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Abstract

We demonstrate, both analytically and numerically, that learning dynamics of
neural networks is generically attracted towards a self-organized critical state.
The effect can be modeled with quartic interactions between non-trainable vari-
ables (e.g. states of neurons) and trainable variables (e.g. weight matrix). Non-
trainable variables are rapidly driven towards stochastic equilibrium and trainable
variables are slowly driven towards learning equilibrium described by a scale-
invariant distribution on a wide range of scales. Our results suggest that the
scale invariance observed in many physical and biological systems might be due
to some kind of learning dynamics and support the claim that the universe might
be a neural network.
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2 BASIC MECHANISM

1 Introduction

Many astrophysical [1], geological [2], biological [3] and even neurobiological [4] systems exhibit
a remarkable property of being dynamically attracted towards self-organized critical states
described by scale-invariant distributions of fluctuations. The self-organized criticality is
usually attributed to slowly driven non-equilibrium dynamics of the systems with “fragile”
equilibrium such as the sand-pile model [5–9], and it is widely believed that the phenomenon is
responsible for the emergence of complexity in nature [10], including biological complexity [11].
In this paper we argue that self-organized criticality is actually an equilibrium phenomenon,
but in systems which undergo a learning evolution such as artificial neural networks. A
distinctive feature of learning systems is the existence of two different types of degrees of
freedom: non-trainable variables that are rapidly driven towards thermodynamic equilibrium
and trainable variables that are slowly driven towards learning equilibrium. As we shall
see, the learning equilibrium is described by frustrated dynamics on the smallest scales of
fluctuations, Gaussian distributions on the largest scales, and scale-invariant distributions on
intermediate scales. In what follows, we focus on the analysis of the intermediate scales and
the reader is referred to Refs. [12–14] for discussions of other regimes.

Technically, we use a recently developed approach to machine learning from the point
of view of statistical physics [12–14] which describes learning as a competition between a
general tendency to the entropy growth in physical systems and entropy decrease due to the
decrease of information uncertainty during the learning process. Near local equilibrium, the
state of the learning system can be described by small fluctuations (both Gaussian and scale-
invariant) near the extremal (saddle-point) state determined by this balance, with a dominant
contribution of soft modes as is well known in quantum field theory [15–17]. We show that
it is the soft modes of probability distribution on intermediate scales that are responsible for
the scale-invariant fluctuations and the self-organized criticality in neural networks. Keeping
in mind deep formal relations between theory of machine learning and fundamental physical
theories [12–14] our approach probably can explain a broad distribution of self-organized
critical states in completely different systems.

The paper is organized as follows. In Sec. 2 we describe a mechanism which might be
responsible for the emergence of self-organized criticality in the context of a simple model. In
Sec. 3 we argue that the most essential feature of the model is also present in more general
learning systems such as artificial neural networks. In Sec. 4 we show that the learning
evolution of neural networks would generically lead to the emergence of self-organized critical
states described by a scale-invariant distribution over trainable variables. In Sec. 5 the main
results are verified numerically by following the learning dynamics of artificial neural networks
with feedforward architecture. In Sec. 6 we discuss implications of the results for machine
learning, physics and biology.

2 Basic mechanism

In this section we describe the basic mechanism of the self-organized criticality in the context
of a simple model with one non-trainable variable x and one trainable variable q, but, as
we shall see, essentially the same mechanism is responsible for the critical behavior of neural
networks with many non-trainable and trainable variables. The main objective of a learning
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2 BASIC MECHANISM

system is to minimize some suitably defined loss function H(x, q) which can be expanded
around local extremum up to the second order, i.e.

H(x, q) ≈ λx(x− x̄)2

2
+
g(q − q̄)2(x− x̄)2

2
+
λq(q − q̄)2

2
+ ... (1)

where x̄ and q̄ are mean values of x and q respectively, and λx, g and λq specify the coupling
constants. It is explicitly assumed that there is a quartic coupling between trainable and
non-trainable variable, but higher order terms might also be present. We also assume that
non-trainable variable x undergoes stochastic dynamics (which maximizes the entropy due
to the second law of thermodynamics) and trainable variable q undergoes learning dynamics
(which minimizes the entropy due to the second law of learning) [12]. In the equilibrium
the overall entropy remains constant, but the loss function (averaged over the non-trainable
variable) depends on the trainable variable:∫

dx p(x|q)H(x, q) = U(q). (2)

Then, according to the maximum entropy principle, conditional distribution p(x|q) over non-
trainable stochastic variable x is given by

p(x|q) ∝ exp

(
−βλx(x− x̄)2

2
− βg(q − q̄)2(x− x̄)2

2
− βλq(q − q̄)2

2
+ ...

)
(3)

and the corresponding free energy is

F (β, q) ≈ 1

2β
log(g(q − q̄)2 + λx) +

λq(q − q̄)2

2
+

1

2β
log(β). (4)

The next step is to derive marginal distribution p(q), and consequently the joint distribu-
tion p(x, q) = p(x|q)p(q). If we assume that both g and λq are positive, but λx is negative,
then the local minimum of the loss function is at q = q̄, but the maximum entropy of p(x|q)
is at q = q̄ ±

√
−λx/g, or when the conditional distribution p(x|q) is nearly flat. In the

limit of small fluctuations, |q − q̄| .
√
−λx/g, the dynamics of q becomes frustrated: the

learning dynamics pushes q towards q̄, but the stochastic dynamics pushes q towards either
q̄+
√
−λx/g or q̄−

√
−λx/g. This is exactly the limit when the argument of the logarithm in

(4) is negative, the conditional distribution p(x|q) has a local maximum at x = x̄ and higher
order terms must be added to the expansion (1). Note that the frustration only happens for
very small values of (q − q̄)2 . −λx/g (or equivalently for small changes of the loss function,
H(q) ∝ (q − q̄)2) where the quantum behavior can emerge (see Ref. [14]), and self-organized
criticality is expected to emerge on larger scales (q − q̄)2 > −λx/g (see Eq. (7)).

According to the first law of learning [12], the marginal distribution p(q) must evolve
towards a state described by a saddle point of the free energy. If we impose a constraint on
the average free energy, ∫

dq p(q)F (β, q) = V, (5)

then the equilibrium distribution is

p(q) ∝ e−αF (β,q) ∝ (g(q − q̄)2 + λx)
− α

2β exp

(
−αλq(q − q̄)

2

2

)
. (6)
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3 NEURAL NETWORKS

where α is a Lagrange multiplier associated with the constraint (5). Evidently, for α > 0,
smaller fluctuations (e.g. on shorter time-scales) would be described by a power-law (or scale-
invariant) distribution and larger fluctuations (e.g. on longer time-scales) would be described
by a Gaussian distribution, i.e.

p(q) ∝

(g(q − q̄)2 + λx)
− α

2β for − λx
g < (q − q̄)2 <

W (βλq)
βλq

,

exp
(
−αλq(q−q̄)2

2

)
for (q − q̄)2 >

W (βλq)
βλq

,
(7)

where W (x) is the Lambert W function [18]. This suggests that the presence of scale-invariant
trainable variables, or, in other words, self-organized critical states, is a direct consequence of
the learning dynamics on the intermediate scales, −λx/g < (q − q̄)2 < W (βλq)/(βλq).

3 Neural networks

In the previous section we described a simple model with a scale-invariant distribution over
trainable variables, but the learning dynamics which might lead to such a distribution was not
yet specified. The key observation was that for the scale-invariance to emerge, interactions
between trainable and non-trainable variables must be quartic (1). It turns out that such
interactions are very typical in the context of neural networks for non-trainable states of
neurons x and trainable elements of the so-called weight matrix ŵ (see Eqs. (11) and (10)).
Because of the quartic couplings, trainable elements of the weight matrix and bias vector
are expected to evolve towards a scale-invariant distribution or, in other words, towards a
self-organized critical state.

For numerical tests we will be mainly interested in a feedforward neural architecture
(see Sec. 5), but according to analytical results (see Sec. 4) it is expected that the same
phenomenon would occur in an arbitrary learning system. In general, a neural network can
be defined as a septuple (x, P̂ , p∂ , ŵ,b, f , H), where:

1. x, is a (column) state vector of all (input, output and hidden) neurons,

2. P̂ , is the boundary projection operators to subspace spanned by input/output neurons,

3. p∂(x∂), is a probability distribution which describes the training dataset,

4. ŵ, is a weight matrix which describes connections between neurons,

5. b, is a (column) bias vector which describes bias in inputs of individual neurons,

6. f(y), is an activation map which describes a non-linear part of the dynamics,

7. H(x,b, ŵ), is a loss function which describes the learning objective.

We shall refer to all input and output neurons, described by the state vector P̂x, as boundary
neurons, and to all neurons in the hidden layers, described by the state vector (Î − P̂ )x, as
bulk neurons. These different types of neurons evolve according to two different laws (8) and
(9). The state of the boundary neurons depends only on the boundary data,

P̂x(t) = P̂x∂(t), (8)
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4 LOCAL EQUILIBRIUM

where x∂(t) is updated either periodically or randomly from a training dataset which can
be described by some probability distribution p∂(x∂). In contrast, the bulk neurons evolve
according to

(Î − P̂ )x(t) = (Î − P̂ )f (ŵx(t− 1) + b) , (9)

where the activation map acts separately on each component, i.e. fi(y) = fi(yi). These
functions are called activation functions (e.g. hyperbolic tangent tanh(y), rectifier linear unit
function max(0, x), etc.) and do not need to be the same for all neurons.

The main problem in machine learning is to find a bias vector b and a weight matrix ŵ
which minimize (the time-t average or ensemble average over boundary conditions p∂(x∂) of)
some suitably defined quantity known as the loss function. For example, a boundary loss
function could be defined as

H∂(x,b, ŵ) =
1

2
(x− f (ŵx + b))† P̂ (x− f (ŵx + b)) (10)

where because of the inserted projection operator P̂ , the sum is taken over squared errors at
only boundary neurons [12]. Note that in a feedforward neural architecture there are no errors
associated with input neurons and all of the loss comes from the output neurons. Another
example is the bulk loss function, e.g.

H(x,b, ŵ) =
1

2
(x− f (ŵx + b))† (x− f (ŵx + b)) +

1

2
V (x,b, ŵ) (11)

where in addition to the first term, which represents a sum of local errors over all neurons,
there may be a second term which represents either local objectives or constraints imposed
by a neural architecture [12]. Note that boundary loss is usually used in supervised learning,
but bulk loss functions may be used for both supervised and unsupervised learning tasks.

4 Local equilibrium

To study the learning dynamics of neural networks analytically it is convenient to switch to a
more“macroscopic” description. Instead of following the individual states we shall study the
dynamics of a joint distribution p(x,q) = p(x|q)p(q) over non-trainable variables x, which
describe the current state vector of N neurons, and trainable variables q, which describe the
state of K dynamical elements of weight matrix w(q) and bias vector b(q). If we fix the
trainable variables q and impose a constraint on the average loss function∫

dNxH(x,q)p(x|q) = U(q), (12)

then the maximum entropy probability distribution is given by

p(x|q) ∝ exp (−βH(x,q)) . (13)

The bulk loss function (11) can be expanded around a local extremum (x̄, q̄) as

H(x,q) =
1

2
(x− x̄)†

(
Ĝ(q) + V̂x

)
(x− x̄) +

1

2
(q− q̄)†V̂q(q− q̄), (14)
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5 NUMERICAL RESULTS

where

Ĝ(q) ≡
(
Î − F̂ ŵ

)† (
Î − F̂ ŵ

)
. (15)

For simplicity we assume that F̂ , V̂x and V̂q are diagonal matrices of, respectively, first deriva-
tives of activation functions fi(yi) and second derivatives of local potentials V (x,q) with
respect to non-trainable x and trainable q variables. Then the free energy of the maximum
entropy distribution (13) is given by [12],

F (β,q) =
1

2β
log det

(
βĜ(q) + βV̂x

)
+

1

2
(q− q̄)†V̂q(q− q̄). (16)

The next step is to determine the marginal distribution p(q) and consequently the joint
distribution p(x,q) = p(x|q)p(q). If we impose a constraint on the free energy∫

dq p(q)F (β,q) = V, (17)

then the marginal distribution is

p(q) ∝ exp (−αF (β,q)) . (18)

For free energy (16) the distribution is

p(q) ∝
[
det
(
Ĝ(q) + V̂x

)]− α
2β

exp
(
−α

2
(q− q̄)†V̂q(q− q̄)

)
. (19)

Since in the learning equilibrium the free energy would be extremized, it makes sense to
expand individual eigenvalues λi(q) of the matrix Ĝ(q) + V̂x around local extrema,

λi(q) ≈ λi0 + (q− q̄)† λ̂i (q− q̄) , (20)

and then the distribution (18) can be approximated as

p(q) ∝
∏
i

(
λi0 + (q− q̄)† λ̂i (q− q̄)

)− α
2β

exp
(
−α

2
(q− q̄)†V̂q(q− q̄)

)
. (21)

Evidently, the marginal distribution p(q) would be scale-invariant (or a power-law) on inter-
mediate scales when the first term dominates and Gaussian on larger scales when the second
term dominates. Therefore, the scale-invariant and Gaussian distributions are expected for,
respectively, short-term and long-term dynamics. Also note that for very small fluctuations
(e.g. when (q− q̄)† λ̂i (q− q̄) and λi0 are of the same order but have opposite signs) the free
energy (16) might diverge and the system can become frustrated from simultaneous maximiza-
tion of the entropy of non-trainable variables and minimization of the entropy of trainable
variables. (See Sec. 2 for a discussion of this point in the context of a simple model.)

5 Numerical results

In this section we will justify the model from Sec. 4 by training a feedforward neural network
until it reaches equilibrium and then analyzing its behavior in equilibrium.
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5 NUMERICAL RESULTS

We focus on the MNIST dataset [19] which is a collection of images of handwritten dig-
its. It contains 60000 training and 10000 test samples. We use a simple fully-connected
feedforward neural network with two hidden layers with 700 and 476 neurons and ReLU [20]
activation function. This network is optimized using stochastic gradient descend with batch
size 1 and learning rate 2 · 10−3. We also add L2-regularization term to the loss function with
rate 5 · 10−4. The training proceeds for O(3000) epochs (i.e. passes through the dataset) to
reach equilibrium. We keep track of the loss function on the test dataset and ensure that no
overfitting takes place.

Figure 1: Output distribution p(x|q) for a few randomly selected neurons with frozen weights
(i.e. no training takes place). All neurons come from the second hidden layer.

Figure 2: Distribution of local fluctuations for a few randomly selected weights from the first
and second layer.

We can now directly compute p(x|q) by freezing the neural network parameters and track-
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5 NUMERICAL RESULTS

ing neuron outputs for different input images. The result is shown in Figure 1. We clearly
see two maxima which correspond to the frustrated regime discussed in Sec. 4. This regime
is characterized by negative λi0 from (20) which, because of (13), appear as local minima in
p(x|q).

Next, we train the neural network for another 200 epochs and keep track of a few randomly
selected weights. As a result we have time dependence wi(t) of trainable parameters in
equilibrium. This data can be used to gain insight into p(q).

Figure 3: Distribution of local fluctuations for a few randomly selected weights. This figure
contains the exact same data as Figure 2, but focuses on intermediate (left panel) and large
(right panel) fluctuations. Left panel shows data in log-log scale and straight lines correspond
to power-law behavior. Right panel shows data in log-quadratic scale and straight lines
correspond to Gaussian decays.

In Sec. 4 we expanded everything around q̄. In reality, the situation might be more com-
plicated because there might be many extrema close to one another such that in equilibrium
the neural network constantly “hops” between them. To account for this hopping we will
consider truly local fluctuations: wi(t + 1) − w̄i(t) ≈ wi(t + 1) − wi(t). The distribution of
these fluctuations is shown in Figure 2. We see a peak for very small fluctuations, power-law
decay at intermediate values, and Gaussian decay for large fluctuations. In Figure 3 we focus
on the intermediate and large fluctuations to better illustrate the power-law and Gaussian
decays. This behavior matches (21) perfectly.

Finally, we analyze the power spectrum of wi(t), i.e.

P (f) ≡
∣∣∣∣∫ T

0
dtwi(t)e

−ift
∣∣∣∣2 =

1

f2

∣∣∣∣∫ T

0
dt
dwi(t)

dt
eift
∣∣∣∣2 . (22)

〈∣∣∣∫ T0 dt dwi(t)dt eift
∣∣∣2〉 is constant for independent increments, i.e. when

〈
dwi(t)

dt

dwi(z)

dz

〉
∝ δ(t− z) (23)
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6 DISCUSSION

Figure 4: Power spectrum of wi(t). We show f2 · P (f) rather than P (f) to more clearly
indicate the deviations from 1/f2 behavior which is expected for completely uncorrelated
jumps. Straight lines are guide to eye and indicate regions where the power spectrum decays
as 1/fa with a < 2.

as would be the case, for example, for white noise. In Figure 4 we show f2 ·P (f) as a function
of f such that 1/f2 dependence would correspond to a horizontal line. On short time scales
(corresponding to large f) the system is in a local minimum and the dynamics of wi(t) can
be modeled with uncorrelated jumps described by power spectrum P (f) ∝ 1/f2. On the
long time scales (small f) the system is hopping between local minima and the jumps are
are described by power spectrum P (f) ∝ 1/fa with a < 2. (See Refs. [12–14] for analytical
modeling of the learning dynamics of p(q, t) and F (q, t) on both short and long time-scales.)

6 Discussion

In this article, we analyzed, both numerically and analytically, the learning dynamics of
neural networks near equilibrium and showed that the learning systems are generally attracted
towards critical states described by scale-invariant distributions over trainable variables on a
wide range of scales. Moreover, on even larger scales the trainable degrees of freedom behave
as Gaussian random variables and on somewhat smaller scales the dynamics is frustrated from
simultaneous maximization of the entropy of non-trainable variables and minimization of the
entropy of trainable variables. These results have some interesting implications for machine
learning, physics and biology.

Machine learning. Every trainable variable evolves towards a state described by a scale-
invariant distribution on a range of scales, but the range itself can be very different for different
variables. Some variables are very well trained and have a scale-invariant distribution on a
wide range of scales, whereas others are poorly trained and the scale-invariant range is very
narrow. This suggests that the size of the range can be used to determine how well a given
trainable variable was trained or how vital it is for the overall performance of the network.
For example, if the least vital trainable variables (i.e. with the smallest ranges of scale-
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invariant distributions) can be successfully identified, then the learning algorithm can be
improved or the neural network can be compressed by either rewiring or dropping the least
vital connections. On a more practical level, the scale-invariant range is usually smaller for
trainable variables whose amplitude of fluctuations is larger (and vise versa), and therefore
the amplitude can be used to identify the least vital connections that should be either dropped
(for compressing neural networks) or rewired (for improving efficiency of learning).

Physics. It was recently proposed that the entire universe may be a neural network which
undergoes a learning evolution [13]. If correct, then all of the physical phenomena are not
fundamental, but rather emergent, and provide an adequate description in the limit of large
number of degrees of freedom, e.g. neurons, weights, biases etc. In particular, it was shown
that the learning dynamics near equilibrium can be modeled using either thermodynamics [12]
or quantum mechanics [14] and further away from the equilibrium using either Hamiltonian
mechanics or general relativity [13]. In this paper we uncovered yet another near-equilibrium
limit in which a self-organized criticality emerges on intermediate scales from the learning
dynamics of neural networks. Given that the self-organized criticality is observed in many
physical (and also biological) systems, our results support the claim that the entire universe
may be a neural network.

Biology. Self-organized criticality in the context of biological complexity was recently dis-
cussed in Ref. [11]. It was suggested that competing interactions between different levels of
organization form a universal mechanism leading to biological complexity. At the same time,
mathematical mechanisms responsible for the self-organized criticality in biology [6,9,10] are
still very poorly studied. It is a big temptation to identify, in some sense, Darwin selection
with learning and apply the theory of machine learning to evolutionary biology. This exciting
issue is far beyond the scope of this work and will be considered elsewhere.
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M.I.K. and T.W. was supported by European Research Council via Synergy Grant 854843
- FASTCORR. Numerical simulations in this work were carried out on the Dutch national
e-infrastructure with the support of SURF Cooperative.
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