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Abstract

Accurate representation of large-scale flow patterns in low-resolution ocean simulations is one of the most

challenging problems in ocean modelling. The main difficulty is to correctly reproduce effects of unresolved

small scales on the resolved large scales. For this purpose, most of current research is focused on development

of parameterisations accounting for the small scales. In this work we propose an alternative to the main-

stream ideas by showing how to reconstruct a dynamical system from the available reference solution data

(our proxy for observations) and, then, how to use this system for modelling not only large-scale but also

nominally-resolved flow patterns at low resolutions. The proposed methodology robustly allows to retrieve a

system of equations underlying reduced dynamics of the observed data. Remarkably, its solutions simulate

not only large-scale but also small-scale flow features, which can be nominally resolved by the low-resolution

grid.

Keywords: Ocean general circulation and dynamics, Multi-layer quasi-geostrophic model, Mesoscale

eddies and parameterizations, Dynamical system reconstruction

1. Introduction

It is typical of low-resolution ocean simulations to have significantly distorted or even absent large-scale

flow structures that are otherwise present in the high-resolution simulations. This failure is due to missing

effects of the small scales, which are not adequately resolved in low-resolution simulations. To mitigate the

problem, many parameterisations for both comprehensive and idealized ocean models have been proposed

(e.g., Gent and Mcwilliams (1990); Duan and Nadiga (2007); Frederiksen et al. (2012); Jansen and Held

(2014); Mana and Zanna (2014); Cooper and Zanna (2015); Grooms et al. (2015); Berloff (2015, 2016,

2018); Danilov et al. (2019); Ryzhov et al. (2019); Juricke et al. (2020a,b); Cotter et al. (2019); Ryzhov et al.

(2020); Cotter et al. (2020a,b,c)), but overall the problem remains largely unresolved for several reasons.

First, defining the small and large scales is ambiguous, because they are not separated by a clear spectral

gap or otherwise. Second, definition of the small and large scales should be consistent with the specific

resolving capabilities of a low-resolution model in which their interactions are to be parameterized; a new

definition of eddies as field error of the employed model has been proposed in (Berloff et al., 2021). Third,

dynamical interactions across the scales are remarkably complex, as well as spatially inhomogeneous and

non-stationary.
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In this paper the problem is approached from a different direction: instead of parameterizing small-scale

effects, we retrieve an underlying dynamical system and use it to model evolution of the nominally-resolved

flow patterns (the ones that can be properly resolved on the coarse grid) at low resolutions. Although the

basic idea has long research history, our application of it is novel, and the proposed methodology has many

novel features. Let us first discuss below the relevant background.

Retrieving reduced equations underlying the observed flow evolution is one of the most challenging

problems in dynamical systems (e.g.,(Aguirre and Letellier, 2009; Brunton et al., 2016)). Although, this

field has been researched for decades, most of the efforts used low-dimensional dynamical systems with 3-5

degrees of freedom (e.g., Brunton et al. (2017); Mangiarotti and Huc (2019)), and even this turned out

difficult. This is, because with larger number of degrees of freedom, there are so many types of models

and various subtleties that investigating them becomes a big task. The other problem is about frequent

numerical instabilities of the retrieved dynamical systems. This implies that applying known methodologies

for thousands of degrees of freedom, typical for describing low-resolution oceanic flows, is unfeasible.

For developing and testing the approach, we considered an intermediate-complexity, quasigeostrophic,

eddy-resolving model of the wind-driven midlatitude ocean circulation — this is a respected and widely used

(e.g., Siegel et al. (2001); Karabasov et al. (2009); Shevchenko and Berloff (2016); Shevchenko et al. (2016)

and references there in) paradigm for process studies involving large-/small-scale turbulent interactions and

their parameterizations. To mitigate the model size problem, we applied the Empirical Orthogonal Function

(EOF) analysis (Preisendorfer, 1988; Hannachi et al., 2007) to the reference flow, defined here as the high-

resolution solution subsampled on a coarse grid, and reconstructed a dynamical system for the evolving

Principal Components (PCs) corresponding to the leading EOFs. Successful examples of reduced-order

modelling with EOF-PC description can be found in (Kondrashov and Berloff, 2015; Kondrashov et al.,

2018). Other types of space reduction are possible and can improve the outcome even further, but they are

not considered in this study. To resolve the problem with numerical instabilities, we used adaptive nudging

methodology, which is an upgraded extension of the nudging method proposed in (Shevchenko and Berloff,

2021).

2. The method

The main objective of this study is to reconstruct a dynamical system from the reference solution (say

x(t), x ∈ Rn). This dynamical system is meant to correctly simulate the reference large-scale flow patterns

on a low-resolution grid. The full dimensionality of the problem is the total number of the grid nodes,

and for the reconstructed dynamical system we aim to reduce it by orders of magnitude via EOFs/PCs

decomposition of the reference data. Next, we formulate general dynamical system in terms of the leading

PCs:

y′(t) = F(y), y ∈ Rm, t ∈ [0, T̃ ], m << n , (1)

where the PCs are combined in the vector and denoted by y(t). In our case the dimensionality has been

eventually reduced by three orders of magnitude (from n = 16441 to m = 30).

In (1) we used 30 leading PCs that captured 98% of the reference flow variance. The right hand side

of (1) is approximated with polynomial of order two in all the variables, P(y), and with the Fourier series,

F(y), containing 50 leading harmonics:

F(y) ≈ P(y) + F(y) . (2)

Note that F(y) can be approximated differently, and its optimal choice (beyond the scope of this work) is a

challenge for the dynamical system reconstruction. Without proper information for tailoring the right hand

side more specifically, a polynomial expansion is justified by the Weierstrass approximation theorem, while
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the use of the Fourier series allows one to approximate the mean flow more accurately. We will get back to

this choice when discussing the results.

In order to find the coefficients in P(y) and Fourier series, we use the method of least squares. Having

approximated F(y) up to a given order of accuracy, one can solve the reconstructed dynamical system

z′(t) = P(z) + F(z), z ∈ Rm, t ∈ [0, T ], T > T̃ . (3)

Note that this system is integrated over a time interval which is longer (here, 2 times longer) than that

of the original system (1), since the purpose of the reconstructed system is to reproduce the original flow

dynamics well beyond the known data record. In all further simulations we will have T̃ =2 years and T =4

years. However, an accurate approximation of F(y) does not guarantee that system (3) can be easily solved,

because the integration errors can quickly contaminate the solution and result in severe numerical instability

— this is what actually happened in our case. In order to stabilize the numerical integration, we used the

nudging methodology (Shevchenko and Berloff, 2021):

z′(t) = P(z) + F(z) + η
⎛
⎝

1

N
∑

k∈U(z(t))
y(tk) − z(t)

⎞
⎠
, t ∈ [0, T ] , (4)

where U(z(t)) is a neighbourhood of z(t), and index k is the timestep of the corresponding PC y(tk); the

timestep of the PC is the timestep with which the actual data for the EOF analysis was generated. The

neighbourhood is computed in l2 norm as the average of N = 5 points nearest to the solution z(t). Note

that the number of neighbourhood points is a parameter, and its sensitivity should be explored and taken

into account for each application of the proposed methodology.

Having solved equation (4), we approximated the reference solution by using the leading EOF-PC pairs

as follows:

x(t) ≈
m

∑
i=1

zi(t)Ei , (5)

with Ei and zi being the i-th EOF and PC, respectively.

Note that N in equation (4) can be made time-dependent and adaptive, like the nudging coefficient η,

which is the other important parameter. In order to make the numerical integration stable with the Euler

method, we used the following adaptive nudging:

η(ti) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

η(ti−1) + ηh if σ(z(ti)) > maxt∈[0,T̃ ] σ(y(t)),
η(ti−1) − ηh if σ(z(ti)) ≤ maxt∈[0,T̃ ] σ(y(t)), i = 1,2, . . .

0 if η(ti−1) − ηh < 0.

(6)

with σ being the standard deviation, ηh = 0.001, and η(t0) = 0.

We opted out for an adaptive nudging, as it keeps the system within a neighbourhood of the phase space

region occupied by the reference solution. As an alternative, a constant η can be also used with some tuning

and caution, keeping in mind that its small value may not be enough for keeping the solution within the

right region and its large value may result in an over-stabilized solution with suppressed flow variability

(slow flow dynamics).

3. Multilayer quasi-geostrophic model

We consider a 3-layer quasi-geostrophic (QG) model with forcing and dissipation for the evolution of the

potential vorticity (PV) anomaly q = (q1, q2, q3) in domain Ω (Pedlosky, 1987):

∂tqj + J(ψj , qj + βy) = δ1jFw − δj3 µ∇2ψj + ν∇4ψj , j = 1,2,3 , (7)
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where J(f, g) = fxgy − fygx, δij is the Kronecker symbol, and ψ = (ψ1, ψ2, ψ3) is the velocity streamfunction

in three layers. The planetary vorticity gradient is β = 2 × 10−11 m−1 s−1, the bottom friction parameter is

µ = 4 × 10−8 s−1, and the lateral eddy viscosity is ν = 50 m2 s−1. The asymmetric wind curl forcing, driving

the double-gyre ocean circulation, is given by

Fw = { −1.80π τ0 sin (πy/y0) , y ∈ [0, y0),
−2.22π τ0 sin (π(y − y0)/(L − y0)) , y ∈ [y0, L],

with the wind stress amplitude τ0 = 0.03 N m−2 and the tilted zero forcing line y0 = 0.4L + 0.2x, x ∈ [0, L].
The computational domain Ω = [0, L] × [0, L] × [0,H] is a closed, flat-bottom basin with L = 3840 km, and

the total depth H =H1+H2+H3 given by the isopycnal fluid layers of depths (top to bottom): H1 = 0.25 km,

H2 = 0.75 km, H3 = 3.0 km.

The PV anomaly q and the velocity streamfunction ψ are coupled through the system of elliptic equa-

tions:

q = ∇2ψ − Sψ , (8)

with the stratification matrix

S =
⎛
⎜
⎝

−1.19 ⋅ 10−3 −1.19 ⋅ 10−3 −0.0

−3.95 ⋅ 10−4 −1.14 ⋅ 10−3 −7.47 ⋅ 10−4

−0.0 −1.87 ⋅ 10−4 −1.87 ⋅ 10−4

⎞
⎟
⎠
.

The stratification parameters are given in units of km−2 and chosen so, that the first and second Rossby

deformation radii are Rd1 = 40 km and Rd2 = 23 km, respectively; the choice of these parameters is typical

for the North Atlantic, as it allows to simulate a more realistic but yet idealized eastward jet extension of

the western boundary currents.

System (7)-(8) is augmented with the integral mass conservation constraint (McWilliams, 1977):

∂t∬
Ω

(ψj − ψj+1) dydx = 0, j = 1,2 (9)

with the zero initial condition, and with the partial-slip lateral boundary condition (Haidvogel et al., 1992):

(∂nnψ − α−1∂nψ) ∣
∂Ω

= 0 , (10)

where α = 120 km is the partial-slip parameter, and n is the normal-to-wall unit vector; no-flow-through

boundary condition is also implemented (as part of the elliptic solver). The value of the parameter α is

chosen based on the study by Shevchenko and Berloff (2015), where it has been shown that smaller values of

α inhibit the eastward jet extension penetration length and volume transport, while larger values have much

less pronounced influence on the jet. As with other governing parameters used in this study, our choice of

α is justified by a more realistic eastward jet.

For this study we need both high- and low-resolution solutions. In order to compute them, we first spin

up the model (7)-(10) for 100 years and then solve it for the other 4 years on 2 uniform horizontal grids:

513×513 (high resolution) and 129×129 (low resolution). In order to obtain the reference solution (denoted

as q1), we project the high-resolution solution on the coarse grid 129×129 by using point-to-point projection

(Figure 1a). The low-resolution solution (denoted as q̂1) is the solution of the QG model on grid 129 × 129

(Figure 1b). Our goal is to find a dynamical system that can model the leading PCs (which are then used to

approximate the reference solution given by (5)), so that the approximate solution (denoted as q̃1) simulates

the reference large-scale flow patterns in qualitatively correct way.

For the purpose of this work, it is enough to consider only the first layer, as it consists of both large-

and small-scale features (Figure 1a) which we aim to reproduce. Moreover, the upper layer is more difficult
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to model than the deep ones. As seen in Figure 1a, the solution is characterized by the well-pronounced

eastward jet extension of the western boundary currents and surrounding small-scale coherent vortices. Both

of these features are missed in the low-resolution solution (Figure 1b) due to the under-resolved eddy effects.

In order to restore nominally-resolved flow patterns (the eastward jet and surrounding vortices), we first

reconstruct a reduced dynamical system (for the leading PCs) which is based on the second-order polynomials

and then the one based on the second-order polynomials and Fourier series. The solution corresponding to

the former is presented in Figure 1c. Although the snapshots show that both the eastward jet and vortices

are successfully reproduced, the time-mean flow significantly differs from the reference solution: the eastward

jet separation point is shifted north and the jet itself manifests fluctuations unseen in the reference solution.

For a better approximation we combined the second-order polynomial basis with the Fourier series. The

corresponding solution (5) computed from the leading EOF-PC pairs is significantly improved (Figure 1d),

mostly due to the better approximation of the PCs (Figure 2).
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Figure 1: Shown is a series of snapshots, 4-year average, and standard deviation of the top layer PV anomaly of (a) the
reference solution q1 (computed on grid 513 × 513 and projected on grid 129 × 129), (b) low-resolution solution q̂1 computed
on grid 129 × 129, (c) low-resolution solution q̃1 on grid 129 × 129 (with the second-order polynomial basis used for the
reconstruction), (d) low-resolution solution q̃1 on grid 129× 129 (with the second-order polynomials and Fourier basis used for
the reconstruction). The solution is given in units of [s−1f−10 ], where f0 = 0.83×10−4 s−1 is the Coriolis parameter. The results
in panels (c), (d) demonstrate that the proposed method preserves not only large-, but also small-scale features (nominally
resolved on the coarse-grid) like those seen in the reference solution (a) but absent in the low-resolution solution (b).
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years

Figure 2: Shown are the first three leading PCs and their dependence on the basis functions used for the reconstruction of the
dynamical system: true PC (black), PC modelled with the second-order polynomial-only basis (blue), and PC modelled with
both the second-order polynomials and Fourier series (red). The results demonstrate that using the basis consisting of both
the second-order polynomials and Fourier series yields significantly more accurate approximation of the PCs.

Recall that the solution in Figure 1 is over 4 years, and only the first 2 years were used to reconstruct the

dynamical system. This shows that the proposed method preserves not only the large-scale flow structure

but also the small-scale flow features, all of them over a long time interval. The ability of the method to

reproduce small-scale features may look surprising, but since these features were present in the reference

data, their reconstruction is a matter of the high-quality reconstruction of the dynamical system.

A key ingredient that makes the method work is the adaptive nudging which keeps the solution in the

right region of the phase space that is occupied by the reference solution. As an approximation of the

reference region, we used a sphere centered at the time-mean of the solution, and the sphere radius is the

mean distance of the solution from the centre. The mean distances for the reference and low-resolution

solutions are ⟨D(q1, q1)⟩ = 11.9 and ⟨D(q̂1, q̂1)⟩ = 7.2, respectively, showing that the latter is confined in

a smaller region. The l2-norm distance between the time means of these solutions (denoted as barred

quantities) is D(q1, q̂1) = 12.92. The application of the adaptive nudging decreases the distance between the

time means to D(q1, q̃1) = 2.65, thus shifting the whole solution q̃1 much closer to the phase space region

occupied by the reference solution. It also yields a lot more accurate mean distance ⟨D(q̃1, q̃1)⟩ = 12.6, thus

suggesting that the solution has correct amplitude.
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4. Conclusions and discussion

In this study we proposed a method for preserving nominally-resolved flow patterns in low-resolution

ocean model simulations. The method utilizes the well-known idea of reconstructing the dynamical system

that underlies the observed flow evolution. However, direct application of this idea to the quasi-geostrophic

model studied in this work is numerically unfeasible task because of the high dimensionality of the observed

flow. Moreover, a numerical integration of the reconstructed dynamical system can be unstable, but our

methodology can cope with this and ensure stability. We solved the problem of large dimensionality by

applying the Empirical Orthogonal Function decomposition of the reference solution (the high-resolution

solution subsampled on the coarse grid) that allowed to reduce the dimension by three orders of magnitude.

In order to solve the unstable integration problem, we developed the adaptive nudging method following

(Shevchenko and Berloff, 2021). This method keeps the solution in the neighbourhood of the phase space

region occupied by the reference solution. This is sufficient for accurate reproduction of both the large-

and small-scale flow features at low resolutions, despite the fact that these features are not present in the

dynamical solutions of the low-resolution model. The proposed method aims to operate with hundreds of

degrees of freedom thus offering orders-of-magnitude acceleration compared to low-resolution ocean models

which have at least 3-4 orders of magnitude more.

The proposed method was tested on a 3-layer quasi-geostrophic ocean circulation model at low non-

eddy-resolving resolution, such that it cannot simulate the correct large-scale flow structure. Our results

show that if the reconstructed dynamical model is based only on the second-order polynomials, then it is

not sufficiently accurate, because its time-mean eastward jet separation point is shifted north, and the jet

itself has unrealistic fluctuations which are not observed in the reference solution. We tried to use higher

order polynomials, but the reconstructed system became very sensitive to errors leading to sever numerical

instabilities which we failed to stabilize. We resolved this problem by augmenting the polynomial basis

with the additional Fourier series. With all this in place, not only the large-scale flow structure becomes

correct but also the small-scale coherent vortices, which are unresolved in the low-resolution full-dynamics

model, appear in the solution. All in all, this shows that the method has potential for modelling even

more complicated oceanic flows. Being small-scales-unaware (not relying on reproducing the effect of small

scales onto large ones like parameterisations), the proposed method can be thought of as an alternative

to the modern (small-scales-aware) parameterisations, which try to reproduce effects of small dynamically

unresolved scales on the large scales, in the hope that the solution will stay in the right region of the phase

space. The proposed approach is quite the opposite: it gently forces the solution to stay in the right phase

space region and predicts the flow evolution via the reconstructed reduced dynamical system. Note that the

method does not require the original quasi-geostrophic model to be solved at low-resolution.

The reference data is used twice: first, for reconstructing the dynamical system; second, for augmenting

the solution of this system by nudging. The method can be further improved by using a more sophisticated

equation-wise nudging methodology and different dynamical systems which can better represent the under-

lying flow dynamics. The proposed method can be straightforwardly applied to primitive equations, but in

this case reconstruction of the dynamical system will be more subtle, as it will include more PCs and can

require changes of the basis functions. Besides, the adaptive nudging may also require some changes, since

the phase space behavior of solutions is expected to be more complicated.

Another future extensions of this study can be (1) the requirement to always have a high-resolution

simulation (reference solution) from which to derive reduced order models – therefore the ability to compare

various existing reference solutions, including observational datasets in this framework and to use them

systematically/in combination, perhaps without necessarily running fresh high-resolution simulations, in

order to generate reduced order models at arbitrary resolution; (2) exploring the possibility of generating

a forcing for the low-resolution ocean model, based on the EOFs and the adaptive nudging, perhaps with

some ingredients such as stochastic forcing.
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