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Sampling the collective, dynamical fluctuations that lead to nonequilibrium pattern formation
requires probing rare regions of trajectory space. Recent approaches to this problem, based on
importance sampling, cloning, and spectral approximations, have yielded significant insight into
nonequilibrium systems, but tend to scale poorly with the size of the system, especially near dynamical
phase transitions. Here we propose a machine learning algorithm that samples rare trajectories and
estimates the associated large deviation functions using a many-body control force by leveraging the
flexible function representation provided by deep neural networks, importance sampling in trajectory
space, and stochastic optimal control theory. We show that this approach scales to hundreds of
interacting particles and remains robust at dynamical phase transitions.

I. INTRODUCTION

Large deviation techniques have been used recently to
gain physical insight into the steady state and fluctua-
tions of a diverse set of systems driven away from equi-
librium, including diffusive and colloidal systems [1-3],
glassy dynamics [4-7], interacting particle systems driven
by external reservoirs [8-10], and active matter [11-14].
Fluctuations of dynamical quantities, such as currents
and kinetic activities, provide information about complex
pattern formation and phase behavior that can emerge
in these systems when detailed balance is broken. The
study of nonequilibrium fluctuations has also led to the
discovery of fundamental results, such as the fluctuation
relation [15-17], which encodes symmetries in the dis-
tribution of the entropy production, and, more recently,
the thermodynamic uncertainty relation [18-20], which
connects current fluctuations to dissipation.

The likelihood of fluctuations is described in large devia-
tion theory by functions playing the role of nonequilibrium
potentials that are notoriously difficult to compute for
complex and high-dimensional systems. While analytical
treatment is possible for some systems [21-23], we must
generally estimate these functions numerically. Many
algorithms have been proposed for this purpose, based
either on spectral methods or on sampling rare trajecto-
ries, using a combination of importance sampling [24-27],
cloning [28-31|, and reinforcement learning [32-34]. Good
results are reported with most methods, although it re-
mains challenging to obtain good convergence in systems
with many degrees of freedom, especially when probing
fluctuations near phase transitions [25].

In this paper, we present an algorithm that combines
control theory, importance sampling, and, crucially, the
robust and flexible function representations offered by neu-
ral networks to calculate large deviation functions. The
algorithm uses recent developments in machine learning
approaches to PDEs [35, 36] and estimates large deviation
functions by adaptively constructing a many-body control
force that drives a nonequilibrium system of interest in
an optimal way towards a given dynamical fluctuation.

Unlike other methods that construct a control force, our
approach is based on a direct stochastic optimization of a
cost functional for trajectories, in which gradients are com-
puted through the dynamics or via an adjoint stochastic
dynamics, which is robust over long trajectories [37].

We illustrate our algorithm with two stochastic models:
a simple diffusion showing a dynamical phase transition
in the low-noise limit and a model of active Brownian
particles driven by pair interactions and an alignment
force. The results for both show that our approach is
robust near dynamical phase transitions and efficiently
scales to large systems of interacting particles, which
are difficult to treat with spectral methods or cloning
algorithms. For the active Brownian particle model, we
are able for instance to estimate large deviation functions
for systems of up to 200 particles, which is unreachable for
cloning without substantial computational power. Our
algorithm requires fewer parallel replicas than cloning
algorithms, uses much less memory by relying on single
trajectories, and converges faster, as we demonstrate with
the simple diffusion model.

II. MODEL AND LARGE DEVIATIONS

We consider systems described by a stochastic differen-
tial equation (SDE) having the general form

dXt = b(Xt)dt—FO'th, (1)

where X; € R? is the state of the system, b : R? — R? is
the drift function, and W is a Wiener process acting as
a noise source, which is multiplied by the noise matrix
o. This model captures the diffusive dynamics of many
physical systems, as the drift or “force” b(x) can include
the gradient of a many-body potential energy describing
the interactions among a large number of particles, in
addition to non-conservative and hence nonequilibrium
external forces. We assume that the drift and the noise
source are such that X is ergodic, so that it has a unique
probability stationary density, reached from any initial
distribution in the long-time limit. For simplicity, we



also assume that o is independent of & and that the
corresponding diffusion tensor D = oo™ is invertible.

Given the dynamics for X, we are interested in finding
the distribution of time-integrated or “dynamical” observ-
ables having the form
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which represent many physical quantities of interest, de-
pending on the choice for the functions f : R¢ — R and
g : R — R?. These include, for example, residence times,
the entropy production, and other work-like quantities
arising in stochastic thermodynamics [38, 39]. While the
exact probability density pr(a) of Ar cannot be obtained
exactly, in general, it is known to scale for large observa-
tion times T as

pr(a) = e~TI@), (3)

where the symbol < denotes asymptotic equality up to
logarithmic corrections. This result defines the large
deviation approximation of pr(a), characterised by the
rate function 7 : R — R [40]. Calculating or estimating
this function has become a central problem in statistical
physics, as it not only determines the likelihood of fluctu-
ations of A7 around its typical value, but also provides
information about the phase behavior and symmetries of
nonequilibrium systems [41-43].

In most cases, the rate function is obtained not directly
from the density of A7, but from the Legendre transform
of the scaled cumulant generating function (SCGF) of
Ar, defined as

1
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where Ex denotes an expectation over (1) and A € R is
a parameter conjugate to Ar. For Markov processes, the
SCGF is the dominant eigenvalue of a linear operator,
corresponding in the case of diffusions to a modification
of the Fokker—Planck generator [44]. Hence, the computa-
tion of the SCGF and, in turn, the rate function, reduces
to a spectral problem, which can be solved if the system’s
size or dimension is not too large. Alternatively, one can
attempt to sample trajectories using path space Monte
Carlo to estimate the expectation in the SCGF; however,
this approach is not efficient, in general, since it involves
exponentially rare events that do not occur spontaneously
on timescales accessible to simulations.

To address these limitations, many strategies have
been proposed recently, based on various numerical meth-
ods, including the power method [27], diffusion Monte
Carlo [26, 28-31], recurrent neural network [45], and re-
inforcement learning algorithms [32-34]. The method
that we propose is based on importance sampling and
proceeds by changing the process X; to a new process
X} governed by the SDE

AXY = uy(X¥)dt + cdWy, (5)

in which the drift b(x) is replaced by the control drift
ug(x), so as to rewrite the expectation of the SCGF in
terms of this new process as
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The idea with this change of process is to bias the esti-
mation of the expectation towards trajectories that most
contribute to the expectation—hence the expression “im-
portance sampling”—thereby reducing the variance of the
simulated estimator. These trajectories are rare with re-
spect to X¢; the goal is to make them typical with respect
to the new process X;'. The ratio dP[X"]/dP,[X"] is
called the Radon—Nikodym derivative and is there to cor-
rect for the fact that the expectation is computed not from
the original path probability (or path ensemble) P[X ], as
in (4), but from a biased path probability P, [X "] related
to X{'. This ratio can be computed explicitly along a
given path using the Girsanov theorem [46].

The optimal change of process or optimal control pro-
cess that achieves the smallest variance in importance
sampling is known [47]. Its drift maximizes the cost

T
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(7)
which we derive in Appendix A. Moreover, it is known
that, in the limit 7' — oo, the maximizing control drift
is time-independent and that the maximum of the La-
grangian is the SCGF [47], so that

1 "
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This variational representation of the SCGF has a clear
interpretation: the first term in the Lagrangian (7) en-
forces the target rare event (constraint) Ay = a with a
Lagrange multiplier A, while the second term is the Gir-
sanov weight related to the change of drift that measures
the extent to which the controlled process deviates from
the original process [48]. From this point of view, the
optimal control process is interpreted as the process clos-
est to the original process, as measured by the Girsanov
weight, that achieves A7 = a as a typical rather than a
rare event. In a more physical way, we can also interpret
the optimal drift v*(x) of that process as an effective
drift that “creates” the fluctuation Ay = a [47, 49, 50].
This provide as physical mechanism explaining how fluc-
tuations are created in time, which is useful for studying
dynamical phase transitions.

III. ALGORITHM

The variational representation of the SCGF shown in
(8) has a form that is standard in control theory and, as
such, is amenable to Ritz-type methods that optimize a
parametric representation u(x, \; @) with respect to some



Algorithm1 Concurrent Training

1: Data: Lagrangian L£[X*, ou(X{,)\;8),
N(m) € N the batch size. {A1, Az, -

2: k=0
3: while k < kmax do
4: form=1,...,M do
5: forn=1,...,N(m) do
6: Sample XFO(T’") according to dX} = [b(X}) + du(
7 Compute
l:(m" =\, / f u()\m) dt+ (XuO\M)) Am)

N (m)

Z Yo ﬁ(m ,n)

VeL(8) = ]\1/‘, Z N

8  Update 0 < 6 + aVeL(6)
9: Update the initial condition ng:"") — X;E:‘Lm)

A], initial 6, kmax € N total duration, 7' € R the duration of sampled trajectory,
,Am} C R, a > 0 the learning rate.

¥, Am; 0)]dt + odW'¢ with initial condition X o™ ;

/ Suf u(Am))\ :0)D 5( u(Am))\ :0)dt

10: procedure (OPTIONAL) REPLICA EXCHANGE:
11: Select two random integers ni,n2 such that n; < N(m;);
12: Compute the Radon-Nikodym derivative:
m (Amy) u(Am
LX) exp{ I X ) l2df}
Mz = aP[x ") - 5 “Cma) X Oma) y g
[0,T],n2 exp fo ‘ t,mo - ’LL( t,no |
13: u ~ Uniform(0, 1)
14: if v < min[1, Mr] then
u()\,n ) u(Amg)
15: exchange X, "' and X, "*".

16: return: 6.

set of variational parameters 8. Directly carrying out this
optimization is nontrivial, as it requires representing a
potentially complex, many-body force, motivating sev-
eral sophisticated strategies that rely on intricate basis
functions, Malliavin weight sampling, and reinforcement
learning [32-34, 51].

Our contribution is to solve this high-dimensional con-
trol problem using gradient-based optimization and deep
neural networks, which are well-suited to this task [52-57]
due to their robust function approximation properties,
even in high-dimensional settings. The pseudo-code of
our optimization algorithm is presented in Algorithm 1
and a Python source code is available online [58]. There
are four important components to our algorithm:

a. Neural network representation of the drift. Fol-
lowing recent works on the deep Ritz method [35], we
represent the change in control drift

du(z) = u(z) — b(x) 9)

using a neural network that contains multiple layers L;,
where each layer consists of two linear transformation, two
nonlinear activation functions and a residual connection:

Li(X)=¢[Wia  ¢(Wir X +b;1) +bio] + X, (10)

where W; ; € R"*" and b;; € R" are parameters for
the i-th layer, h is the dimension of the hidden layers,
and ¢ is the activation function. The residual connection

expressing each layer as L;(X) = f(X) + X helps with
stability and avoiding the vanishing gradient problem.

Since our approach requires simulating trajectories from
(5), an unbounded activation such as ReLU may lead to
divergence of the sampled trajectories. To avoid this prob-
lem, we use tanh(-) as the activation function throughout
this paper though other nonlinearities may also be suit-
able. The full network can then be expressed as

26(X) =L, ® - ® L1(X). (11)
The input X € R? for the first layer is padded by a zero
vector when d < h. Finally, the ansatz du(X, \; 0) € R?
is expressed as a linear transform of zg(X).

b. Loss estimation and gradient. The loss function
is estimated, for a given change of drift du(-, \; 6), with
a collection or “batch” of N trajectories generated in
parallel using direct Langevin dynamics. The variance
and convergence of the resulting estimator are discussed
in Appendix B, which shows that short time trajectories
suffice when the batch size is large.

From the estimated loss, we proceed to compute the
loss gradient to update the parameters 6 by differenti-
ating through the solution of the SDE (5) using recent
developments in machine learning [37, 59]. Over short
times, we use direct back-propagation of the dynamics
through a Stratonovich time-discretization of the SDE to
compute VgL. The computational graph that contains
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Figure 1. Results of the diffusion in the quartic potential. (a) SCGF for the observable (13) for decreasing temperatures e. The
solid line represents the exact solution (14) in the zero-noise limit. The inserted figure shows the second derivative of the SCGF
for € = 0.01, confirming a second order dynamical phase transition. In this example the hidden layer dimension and number of
layers of the neural network are 50 and 2, respectively. A smaller hidden layer dimension such as 10 is able to generate results
with similar accuracy but requires longer time for training. We first select 11 A values uniformly from —1 to 1, where each A\
contains 20 replica. At each training step, a total number of 220 trajectories with T'= 5 are generated by the Euler-Maruyama
method (dt = 1073). The neural network is updated through standard back propagation where the gradient is computed by the
adaptive gradient algorithm method (AdaGrad) with a learning rate 5 x 10™3. The resulting estimation of the SCGF is then
refined by changing A and by simulating the resulting driven process. (b) Illustration of the concurrent training with ¢ = 0.01.
Each line corresponds to the evolution of the cost function with a specific A.

all the gradient information consumes significant memory
resources in this case, so over longer timescales, we calcu-
late VgL by solving instead an adjoint SDE, detailed in
Appendix C. This method is stable and only requires that
we keep the noise history and solve the SDE backward in
time.

c. Estimation of the SCGF and rate function. The
repeated gradient minimization of the loss yields, after
enough gradient steps, a single estimated point (). To
obtain the rate function, the SCGF must be estimated
by training the neural network for multiple values of A
either simultaneously or sequentially. In the first case,
which we term concurrent training, the loss function at
each training step is evaluated as the mean of the loss
function with each A, from a set {A1, Ao, -, Ap}. We
find that the expressiveness of the neural networks we use
allows a single force function u(-, \) to capture the control
forces for a wide range of A, even when there are multiple
dynamical phases. For high-dimensional systems, where
the batch size is limited, one may alternatively start with
a given A, e.g., 0, and sequentially increase or decrease
A. This sequential training approach, which is similar to
transfer learning [60], shows fast convergence.

d. Replica exchange. Near dynamical phase transi-
tions, which lead to rapid changes of the optimal control
forces as a function of A, we have found that it is useful to
share information from distinct values of A by employing
a path space variant of the replica exchange method [61],
in which two trajectories corresponding to different X\ are
swapped according to a Metropolis-Hastings algorithm
that uses the loss function in place of an energy. This
increases the likelihood of sampling trajectories in differ-
ent phases, leading to a more accurate estimation of the

SCGF.

IV. APPLICATIONS

We test our algorithm on two models which have been
studied before in the context of large deviations and
which illustrate two different challenges faced by large
deviation numerical methods, namely: critical slowing-
down effects related to dynamical phase transitions, and
the representation of the control force for high-dimensional
systems, in particular, many-body systems.

A. Simple diffusion

For the first test, we consider a 1D diffusion in a quartic
potential,

dX; = —XPdt + v 2ed Wy, (12)
and focus on the observable
1 /T
Ap — 7/ X, (X, + 1)dt. (13)
T Jo

For this model, the SCGF scaled by the strength e of
the noise is known to display a second-order dynamical
phase transition in the small-noise limit, meaning that
the derivative of ¥.(\) = ey(A) is not differentiable at
A = 0 when considering the additional limit ¢ — 0. This
can be checked from the exact result

wo(A) = lime(A) = max{A(¢® +q) —¢°/4}. (14)
Resolving this phase transition using cloning algorithms is
challenging, due to a critical slowing down of the dynamics,
which can be alleviated to some degree by incorporating
adaptive feedback methods [62].
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Figure 2. Comparison of our machine learning approach with the cloning method with feedback. We computed the SCGF for
the 1D diffusion system described as in (12) with € = 0.01. N is the batch size (for the ML approach) or the number of clones
(for the cloning method). For the cloning method, we set the trajectory length to be T = 0.3 (dt = 10™3), and updated the
control potential every 75 steps so the time interval between updating is 22.5. All results were computed in the same personal

computer, using CPU only.

The low-noise limit is not a bottleneck for our algorithm.
Using short trajectories (T' = 5), we concurrently trained
a single neural network with a set of values for A in the
range [—1,1]. The results, plotted in Fig. 1(a), agree
exceptionally well for ¢ = 0.01 with the exact result
obtained in the low-noise limit. For most values of A,
we find in fact that the normalized mean squared error
between our estimate of the SCGF and the exact result
is about 0.2%. This can be reduced by training the
network for a single A rather than concurrently for many
A values. Replica exchange is not crucial here and does not
noticeably improve the accuracy. The numbers of steps
required to reach () is shown in Fig. 1(b) to vary little
for different e—typically in the range of 400 to 600 steps.
The rapid convergence that we observe away from the
dynamical phase transition may be due to the fact that we
employ overparameterized neural networks, which do not
suffer from overfitting and converge to global minimizers
when the loss function can be repeatedly sampled, a
setting known as online learning [53, 63, 64].

To compare our algorithm with the cloning algorithm
with feedback, we have applied the latter to the same
model. In brief, the cloning method [29] evaluates the
SCGF by simulating a batch of trajectories (clones) and
by duplicating or eliminating trajectories according to
weights computed from the trajectory ensemble. Gener-
ally, this population dynamics method requires a expo-
nentially large number of replicas of the system as the
desired event becomes rarer (or equivalently, as the mag-

nitude of the noise decreases). To overcome this issue,
[62] proposed a feedback approach, in which a controlling
potential function is adaptively constructed to modify the
original dynamics.

The convergence of this cloning algorithm with feedback
with that of our algorithm for various batch or clone
sizes and values of A are compared in Fig. 2 in terms
of computational time on a single machine measured in
minutes. The results clearly show that our algorithm
is significantly faster and more stable than the cloning
algorithm, especially when the biasing parameter A is far
from 0. The difference in performance is partly due to the
fact that the feedback in the cloning algorithm relies on
estimating two probability distributions, which is limited
by the relaxation time of the original system. Moreover,
as \ deviates from 0, more iterations for updating the
control potential are required to realize the rare events. In
our algorithm, no distributions are estimated: the control
drift is obtained directly by the taking the gradient of the
estimated cost over a number of batches, which, contrary
to the cloning algorithm, need not be stored in memory.
Moreover, the results plotted in Fig. 2 show again that
the number of steps needed to converge to the optimal
drift does not vary much with A.

There is another significant difference in that the control
potential in the cloning algorithm is represented by a
linear combination of a set of basis functions such as
polynomials, so it requires a priori knowledge in order
to choose the adequate basis functions, often in a case



by case manner. By comparison, the machine learning
approach that we propose is agnostic, meaning that it
can be applied to a broad class of problems without any
modifications of the algorithm or specific knowledge of
the underlying structure of the problem [65]. Yet another
advantage is that it has an inherently parallel structure
and can evaluate the SCGF for multiple A simultaneously.
Cloning does not benefit from this parallel structure as
the SCGF must be evaluated with a potential specific to
each value of \.

B. Active Brownian particles

Theoretical [66-68] and numerical [69] characteriza-
tions of active matter provide a compelling model for
nonequilibrium phenomena. Minimal models, such as
actively driven Brownian particles (ABPs) with purely
repulsive interaction potentials, exhibit a rich spectrum
of collective fluctuations and nonequilibrium phase sepa-
ration emerging from the impact of persistent, directional
motion on the local diffusivity of the constituent particles.
The precise connection between energy dissipation and
pattern formation in these nonequilibrium transitions re-
mains a topic of intense research [70-72]. For example,
the correlation between the structure formation in ABPs
and fluctuations in entropy production was recently de-
scribed by GrandPre et al. [73]. Probing the connection
between rare dynamical behavior and collective fluctua-
tions, however, is extremely challenging because the onset
of clustering in ABPs requires large system sizes and high
densities that can be accessed by cloning type algorithms
only with a large number of replicas.

To test our algorithm, we consider the ABP model in
which the motion of the ith particle is governed by the
following equations:

X ) )
OU(Xy) | vb{]dt + vV2DdW "
Ox(?) (15)

b = [cos ¢, sinoP)T, dol = VeDawy"” .

dx{) = [-p

The potential U(X) defining the conservative interpar-
ticle force is taken here to be a purely repulsive Weeks-
Chandler-Andersen (WCA) pair potential that depends
on the relative distance l;; according to:

Uli;) = { de [(0/1;j)'? = (o/1)°] + e, 1 <2Y/%
* 0, lij > 21/60'.
(16)
The non-conservative self-propulsion term v represents
the dissipative “active” force in which bgi) are unit vectors
that rotate diffusively and v is the magnitude of the active

force. Finally, WEZ) and Wtd’m are independent standard
Wiener processes representing noise sources for the state
and angle. The simulations are performed with periodic
boundary condition, and the relative distance matrix /;;
is adjusted by the minimum image convention. The unit
of length is also normalized by ¢ and we set € = 1.
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Figure 3. Small entropy production indicates particle clus-
tering. (a): The average entropy production at given A for
different system sizes: N = 40 (blue lines), 80 (red lines),
and 200 (yellow lines). (b): The corresponding rate functions.
The inserted figures show snap shots of typical behaviors in
the high entropy production phase (A = 0) and low entropy
production phase (A = —0.05), respectively. The arrow rep-
resents the direction of motion. In this example the hidden
layer dimension and number of layers of the neural network
are 1000 and 6 respectively. The batch sizes for 40 and 80
particles are 75, and 20 for the 200 particle case. T'= 0.1 and
dt = 107%. The density of particles throughout all three cases
is p = N/L? = 0.1 where L is the length of the simulation box.
To avoid boundary effect, the input of the neural network is
not the absolute position of particles but its relative position
to a particular one, i.e., u({X® — X 1) instead of u({X*}).
This step is essential otherwise the learned control force would
force particles to the boundary.

The phase separation properties of this model have been
studied extensively [66]. When the Péclet number and the
density of particles are high enough, the system exhibits a
motility induced phase transition in which a macroscopic
aggregate of particles forms. This transition has a natural



dynamical correlate with the average entropy production
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When the system enters the phase separated state, much
of the directional motion also ceases, leading to a drop in
the average entropy production compared to an unclus-
tered trajectory. Indeed, several studies have pointed to
entropy production being a natural observable for study-
ing motility-induced phase separation [73] and nonequi-
librium pattern formation in liquids [71, 72|, though a
control-based approach has not been pursued for these
systems to date.

Using our algorithm, we computed the many-body con-
trol forces associated with fluctuations of the entropy
production for various particle numbers (N = 40, 80, 200).
The results, shown in Fig. 3, were computed through the
sequential training, since concurrent training requires a
large total batch size which is computationally costly for
high dimensional systems. For this system, it is crucial
that we do not include the direction of the active particles
¢; in the state, otherwise the entropy production rate
can trivially be reduced by learning control forces anti-
parallel to the direction of the active force; this choice
has a physical justification, namely, the directions are in
equilibrium and are not reversed under time-reversal.

The simulations converge over relatively long times
when first driving the system into the clustering phase;
however, once we obtain a control force, they converge
fast when sequentially altering A. For N = 40,80, we
also noticed that replica exchange is required to obtain a
convex SCGF, whereas for N = 200, replica exchange is
not necessary. The replica exchange is implemented by
concurrently training with multiple A\ values and by swap-
ping trajectories between them. We set A\ = —0.05 with
batch size 75. Then at each step all the 75 trajectories are
attempted to be exchanged, as explained in Algorithm 1.
In Fig. 4 we plot the results with and without replica
exchange, respectively, in the N = 40 case. The results
indicate that replica exchange is essential for obtaining a
convex SCGF.

Going back to our results in Fig. 3 (see also the sup-
plementary movie), we can see that particles start to
aggregate when the biasing field A is sufficiently negative.
For all system sizes, the entropy production rate changes
dramatically as a function of A around a value coincid-
ing with the onset of clustering. This sharp transition
signifies a first-order dynamical phase transition in the
entropy production rate, shown in Fig. 3(b), related to
a singularity in the rate function at the transition point.
Examining the learned controls provides further insight
into the microscopic origins of the transition. As shown
in the inset of Fig. 3(b), the learned control forces lead
to net forces on the particles that favor the aggregated
state.

The nonequilibrium fluctuations of active systems have
been studied in a variety of contexts, using unbiased sam-
pling [74], cloning [73], and reinforcement learning [32].
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Figure 4. Estimate of the SCGF and corresponding changes
of average entropy production for N = 40 with and without
replica exchange. The blue line corresponds to the results with
replica exchange and the red line shows the results without.

Our approach considerably simplifies the computation
compared to reinforcement learning because we do not
need to learn an expected value function. Moreover, unlike
cloning, our approach scales to high-dimensional systems
without incurring significant additional computational
cost; training for various A is easily parallelizable and
the integration of the trajectories can be carried out on
heterogeneous hardware. Indeed, the cloning algorithm
would require prohibitive computational resources com-
pared with our algorithm.

V. DISCUSSION

The results presented in this paper demonstrate the
efficacy of a machine learning algorithm that adaptively
learns optimal control forces to directly estimate large
deviation functions for systems extremely challenging
for conventional methods. The algorithm that we have
proposed relies on direct stochastic optimization based
on a small number of trajectories, which themselves may



not need to have a long duration—a fact that requires
further investigation. Importantly, the Lagrangian that
we optimize is explicit and exact in the long time limit,
requiring no additional approximation or optimization,
as only the control function is learned. We have shown
that the approach is robust both near the dynamical
phase transitions and in the limit of small noise. Like
many methods based on machine learning, the method we
propose shows favorable performance in high-dimensional
systems and still identifies many-body control forces that
realize rare fluctuations near dynamical phase transitions.

The examples we have explored are continuous-time
stochastic differential equations with a constant diffusion
term (and hence additive noise), but it is straightforward
to adapt our algorithm to other types of systems, in-
cluding those with multiplicative noise, or with discrete,
but innumerable state spaces such as unbounded Markov
jump processes where directly evaluating the principal
eigenvalue is not possible. Our approach could also be
extended to finite-time large deviations, though we an-
ticipate that this would require longer trajectories and
therefore the adjoint state method would likely be manda-
tory. Learning control forces that drive the system locally,
and hence can be transferred to systems of increasing size
and complexity is among the most attractive possibilities
for future investigation. For interacting particle systems,
if the form of the input and the architecture of the neural
network are carefully designed, it may be possible to ob-
tain the optimal control force for systems with thousands
of particles by training on smaller, more computationally

J
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tractable systems.
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Appendix A: Derivation of the cost functional

Using importance sampling, we write the expression
for the SCGF as an expectation over a “tilted” or biased
path measure,

— lim L ararx) dPX"] u
() 7%LngoTlog/e aP.[ u]d]P’u[X ]
(A1)

This expectation must be estimated for each A of interest
by collecting trajectories from the controlled process (6).
The relative statistical weight of the unperturbed path
measure P to the path measure of the controlled process
P, is defined through the Radon—-Nikodym derivative. In
our case, using the parameterization u(x,\) = b(x) +
du(ax, A), this derivative can be written explicitly using
the Girsanov theorem [46] as

(A2)

where we use the notation Mp to emphasize the fact that My is a martingale. The first integral in the exponential
can be neglected when the deterministic contribution is finite and we are left with an expression for (Al):

T
P(A) = lim %logEXu exp ()\TAT[X“] — %/ 5u(X;‘)D1(5u(X?)dt> .
0

T—o0

(A3)

The term inside the exponential is evidently time-extensive and, in the limit 7" — oo, the integral will be dominated
by a saddle point, following the Laplace approximation. As a result, we obtain

T
¥(A) = lim %supExu {)\TAT[X“] _% / 5u(Xg)D—15u(X;‘;)dt}.
0

T—00 Su

(A4)

Hence, the argument of the supremum becomes a natural variational objective for du, which we denote

T 1 T
LX) = )\/ FXM)dE+ g(X") 0 dXT — 5/ SuD~6u(X ") dt.
0 0

Appendix B: Cost estimator

We compute the cost functional numerically by simu-
lating N independent trajectories X', of the controlled

(A5)

(

process, referred to as replica, over a finite time-window
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Figure 5. Variance of the estimator. We illustrate the scaling property of the variance of our estimator (B1) using the small
noise example. By fixing A = 1 and e = 0.01, the neural network is trained with (a) a fixed batch size N = 300 with various
trajectory length t from 1 to 20, or (b) a fixed ¢ = 5 and various batch size from 10 to 400. The neural networks in all cases are
trained for more than 400 steps, and the variance is estimated by collecting the data from the last 100 steps. The insert figures
show the relative absolute error |[¢)(A) — ¥(A\)|/1¥(N). The gray dashed line represents a —1 slope.

or horizon [0, t] by using the estimator

(B1)

. 1 M
Vv = 57 D i),
i=1 |

- 1 ¢ I
G = {3 [ rxsas ¢ gxz oaxt - 3 [ oucxsop suxe yas)
0 0

is the estimator of the cost functional for one replica. By
the ergodic theorem and the law of large numbers, 1[)Nt()\)
converges to the SCGF () in the double limit ¢ — co
and N — oo, provided that « is the optimal control drift
u*. Note however that, since u* is time-independent,
we can obtain the long-time limit of the optimal cost
by considering a finite-time estimator provided that we
take the limit NV — oo, so that there is only one limit to
consider.

This point is illustrated for the 1D diffusion in the low-
noise limit in Fig. 5, which shows the mean square error
(MSE) of the loss estimator or, equivalently, its variance
since it is unbiased:

MSE = E[thn:(A) — (V)]* = Var[hn ().

Since the N replica are independent, the variance of
@Nm‘()\) must scale with N~ due to the central limit
theorem, yielding MSE = Var[z/}t,i(/\)]/N. In general,
Pr4(N) itself is a time-extensive variable that satisfies
a large deviation principle, so its variance Var[qz)t,i()\)]
scales with t~!. Therefore, overall, the MSE of the loss
estimator decreases as (tN)~!. Hence, a large-batch and
short-time estimator is equivalent to a small-batch and
long-time estimator. In Fig. 5, we confirm this scaling
property by plotting the estimator of 9.(\) for the simple

(B3)

where

(B2)

(

diffusion model as a function of integration time or batch
size.

Appendix C: Adjoint state method

The adjoint state method for Stratonovich SDEs [75]
differs only marginally from the classical adjoint method
for ODEs, though we note that the method can be ex-
tended to multiplicative noise [37]. These methods require
forward and backward integration of the differential equa-
tion and, in the stochastic case, one must solve the SDE
backward in time with the same Wiener process W used
in the forward direction, meaning that the noise history
must be stored. We explain the method for the ODE case
and refer to Ref. [37] for further details.

Consider the ODE

dx

% =
and some objective function £(z(T)), which we would like
to minimize with respect to 6. We note that £ depends
on # through the dynamics because

u(z,t,0); z(0) =z (C1)

T
x(T) = xo —I—/O u(z, t,0)dt. (C2)



The dependence of £ on 6 can be computed using classical
sensitivity analysis techniques. Assuming that we can
easily evaluate the cost functional at the final integration
time T', we need to compute

OL(x(T)) _ OL(x(T)) da(T)
a0 ox(T) 00 °

(C3)

where z(t) is constrained to follow the dynamics (C1).
Using the method of Lagrange multipliers, we can turn

J

OL(x(T))  OL(x(T)) 0x(T) ox(T) 0
06— ox(T) 00 A 55" ~ 5 /
AL(x(T)) dx(T) ox(T) [T

ox(T) 00 ~ AT 54 +/o

From this result, we then choose 2 so that

T .
A(t)(x(t) — u(x,6,t))dt
Ox

0
2A(t)
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this into an unconstrained optimization where the time-
dependent multiplier 2(¢) is chosen to impose the con-
straint # = uw. That is, the cost functional becomes

T
L(x(T)) = L(«(T)) */0 A(t) (& —u(z,0,t))dt, (C4)

so that

(C5)
(t) ou(x,0,t) 0x(t) ou(zx,0,t)
90 + Ql(t)iax(t) 50 + ﬂ(t)iae dt.
[
in order to write the gradient as
0L(x(T)) /0 ou(zx,0,t)
0 . Ql(t)iaa dt, (C7)

which is solved backward in time because we know the
final condition for the adjoint 2(T).

The stochastic variant of this algorithm is operationally
similar to the procedure outlined above and is particularly
straightforward for Stratonovich SDEs (the convention
we use in numerical experiments with current-like observ-
ables) [37].
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