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Abstract

The main goal in this paper is to describe the geometric structure of invariant graphs
of a certain class of skew products. Our focus is on attracting multi-graphs. An invariant
multi-graph is an invariant compact set which is a finite union of invariant graphs,
and thus consists of a finite number of points on each fiber. We introduce invariant
bony multi-graphs and construct an open set of skew products over an invertible base
map (solenoid map) having attracting invariant multi-graphs and bony multi-graphs
which support finitely many ergodic SRB measures. In this study some thermodynamic
properties are investigated. Finally, we extend our results to a family of skew products
over a generalized baker map.

Keywords: Skew product, Invariant graph, Bony multi-graph, Lyapunov exponent, SRB measure,
Topological pressure, Equilibrium state.

1 Introduction
The aim of this paper is to give a comprehensive description, from both measure-theoretic and
topological viewpoints, of the dynamics of skew product systems that have either monotone interval
maps. A skew product system is a dynamical system (Θ× X, F ) of the form

F : Θ× X→ Θ× X, (θ, x) 7→ (S(θ), fθ(x)), (1.0.1)

that driven by a base map S (which can be a solenoid map or a baker map).
In this context, describing the asymptotic behavior of the orbits and understanding how this

behaviour changes when the system is modified, are two main targets. In the study of skew products,
invariant graphs, particulary attracting invariant graphs, play an essential role. In fact, they are
the natural substitutes of fixed points and considerably simplify the dynamics of the forced systems.
When skew product systems have uniformly contracting fiber maps (hyperbolic setting), there exist
invariant attracting sets for the overall dynamics, which are the graph of continuous functions (see
[16, 17]). For the case that the fiber maps fail to be hyperbolic, we need to impose specific conditions
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which guarantees the existence of an attracting invariant graph that attracts orbits almost surely.
This includes the skew product map possesses a negative Lyapunov exponent in the fibre direction
or it satisfies the contraction on average condition [37, 38, 44].

Some related results on the ergodic properties and stability of attracting graphs under determin-
istic perturbations have been proposed by Campbell and Davies [8, 7]. Also, sufficient conditions
for the existence and regularity of invariant graphs has appeared in [37, 38, 40]. Stark discussed
[37, 38] a number of applications to the filtering of time series, synchronization and quasiperiodically
forced systems. In general, synchronization is the phenomenon that different oscillations in coupled
systems will converge to oscillations that move with identical frequency. However, external forcing,
rather than coupling, can also synchronize dynamics. This phenomenon has been widely studied in
theoretical physics [31, 35] and also recently in mathematics [18]. Another applications of invariant
graphs in many branches of nonlinear dynamics were also proposed (e.g. [5, 8, 10, 19, 30, 39] etc.).

For skew-products with monotone fiber maps there is a close relation between (the existence
of) invariant graphs, (fiber) Lyapunov exponents and ergodic measures of F (e.g. [20, 21, 44, 12]
etc.). For instance, the stability of an invariant graph is determined by its Lyapunov exponent, if
it is negative then the graph is attracting. In this literature, there are attracting invariant graphs
with more complicated dynamics. This includes bony graph attractors which are currently object of
intense study [23, 25, 44]. A bony graph attractor is an attracting invariant graph which intersects
almost every fiber at a single point, and any other fiber at an interval which is called a bone.

Here, a more general version of an invariant graph, the so-called invariant multi-graph is consid-
ered. An invariant multi-graph is an invariant compact set which is a finite union of invariant graphs,
and thus consists of a finite number of points on each fibre. In [22], Jäger and Keller provided a cri-
teria, in terms of Lyapunov exponents, for the existence of attracting invariant multi-graphs. Gelfert
and Oliveira [15] studied step skew-products over a finite-state shift (base) space whose fiber maps
are C1 injective maps on the unit interval. They provided certain invariant sets having a multi-graph
structure and can be written as graphs of one, two or more functions defined on the base.

As an objective, we describe the geometrical structures of attracting invariant multi-graphs for
a certain class of skew product systems as defined by (1.0.1). In particular, we construct robust
invariant bony multi-graphs.

Other goal is the existence of SRB measures whose supports lie on invariant graphs. SRB stands
for Sinai, Ruelle and Bowen, are the invariant measures most compatible with volume when volume
is not preserved. References [23, 42, 44] contain further results about the existence and finiteness of
SRB measures supported on attracting invariant graphs. Another main objective is to show that the
attracting multi-graphs, in our setting, carry finitely many ergodic SRB measures.

We also investigate some thermodynamic properties for these systems. Thermodynamic formal-
ism, that is the formalism of equilibrium statistical physics, was adapted to the theory of dynamical
systems in the works of Sinai, Ruelle and Bowen [4, 34, 36]. Topological pressure, topological entropy
and equilibrium states are the fundamental tools in thermodynamic formalism. The existence and
uniqueness of equilibrium states are currently object of intense study. Here, we will provide some
sufficient conditions ensuring the existence of equilibrium states supported on invariant multi-graphs.
Our approach for existence of equilibrium states is based on the technique applied in [32]. In this
scenario, we require the graph functions. In our setting, since the contraction on the fibers is non-
uniform, graph functions are only upper semicontinuous. For existence of equilibrium states we apply
a version of variational principle provided by Rauch [33] for discontinuous potentials.

This work is organized as follows: First, in Sect. 2, we state some terminology concerning
invariant multi-graphs and recall conditions ensuring the existence of multi-graphs from [21, 20, 22]. In
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Sect. 3, we construct (Theorem 3.0.1, Theorem 3.2.2 and Corollary 3.2.1) an open set of skew products
given by (1.0.1) over an invertible base map (solenoid map) having attracting invariant multi-graphs
or bony multi-graphs that carry finitely many ergodic SRB measures. Then we investigate some
thermodynamic properties in Sect. 4. Sufficient conditions ensuring the existence of equilibrium
states supported on invariant multi-graphs is presented (Proposition 4.0.3). Finally, in Sect. 5,
Theorem 5.0.1, we provide a measure theoretical isomorphism between the skew products over the
solenoid map and skew products over a generalized baker map and deduce the existence of invariant
bony multi-graphs for these systems.

2 Preliminaries
In this section, we introduce the concepts and the notations which are basic for the study in the
following sections.

Definition 2.0.1 (SRB measure). Let X be a manifold and f : X −→ X a continuous map. An
f -invariant measure µ is called Sinai-Ruelle-Bowen (SRB) measure (or a physical measure) if there
exists a mesurable set E ⊂ X, of positive Lebesgue-measure, such that for every continuous function
ϕ : X −→ R and every x ∈ E we have:

lim
n→∞

1

n

n∑
j=0

ϕ(f j(x)) =

∫
X

ϕdµ. (2.0.1)

The set E is called the basin of µ. In other words, time averages of all continuous functions are given
by the corresponding space averages computed with respect to µ, at least for a large set of initial states
x ∈ X.

2.1 Skew products
Consider a skew product system (Θ×X, F ) of the form (1.0.1), where the dynamics on the fibre space
X may be interpreted as being driven by another system (Θ, S) since the transformations fθ : X 7→ X
depend on θ. On the other hand, the space X is principally considered as the fibre space over the
basis dynamics (Θ, S), i.e. the fibre map fθ can be considered as a map from {θ} × X to {Sθ} × X,
where {θ} × X is the fibre space over θ ∈ Θ. We adopt the usual notation Fn(θ, x) = (Snθ, fnθ (x)),
for the iterates Fn of F , where fnθ = fSn−1(θ) ◦ · · · ◦ fθ. Hence, fn+k

θ (x) = fnSkθ(f
k
θ (x)). For n = 1

and k = −1 this includes the identity and f−1
θ (x) = (fS−1θ)

−1(x).
In this article, we are interested in skew product dynamical systems F , defined as below:

Definition 2.1.1. F denotes the family of all skew product transformations F given by (1.0.1) on
Θ× I having the following properties:

(1) The base Θ is equipped with a σ-algebra B and a probability measure m, such that (Θ,B,m)
becomes a probability measurable space, and the base transformation S : Θ → Θ is a bi-
measurable and ergodic measure-preserving bijection. In most situations we will assume that
Θ is a compact metric space, in which case B is always the (completed) Borel σ-algebra and S
is a homeomorphism.
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(2) Let I = [0, 1] and int(I) = (0, 1). The fibre maps fθ : I→ int(I) are given by fθ(x) = π2◦F (θ, x)
with π2 the natural projection from Θ × I to I. We will assume that the fiber maps fθ are C2

increasing interval maps.

(3) For each x ∈ I the map θ 7→ F (θ, x) is measurable. If Θ is a compact metric space and S is a
homeomorphism then the map θ 7→ F (θ, x) is continuous.

Remark 2.1.1. By definition, the dynamic contracts the whole space, i.e. F (Θ× I) ⊂ Θ× int(I).

We equip F with the following metric:

distF (F,G) := sup
θ∈Θ

distC2(f±1
θ , g±1

θ ), for each F,G ∈ F , (2.1.1)

where fθ and gθ are the fiber maps of F and G respectively.

2.2 Invariant graphs and Lyapunov exponents
Invariant graphs are fundamental objects in the study of skew product systems, and they are of major
interest.

Definition 2.2.1 (Invariant graph). Let F ∈ F be a skew product as Definition 2.1.1. A measurable
function γ : Θ→ I is called an invariant graph (with respect to F ) if for all θ ∈ Θ:

F (θ, γ(θ)) = (Sθ, γ(Sθ)), equivalently fθ(γ(θ)) = γ(Sθ). (2.2.1)

The point set Γ := {(θ, γ(θ)) : θ ∈ Θ} will be called invariant graph as well, but it is labeled with the
corresponding capital letter. Denote by Cl(Γ) the closure of Γ in Θ× I.

Let m be an invariant measure for the base map S. We say that γ : Θ→ I is an (F,m) invariant
graph if

fθ(γ(θ)) = γ(S(θ)), for m− a.e. θ ∈ Θ. (2.2.2)

In the sequel, we will denote by π1 : Θ × I → Θ and π2 : Θ × I → I the canonical projections
onto the first and second coordinates, respectively. To any (F,m)-invariant graph γ, an F -invariant
measure mγ can be assigned by defining

mγ(A) = m(π1(A ∩ Γ)) (2.2.3)

for any measurable set A ⊆ Θ× I. Note that the measure mγ is ergodic if and only if m is ergodic.
Throughout the paper, the set of all F -invariant probability measures on Θ × I is denoted by

M(F ), and the set of µ ∈M(F ) which project to m byMm(F ).
The next theorem is a counterpart of Theorem 1.8.4 in [2] to our setting, see also [20, Theorem

1.1] and Furstenberg Theorem [14]. It provides that there is a one-to-one correspondence between
invariant graphs and invariant ergodic measures of skew products forced by monotone interval maps.

Theorem 2.2.1. Suppose F ∈ F is a skew product as Definition 2.1.1, m ∈M(S) and µ ∈Mm(F )
is ergodic. Then there exists an (F,m)-invariant graph γ such that µ = mγ .

In the investigation of skew product systems, attracting invariant graphs are often useful charac-
teristics, which we simply call attractors. Formally, we introduce the following definition. Note that
the effect of the attraction is observed only in the fibre space I.
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Definition 2.2.2 (Attracting invariant graphs). A point (θ, x) ∈ Θ × I is attracting, if there is a
constant δ > 0 such that

lim
n→∞

|fnθ (x)− fnθ (z)| = 0,

for all z ∈ (x − δ, x + δ). Furthermore, an invariant graph γ is called an attracting invariant graph
or attractor with respect to the invariant probability µ if µ-almost every point is attracting.

In a weaker form, we say that A is an attractor for F (in the sense of Milnor [28]) if there is a set
of points in the phase space with positive probability whose future orbits tend to A, as the number of
iterates tends to infinite. The set of orbits attracted to A in the future is called its basin and denoted
by B(A).

Definition 2.2.3 (Maximal attractor). Given a continuous skew product F , a compact set D ⊂ Θ×I
is trapping if F (D) ⊂ intD. Then the closed F -invariant set

Amax :=
⋂
n≥0

Fn(D)

is said to be a maximal attractor for F .

Definition 2.2.4 (Maximal Lyapunov exponent). The maximal Lyapunov exponent of an F -invariant
probability measure µ is defined by

λ(µ, F ) = lim
n→∞

1

n

∫
Θ×I

log |Dfnθ (x)|dµ(θ, x). (2.2.4)

The maximal Lyapunov exponent of an invariant graph γ with respect to a S-invariant probablity
measure m is defined as

λ(m, γ) = lim
n→∞

1

n

∫
Θ

log |Dfnθ (x)|dm(θ). (2.2.5)

Note that (2.2.5) is a special case of (2.2.4), with µ given by µ(A) = m({θ ∈ Θ : (θ, γ(θ)) ∈ A}.

Definition 2.2.5 (Upper Lyapunov exponent). Following [12, 20], for each skew product F given by
Definition 2.1.1, the upper Lyapunov exponent of (θ, x) ∈ Θ× I is

λmax(θ, x) = lim
n→∞

1

n
log |Dfnθ (x)|, (2.2.6)

when the limit exists, where Dfθ(x) is the derivative of fθ in x.
Given any F -invariant probability measure µ, we define the upper Lyapunov exponent of µ by

λmax(µ) =

∫
λmax(θ, x)dµ(θ, x). (2.2.7)

Note that since fnθ is increasing interval maps, |Dfnθ (x)| = Dfnθ (x).

Definition 2.2.6 (Fiber Lyapunov exponent). The (fiber) Lyapunov exponent of an (F,m)-invariant
graph γ is given by

λm(γ) =

∫
Θ

logDfθ(γ(θ))dm(θ). (2.2.8)
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Remark 2.2.1. Let γ be an (F,m)-invariant graph with λm(γ) < 0. Then, by [20, Lemma 1.10], γ
is an attracting graph with respect to the invariant probability mγ .

Note that by the Birkhoff ergodic theorem

λmax(θ, γ(θ)) = lim
n→∞

1

n
logDfnθ (γ(θ)) = lim

n→∞

1

n

n−1∑
k=0

logDfSkθ(f
k
θ (γ(θ)))

= lim
n→∞

1

n

n−1∑
k=0

logDfSkθ(γ(Skθ)) =

∫
Θ

logDfθ(γ(θ))dm(θ)

= λm(γ)

for m-a.e. θ ∈ Θ. So the average Lyapunov exponent of an invariant graph equals its point-wise
Lyapunov exponent for m-a.e. θ ∈ Θ.

Here, we focus on skew products having the non-uniformly contraction rates along the fiber. We
address the situation where we only have information about average rates of contraction. This is a
weaker form of contraction which is a necessary condition for synchronization, see [38]. When we talk
about average rates of contraction, we need an invariant measure. In our setting, take the S-invariant
measure m, as in Definition 2.1.1.

Definition 2.2.7 (Non-uniform contraction condition). Suppose that the limit

λ(θ) = lim
n→∞

1

n
sup
x,x′∈I

log
d(fnθ (x), fnθ (x′))

d(x, x′)
(2.2.9)

exists for almost every θ and is a measurable function of θ (this is the maximal Lyapunov exponent in
the fibre direction of the skew product F ). We say that the skew-product F contracts non-uniformly
if there exists λ < 0 such that

λ(θ) ≤ λ < 0 (2.2.10)

for a.e. θ ∈ Θ.

Remark 2.2.2. In a special case, when µ is given by µ(A) = m({θ ∈ Θ : (θ, γ(θ)) ∈ A}, if the fiber
Lyapunov exponent of m has negative upper bound then the skew product F satisfies (2.2.10) and
hence it contracts non-uniformly.

As a consequence of non-uniform contraction condition we have the following result of Stark [38],
which applies in a more general setting.

Theorem 2.2.2. ([38, Theorem 1.4]) Suppose Θ is a compact metric space, S : Θ→ Θ a homeomor-
phism, m an invariant measure, X a complete metric space and the fiber map f : Θ ×X → X is a
continuous map satisfying (2.2.10). Then there exists an S-invariant set Λ ⊂ Θ such that m(Λ) = 1
and a function γ : Λ→ X such that the graph of γ is invariant and attracting under F .

2.3 Multi graphs
We concentrate on the case that a compact invariant set is just a finite union of invariant graphs,
and thus consists of a finite number of points on each fibre.

Let F ∈ F be a skew product over a base map S as Definition 2.1.1.
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Definition 2.3.1 (Multi-graph). Following [15], given F ∈ F , a multi-function ψ : D ⊂ Θ → I
is a relation that associates to every point θ ∈ D a nonempty subset ψ(θ) ⊂ I. A multi-function
ψ : D ⊂ Θ → I is uniformly finite if there exists k ≥ 1 such that #ψ(θ) ≤ k for all θ ∈ D. Given a
uniformly finite multi-function ψ, we call the set {(θ, ψ(θ)) : θ ∈ D} a multi-graph in Θ× I.

Jäger proved that [20, Theorem 1.14] for skew products with C1 interval fiber maps having
a minimal homeomorphism as a base, strict negativity of the Lyapunov exponents on a compact
invariant set implies that this set is a multi graph. Then this extended to a more general case [22,
Theorem 1.2].

Let F ∈ F be a skew product over a base map S as Definition 2.1.1. Then the tuple (Θ,B,m, S)
is a measure-preserving dynamical system.

We say [22] K ⊂ Θ× I is a random compact set if

1. Kθ = {x ∈ I : (θ, x) ∈ K} is compact for all θ ∈ Θ;

2. the functions θ 7→ d(x,Kθ) are measurable for all x ∈ I.
The set of all f -invariant probability measures µ which project to m supported on a compact F -
invariant set K is denoted byMK

m(F ).

Theorem 2.3.1. [22, Theorem 1.2] Let F ∈ F be a skew product with base (Θ,B,m, S), the family
(x 7→ log ‖Dfkθ (x)‖)θ∈Θ is equicontinuous for all k ∈ N and K ⊂ Θ× I is a random compact set such
that the maximal Lyapunov exponent λ(µ, F ) given by (2.2.4) is negative for all µ ∈ MK

m(F ). Then
there exists an integer n such that #Kθ = n for m-a.e. θ ∈ Θ.

If the base map S is a homeomorphism on a compact metric space Θ, since fiber maps are C2

and F is continuous, the next corollary can be followed immediately.

Corollary 2.3.1. Suppose Θ is a compact metric space, m an invariant ergodic measure and S :
Θ → Θ is an ergodic measure-preserving homeomorphism. Assume, F ∈ F is a skew product as
Definition 2.1.1 over the base map S and K is a compact F -invariant set. Further, assume that for
all µ ∈ MK

m(F ) we have λ(µ, F ) < 0. Then there exists an integer n such that #Kθ = n for m-a.e.
θ ∈ Θ. In particular, if n > 1 then K is a multi-graph.

3 Bony multi-graphs for skew products with interval fiber maps
Our major goal here is to describe the structure of invariant graphs and study the geometry of
attractors, mainly, in the case that the basis dynamical system is a solenoid map. In particular,
we construct robust bony multi-graphs. In our construction, first we provide a single skew product
F̃ over an expanding circle map. Then, we consider its extension F which is a skew product over
the solenoid map and show that every skew product G which is close enough to F admits a bony
multi-graph which carries finitely many ergodic SRB measures.

We recall the family F of skew products given by Definition 2.1.1. The next theorem is the main
result of this section.

Theorem 3.0.1. Given any n ∈ N, there exists an open set U ⊂ F of skew products of the form
(1.0.1) with interval fiber maps having a solenoid map as the base map such that each skew product
system G belonging to U admits an attracting invariant multi-graph or bony multi-graph having exactly
n SRB measures supported in K(G).

The rest of this section is devoted to proving this theorem.
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3.1 Skew products forced by expanding circle maps
If X is a metric space and f : X −→ X is a continuous map, then we say that f is weakly contractive
whenever for each x, y ∈ X with x 6= y, d(f(x), f(y)) < d(x, y).

Remark 3.1.1. It is a well-known fact [21, Coro. 3] that if f is weakly contractive and X is com-
pact then there exists a unique fixed point x ∈ X of the map f . Furthermore, for every y ∈ X,
limk→∞ fk(y) = x uniformly. Then we say that x is a weak attracting fixed point. Clearly if f is a
weakly contractive map then

d(fn(y), fn(z))→ 0, as, n→∞,
for each y, z ∈ X.

Definition 3.1.1. We say that the interval map f is s-weakly contractive if it satisfies the following
conditions:

(1) f is a C1 weakly contractive map.

(2) Let p be the unique fixed point of f . Then, Df(p) = 1 and for all x 6= 0, one has Df(x) < 1.

The following example shows that the set of s-weakly contractive maps is nonempty.

Example 3.1.1. Define f : [0.1, 0.7] → [0.1, 0.7] by f(x) = 3.098x1.83 − 2.5x2.4 + 0.1. Then f is a
weakly contractive map with the unique fixed point 0.466. In particular, Df(0.466) = 1 and for all
x 6= 0.466, we have Df(x) < 1.

In [11], the author gave another examples of s-weakly contractive maps.

Definition 3.1.2 (Weak-pair). Take two C2 increasing interval maps fi, i = 0, 1, defined on an
interval [a, b], C2-close to the identity so that they fulfill the following conditions:

(1) Each fi, i = 0, 1, is a s-weakly contractive map having a (unique) weak attracting fixed point
pi.

(2) For every x ∈ [a, b], the following “contraction on average property" hold:

1∑
i=0

logDfi(x) < 0. (3.1.1)

(3) The weak attracting fixed points pi, i = 0, 1, are pairwise disjoint. Moreover, pi 6= a, b and
gi(pj) 6= pi for each j 6= i.

Let p0 < p1 and J = [p0, p1] ⊂ [a, b]. Then we say that (f0|J , f1|J) is a weak-pair for J .

Remark 3.1.2. By conditions (1) and (3) the following “covering property" holds: there exists the
points x0 and x1 with p0 < x0 < x1 < p1 such that for the interval B = (x0, x1) ⊂ int(J) one has:

∀x ∈ [x1, x2], Dfi(x) < 1 and Cl(B) ⊂ f0(B) ∪ f1(B).

Note that, covering property introduced in [29]. In Figure 1 below, the pairs (f0|I1 , f1|I1) and
(f0|I2 , f1|I2) are weak-pairs.

Fix n ≥ 1 and consider n disjoint subintervals of I = [0, 1], say I1 = [a1, b1], . . . , In = [an, bn],
with

0 < a1 < b1 < a2 < . . . < an < bn < 1

and two increasing C2 maps f0, f1 : I→ I such that

8



Figure 1: Two increasing C2 maps f0 and f1 with two weak-pairs

(i) f0(Ii) ⊂ Ii, f1(Ii) ⊂ Ii and (f0|Ii , f1|Ii) is a weak-pair for each Ii, i = 1, . . . , n, hence there
exist weak attracting fixed points p0

i and p1
i of f0 and f1, respectively;

(ii) f0 and f1 have repelling fixed points ci and di, i = 1, . . . , n− 1, respectively, such that

0 < b1 < c1 < d1 < a2 < . . . bn−1 < cn−1 < dn−1 < an < bn < 1.

We assume that ai < p0
i < p1

i < bi. By Remark 3.1.2, there exist points xi and yi, i = 1, . . . , n, such
that ai < xi < yi < bi and intervals Bi = (xi, yi) ⊂ int(Ii) satisfies the following covering property:

∀x ∈ [xi, yi], Dfi(x) < 1, and Cl(Bi) ⊂ f0(Bi) ∪ f1(Bi). (3.1.2)

Consider the circle expanding map ω : T1 → T1, ω(t) = 4t (mod 1). Let

Li ⊂ T1, i = 0, 1,

be disjoint closed arcs, with the length of each arc equal to 1/4. Then for 0 ≤ i ≤ 1 we have
ω(Li) = T1. Take a smooth map ` : T1 → [0, 1] such that `|L0 ≡ 0, `|L1 ≡ 1 and outside the
δ-neighborhood of L0 ∪ L1, for sufficiently small δ > 0, `(t) ∈ (0, 1).

Now, consider an isotopy

ft(x) = (1− (`(t)2))f0(x) + (`(t)2)f1(x) (3.1.3)

between f0 and f1. Then, for each t ∈ L0, ft = f0 and for each t ∈ L1, ft = f1. It is easy to see that

∀t ∈ T1 \Bδ(L0 ∪ L1) and ∀x ∈ Ii, i = 1, · · · , n, one has Dft(x) < 1. (3.1.4)

We now define a skew product over the expanding circle map ω, corresponding to the fiber maps
f0 , f1 by

F̃ : T1 × I → T1 × I, F̃ (t, x) = (ω(t), f(t, x)), (3.1.5)

9



where f(t, x) := ft(x) given by (3.1.3). In the rest of this article we fix the skew products F̃ given
by (3.1.5).

Clearly, by construction, for each 1 ≤ i ≤ n, the compact set Di := T1 × Ii is a trapping region
for F̃ . Let us take

Amax(F̃ ) :=
⋂
n≥0

F̃n(T1 × I), and Λi :=
⋂
n≥0

F̃n(T1 × Ii), 1 ≤ i ≤ n. (3.1.6)

Then Λi, 1 ≤ i ≤ n, are maximal attractors of F̃ corresponding to the trapping regions Di and the
union

⋃n
i=1 Λi is a compact invariant set contained in the global attractor Amax(F̃ ).

3.2 Extension skew products and invariant graphs
Since the base map ω : T1 → T1 is non-invertible, hence we can always find an extension S : Ω→ Ω
that is invertible. By extension we mean that there exists a surjective map p : Ω → T1 such that,
p◦S = ω ◦p. To begin with, take Ω to be the set of all pre-orbits of ω, that is, all sequences (t−n)n≤0

satisfying ω(t−n) = t−n+1 for every n > 0. Consider the map p : Ω → T1 sending each sequence
(t−n)n≥0 to its term t0 of order zero. Observe that p(Ω) = T1. Finally, we define S : Ω→ Ω by

S(. . . , t−n, . . . , t0) = (. . . , t−n, . . . , t0, ω(t0)).

It is clear that S is well defined and satisfies p ◦ S = ω ◦ p. The inverse limit space Ω is endowed
with the product topology, then it is easy to see that S is a homeomorphism on Ω.

Remark 3.2.1. On ergodic point of view, given an ergodic measure µ+ defined on Borel subsets of
T1 there exists a unique measure µ defined on Borel subsets of Ω such that p∗µ = µ+. We mention
that since ω : T1 −→ T1 is a C2-expanding endomorphism then ω possesses an absolutely continuous
invariant ergodic measure ν+ whose density is bounded and bounded away from zero. [27]. Moreover,
ν+ is equivalent to Lebesgue. Thus, (Ω, S) has an invariant ergodic measure ν inherited from the
invariant measure ν+ for ω on T1, i.e. p∗ν = ν+.

For the skew products F̃ given by (3.1.5), we define an extension skew product map F = F (F̃ )
on Ω× I by

F (t, x) = (S(t), f(t, x)) = (S(t), ft0(x)), (3.2.1)
for each t = (. . . , t−n, . . . , t0) ∈ Ω, where ft0 is given by (3.1.3). Note that the inverse map F−1 is
given by

F−1(t, x) = (. . . , t−2, t−1, (ft−1)−1(x)).

Then p× id is a semi conjugacy between F̃ and F .

Remark 3.2.2. By construction, the fiber maps of F̃ and its extension F are the same.

In the rest of this paper, we fix the skew product F with the fiber maps ft, t ∈ Ω. By construction,
for each 1 ≤ i ≤ n, the compact set Ω× Ii is a trapping region for F . Let us take

Amax(F ) :=
⋂
n≥0

Fn(Ω× I), and ∆i :=
⋂
n≥0

Fn(Ω× Ii), 1 ≤ i ≤ n. (3.2.2)

Then ∆i, 1 ≤ i ≤ n, are maximal attractors of F corresponding to the trapping regions Ω × Ii and
the union K :=

⋃n
i=1 ∆i is a compact invariant set contained in the global attractor Amax(F ).

Let us take
Fi := F |Ω×Ii , i = 1, . . . , n. (3.2.3)
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Lemma 3.2.1. The skew product Fi satisfies the non-uniformly contraction condition given by Def-
inition 2.2.7 for each, i = 1, . . . , n.

Proof. By construction, for each t ∈ Ω, the fiber map ft of F is a C2 diffeomorphism. Hence, there
exists a ς ∈ L1(Ω, ν) such that d(ft(x), ft(x

′)) < ς(t)d(x, x′), for ν-almost every t. Then, by [38,
Lem. 5.1], for all m ≥ 0

ςm,i(t) = sup
x,x′∈Ii

d(fmt (x), fmt (x′))

d(x, x′)
, i = 1, · · · , n (3.2.4)

exists for almost every t and it is measurable, where fmt = fSm−1(t) ◦ . . . ◦ fS(t) ◦ ft. Also, by [38,
Lem. 5.3], the sequence ςm,i is submultiplicative. It immediately follows that log ςm,i is subadditive,
that is log ςm+k,i(t) ≤ log ςm,i(t) + log ςk,i(S

m(t)). We can thus apply the Kingman’s subadditive
ergodic theorem [24, Thm. 5.4] to log ςm,i to deduce that the limit

λi(t) = lim
m→+∞

1

m
log ςm,i(t), (3.2.5)

exists for ν-almost every t and is S invariant. Moreover,

lim
m→∞

1

m
logςm,i(t) = inf

m

1

m
logςm,i(t) (3.2.6)

and it is constant by the ergodicity of ν, denoted by λi(ν). Note that, by definition, for each
t = (. . . , t−1, t0) ∈ Ω,

fmt = fSm−1(t) ◦ · · · ◦ fS(t) ◦ ft = fωm−1(t0) ◦ · · · ◦ fω(t0) ◦ ft0 .

On the other hand, by (3.1.4), for each t = (. . . , t−1, t0) ∈ Ω with t0 ∈ T1 \Bδ(L0∪L1) and every
x ∈ Ii, we have ‖Dft(x)‖ < 1. It is known that [6] for Lebesgue almost all t0 the set {ωn(t0) : n ∈ N}
is dense in T1. Since, ν+ is equivalent to Lebesgue, the same holds for ν+-almost all t0. Hence, for
ν+-almost all t0, there exists n ∈ N such that ωn(t0) ∈ T1 \Bδ(L0 ∪L1). This implies that fωn(t0) is
a uniformly contracting map. By these facts, since ν inherited from ν+, there exists an upper bound
λ < 0 such that λi(ν) ≤ λ < 0 (note that for each t, by definition, the fiber map ft is either weakly
contractive or uniformly contracting). Hence, Fi satisfies the non-uniformly contraction condition for
each i = 1, . . . , n.

Given a small ε > 0, take a ε-neighborhood U of F with respect to the metric defined by (2.2.3).
Taking ε small enough such that for each G ∈ U and for all i = 1, . . . , n, the region Ω×Ii is a trapping
region for G|Ω×Ii . For each G ∈ G, we take

Gi := G|Ω×Ii , i = 1, . . . , n. (3.2.7)

Lemma 3.2.2. Let the ε-neighborhood U of F defined above be small enough. Then for every perturbed
skew product G ∈ U , the restricted skew products Gi, i = 1, . . . , n, given by (3.2.7) satisfy the non-
uniformly contraction condition given by Definition 2.2.7.

Proof. By Lemma 3.2.1, for each i = 1, . . . , n, the skew product Fi satisfies the non-uniformly con-
traction condition. So, by (3.2.6), for ν-almost t, the limit limm→∞

1
m logςm,i(t) = infm

1
m logςm,i(t)

exists and it is constant, by the ergodicity of ν, denoted by λi(ν); in particular, λi(ν) < 0. Take

λ = max{λi(ν) : i = 1, . . . , n}. (3.2.8)
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Clearly, λ < 0. Take a skew product G ∈ U . Let G defined by G(t, x) = (S(t),g(t, x)). Then, by
definition of the metric given by (2.2.3), supt distC2(f±t , g

±
t ) < ε. Take

ζm,i(t) := sup
x,x′∈Ii

d(gmt (x), gmt (x′))

d(x, x′)
, (3.2.9)

for each i = 1, . . . , n. Since, for each t, the fiber map gt is a C2 diffeomorphism, there exists a
ς ∈ L1(Ω, ν) such that d(gt(x), gt(x

′)) < ς(t)d(x, x′), for ν-almost every t. Then, by [38, Lem. 5.1],
for all m ≥ 0, ζm,i(t) exists for almost every t and it is measurable. Also, by [38, Lem. 5.3], the
sequence ζm,i is submultiplicative and log ζm,i is subadditive. By the Kingman’s subadditive ergodic
theorem [24, Thm. 5.4], the limit

λi(t, G) = lim
m→+∞

1

m
log ζm,i(t), (3.2.10)

exists for ν-almost every t and is S invariant. Moreover,

lim
m→∞

1

m
logζm,i(t) = inf

m

1

m
logζm,i(t) (3.2.11)

and it is constant by the ergodicity of ν, denoted by λi(ν,G). We need to see that this number is
negative.

Fix small δ with λ + δ < 0. By (3.2.6) and (3.2.11), λi(ν) = infn
1
m logςm,i(t) and λi(ν,G) =

infm
1
m logζm,i(t), for ν-a.e. t. Thus, for a typical point t for λi(ν) and λi(ν,G), there exists m0 =

m0(t) ∈ N such that 1
m0

logςm0,i(t) < λ + δ, where λ is given by (3.2.8). Taking ε small enough, we
get 1

m0
logζm0,i(t) < λ+ δ < 0. Consequently,

λi(ν,G) = inf
m

1

m
logζm,i(t) <

1

m0
logζm0,i(t) < λ+ δ < 0.

Thus Gi satisfies the non-uniformly contraction condition.

Note that, for each 1 ≤ i ≤ n, the compact set Ω × Ii is a trapping region for each G ∈ U . Let
us take

Amax(G) :=
⋂
n≥0

Gn(Ω× I), and ∆i(G) :=
⋂
n≥0

Gn(Ω× Ii), 1 ≤ i ≤ n. (3.2.12)

Then ∆i(G), 1 ≤ i ≤ n, are maximal attractors corresponding to the trapping regions Ω× Ii and the
union K(G) :=

⋃n
i=1 ∆i(G) is a compact invariant set contained in the global attractor Amax(G).

Applying Theorem 2.2.2 we get the next result (see also[7, Thm. 5], [38, Thm. 1.4] or [5, Pro. 2.3]).

Theorem 3.2.1. Let G ∈ U , where the open set U is given by Lemma 3.2.2. Then there exist
S-invariant sets Ωi(G) ⊆ Ω, i = 1, . . . , n, such that ν(Ωi(G)) = 1 and measurable functions γG,i :
Ωi(G)→ Ii such that ΓG,i, the graphs of γG,i, are invariant under G. Furthermore ΓG,i, i = 1, . . . , n,
are attracting (G, ν) invariant graphs.

For the skew product F and any small perturbation G ∈ U , we define measures νγF,i and νγG,i
on Ω× Ii by

νγF,i := ν ◦ (id× γF,i)−1|Ω×Ii , νγG,i := ν ◦ (id× γG,i)−1|Ω×Ii , (3.2.13)
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for each i = 1, . . . , n. Since ν is ergodic, so they are also ergodic. In particular, they are supported
on the maximal attractors ∆i(F ) and ∆i(G), respectively.

Note that for the case n = 1, i.e. we have only one invariant graph, you can see more details of
construction and the proofs in [44].

Definition 3.2.1 (Bony attracting graph and bony multi-graph). Let G be a skew product with
interval fiber maps and an invertible base map S.

(1) An attracting bony graph is an attracting invariant graph that is the union of the graph of a
continuous function γ defined on some set of full measure and a set of vertical closed intervals
(bones) contained in the closure of the graph, see [23, 44]. If the graph function γ defined on
the whole space Ω, then we call the graph of γ a continuous attracting invariant graph.

(2) A compact invariant set K is a bony multi-graph for G if K is a multi-graph composed of the
finite union of attracting invariant graphs and at least one of the invariant graphs contained in
K is an attracting bony graph.

In [44, Theorem 1], we investigated a certain class of skew products whose fiber maps are increasing
C2-interval maps over the base map (Ω, S). We proved the existence of an open set of skew products
such that any skew product G belonging to this set admits a unique attracting invariant graph for
which the following dichotomy is ascertained. This invariant graph is either a continuous attracting
graph or an attracting bony graph. In both cases they carry an SRB measure. Here, we extend the
result to the case that G admits more than one attracting invariant graph.

The next result can be followed by applying [44, Theorem 1] to our setting by any modification
(see also [44, Lemma 2.6]).

Theorem 3.2.2. Given a skew product system G belonging to U , the maximal attractors ∆i(G),
i = 1, . . . , n, defined by (3.2.12), satisfy the following properties:

(1) The maximal attractor ∆i(G) is either a continuous attracting invariant graph or an attracting
bony graph. In the case ∆i(G) is an attracting bony graph, the graph function γG,i defined on
a subset Ωi(G) ⊆ Ω with total measure and there exists a family of vertical closed intervals
(bones), one bone in each fiber t× Ii, with t ∈ Ω \Ωi(G); in particular, the bones are contained
in the closure of the graph ΓG,i and Cl(ΓG,i) = ∆i(G).

(2) The invariant ergodic measures νγG,i , i = 1, . . . , n, given by (3.2.13), supported on the closure
of ΓG,i, are SRB measures.

However, weakly contractive fiber maps prevent the existence of bones in the skew product, but
bones appear in small perturbations of the original system. By [44, Lemma 2.5], we get the next
lemma. It shows that the set of G ∈ U having an attracting bony graph is nonempty.

Lemma 3.2.3. There exists a skew product G ∈ U and an index 1 ≤ i ≤ n such that ∆i(G) is
the closure of an attracting bony graph. In particular, the subset of bones has the cardinality of the
continuum and is dense in the attractor.

Lemma 3.2.4. There exists an upper semicontinuous extension of the graph function γG,i : Ωi(G)→
Ii to the whole space Ω.
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Proof. By Theorem 3.2.2, there exist S-invariant sets Ωi(G) such that ν(Ωi(G)) = 1 and measurable
function γG,i : Ωi(G)→ Ii such that ΓG,i, the graph of γG,i, is invariant under G.

Let t ∈ Ω and ε > 0 be given. By Theorem 3.2.2, Cl(ΓG,i) = ∆i(G). Take Ii,t := {t} × Ii and
∆G,i,t := ∆i(G) ∩ Ii,t. Then

∆G,i,t =
⋂
n≥0

gt ◦ gS−1(t) ◦ · · · ◦ gS−n(t)(Ii) = lim
n→∞

gt ◦ gS−1(t) ◦ · · · ◦ gS−n(t)(Ii), i = 1, . . . , n.

Note that gt ◦ gS−1(t) ◦ · · · ◦ gS−n(t)(Ii) is a sequence of nested intervals, and thus ∆G,i,t is either an
interval or a single point. In particular, if t ∈ Ωi(G) then ∆G,i,t is a single point.

If n is big enough then

gt ◦ gS−1(t) ◦ · · · ◦ gS−n(t)(Ii) ⊂ U ε
2
(∆G,i,t),

where U ε
2
(∆G,i,t) is ε

2 -neighborhood of ∆G,i,t. Let t′ be sufficiently close to t. Then gt′ ◦ gS−1(t′) ◦
· · · ◦ gS−n(t′) is C2 close to gt ◦ gS−1(t) ◦ · · · ◦ gS−n(t) and hence

gt′ ◦ gS−1(t′) ◦ · · · ◦ gS−n(t′)(Ii) ⊂ U ε
2
(∆G,i,t).

Then

∆G,i,t′ ⊂ gt′ ◦ gS−1(t′) ◦ · · · ◦ gS−n(t′)(Ii) ⊂ U ε
2
(gt ◦ gS−1(t) ◦ · · · ◦ gS−n(t)(Ii)) ⊂ Uε(∆G,i,t). (3.2.14)

This implies the upper-semicontinuity of ∆G,i,t. This semicontinuity will immediately imply the
continuity of its graph part.

Indeed, by (3.2.14), we obtain that

diam(∆G,i,t′) ≤ diam(∆G,i,t) + 2ε.

If ∆G,i,t is a single point, then diam(∆G,i,t) = 0. Then, by this fact and (3.2.14),

|diam(∆G,i,t)− diam(∆G,i,t′)| = diam(∆G,i,t′) ≤ diam(∆G,i,t) + 2ε ≤ 2ε.

This implies continuity at t.
Consider an extension of γG,i : Ωi(G)→ Ii to the whole space Ω as the following: for each t ∈ Ω,

take
γi(t) = lim

n→∞
gt ◦ gS−1(t) ◦ · · · ◦ gS−n(t)(ai), (3.2.15)

where ai is the left endpoint of Ii. By (3.2.14), if t ∈ Ωi(G), then limn→∞, gt◦gS−1(t)◦· · ·◦gS−n(t)(Ii) =
limn→∞, gt ◦ gS−1(t) ◦ · · · ◦ gS−n(t)(ai). This fact implies that the map γi as defined in (3.2.15) is an
extension of γG,i. We claim that γi is upper semicontinuous.

Indeed, let γi(t) < c, for some c ∈ (0, 1). Then, by definition, limn→∞ gt ◦ gS−1(t) ◦ · · · ◦
gS−n(t)(ai) < c. Hence, there exists n0 ∈ N such that gt ◦ gS−1(t) ◦ · · · ◦ gS−n(t)(ai) < c, for each
n ≥ n0. Note that the fiber maps are increasing interval maps. Take ε > 0 small enough such that if
an interval map f is C2-ε-close to gt ◦ gS−1(t) ◦ · · · ◦ gS−n(t) then f(a0) < c. Now take t′ sufficiently
close to t such that gt′ ◦ gS−1(t′) ◦ · · · ◦ gS−n(t′) is C2-ε-close to gt ◦ gS−1(t) ◦ · · · ◦ gS−n(t). Then
gt′ ◦ gS−1(t′) ◦ · · · ◦ gS−n(t′)(a0) < c. This fact implies the upper semicontinuity of γi.

By Corollary 2.3.1, Lemma 3.2.2 and Theorem 3.2.2, we get the next result.

Corollary 3.2.1. Let G ∈ U and consider the compact invariant set K(G) :=
⋃n
i=1 ∆i(G), where

∆i(G), i = 1, . . . , n, are given by (3.2.12). Then K(G) is an invariant multi-graph or a bony multi-
graph. In particular, K(G) carries n ergodic SRB measures νγG,i , i = 1, . . . , n, given by (3.2.13).
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4 Thermodynamic properties of invariant graphs
Take an skew product G ∈ U given by Theorem 3.2.1. Here, we discuss thermodynamic properties of
invariant graphs ΓG,i, i = 1, . . . , n, given by Theorem 3.2.2, and hence the bony multi-graph K(G).

Let (X, d) be a non-empty, compact metric space and T : X → X be a continuous transformation.
For each n ∈ N define for x, y ∈ X the metric

dn(x, y) := max{d(T i(x), T i(y)) : 0 ≤ i < n}.

Given some ε > 0, a subset ∅ 6= E ⊆ K ⊆ X is called (ε, n)-separated in K, if

inf{dn(x, y) : x 6= y ∈ E} ≥ ε.

In addition, E ⊆ K is called maximally (ε, n)-separated in K, if for all z ∈ K the set E ∪ {z} is not
(ε, n)-separated anymore. Using Zorn’s lemma, for every non-empty subset K ⊂ X there exists a
maximally (ε, n)-separated set E ⊂ K.

In what follows, the set of all T -invariant probability measures is denoted byMT (X). Moreover,
we denote by ET (X) ⊆MT (X) the set of all T -invariant, ergodic probability measures on X. Recall
for µ ∈ MT (X), we denote by hµ(T ) the measure-theoretic entropy of T with respect to µ. For
dynamical systems (X,T ) the quantity htop(T ) denotes the topological entropy of (X,T ), and one
has

htop(T ) = sup{hµ(T ) : µ ∈MT (X)}.

Let (X,T ) be a dynamical system and φ : X → R be an arbitrary function. For every subset K ⊆ X,
define

PK(T, φ) := lim
ε→0

lim sup
n→∞

1

n
log sup

E

∑
x∈E

exp

n−1∑
i=0

φ(T i(x)),

where the supremum is taken over all (ε, n)-separated sets in K.
The variational principle for the topological pressure of continuous functions was proven in [43]:

One has
PX(T, φ) = sup{hµ(X) +

∫
X

φdµ},

where the supremum is taken over all ergodic T -invariant Borel probability measures µ on X. Here
hµ(T ) denotes the measure theoretic entropy of T with respect to µ.

Take an skew product G ∈ U given by Theorem 3.2.1. We recall that the base map S is an
extension of expanding circle map ω : T1 → T1, ω(t) = 4t (mod1). In the setting of uniformly
expanding maps, equilibrium states always exist and they are unique SRB measures if the potential
is Hölder continuous and the dynamics is topologically exact, see [41, Theorem 12.1]. Clearly ω is a
topologically exact uniformly expanding map and hence it admits a unique SRB equilibrium measure
ν+
φ for each Hölder continuous potential φ. Moreover, it is supported on the whole T1.

As we have seen in Subsection 4.2, there exists a semiconjugacy p : Ω→ T1 sending each sequence
t = (. . . , t−n, . . . , t−1, t0) ∈ Ω to its term t0 of order zero. Given an ergodic measure µ+ defined on
Borel subsets of T1 there exists a unique measure µ defined on Borel subsets of Ω such that µ+ = p∗µ.

Here, we investigate the relation between entropy and topological pressure of the expanding circle
map ω and its extension S. First, we need the following results.

Assume f : M −→ M and f̃ : M̃ −→ M̃ are two continuous transformations of compact
topological spaces M and M̃ , respectively. If f is a topological factor of f̃ , then htop(f) ≤ htop(f̃),
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see [41]. Also, Ledrappier-Walter’s formula states the relation between metric entropy of f̃ : M̃ → M̃
and its topological factor f : M →M :

Theorem 4.0.1. (Ledrappier−Walter′s formula).[26] Let M̃ and M be compact metric spaces
and let f̃ : M̃ −→ M̃ , f : M −→ M and π : M̃ −→ M be continuous maps such that π is surjective
and π ◦ f̃ = f ◦ π, then

sup
µ̃;π∗µ̃=µ

hµ̃(f̃) = hµ(f) +

∫
htop(f̃ , π

−1(y))dµ(y).

Lemma 4.0.1. The following two facts hold:

(1) For any probability measures µ and µ+ invariant under S and ω, respectively, with µ+ = p∗µ,
one has that hµ+(ω) = hµ(S).

(2) Let φ be a Hölder continuous potential for the expanding circle map ω. Then Pω(φ) = PS(ψ),
where ψ = φ ◦ p.

Proof. (1) Since
p−1(t) = {(. . . , t−n, . . . , t−1, t0) ∈ Ω : t0 = t}

we observe that htop(ω,p−1(t)) = 0 for every t ∈ T1 because we can choose a subset of p−1(t) with
finite cardinality as n-generator for every n ∈ N. Thus, we apply the Ledrappier-Walter’s formula to
conclude that hµ+(ω) = hµ(S), see Section 3.3 of [32] for more details.

(2) First we observe that if φ is Hölder continuous then φ ◦ p is also Hölder continuous. Since
htop(ω,p−1(t)) = 0 for every t ∈ T1, by the previous lemma and applying Ledrappier-Walter’s
formula, we have

Pω(φ) ≤ PS(ψ) = sup{hµ(S) +

∫
ψdµ}

= sup{hµ+(ω) +

∫
htop(ω,p−1(t))dµ+(t) +

∫
φdµ+}

= Pω(φ),

where the supremum is taken over all probability measures µ invariant under S. Note that given an
invariant measure µ+ defined on Borel subsets of T1 there exists a unique invariant measure µ defined
on Borel subsets of Ω such that µ+ = p∗µ.

By Theorem 3.2.1, there exists S-invariant sets Ωi(G) ⊆ Ω, i = 1, . . . , n, such that ν(Ωi(G)) = 1
and measurable functions γG,i : Ωi(G)→ Ii such that ΓG,i, the graphs of γG,i, are invariant under G.
Furthermore ΓG,i, i = 1, . . . , n, are attracting (G, ν) invariant graphs. Let us take the skew products

Gi := G|Ω×Ii , Gi(t, x) = (S(t), g(t, x)), 1 ≤ i ≤ n. (4.0.1)

By Lemma 3.2.4, we extend measurable functions γG,i to the whole space Ω so that the extended
functions are upper semicontinuous. We also write the extended functions by the same notation γG,i.

Recently, a lot of attention has been done to extend the definition of pressure to not necessarily
continuous functions φ, and to prove a corresponding variational principle. A variational princi-
ple for sub-additive, upper semi-continuous sequences of functions was established in [9] and [3].
This result was recently generalized in [13] for weighted topological pressure on systems with upper
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semi-continuous entropy mapping. Then, Rauch [33] extended the original definitions of pressure to
discontinuous φ, and compare them to the classical ones. Furthermore he determined several classes
of functions, which admit variational inequalities and principles.

Following [33], we call φ to be quasi-integrable with respect to µ, if either
∫
X
φ+dµ < ∞ or∫

X
φ−dµ <∞, where φ+ := max(φ, 0) and φ+ := max(−φ, 0). The set of all measurable φ : X → R,

which are quasi-integrable for all µ ∈ MT (X), is defined by QT (X). We call φ ∈ QT (X) quasi-
integrable with respect to T . Let be φ ∈ QT (X). The function φ is upper semi-continuous with respect
to T , if the following holds: If {µn}n∈N is a sequence of atomic probability measures µn such that
there exists a µ ∈MT (X) satisfying µn → µ in the weak∗-topology, then

lim sup
n→∞

∫
X

φdµn ≤
∫
X

φdµ.

The set of all upper semi-continuous functions with respect to T is denoted by UT (X) ⊆ QT (X), see
[33] for more details.

Theorem 4.0.2. [33, Theorem C] Let (X,T ) be a dynamical system satisfying htop(T ) < ∞. If
φ : X → R is upper semi-continuous with respect to T (see the above definition), then one has

PT (X,φ) = sup{hµ(T ) +

∫
X

φdµ},

where the supremum is taken over all T -invariant Borel probability measures µ on X.

A function φ : X → R is called upper semi-continuous, if {x ∈ X : φ(x) < c} is an open set
for every c ∈ R. By definition every upper semi-continuous function is also Borel measurable. We
denote the set of all upper semi-continuous functions φ : X → R by U(X). As X is compact, every
φ ∈ U(X) is bounded from above (see for example [1] Theorem 2.43). This immediately yields
U(X) ⊆ QT (X). In addition, by Proposition 6 of [33], one has U(X) ⊆ UT (X) for every continuous
mapping T : X → X.

Corollary 4.0.1. [33, Corollary 6] Let htop(T ) <∞ and φ ∈ U(X). Then one has

PT (X,φ) = sup{hµ(T ) +

∫
X

φdµ},

where the supremum is taken over all T -invariant Borel probability measures µ on X.

Also, we recall the following proposition from [33].

Proposition 4.0.1. Let {µn}n∈N be a sequence of Borel probability measures with limit measure µ
in the weak∗ topology. Then one has for ϕ ∈ U(X)

lim sup
n→∞

∫
X

ϕdµn ≤
∫
X

ϕdµ.

Proposition 4.0.2. Consider the skew products Gi = G|Ω×Ii , 1 ≤ i ≤ n, given by (4.0.1) and let
φi : Ω× Ii → R be a Hölder continuous potential. Take ψi : Ω→ R defined by ψi(t) = φi(t, γG,i(t)).
Then there exist some equilibrium state µψi for (S, ψi).
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Proof. By Lemma 3.2.4, ψi is upper semicontinuous. By Corollary 4.0.1, one has that

PS(Ω, ψi) = sup{hµ(S) +

∫
Ω

ψidµ},

where the supremum is taken over all S-invariant Borel probability measures µ on Ω. Since the
expanding circle map ω is a C2 local diffeomorphism then the natural extension S is locally Lipschitz
continuous, i.e., given t ∈ Ω there exists a neighborhood Vt such that for every t1, t2 ∈ S(Vt) we have

dΩ(S−1(t1), S−1(t2)) ≤ σ(t)dΩ(t1, t2)

where σ(t) = ‖Dω−1‖ ◦ p(t). In particular, S is a Ruelle expanding map and hence it is expansive.
By Corollary 9.2.17 of [41], the entropy function of an expansive transformation in a compact metric
space is upper semi-continuous. By Proposition 4 and upper semicontinuity of ψi, the function
µ 7→

∫
Ω
ψidµ is also upper semicontinuous. By these facts the map µ 7→ hµ(S) +

∫
Ω
ψidµ is upper

semicontinuous and hence, there exists some equilibrium state µψi . Indeed, let {µn}n∈N be a sequence
of Borel probability invariant measures such that

hµn(S) +

∫
Ω

ψidµn converges to PS(Ω, ψi).

Since the space invariant Borel probability measures is compact, there exists some accumulation point
µψi . By this fact and upper semicontinuity of µ 7→ hµ(S) +

∫
Ω
ψidµ, we get

hµψi (S) +

∫
Ω

ψidµψi ≥ lim inf
n→∞

hµn(S) +

∫
Ω

ψidµn = PS(Ω, ψi),

so µψi is an equilibrium state, as stated.

Let φ : Ω×I → R be a Hölder continuous potential that does not depend on the fiber. This means
that the function φ(t, .) : Ω→ R is constant, for each t ∈ Ω fixed. Take the restriction φi := φ|Ω×Ii ,
i = 1, . . . , n. Clearly, φi is also a Hölder continuous potential. Hence, as above, the potential φi
induces an upper semicontinuous potential ψi : Ω→ R defined by ψi(t) = φi(t, γG,i(t)).

We recall that the expanding circle map ω possesses an absolutely continuous invariant ergodic
measure ν+ which is equivalent to Lebesgue. Then, (Ω, S) has an invariant ergodic measure ν
inherited from the invariant measure ν+, i.e. ν+ = p∗ν.

Proposition 4.0.3. Let φ : Ω × I → R be a Hölder continuous potential and take φi = φ|Ω×Ii ,
i = 1, . . . , n. Consider the skew product G ∈ U and Gi = G|Ω×Ii , 1 ≤ i ≤ n, given by (4.0.1).
Assume the measure µψi , given by Proposition 4.0.2, is ergodic and it is not singular with respect to
the invariant ergodic measure ν. Then µφi = µψi ◦ (id× γG,i)−1 is an equilibrium state associated to
(Gi, φi) which is supported on the maximal attractors ∆i(G).

Proof. Take the measure µψi , given by Proposition 4.0.2, which is ergodic and it is not singular with
respect to the invariant ergodic measure ν. As both measures are S-invariant and ergodic, this implies
that these measures coincide.

Since µψi is ergodic, so µφi is also ergodic. In particular, since µψi is equivalent to ν, so µφi is
supported on the maximal attractors ∆i(G).
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By Lemma 3.2.2, λi(ν,Gi) is negative and Gi satisfies the non-uniformly contraction condition,
hence, for ν- almost every t ∈ Ω, htop(Gi, π−1(t)) = 0. Since µψi is equivalent to ν, thus, for µψi-
almost every t ∈ Ω, htop(Gi, π−1(t)) = 0. Applying Ledrappier-Walter’s formula, we have

PS(ψi) ≤ PGi(φi) = sup{hµ̂(Gi) +

∫
φidµ̂}

= sup{hµ(S) +

∫
htop(Gi, π

−1(t))dµ(t) +

∫
ψidµ}

= PS(ψi).

Hence, PS(ψi) = PGi(φi) and µφi is an equilibrium state for (Gi, φi).

5 Skew products over the toral baker map
Here, a toral baker map on T2 = T1 × T1 is defined by

H : T2 → T2, H(t, s) = (bt(mod1),
(s+ [bs])

b
), (5.0.1)

for some positive integer b and for each θ = (t, s) ∈ T2. This map is bijective but not continu-
ous. Moreover, it preservers the Lebesgue measure m. Hence, (T2,B,m,H) is a measure-preserving
dynamical system, in the sense of Arnold [2], where B is the Borel σ-algebra on T2.

Assume FH ⊂ F denotes the family of all skew product transformations G with the base map H
defined on T2 × I of the form

G : T2 × I→ T2 × I, G(θ, x) = (H(θ), gθ(x)), (5.0.2)

where (θ, x) ∈ T2 × I, θ = (t, s) ∈ T2 and the fiber maps gθ depends on θ = (t, s) only through t, so
we can write gθ = gt, where F is given by Definition 2.1.1. By definition, G(T2 × I) ⊂ T2 × int(I).

Note that the baker map H is bijective but not continuous. Moreover, it is a canonical extension
of the corresponding expanding circle map ω(t) = bt mod 1, where b is a positive integer. Here, we
assume that b = 4.

Lemma 5.0.1. There exists a measure-theoretical isomorphism h : (T2, H,m)→ (Ω, S, ν), where m
is the Lebesgue measure on T2.

Proof. We define h : T2 → Ω by h(θ) = (. . . , t−1, t0), for θ = (t, s) ∈ T2 so that (t0, s0) = (t, s) and
for each j ∈ N, (t−j , s−j) = H−j(t0, s0). Then, it is easy to see that h is a bijective map. Indeed, the
injectivity of the baker map H implies the injectivity of h. Assume t = (. . . , t−1, t0) ∈ Ω. Take

t = t0, s =

∞∑
i=0

b4t−i−1c
4(i+1)

, and θ = (t, s).

Then h(θ) = t and hence, h maps the two dimensional torus T2 onto the inverse limit space Ω. Also,
h◦H = S ◦h. It is easy to see that, h is a measure-theoretical isomorphism between the two measure
preserving dynamical systems (T2, H,m) and (Ω, S, ν), where m is the Lebesgue measure on T2.

Let us take the invariant graph F̃ is given by (3.1.5). It admits an extension F ∈ FH of the form
(5.0.2) and an extension F given by (3.2.1) over the solenoid map S.
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Theorem 5.0.1. There exists an open set UH ⊂ FH of skew products over the baker map H such
that each skew product G ∈ UH admits an attracting multi-graph or an attracting bony multi-graph.

Proof. Take any skew product G ∈ FH over the baker map H of the form (5.0.2) sufficiently small
to F. Note that for iterates of G we denote

Gn(θ, x) = (Hn(θ), gHn−1(θ) ◦ · · · ◦ gθ(x)) = (Hn(θ), gnθ (x)).

Since the fiber maps gθ depend on θ = (t, s) only through t, so we can write gnθ (x) = gωn−1(t)◦· · ·◦gt(x).
Thus gnθ (x) = gnt , for each t = (. . . , t−1, t0) ∈ Ω with t0 = t. By this fact, for each skew product
G ∈ U over the base map S satisfying in the conclusion of Lemma 3.2.2, we associate a skew product
G over the baker map H defined by G(θ, x) = (H(θ), g(θ, x)) = (H(θ), gt(x)), θ = (t, s) ∈ T2, where
gt, t ∈ T1, are the fiber maps of G. Therefore, there exist an open set UH ⊂ FH and a one to
one correspondence between the skew products G ∈ U over the base map S and the skew products
G ∈ UH over the baker map H. Moreover, (h× id) ◦G = G ◦ (h× id).

Given a skew product transformation G ∈ U , take the invariant graphs γG,i given by Theorem
3.2.1 defined on the subset Ωi(G) ⊆ Ω with total measure. By Theorem 3.2.2, Cl(ΓG,i) = ∆i(G),
where ∆i(G) is the maximal attractor given by (3.2.12), i = 1, . . . , n.

Now, for each θ = (t, s) ∈ T2, define γG,i(t, s) = γG,i(h(t, s)). We denote the graph of γG,i by
ΓG,i. Notice that the fiber map of G is constant along the stable leaves of the baker map H given by
vertical fibers {t} × T1, hence γG,i(t, s) is constant along the stable leaves of H.

Take Ii(t) = {t} × Ii for t = (· · · , t−1, t0) ∈ Ω, and

Ii(t,m,G) = gS−1(t) ◦ · · · ◦ gS−m(t)(Ii) = gt−1
◦ · · · ◦ gt−m(Ii),

for i = 1, . . . , n. Then
∆i(G)

⋂
Ii(t) =

⋂
n≥0

Ii(t,m,G).

Note that, by construction, the fiber maps of the skew products G and G are the same. Hence, by
these observations and the previous lemma, Cl(ΓG,i) is an attracting invariant graph or an attracting
bony graph for G.

Let us take

Amax(G) :=
⋂
n≥0

Gn(T2 × I), and ∆i(G) :=
⋂
n≥0

Gn(T2 × Ii), 1 ≤ i ≤ n. (5.0.3)

Then ∆i(G) = Cl(ΓG,i), 1 ≤ i ≤ n, and thus the union K(G) :=
⋃n
i=1 ∆i(G) is an attracting

multi-graph or bony multi-graph.
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