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Non co-preservation of the 1{2 &
1{p2l ` 1q–rational caustics along

deformations of circles
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Abstract

For any given positive integer l, we prove that every plane deformation of a circle
which preserves the 1{2 and 1{p2l`1q–rational caustics is trivial i.e. the deformation
consists only of similarities (rescalings plus isometries).
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1 Notations

‚ ∇fptq :“ fptq ´ fpt ´ 2π{3q

‚ p :“ pptq, 9p :“ 9pptq, p´ :“ ppt´q, 9p´ :“ 9ppt´q, p` :“ ppt`q, 9p` :“ 9ppt`q

‚ FIpfqptq :“ ř
kPI fk e

ikt, the projection on the Fourier’s modes k in I Ď Z. If I “ nZ

for some n P Z, we write Fnpfq “ FnZpfq.

‚ Denote by Cw
ρ pT,Cq, the set of analytic function on the strip

Tρ :“ tz P C : | Im z| ă ρu{2πZ ,

endowed with the sup–norm }f}ρ :“ supTρ
|f |.
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2 Introduction

A billiard is a mathematical modeling of the dynamic of a confined massless particle
without friction and reflecting elastically on the boundary (without friction): the particle
moves along a straight line with constant speed till it hits the boundary, then reflects off
with reflection angle equals to the angle of incidence and follows the reflected straight
line. It was introduced by G.D. Birkhoff [Bir20] in 1920.
A key notion in billiard dynamic is that of caustic.

Definition 1 A caustic of the billiard dynamic in a domain Ω is a curve C with the
property that any billiard trajectory that is once tangent to C stays tangent to C after each
reflection on the boundary.

Mather [Mat82] proves the non–existence of caustics if the curvature of the boundary
vanishes at one point. Thus, as far as caustics are concerned, we can focus on billiards in
strictly convex domains; such billiards with at least C3–boundary will be called Birkhoff
billiards.1 However, a caustic, if it exists, need neither be convex nor differentiable.
Nevertheless, according to KAM Theory [Laz73, KP90], a positive measure set of con-
vex differentiable caustics which accumulates on the boundary and on which the motion
is smoothly conjugate to a rigid rotation do exists for Birkhoff billiards provided the
boundary of the domain is sufficiently smooth. in general, the billiard dynamic induces
naturally an orientation preserving circle homeomorphism on each convex caustic, which
in particular admits a rotation number, also called rotation number of the caustic. In
particular, a caustic is called rational (resp. irrational) if its rotation number is rational
(resp. irrational). In this work, we are mainly concerned with rational caustics.

Definition 2 Given m,n P N with m ě 2, we call a caustic n{m–rational if all the
corresponding tangential billiards trajectories are periodic with the rotation number n{m.
We denote by Γn{mpΩq the collection of all the n{m–rational caustics of Ω.

unlike irrational caustics which tends to be robust under perturbation according to KAM
Theory, rational caustics tends to be quite rigid and, therefore, break up under perturba-
tion. All the rational caustics may be even destroyed as show by Pinto-de-Carvalho and
Ramı́rez-Ros [PdCRR13] who proved that can perturb an elliptic billiard and destroy all
its rational caustics.
In contrast, Kaloshin and Ke Zhang [KZ18] proved that can perturb a Birkhoff billiard
table and create a new 1{q–rational caustic for sufficiently larges q, provide the boundary

1Observe that if Ω is not convex, then the billiard map is not continuous; in this article we will be
interested only in strictly convex domains. Moreover, as pointed out by Halpern [Hal77], if the boundary
is not at least C3, then the flow might not be complete.
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of the table is Cr with r ą 4. However, nothing is known for smalls q. Moreover, it is
not also known if one can always perturb a sufficiently smooth Birkhoff billiard table and
creates, simultaneously, many rational caustics.
On the other side, a natural question is:

Question 1 Can one perturb a sufficiently smooth Birkhoff billiard table and (co–)preserve
many of its rational caustics?

The question is still widely open, even in the simplest case of co–preservation of two ratio-
nal caustics. Actually, the following intriguing conjecture has been made by Tabachnikov
over ten years ago:

Conjecture 3 (S. Tabachnikov) In a sufficiently small Cr (r “ 2, ¨ ¨ ¨ ,8, w) neigh-
borhood of the circle there is no other billiard domain of constant width and preserving
1{3–caustics.

It has been proven by J. Zhang [Zha19] that in the class of Z2–symmetric analytic defor-
mation of the circle with certain Fourier decaying rate, any deformation of the circle that
co–preserves 1{2 and 1{3-rational caustics is necessarily an isometric transformation.

In the present paper, we settle the analytic deformative case of Conjecture 3. We prove
that, for any given positive integer l, if an analytic deformation of the circle co–preserves
1{2 and 1{p2l ` 1q–rational caustics then this deformation is trivial i.e. consists only of
circles (see Theorem 9 below).
A bounded convex planar domain may be parametrized in various way, amongst which
we have the parametrization with support function.

3 Support function and some facts

Given a bounded convex planar domain Ω with C1 boundary BΩ such that the origin of
the cartesian coordinates is in the interior of Ω, we denote by pΩ : r0, 2πq Ñ r0,8q the
support function of BΩ. Denoting by pxptq, yptqq the cartesian coordinates of the point on
BΩ corresponding to pt, pΩptqq, we have2

#
xptq “ pΩptq cos t ´ 9pΩptq sin t
yptq “ pΩptq sin t ` 9pΩptq cos t, (1)

where 9pΩ denotes the derivative of pΩ.

2We refer the reader to [Res15] for more details.
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Given a supporting function p, we associate the generating function, denoted by Ep, of
the billiard map in the corresponding domain and given by

Eppt, t`q :“
a

pxptq ´ xpt`q2 ` pyptq ´ ypt`q2q p1q“
`
p2 ` 9p2 ` p`2 ` p 9p`q2 ´ 2pp` cospt ´ t`q´

´ 2p 9p` sinpt ´ t`q ` 2 9pp` sinpt ´ t`q ´ 2 9p 9p` cospt ´ t`q
˘1{2

(2)
We have the following nice characterization of convex domains with 1{2–rational caustics:

Lemma 4 A bounded convex domain Ω with C0 boundary posseses a 2–periodic caustic
iff its support function p is of constant width:

pptq “ ω

2
`

ÿ

kPZ

ppkq eip2k`1qt, t P T,

where ω is the average width of Ω and tppkqukPZ Ď C.

The following error–function is the basis of the Lagrangian alternative approach proposed
by Moser and Levi.

Definition 5 Given a bounded convex domain Ω with C1 boundary and support function
p, u P C0pTq and m P N, we set

Empp, uq :“ B1Eppu, u`q ` B2Eppu´, uq, (3)

where u˘ptq :“ upt ˘ 2π
m

q. For the sake of simplicity, we shall write E for E3.

Following Moser–Levi[LM01], we have the characterization:

Lemma 6 Given m P Nzt1u, a bounded convex domain Ω Ď R
2 whose support function

p P C1pTq admits a 1{m–periodic caustic iff there is a homeomorphism u : T Ñ T such
that

Empp, uq “ B1Eppu, u`q ` B2Eppu´, uq “ 0. (4)

Let Ω0 :“ tpx, yq P R2 : x2 ` y2 ď 1u be the unit disc and consider the one–parameter
family Ωε of deformation of Ω0 such that

pΩε
ptq “ 1 ` εp1ptq ` Opε2q, for some p1 P C1pTq,

and let D :“ tΩε : ε ě 0u.
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Remark 7 For any λ ą 0, the generating function of the disc λΩ0 of radius λ is Eλpt, t`q “
λ ¨

a
2p1 ´ cospt ´ t`qq. Thus, for any m P N,

Empλ, idq “ 0,

i.e. λΩ0 possesses a 1{m–rational caustic.

The following extends Lemma 4 to all natural numbers and is contained in Ramirez–
Ros[RR06]. We provide in §5 an alternative proof.

Theorem 8 Let m P N with m ě 2 and ε ą 0. Assume Ωε admits a 1{m–rational caustic.
Then p1,km “ 0 for all k P Zzt0u.
Consequently, the set of Ω P D having a 1{m–rational caustics is a submanifold of D of
infinite codimension.

4 Main result

Denote by C the set of deformations Ωε of the unit disc Ωε within the class of strictly
convex plane domains, whose support function pε P C3pTq and is of the form: pεptq “
1 ` ε p1 ` Opε2q with p1 P Cw

ρ pT,Rq, for some ρ ą 0. Then, the following holds.

Theorem 9 Let l P N and Ωε P C be a deformation of the unit disc. Assume, there exists
ε0 ą 0 such that for any ε P r0, ε0q, Ωε possesses a 1{2–rational and a 1{p2l ` 1q–rational
caustic. Then, the deformation Ωε is trivial: Ωε is a disc for any ε P r0, ε0q.

5 Proof of Theorem 8

The proof of Theorem 8 will be deduce from the following Lemma.

Lemma 10 Let m ą 2, p˚
1
:“ ř

kPZ p
˚
1,k e

ikt P C2pTq and u˚
1
:“ ř

kPZ u
˚
1,k e

ikt P L2pTq.
Then,

Emp1 ` εp˚
1
, id ` εu˚

1
q “ Opε2q, (5)

iff for any k P ZzmZ,

u˚
1,k “ am,k p

˚
1,k and FmZzt0upp˚

1
q “ 0, (6)

where

am,k :“ i

ˆ
k cot2

ˆ
πk

m

˙
´ cot

´ π

m

¯
cot

ˆ
πk

m

˙˙
.
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Proof By Lemma A.1 (see §A.1), Emp1 ` εp˚
1
, id ` εu˚

1
q “ Opε2q iff

sin
´ π

m

¯
p 9p`

1
` 9p´

1
` 2 9p1 ` u`

1
` u´

1
´ 2u1q ` pp´

1
´ p`

1
q cos

´ π

m

¯
“ 0

i.e. for any k P Z,

´2i sin
´ π

m

¯
sin2

ˆ
πk

m

˙
u1,k “

ˆ
2k sin

´ π

m

¯
cos2

ˆ
πk

m

˙
´ cos

´ π

m

¯
sin

ˆ
2πk

m

˙˙
p1,k ,

which, in turn, is equivalent to (6) as, for all k P mZzt0u,

2k sin
´ π

m

¯
cos2

ˆ
πk

m

˙
´ cos

´ π

m

¯
sin

ˆ
2πk

m

˙
“ 2k sin

´ π

m

¯
­“ 0.

6 Proof of Theorems 9

We start setting up some notation. We shall denote

‚ t˘ :“ t ˘ 2π

3
, p˘

n :“ pnpt˘q , u˘
n :“ unpt˘q , PN :“

Nÿ

n“0

εnpn UN :“
Nÿ

n“0

εnun,

where p0 :“ 1 and u0 :“ id.

‚ Em pPN , UNq “
8ÿ

k“´N

Em
N,k ε

N`k

where

Em
N,k :“ 1

pN ` kq!
dN`k

dεN`k
Em pPN , UN q

ˇ̌
ˇ̌
ε“0

.

For m “ 3, here and henceforth, we will drop the superscript m and write E for E3.
The following Lemma will be needed.

Lemma 11 Let f P Cω
ρ pT,Cq, for some ρ ą 0. If

ÿ

kPZ

fk fk´n “ 0, for all n P Zzt0u, (7)

then f ” f0.
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Proof Set gpzq :“ fpzqfpzq and consider the usual scalar product on L2pTq:

xu, vy :“
ż

T

uv.

Fix 0 ă ρ1 ă ρ. Then, for all k P Z,

|fk| ď }f}ρ e´ρ|k|, (8)

so that,

sup
zPTρ1

ÿ

kPZ

|fk eikz| ď
ÿ

kPZ

|fk| eρ1|k|
p8q

ď }f}ρ
ÿ

kPZ

epρ1´ρq|k| ă 8. (9)

Thus,
fpzq “

ÿ

kPZ

fk e
ikz , on Tρ1 , (10)

and, therefore,
gpzq “

ÿ

kPZ

gk e
ikz , on Tρ1 . (11)

Moreover, for any n P Zzt0u,

gn “
@
g, eint

D

“
ż

T

p
ÿ

kPZ

fk eiktqp
ÿ

mPZ

fm e´imtq e´int dt

“
ÿ

kPZ

fk fk´n

p7q“ 0.

Consequently, g
p11q” 0 on Tρ1 i.e. |f |2

ˇ̌
Tρ1

” g0, and this holds for all 0 ă ρ1 ă ρ. Thus,

|f |2 ” g0 on Tρ. Then, the open mapping theorem yields f ” f0.

Proof of Theorem 9
‚ Case n “ 1: We argue by contradiction. Let Ω P D2,3 with support function pptq “
1 ` ε p1 ` ε2p2 ` Opε3q, where p1 P Cw

ρ̃ pT,Rq, p2 P C3pTq, for some ρ̃ ą 0 and for ε close
to 0. Without loss of generality, we can assume that

p1,´1 “ p1,1 “ 0, and p1 ı 0. (12)

Then, by Lemma 6, there exists uptq “ t`ř8
n“1

εnunptq, with tununě1 Ď C0pTq such that

Epp, uq “ 0. (13)
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Also, observe that, by Lemma 4, we have3

F2Zppnq “ 0, @n ě 1. (14)

We have 0 “ Epp, uq “ Ep1` εp1, id` εu1q `Opε2q, so that Ep1` εp1, id` εu1q “ Opε2q.
Thus, by Lemma 10, we have, for any k P Zz3Z,

u1,k “ a3,k p1,k and F3Zzt0upp1q “ 0. (15)

Therefore, Lemma A.1 yields

Ep1 ` εp1, id ` εu1q “ E1,1 ε
2 ` Opε3q. (16)

Now, using Lemma A.2, we have

EpP2, U2q
pA.8q“ EpP1, U1q ` rE2,0 ε

2 ` Opε3q p16q“ pE1,1 ` rE2,0qε2 ` Opε3q, (17)

where

rE2,0 “ 1

4
p´p`

2 ` p´
2 q `

?
3

4
p 9p`

2 ` 9p´
2 ` 2 9p2q `

?
3

4
pu`

2 ` u´
2 ´ 2u2q . (18)

Hence,

0 “ Epu, pq “ EpP2, U2q ` Opε3q p17q“ pE1,1 ` rE2,0qε2 ` Opε3q, (19)

which implies
E1,1 ` rE2,0 “ 0. (20)

Thus, F6pE1,1q “ ´F6p rE2,0q
p18q,p14q“ 0. Then, specializing (A.2) to m “ 1, we obtain, for

all n P Zzt0u,
ÿ

kPZ

kpk ´ nqp1,6k`1 p1,6pn´kq´1 “ 0. (21)

Now, consider the auxiliary function fpzq :“ ř
kPZ fk e

ikz with fk :“ k p1,6k`1. Then f P
Cω

ρ pT,Rq, where ρ :“ ρ̃{2. Moreover, as fk´n :“ pk´nq p1,6pk´nq`1 “ pk´nq p1,6pn´kq´1, the

last relation in (21) then reads:
ř

kPZ fk fk´n “ 0, for all n P Zzt0u. Therefore, Lemma 11

yields f ” f0 “ 0 i.e. p1,6k`1 “ 0 for all k P Zzt0u. But then, as p1,´1 “ p1,1
p12q“ 0, we

would get p1 ” 0, which contradicts (12).

3By making the normalization F0ppnq “ 0, n ě 1.
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‚ General case n P N : The proof in the general case is completely identical, up to two
minor adjustments. The first one is the Cohomological equation (21) which, according to
(A.2), is in general:

´ i

16

ÿ

kPZ

4m`1ÿ

r“1

P
m
r pn, kq p1,2p2m`1qk`r p1,2p2m`1qpn´kq´r “ 0, @n P Zzt0u. (22)

But, each of the polynomials Pm
r pn, kq splits:

P
m
r pn, kq “ ´16i pc˚

m,rq2pk ´ c˚˚
m,rqpn ´ k ` c˚˚

m,rq,

where

c˚
m,r “

d
p2m ` 1q3 sin

ˆ
π

2m ` 1

˙
cot2

ˆ
πr

2m ` 1

˙
and c˚˚

m,r :“
cot

`
π

2m`1

˘
tan

`
πr

2m`1

˘
´ r

4m ` 2
.

Hence, the auxiliary function fpzq :“ ř
kPZ fk e

ikz should be defined by:4 fk :“ c˚
m,rpk ´

zm,rq p1,6k`r.

Appendix

A Reccurent formula for pn and un and Taylor’s series

expansion of EmpPN , UNq
A.1 Expansion of EmpP1, U1q
Let p1 :“ ř

kPZ p1,k e
ikt P C2pTq and u1 :“ ř

kPZ u1,k e
ikt P C0pTq. Set P1 :“ 1 ` εp1,

U1 :“ id ` εu1 and U˘
1 ptq :“ U1pt ˘ 2π

m
q.

Lemma A.1 Given any integer m ě 2, we have

Emp1 ` εp1, id ` εu1q “ Em
1,0 ε ` Em

1,1 ε
2 ` Opε3q, (A.1)

with

4This is the second adjustment.
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Em
1,0 :“

1

2

ˆ
sin

ˆ
π

m

˙
p 9p`

1
` 9p´

1
` 2 9p1 ` u`

1
` u´

1
´ 2u1q ` pp´

1
´ p`

1
q cos

´ π

m

¯ ˙
,

Em
1,1 :“ ´csc2

`
π
m

˘

32

ˆ
´5 cos

´ π

m

¯
pp`

1
q2 ` cos

ˆ
3π

m

˙
pp`

1
q2 ` 6 sin

´ π

m

¯
u1p

`
1

´ 2 sin

ˆ
3π

m

˙
u1p

`
1

´

´ 6 sin
´ π

m

¯
u`
1 p

`
1 ` 2 sin

ˆ
3π

m

˙
u`
1 p

`
1 ` 10 sin

´ π

m

¯
9p1p

`
1 ` 2 sin

ˆ
3π

m

˙
9p1p

`
1 `

` 6 sin
´ π

m

¯
9p`
1
p`
1

´ 2 sin

ˆ
3π

m

˙
9p`
1
p`
1

` 4 cos
´ π

m

¯
:p1p

`
1

´ 4 cos

ˆ
3π

m

˙
:p1p

`
1

´

´
ˆ
cos

ˆ
3π

m

˙
´ 5 cos

´ π

m

¯˙
pp´

1
q2 ´ cos

´ π

m

¯
pu`

1
q2 ` cos

ˆ
3π

m

˙
pu`

1
q2`

` cos
´ π

m

¯
pu´

1 q2 ´ cos

ˆ
3π

m

˙
pu´

1 q2 ` cos
´ π

m

¯
p 9p`

1 q2 ´ cos

ˆ
3π

m

˙
p 9p`

1 q2´

´ cos
´ π

m

¯
p 9p´

1
q2 ` cos

ˆ
3π

m

˙
p 9p´

1
q2 ` 2 cos

´ π

m

¯
u1u

`
1

´ 2 cos

ˆ
3π

m

˙
u1u

`
1

´

´ 2 cos
´ π

m

¯
u1u

´
1

` 2 cos

ˆ
3π

m

˙
u1u

´
1

´ 2 cos
´ π

m

¯
u`
1

9p1 ` 2 cos

ˆ
3π

m

˙
u`
1

9p1`

` 2 cos
´ π

m

¯
u´
1 9p1 ´ 2 cos

ˆ
3π

m

˙
u´
1 9p1 ` 2 cos

´ π

m

¯
u1 9p`

1 ´ 2 cos

ˆ
3π

m

˙
u1 9p`

1 `

` 2 cos
´ π

m

¯
u`
1

9p`
1

´ 2 cos

ˆ
3π

m

˙
u`
1

9p`
1

´ 2 cos
´ π

m

¯
9p1 9p`

1
` 2 cos

ˆ
3π

m

˙
9p1 9p`

1
`

` 2p1

ˆ
´

ˆ
cos

ˆ
3π

m

˙
´ 5 cos

´ π

m

¯˙
p`
1

`
ˆ
cos

ˆ
3π

m

˙
´ 5 cos

´ π

m

¯˙
p´
1

´

´ 2 sin
´ π

m

¯ ˆ
´4u1 sin

2

´ π

m

¯
` 2u´

1 sin2

´ π

m

¯
´ cos

ˆ
2π

m

˙
u`
1 ` u`

1 `

`2 cos

ˆ
2π

m

˙
9p1 ` 6 9p1 ´ cos

ˆ
2π

m

˙
9p`
1

` 9p`
1

´ cos

ˆ
2π

m

˙
9p´
1

` 9p´
1

˙˙
´

´ 2 cos
´ π

m

¯
u1 9p´

1
` 2 cos

ˆ
3π

m

˙
u1 9p´

1
´ 2 cos

´ π

m

¯
u´
1

9p´
1

` 2 cos

ˆ
3π

m

˙
u´
1

9p´
1

`

` 2 cos
´ π

m

¯
9p1 9p´

1 ´ 2 cos

ˆ
3π

m

˙
9p1 9p´

1 ´ 12 sin
´ π

m

¯
u`
1 :p1 ` 4 sin

ˆ
3π

m

˙
u`
1 :p1´

´ 12 sin
´ π

m

¯
u´
1

:p1 ` 4 sin

ˆ
3π

m

˙
u´
1

:p1 ´ 24 sin
´ π

m

¯
9p1:p1 ` 8 sin

ˆ
3π

m

˙
9p1:p1´

´ 12 sin
´ π

m

¯
9p`
1

:p1 ` 4 sin

ˆ
3π

m

˙
9p`
1

:p1 ´ 12 sin
´ π

m

¯
9p´
1

:p1 ` 4 sin

ˆ
3π

m

˙
9p´
1

:p1`

` 4p´
1 sin

´ π

m

¯ ˆ
2u1 sin

2

´ π

m

¯
´ 2u´

1 sin2

´ π

m

¯
` cos

ˆ
2π

m

˙
9p1 ` 3 9p1 ´ cos

ˆ
2π

m

˙
9p´
1 `

10



` 9p´
1 ´ 2 sin

ˆ
2π

m

˙
:p1

˙
´ 12 sin

´ π

m

¯
u`
1 :p`

1 ` 4 sin

ˆ
3π

m

˙
u`
1 :p`

1 ´ 12 sin
´ π

m

¯
u´
1 :p´

1 `

`4 sin

ˆ
3π

m

˙
u´
1

:p´
1

˙
.

In particular, if Fp2m`1qZzt0upp1q “ 0 and u1,k “ a2m`1,k p1,k, for all k P Zzp2m`1qZ, then

F2p2m`1qpE2m`1

1,1 q “
ÿ

nPZ

n ei2p2m`1qnt
ÿ

kPZ

4m`1ÿ

r“1

P
m
r pn, kq p1,2p2m`1qk`r p1,2p2m`1qpn´kq´r .

(A.2)

P
m
r pn, kq :“ cm,r

ˆ´
´1 ` e

2iπr
2m`1

¯
cos

ˆ
π

2m ` 1

˙
´ i

´
1 ` e

2iπr
2m`1

¯
sin

ˆ
π

2m ` 1

˙
pkp4m ` 2q ` rq

˙

ˆ´
1 ` e

2iπr
2m`1

¯
sin

ˆ
π

2m ` 1

˙
pp4m ` 2qpn ´ kq ´ rq ´ i

´
´1 ` e

2iπr
2m`1

¯
cos

ˆ
π

2m ` 1

˙˙
,

cm,r :“
´4p2m ` 1q csc

`
π

2m`1

˘
´

´1 ` e
2iπr
2m`1

¯2
.

Proof For the sake of simplicity, we shall give the proof for m “ 1; the general case
follows word–by–word the same lines.
piq Indeed,

E
2

P1
pU1, U

`
1

q “ 2p1 ´ cos
2π

m
q ` 2ε

ˆ
p1 ´ cos

2π

m
qpp1 ` p`

1
q ´ sin

2π

m
pu1 ´ u`

1
q´

´ sin
2π

m
p 9p1 ´ 9p`

1
q
˙

` Opε2q, (A.3)

Thus,

E
´1

P1
pU1, U

`
1

q pA.3q“
ˆ
2 sin

2π

m

˙´1

´ ε

ˆ
2 sin

2π

m

˙´3 ˆ
p1 ´ cos

2π

m
qpp1 ` p`

1
q´

´ sin
2π

m
pu1 ´ u`

1
q ´ sin

2π

m
p 9p1 ´ 9p`

1
q
˙

` Opε2q, (A.4)

and, substituting t by t ´ 2π{m in (A.4), we obtain

E
´1

P1
pU´

1 , U1q “
ˆ
2 sin

2π

m

˙´1

´ ε

ˆ
2 sin

2π

m

˙´3 ˆ
p1 ´ cos

2π

m
qpp´

1 ` p1q´

´ sin
2π

m
pu´

1
´ u1q ´ sin

2π

m
p 9p´

1
´ 9p1q

˙
` Opε2q. (A.5)
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Moreover,

2EP1
pU1, U

`
1 qB1EP1

pU1, U
`
1 q “ ´2 sin

2π

m
` 2ε

ˆ
9p1 ´ 9p`

1 cos
2π

m
` pu1 ´ u`

1 q cos 2π
m

´

´ pp`
1

` p1 ` :p1q sin
2π

m

˙
` Opε2q (A.6)

and

2EP1
pU´

1
, U1qB2EP1

pU´
1
, U1q “ 2 sin

2π

m
` 2ε

ˆ
9p1 ´ 9p´

1
cos

2π

m
´ pu´

1
´ u1q cos

2π

m
`

` pp´
1

` p1 ` :p1q sin 2π

m

˙
` Opε2q. (A.7)

Therefore, writing EmpP1, U1q “ E
´1

P1
pU1, U

`
1 qEP1

pU1, U
`
1 qB1EP1

pU1, U
`
1 q`

`E
´1

P1
pU´

1
, U1qEP1

pU´
1
, U1qB2EP1

pU´
1
, U1q and using (A.4)–(A.7), we obtain the formula of

the first order term Em
1,0 in (A.1).

Similarly, expanding (A.3)–(A.7) up to the second order, one gets the formula of the
second order term Em

1,1 in (A.1). Then, simple computations yields the formula (A.2).

A.2 Recurrent formula for EmpPN , UNq for N ě 2

We adopt the same notations as in §6

Lemma A.2 Let m ě 2, N ě 1, p1, ¨ ¨ ¨ , pN`1 P C2pTq, and u1, ¨ ¨ ¨ , uN`1 P L2pTq. Then,
we have

EmpPN`1, UN`1q “ EmpPN , UNq ` rEm
N`1,0 ε

N`1 ` OpεN`2q, (A.8)

with

rEm
N`1,0 “ 1

2

ˆ
sin

´ π

m

¯ `
9p`
N`1

` 9p´
N`1

` 2 9pN`1 ` u`
N`1

` u´
N`1

´ 2uN`1

˘
`

` cos
´ π

m

¯ `
p´
N`1

´ p`
N`1

˘ ˙
.

(A.9)

Proof For the sake of simplicity, we shall give the proof for m “ 3; the general case
follows word–by–word the same lines.
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We have on one hand,

E
2

PN`1
pUN`1, U

`
N`1

q “ P 2

N`1
pUN`1q ` 9P 2

N`1
pUN`1q ` P 2

N`1
pU`

N`1
q ` 9P 2

N`1
pU`

N`1
q´

´ 2

ˆ
PN`1pUN`1qPN`1pU`

N`1
q ` 9PN`1pUN`1q 9PN`1pU`

N`1
q
˙
cospUN ´ U`

N q`

` 2

ˆ
9PN`1pUN`1qPN`1pU`

N`1
q ´ PN`1pUN`1q 9PN`1pU`

N`1
q
˙
sinpUN ´ U`

N q “

“ E
2

PN
pUN , U

`
N q ` εN`1

ˆ
3ppN`1 ` p`

N`1
q ´

?
3puN`1 ´ u`

N`1
q ´

?
3p 9pN`1 ´ 9p`

N`1
q
˙

`

` OpεN`2q. (A.10)

Therefore,

E
´1

PN`1
pUN`1, U

`
N`1

q “ E
´1

PN
pUN , U

`
N q ´ 1

2
E

´3

PN
pUN , U

`
N qεN`1

ˆ
3ppN`1 ` p`

N`1
q´

´
?
3puN`1 ´ u`

N`1
q ´

?
3p 9pN`1 ´ 9p`

N`1
q
˙

` OpεN`2q

“ E
´1

PN
pUN , U

`
N q ´

?
3

18
εN`1

ˆ
3ppN`1 ` p`

N`1
q ´

?
3puN`1 ´ u`

N`1
q ´

?
3p 9pN`1 ´ 9p`

N`1
q
˙

`

` OpεN`2q

and, replacing t by t ´ 2π{3 in the above formula, we get

E
´1

PN`1
pU´

N`1
, UN`1q “ E

´1

PN
pU´

N , UNq ´
?
3

18
εN`1

ˆ
3pp´

N`1
` pN`1q ´

?
3pu´

N`1
´ uN`1q´

´
?
3p 9p´

N`1
´ 9pN`1q

˙
` OpεN`2q.

Furthermore,

2EPN`1
pUN`1, U

`
N`1

q B1EPN`1
pUN`1, U

`
N`1

q “
`
PN`1pUN`1q ` :PN`1pUN`1q

˘
ˆ

ˆ
ˆ
2 9PN`1pUN`1q ´ 2 9PN`1pU`

N`1
q cospUN`1 ´ U`

N`1
q ` 2PN`1pU`

N`1
q sinpUN`1 ´ U`

N`1
q
˙

“ EPN
pUN , U

`
N qB1EPN

pUN , U
`
N q ` εN`1

ˆ
2 9pN`1 ` 9p`

N`1
´

?
3
`
pN`1 ` p`

N`1
` :pN`1

˘
`

` u`
N`1

´ uN`1

˙
` OpεN`2q , (A.11)
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and

2EPN`1
pU´

N`1
, UN`1q B2EPN`1

pU´
N`1

, UN`1q “
`
PN`1pUN`1q ` :PN`1pUN`1q

˘
ˆ

ˆ
ˆ
2 9PN`1pUN`1q ´ 2 9PN`1pU´

N`1
q cospU´

N`1
´ UN`1q ´ 2PN`1pU´

N`1
q sinpU´

N`1
´ UN`1q

˙

“ EPN
pU´

N , UNqB2EPN
pU´

N , UNq ` εN`1

ˆ
2 9pN`1 ` 9p´

N`1
´

?
3
`

´ pN`1 ` p´
N`1

´ :pN`1

˘
`

` u´
N`1

´ uN`1

˙
` OpεN`2q. (A.12)

Thus, writing

EpPN`1, UN`1q “ E
´1

PN`1
pUN`1, U

`
N`1

q ¨ EPN`1
pUN`1, U

`
N`1

qB1EPN`1
pUN`1, U

`
N`1

q`
` E

´1

PN`1
pU´

N`1
, UN`1q ¨ EPN`1

pU´
N`1

, UN`1qB2EPN`1
pU´

N`1
, UN`1q,

one gets the (A.8).
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