller, more computationally
tractable systems.
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Appendix A: Derivation of the cost functional

In analogy to importance sampling, we can write the expression for the scaled cumulant generating function as an
expectation over a “tilted” or biased path measure,

ψ(λ) = lim
T→∞

1

T
log

∫
eλTAT [Xu] dP[X

u]

dPu[Xu]
dPu[Xu]. (A1)

This expectation must be estimated for each λ of interest by collecting trajectories from the controlled process (6).
The relative statistical weight of the unperturbed path measure P to the path measure of the controlled process Pu
is defined through the Girsanov theorem [66]. In our case, using the parameterization that u(x, λ) = b(x) + δu(x, λ),
the Radon-Nikodym derivative can be written explicitly

dP[Xu]

dPu[Xu]
≡MT = exp

(
−
∫ T

0

σ−1δu(Xu)dWt −
1

2

∫ T

0

δu(Xu
t )D

−1δu(Xu
t )dt

)
, (A2)

where we use the notation MT to emphasize the fact that MT is a martingale. The first integral in the exponential
can be neglected when the deterministic contribution is finite and we are left with an expression for (A1)

ψ(λ) = lim
T→∞

1

T
logEXu exp

(
λTAT [X

u]− 1

2

∫ T

0

δu(Xu
t )D

−1δu(Xu
t )dt

)
. (A3)

The term inside the exponential is evidently time-extensive and, in the limit T →∞, the integral will be dominated
by the saddle point. Making this Laplace approximation, we obtain

ψ(λ) = lim
T→∞

1

T
sup
δu

EXu

{
λTAT [X

u]− 1

2

∫ T

0

δu(Xu
t )D

−1δu(Xu
t )dt

}
. (A4)

Hence, the argument of the supremum becomes a natural variational objective for δu, which we denote

L[Xu, u] = λ

∫ T

0

f(Xu
t )dt+ g(Xu

t ) ◦ dXu
t −

1

2

∫ T

0

δuD−1δu(Xu
t )dt. (A5)

Appendix B: Algorithm and Computational Details

The goal of our algorithm, detailed in Alg. 1, is to learn the optimal (time-independent) control drift u∗ of the
modified process

dXu
t = b(Xu

t )dt+ δu(Xu
t , λ; θ)dt+ σdW t (B1)

expressed here in terms of the drift perturbation δu(x, λ; θ) involving a set of parameters θ and the Lagrange parameter
λ entering in the Lagrangian. Depending on the system considered, the gradient of the Lagrangian can be evaluated,
as mentioned in the main text, either by using back-propagation when the integration time is short or by using adjoint
state methods when longer integration times might be necessary or desirable to save memory resources. The latter
method is explained in the next section.

The crux of our method is to encode δu(·, λ; θ) using a neural network similar to the architecture used in the deep
Ritz method [36]. The architecture contains multiple layers Li, where each layer consists of two linear transformation,
two nonlinear activation functions and a residual connection:

Li(X) = φ[Wi,2 · φ(Wi,1X + bi,1) + bi,2] +X (B2)

where Wi,j ∈ Rh×h and bi,j ∈ Rh are parameters for the i-th layer, h is the dimension of the hidden layers, and φ is
the activation function. The residual connection helps with stability and helps avoid the vanishing gradient problem.
Since our approach requires simulating trajectories from Eq. (B1), an unbounded activation such as ReLU may lead
to divergence of the sampled trajectories. To avoid this problem, we use tanh(·) as the activation function throughout
this paper though other nonlinearities may also be suitable. The full network can then be expressed as

zθ(X) = Ln ⊗ · · · ⊗ L1(X). (B3)

The input X ∈ Rd for the first layer is padded by a zero vector when d < h. Finally, the ansatz δu(Xt, λ; θ) ∈ Rd is
expressed as a linear transform of zθ(X).

All computations presented here were performed using Python, Pytorch, and the torchsde [67] package. Our source
code and associated data are available at github.com/quark-strange/machine_learning_LDP.

https://github.com/quark-strange/machine_learning_LDP
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Algorithm1 Concurrent Training
1: Data: Lagrangian L[Xu, δu(Xu

t , λ;θ), λ], initial θ, kmax ∈ N total duration, T ∈ R the duration of sampled trajectory,
M(n) ∈ N the batch size. {λ1, λ2, · · · , λN} ⊂ R, α > 0 the learning rate.

2: k = 0
3: while k < kmax do
4: for n = 1, . . . , N do
5: for m = 1, . . . ,M(n) do
6: Sample Xu(λn)

[0,T ],m according to dXu
t = [b(Xu

t ) + δu(Xu
t , λn; θ)]dt+ σdW t with initial condition Xu(λn)

0,m ;

7: Compute

L(n)
θ =

1

M(n)

M(n)∑
m=1

λn

∫ T

0

f(X
u(λn)
t,m )dt+ g(X

u(λn)
t,m ) ◦ dXu(λn)

t,m − 1

2

∫ T

0

δu(X
u(λn)
t,m , λn;θ)D

−1δu(X
u(λn)
t,m , λn;θ)dt

∇θL(θ) = 1

N

N∑
n=1

∇θL(n)
θ

8: Update θ ← θ + α∇θL(θ)
9: Update the initial condition Xu(λn)

0,m ←X
u(λn)
T,m

10: procedure (Optional) Replica exchange:
11: Select two random n1 6= n2 and mi 6M(ni);
12: Compute the Radon-Nikodym derivative:

MT =
dP[Xu(λn1

)

[0,T ],m1
]

dP[Xu(λn2 )

[0,T ],m2
]
=

exp
{
− 1

4D

∫ T
0
|Ẋu(λn1

)

t,m1
− u(Xu(λn1

)

t,m1
, λn1)|2dt

}
exp

{
− 1

4D

∫ T
0
|Ẋu(λn2

)

t,m2
− u(Xu(λn2

)

t,m2
, λn2)|2dt

} (B4)

13: u ∼ Uniform(0, 1)
14: if u < min[1,MT ] then
15: exchange Xu(λn1

)

0,m1
and Xu(λn2

)

0,m2
.

16: return: θ.

1. Adjoint State Methods

The adjoint state method for Stratonovich SDEs (note that the choice of Ito or Stratonovich convention is immaterial
in our examples because we consider only SDEs with additive noise) differs only marginally from the classical adjoint
method for ODEs, though we note that the method can be extended to multiplicative noise [38]. These methods
require forward/backward integration of the differential equation and, in the stochastic case, one must solve the SDE
backward in time with the same Weiner process W t used in the forward direction, meaning that the noise history
must be stored. We explain the method for the ODE case and refer to Ref. [38] for further details.

Consider an ODE
dx

dt
= u(x, t, θ); x(0) = x0 (B5)

and some objective function L(x(T )), which we would like to minimize with respect to θ. We note that L depends on
θ through the dynamics because

x(T ) = x0 +

∫ T

0

u(x, t, θ)dt. (B6)

The dependence of L on θ can be computed using classical sensitivity analysis techniques. Assuming that we can
easily evaluate the cost functional at the final integration time T , we need to compute

∂L(x(T ))
∂θ

=
∂L(x(T ))
∂x(T )

∂x(T )

∂θ
(B7)

where x(t) is constrained to follow the dynamics (B5). Using the method of Lagrange multipliers, we can turn this into
an unconstrained optimization where the time-dependent multiplier A(t) is chosen to impose the constraint ẋ = u.
That is, the cost functional becomes

L̃(x(T )) = L(x(T ))−
∫ T

0

A(t)(ẋ− u(x, θ, t))dt (B8)
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Figure 3. Illustration of the concurrent training for the small noise example with ε = 0.01. Each line corresponds to the
evolution of the cost function with a specific λ.

so that

∂L̃(x(T ))
∂θ

=
∂L(x(T ))
∂x(T )

∂x(T )

∂θ
− A(T )

∂x(T )

∂θ
− ∂

∂θ

∫ T

0

Ȧ(t)(x(t)− u(x, θ, t))dt

=
∂L(x(T ))
∂x(T )

∂x(T )

∂θ
− A(T )

∂x(T )

∂θ
+

∫ T

0

Ȧ(t)
∂x(t)

∂θ
+ A(t)

∂u(x, θ, t)

∂x(t)

∂x(t)

∂θ
+ A(t)

∂u(x, θ, t)

∂θ
dt

(B9)

From this result, we then choose A so that

Ȧ(t) = −A(t)∂u(x, θ, t)
∂x(t)

; A(T ) =
∂L(x(T ))
∂x(T )

(B10)

in order to write the gradient as

∂L(x(T ))
∂θ

= −
∫ 0

T

A(t)
∂u(x, θ, t)

∂θ
dt (B11)

which is solved backward in time because we know the final condition for the adjoint A(T ).
The stochastic variant of this algorithm is operationally similar to the procedure outlined above and is particularly

straightforward for Stratonovich SDEs (the convention we use in numerical experiments with current-like observ-
ables) [38].

2. Computational details for the small noise example

The SCGF for the small noise example in the Main Text is computed through Alg. 1. The hidden layer dimension
and number of layers of the neural network are 50 and 2, respectively. A smaller hidden layer dimension such as 10
is able to generate results with similar accuracy but requires longer time for training. We first select 11 λ uniformly
from -1 to 1, where each λ contains 20 replica. At each training step, a total number of 220 trajectories with T = 10
are generated by Euler-Maruyama method (dt = 10−3). The neural network is updated through standard back
propagation where the gradient is computed by the adaptive gradient algorithm method (AdaGrad) with a learning
rate 5 × 10−3. The resulting estimation of SCGF is then refined by changing λ and simulate the resulting driven
process. Fig. 3 shows the convergence of ψ̂ε(λ) for ε = 0.01. The numbers of steps required vary little for different
ε, which are typically in the range of 400 to 600. The replica exchange is not crucial here and does not noticeably
improve the accuracy in this case.

3. Computational details for the active Brownian particle example

For the active Brownian particle, its motion is determined by Eq. (11) where U is the WCA potential which is a
function of the relative distance lij of all particles:

U(lij) =

{
4ε
[
(σ/lij)

12 − (σ/lij)
6
]
+ ε, lij 6 21/6σ

0, lij > 21/6σ,
(B12)
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Figure 4. (a) The estimate of the SCGF for N = 40 with/without replica exchange. The blue line corresponds to the results
with replica exchange and the red line shows the results without. (b) The corresponding changes of average entropy production
as decreasing λ.

In the simulation, the unit of length is normalized by σ and we set ε = 1. The simulations are performed with periodic
boundary condition, and the relative distance matrix lij is adjusted by the minimum image convention. To avoid
boundary effect, the input of the neural network is not the absolute position of particles but its relative position to
a particular one, i.e., u(X(i) −X(0)}) instead of u({Xi}). This step is essential otherwise the learned control force
would force particles to the boundary.

The active Brownian particle results are computed through the sequential training since concurrent training requires
a large total batch size which is computationally costly for high dimensional systems. We notice that it requires much
longer time for convergence when first driving the system into the clustering phase, but once we obtain a control
force, it converges fast when sequentially altering λ. Here the hidden layer dimension and number of layers of the
neural network are 1000 and 6 respectively. The batch sizes for results of 40 and 80 particles are 75, and 20 for the
200 particle case. T = 0.1 and dt = 10−4. The density of particles throughout all three cases is ρ = N/L2 = 0.1
where L is the length of the simulation box. We used Adadelta as the optimizer.

For N = 40, 80, replica exchange is required to obtain a convex SCGF (which must be the case by definition). For
N = 200, replica exchange is not necessary. The replica exchange is implemented by concurrently training with λi
and λ0 = −0.05, with batch size 75 and 75, respectively. Then at each step all the 75 trajectories are attempted to
be exchanged, as stated in Alg. 1. In Fig. 4 we plot the results with and without replica exchange, respectively, in
the N = 40 case. The results indicate that replica exchange is essential for obtaining a convex SCGF.

Appendix C: Cost estimator

Because we are interested in the limit T → ∞, the control force u is necessarily time-independent and hence it
must be the case that for any t <∞, we have a short time estimator that converges to the long time limit

1

Nt

N∑
i=1

sup
δu

{
λ

∫ t

0

f(Xu
s,i)ds+ g(Xu

s,i) ◦ dXu
s,i −

1

2

∫ t

0

δu(Xu
s,i)D

−1δu(Xu
s,i)ds

}
N→∞−→ lim

T→∞

1

T
sup
δu
L[Xu

[0,T ], u],

(C1)
whereXu

0,i are sampled from the steady state of the controlled process (6). We compute the cost functional numerically
by simulating N independent trajectories Xu

t,i, referred to as replicas, over a finite time-window or horizon [0, t] by
using the estimator

ψ̂Nt(λ) =
1

Nt

N∑
i=1

ψ̂t,i(λ), (C2)

where

ψ̂t,i(λ) =
1

t

{
λ

∫ t

0

f(Xu
s,i)ds+ g(Xu

s,i) ◦ dXu
s,i −

1

2

∫ t

0

δu(Xu
s,i)D

−1δu(Xu
s,i)ds

}
. (C3)
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Figure 5. Variance of the estimator. We illustrate the scaling property of the variance of our estimator Eq. (C2) using the
small noise example. By fixing λ = 1 and ε = 0.01, the neural network is train with (a) a fixed batch size N = 300 with various
trajectory length t from 1 to 20, or (b) a fixed t = 5 and various batch size from 10 to 400. The neural network in all cases
are trained for more than 400 steps, and the variance is estimated by collecting the data from the last 100 steps. The insert
figures show the relative absolute error |ψ̂(λ)− ψ(λ)|/ψ(λ). The grey dashed line represents a -1 slope.

is the estimator of the cost functional for one replica. By the ergodic theorem and the law of large numbers, ψ̂Nt(λ)
converges to the SCGF ψ(λ) in the double limit t→∞ and N →∞, provided that u is the optimal control drift u∗.

The mean squared error (MSE) of the estimator is E[ψ̂Nt(λ)−ψ(λ)]2 = Var[ψ̂Nt(λ)] since it is unbiased. Moreover,
since the N replica are independent, the variance of ψ̂Nt,i(λ) must scale with N−1 due to the central limit theorem,
yielding MSE = Var[ψ̂t,i(λ)]/N . In general, ψ̂t,i(λ) itself is a time-extensive variable that satisfies a large deviation
principle, so its variance Var[ψ̂t,i(λ)] scales with t−1. Therefore, overall, the MSE of our estimator decreases with the
scaling (tN)−1. In other words, a large-batch and short-time estimator is equivalent to a small-batch and long-time
estimator. In Fig. 5 we plot this scaling property of ψε(λ) in the small noise example (ε = 0.01 and fixed λ = 1),
which confirm that a short time estimator converges to the long time limit.
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