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Bridge functions, the missing link in the exact description of strong correlations, are indirectly ex-
tracted from specially designed molecular dynamics simulations of classical one-component plasma
liquids and accurately parameterized. Their incorporation into an advanced integral equation theory
description of Yukawa one-component plasma liquids and a novel dielectric formalism scheme for
quantum one-component plasma liquids leads to an unprecedented agreement with available molec-
ular dynamics simulations and new ab initio path integral Monte Carlo simulations, respectively.

Strongly coupled charged systems, naturally occurring
or engineered, are ubiquitous in disparate environments
that range from high-energy-density matter [1, 2] to soft
matter [3, 4]. These correlated systems consist of classi-
cal point particles or fermions that interact via bare or
screened Coulomb pair potentials [5]. Pivotal to their un-
derstanding are three idealized models, whose investiga-
tion has led to key physical insights, namely the classical
or quantum one-component plasma (OCP) [6–8] and the
classical Yukawa one-component plasma (YOCP) [9, 10].
The OCP and the YOCP liquid states, although squeezed
in a rather small portion of the phase diagram between
the gas and the crystal states, have proven to be the most
theoretically elusive owing to their lack of small parame-
ters that forbid perturbative expansions viable for weak
interactions or small vibrations [11, 12]. Particular atten-
tion has been paid to their structural and thermodynamic
properties, since these also constitute input for advanced
theoretical descriptions of collective modes [13–15], dy-
namical properties [16] and transport coefficients [17, 18].
In the classical case, the integral equation theory (IET)

of liquids constitutes the most accurate alternative to
computer simulations for the determination of static pair
correlations [19]. For one-component systems, it features
two formally exact equations: the Ornstein-Zernike (OZ)
integral equation and the non-linear equation [20, 21]

h(r) = c(r) + n

∫
c(r′)h(|r − r′|)d3r′ , (1)

g(r) = exp [−βu(r) + h(r)− c(r) +B(r)] , (2)

with g(r) the radial distribution function (RDF), h(r) =
g(r) − 1 the total correlation function (TCF), c(r) the
direct correlation function (DCF), B(r) the bridge func-
tion, u(r) the interaction potential, β the inverse tem-
perature and n the number density [20]. A B[h] or B[u]
functional is required to close the set. In diagrammatic
analysis, bridge functions are represented by densely con-
nected irreducible graphs and formally defined by virial-
type series that involve Mayer functions or TCFs [22].
Both series converge very slowly and their high-order
terms quickly become too complicated to calculate [23].
Moreover, bridge functions lack a probabilistic interpre-
tation and cannot be expressed as ensemble averages of
functions that depend on instantaneous particle config-

urations, implying that they can only be indirectly ex-
tracted from simulations; a notoriously difficult task [24–
27]. Thus, numerous IET approaches have been devel-
oped that approximate the bridge function with varying
complexity [28], the simplest being the hypernetted chain
(HNC) approach that drops it altogether, B(r) ≡ 0, [20].
Indicative of the difficulty of indirect bridge function ex-
traction is the fact that simulation-based bridge function
parametrizations are available only for hard spheres (only
in the intermediate & long range) [29], soft spheres (full
range, based on 5 states) [30] and the OCP (entire range,
based on 4 states and problematic) [31]. It should be fur-
ther emphasized that full range bridge function param-
eterizations are not even available for the paradigmatic
liquid of hard spheres and that the well-known analytical
hard sphere bridge functions, which have enjoyed wide
applications in liquid state theory [19–21], are not exact
being solutions of the Percus-Yevick approximation [32].

Here, we extract the classical OCP bridge functions at
multiple states, spanning the dense liquid region, from
specially designed molecular dynamics (MD) simulations
and construct an analytic parametrization. This is incor-
porated into the recent isomorph-based empirically modi-
fied hypernetted chain approach (IEMHNC) based on the
excess entropy invariance of YOCP bridge functions [33]
and into a novel dielectric quantum OCP scheme based
on the exact classical-limit correlations. Theoretical pre-
dictions are compared with available MD and new path
integral Monte Carlo (PIMC) simulations, respectively.

Classical OCP bridge function extraction.The classical
OCP concerns point charges that are immersed in a rigid
neutralizing background. The thermodynamic states are
fully specified by a single dimensionless quantity, since
the non-ideal Helmholtz free energy depends on a spe-
cific density-n and temperature-T combination [34]: the
coupling parameter Γ = βQ2/d with d = [4πn/3]−1/3

the Wigner-Seitz radius and Q the particle charge. We
focus on moderate densities above the Kirkwood point
ΓK ≃ 1.12 [35] and prior to the bcc crystallization point
Γm ≃ 171.8 [36]. Bridge functions will be indirectly ex-
tracted for 17 state points, Γ = 10, 20, ...170. The gen-
eral extraction methodology developed in Ref.[27] can be
directly applied to variable softness, purely repulsive or
partly attractive, bounded or diverging potentials, but it
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FIG. 1: Upper panel: Extracted bridge functions in the mono-
tonic (main) and oscillatory decay range (inset). Lower panel:
Extracted direct correlation functions in the non-trivial B(r)
range (main) and extracted cavity distribution logarithms in
the monotonic range (inset). Results for 17 OCP state points.

needs to be modified for the OCP due to the long-range
Coulomb interactions. In what follows, we briefly present
these peculiarities. Reduced x = r/d units are employed.

Outside the correlation void where g(x) ≃ 0 (x > 1.2),
bridge functions are indirectly extracted with the OZ in-

version method [27, 37]. NVT MD simulations are carried
out with N = 54872 particles, 220 equilibration time-
steps and 223 time-steps for statistics leading to 216 sta-
tistically independent configurations. The long-range in-
teractions are handled with the Ewald sum that is im-
plemented with the particle-particle particle-mesh tech-
nique [38]. The RDF is extracted from histograms with a
bin width of ∆x = 0.002. The Lebowitz-Percus finite-size
correction is applied, g(x) = gMD(x)(1+χT/N) [39], with
χT the reduced isothermal compressibility as calculated
from the hypervirial route [40]. Fast Fourier Transforms
(FFT) are used to compute the static structure factor
(SSF) S(k) and Padé approximants are utilized to ensure
that the compressibility sum rule is satisfied exactly [6].
Inverse FFT with long-range decomposition is employed
to determine the DCF from the Fourier transformed OZ.
Eq.(2) can now be solved for the bridge function.

Within the correlation void (x < 1.4), bridge functions
are indirectly extracted with the cavity method [27, 41].
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FIG. 2: Results for Γ = 160. Our B(r) including uncertainties
vs the Iyetomi B(r) within the oscillatory decay range (main).
Our B(r) for varying bin widths: large grid errors emerge for
∆x & 0.01 (inset).

NVTMD simulations are performed featuring two tagged
particles whose artificial pair interactions ψ(x) = χ(x) +
φ(x) enable sampling of the cavity distribution function
(CDF) ysim(x) = g12(x) exp [βψ(x)]. In order to enhance
sampling, the correlation void is split into four successive
overlapping windows by imposing hard constraints in the
tagged pair motion through the χ(x) component that re-
alizes a smooth potential well. Aiming to achieve uniform
sampling, multiple short simulations are run to optimize
the φ(x) component that is determined by supplementing
the prescription of Ogata [42] with a linear adder. NVT
MD simulations are performed with N = 1000 particles
(useful statistics only from the tagged particles), 220 equi-
libration time-steps and 231−232 time-steps for statistics
leading to 224 − 225 statistically independent configura-
tions. The CDFs of the real and the simulated system are
connected by y(x) = Cysim(x) exp [(Γ/x)erf(asx)] with
as the Ewald splitting parameter and C determined from
CDF continuity. Eq.(2) can now be formulated via y(r)
and solved for the bridge function. Our OCP CDFs agree
very well with those extracted by Caillol & Gilles [43].

Extraction uncertainties stem exclusively from statisti-
cal errors due to the finite simulation duration, since tail
errors and implicit size errors are negligible, explicit size
errors are corrected and grid errors are minimized [27].
All the extracted OCP bridge functions, DCFs and CDFs
are featured in Fig.1 for their entire non-trivial range.

Classical OCP bridge function parametrization. To ob-
tain an analytic expression for the entire range, the fol-
lowing procedure was developed. The short range bridge
function that exhibits a monotonic behavior is fitted with
a fifth order polynomial without a linear term, as sug-
gested by the short range version of the exact non-linear
closure equation B(x) = ln [y(x)]+c(x)+1, Widom’s gen-
eral theorem for the CDF ln [y(x)] = y0+y2x

2+y4x
4 [44]

and the analytic OCP solution of the soft mean spherical
approximation for the DCF c(x) = c0+c2x

2+c3x
3+c5x

5

[45, 46]. The intermediate range bridge function that ex-
hibits an oscillatory decay is fitted with a combination of
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TABLE I: Fit parameters of theB(r) parametrization, Eq.(3).

j = 0 j = 1 j = 2 j = 3 j = 4

sj
0

0.076912 -0.10465 0.0056629 0.00025656 N/A

sj
2

0.068045 -0.036952 0.048818 -0.0048985 N/A

sj
3

-0.30231 0.30457 -0.11424 0.0095993 N/A

sj
4

0.25111 -0.26800 0.082268 -0.0064960 N/A

sj
5
-0.061894 0.066811 -0.019140 0.0014743 N/A

lj
0

0.25264 -0.31615 0.13135 -0.023044 0.0014666

lj
1

-12.665 20.802 -9.6296 1.7889 -0.11810

lj
2

15.285 -14.076 5.7558 -1.0188 0.06551

lj
3

35.330 -40.727 16.690 -2.8905 0.18243

exponents and cosines that allow us to exactly capture
the first period. These two ranges feature a deliberate
overlapping interval, so that the transition region is well
described with a sigmoid switching function. Overall,

BOCP(x,Γ) = [1− f(x)]BS(x,Γ) + f(x)BI(x,Γ), (3)

BS(x,Γ) = s0(Γ) +
∑5

i=2
si(Γ)x

i,

BI(x,Γ) = l0(Γ)Γ
5/6 exp

[
−l1(Γ)(x− 1.44)− 0.3x2

]
×

{cos [l2(Γ)(x − 1.44)] + l3(Γ) exp [−3.5(x− 1.44)]} ,

f(x) = 0.5 {1 + erf [5.0 (x− 1.5)]} ,

with si(Γ) =
∑3

j=0
sjiΓ(ln Γ)

j , li(Γ) =
∑4

j=0
ljiΓ

1/6(ln Γ)j

being monotonic functions of Γ. The sji , l
j
i coefficients are

listed in Table I. The functional form of si(Γ), li(Γ) has
been inspired from exact low-Γ expansions of the excess
OCP internal energy beyond the Debye-Hückel term [47,
48]. For all states, the fit is near-exact within 0 ≤ x ≤ 3
but it fails to describe higher order damped oscillations
that arise up to x ≃ 5 near the melting point.
OCP bridge functions were earlier extracted and pa-

rameterized by Iyetomi and coworkers [31]. Their bridge
function has a number of deficiencies: (a) The short range
was determined with extrapolations based on the Widom
theorem [44] and the exact Jancovici order x2 result [49].
(b) The extraction concerned only four state points, i.e.
Γ = 10, 40, 80, 160. (c) The parametrization consisted of
a high-order polynomial multiplied by an exponentially
decaying function, which lead to a single extremum curve
without oscillatory decay. (d) The RDF histograms had
a relatively large bin width of ∆x = 0.04, which trans-
lates to large grid errors mainly near the B(r) extremum.
Although their short range extrapolation method turned
out to be accurate, the other deficiencies are important.
In particular, their large grid errors are revealed in Fig.2.
Application to classical plasma liquids. The YOCP

concerns point charges that interact via the Yukawa po-
tential u(r) = (Q2/r) exp (−r/λs) being embedded in a
polarizable neutralizing background, with λs a shielding
length. The thermodynamic states are specified by two
dimensionless quantities [50]: the coupling and screening
parameters, Γ and κ = d/λs. The OCP is recovered as
κ → 0. We focus on moderate densities above the Kirk-
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FIG. 3: Radial distribution functions resulting from MD sim-
ulations (symbols) and the updated IEMHNC approach (solid
lines): (a) κ = 1 and Γ/Γm = 0.3 (blue), 0.6 (green), 0.9 (red)
with Γm = 220.18, (b) κ = 3 and Γ/Γm = 0.3 (purple), 0.6
(cyan), 0.9 (orange) with Γm = 1234.51.

wood line [35] and prior to the bcc/fcc crystallization [36].
It has recently been demonstrated that the YOCP ex-

hibits very strong correlations between its virial and po-
tential energy constant volume thermal equilibrium fluc-
tuations in the entire dense liquid region of its phase
diagram [51]. Thus, the YOCP belongs to the class of R-
simple systems and possesses isomorphic lines, i.e. phase
diagram curves of constant excess entropy along which a
set of structural and dynamic properties are nearly invari-
ant when expressed in properly reduced units [52, 53]. In
particular, the isomorphic lines are nearly parallel to the
melting line [54] and accurately parameterized by [51, 55]

ΓISO(Γ, κ) = Γe−ακ
[
1 + ακ+ (1/2)(ακ)2

]
= const. (4)

with α = (4π/3)1/3. Our recent YOCP simulations [27]
proved that the reduced-unit bridge functions of R-simple
systems are isomorph invariant, validating the conjecture
of Ref.[33]. Thus, given the Eq.(4) mapping of configura-
tional adiabats, the OCP bridge functions constitute the
basis for the construction of YOCP bridge functions via

BYOCP(x,Γ, κ) = BOCP[x,ΓISO(Γ, κ)] . (5)

This IET closure amounts to the IEMHNC approach that
was earlier combined with the Iyetomi OCP bridge func-
tion and applied to the YOCP [33]. Detailed benchmark-
ing activities against simulation results revealed that this
early IEMHNC version could reproduce the YOCP ther-
modynamic properties within 0.5% and the YOCP struc-
tural properties within 1.5% inside the first coordination
cell [56]; an excellent performance comparable to that of
the variational modified hypernetted chain approach [57]
(VMHNC) that is 10−100×more computationally costly.
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FIG. 4: Static structure factors (main) and static local field corrections (inset) resulting from the PIMC simulations (red crosses),
HNC-based scheme (dashed green lines) and IET-based scheme (solid blue lines). Results for rs = 100 and θ = 0.5, 0.75, 1, 2.

The updated IEMHNC approach is obtained by com-
bining Eqs.(1,2) with Eqs.(3,4,5). This set is solved with
Picard iterations in Fourier space combined with mixing
and long-range decomposition techniques (when κ < 1).
Comparison with extended simulations [36, 58, 59] reveals
that the updated IEMHNC version reproduces YOCP
thermodynamic and structural properties within 0.5% in
the whole dense liquid region; an unprecedented accuracy
on par with that of modern simulations. This is high-
lighted in the graphical comparison between IEMHNC- &
MD-generated RDFs featured in Fig.3. The superiority
of our updated IEMHNC approach over the VMHNC ap-
proach [57, 60] and another advanced IET approach [61]
is confirmed in the Supplemental Material [62].
Application to quantum plasma liquids. The quantum

OCP concerns electrons immersed in a rigid ionic neutral-
izing background. In the unpolarized case of equal spin-
up & -down electrons, thermodynamic states are speci-
fied by two dimensionless quantities [63]: the Brueckner
parameter rs = d/aB with aB = ~

2/(mee
2) the first Bohr

radius and the degeneracy parameter θ = kBT/EF with
EF = [(3π2n)2/3/2](~2/me) the Fermi energy w.r.t spin-
up electrons (~ is the reduced Planck constant, e the el-
ementary charge). We focus on high degeneracy (θ ∼ 1)
moderate density (rs & 20) post warm dense matter [64]
but prior to Wigner crystallization [65, 66], where corre-
lations are strong but quantum effects remain important.
In linear response theory, the exact density-density re-

sponse function χ(k, ω) can always be expressed in terms
of the ideal (Lindhard) density response χ0(k, ω) and the
unknown dynamic local field correction G(k, ω) (LFC)

χ(k, ω) =
χ0(k, ω)

1− U(k) [1−G(k, ω)]χ0(k, ω)
, (6)

with U(k) = 4πe2/k2 the regularized Fourier transform
of the Coulomb pair potential [67]. In addition, frequency
integration of the quantum fluctuation-dissipation theo-
rem (FDT) and analytic continuation of χ(k, ω) to the
complex plane lead to a static structure factor S(k) (SSF)
relation that involves the Matsubara summation

S(k) = −
1

nβ

∞∑

l=−∞

χ̃(k, ıωl) , (7)

with χ̃(k, z) the complex-valued density-density response
function, ωl = 2πl/(β~) the Matsubara frequencies [68].
Dielectric schemes approximate the LFC as a SSF func-
tional G ≡ G[S], leading to self-consistent approaches [8,
67]. Rigorous schemes that include quantum effects on
the random phase approximation level and treat correla-
tions classically (such as the Singwi-Tosi-Land-Sjölander
[STLS] scheme [69, 70]) and semi-empirical schemes that
employ asymptotic limits and embody simulation results
(see the effective static approximation [71, 72]) are based
on a frequency-averaged simplification, G(k, ω) ≡ G(k).
A recently proposed scheme is singled out that belongs

to the first group and treats strong correlations within the
classical HNC approach [73, 74]. This HNC-based scheme
combines the classical FDT, OZ equation and HNC non-
linear equation to generate a frequency averaged G[S]
functional. Systematic comparison with PIMC results
for moderate [73] and strong coupling [74] has revealed
that the HNC-based scheme is superior to other dielectric
schemes. To be specific, when rs ∈ [20, 100]∩ θ ∈ [0.5, 4],
its interaction energy predictions are accurate within
1.2% due to favorable error cancellations in the SSF inte-
gration [74] while its structural predictions are quite ac-
curate for the SSF/LFC peak positions but significantly
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FIG. 5: Static density-density responses χ(k) = χ(k, 0) re-
sulting from the PIMC simulations (red crosses), HNC-based
scheme (dashed green lines) and IET-based scheme (solid blue
lines). Results for rs = 125 and θ = 1, 2.

underestimate the SSF / LFC peak heights [74]. Consid-
ering that such a deficiency is also characteristic of the
fully classical HNC approach [75, 76], it is expected that
incorporation of the bridge function will lead to signifi-
cant improvements. To this end, we generalize the HNC-
based scheme to a novel IET-based scheme including our
classical bridge function. The G[S] functional reads as

G(k) =
B(k)

βU(k)
−

1

n

∫
d3q

(2π)3
k · q

q2
[S(|k − q|)− 1]

×

{
−
B(q)

βU(q)
+ 1− [G(q)− 1] [S(q)− 1]

}
. (8)

Use of the classical OCP bridge function necessitates the
mapping of the quantum states (rs, θ) to classical states
(Γ) via Γ = 2λ2(rs/θ) with λ

3 = 4/(9π). The Eqs.(6,7,8)
form a closed set that is solved numerically. The compu-
tational cost drastically decreases by converting the triple
to a double integral in Eq.(8) with two-center bipolar co-
ordinates [45]. Faster Matsubara summation convergence
is achieved by isolating the Hartree-Fock SSF in Eqs.(6,7)
and faster high-k convergence for the double integral is
achieved by isolating the STLS LFC in Eq.(8).
To validate the IET-based scheme, new PIMC simula-

tions have been performed with N = 100 electrons for 16

TABLE II: Interaction energy ũ = (πλrs)
−1

∫
∞

0
[S(x)− 1] dx

(in Hartree units) of the unpolarized electron liquid: PIMC,
HNC-based and IET-based results. All PIMC simulations are
new except from the first 6 states [74].

rs θ ũ ũ eHNC ũ eIET

PIMC HNC-based (%) IET-based (%)

100 0.50 -0.00825500 -0.00815866 1.167 -0.00822181 0.402

100 0.75 -0.00824570 -0.00816490 0.980 -0.00822544 0.246

100 1.00 -0.00823490 -0.00816618 0.834 -0.00822559 0.113

100 2.00 -0.00817650 -0.00812905 0.580 -0.00819066 0.173

100 4.00 -0.00800623 -0.00796833 0.473 -0.00803143 0.315

50 0.50 -0.01600700 -0.01589841 0.678 -0.01603510 0.176

60 0.50 -0.01345310 -0.01334804 0.781 -0.01346014 0.052

70 0.50 -0.01161175 -0.01150938 0.882 -0.01160390 0.068

80 0.50 -0.01021937 -0.01012012 0.971 -0.01020149 0.175

90 0.50 -0.00912862 -0.00903293 1.048 -0.00910415 0.268

110 0.50 -0.00752642 -0.00744012 1.147 -0.00749675 0.394

125 0.50 -0.00665421 -0.00657377 1.209 -0.00662268 0.474

125 0.75 -0.00665053 -0.00657838 1.085 -0.00662556 0.442

125 1.00 -0.00664336 -0.00657999 0.954 -0.00662647 0.254

125 1.50 -0.00662535 -0.00657432 0.770 -0.00662112 0.064

125 2.00 -0.00660298 -0.00655900 0.666 -0.00660712 0.063

150 0.50 -0.00558177 -0.00550821 1.318 -0.00554797 0.606

150 1.00 -0.00557134 -0.00551337 1.040 -0.00555132 0.359

200 0.50 -0.00422244 -0.00416445 1.373 -0.00419373 0.680

200 1.00 -0.00421710 -0.00416813 1.161 -0.00419559 0.510

states (50 ≤ rs ≤ 200, 0.5 ≤ θ ≤ 2). For these states, the
fermion sign problem is weak owing to the prevalence of
strong correlations and the standard PIMC method suf-
fices to obtain accurate results [8, 77]. Interaction energy
finite-size errors, that stem from the omission of the long-
wavelength contribution in the discretized integral, are
corrected applying the perfect screening sum rule [8, 74].

In terms of static structure, a comparison reveals that:
(a) The IET-based scheme substantially improves the
SSF peak magnitude and also marginally improves the
SSF peak position predictions of the HNC-based scheme.
(b) IET-based predictions for the LFC are remarkably
accurate especially for k/kF ≤ 2 with kF = (3π2n)1/3 the
Fermi wavevector. Notice that both schemes converge to-
wards the constant value G(k → ∞) = 1−g(0) ≃ 1, with
g(0) the radial distribution function at contact [68]. This
is a direct consequence of the G(k, ω) ≡ G(k) assumption
that essentially introduces a frequency-averaged LFC. At
the ground state θ = 0, the exact static LFC G(k, ω → 0)
has been proven to be parabolically divergent with the k2

pre-factor determined by the exchange-correlation contri-
bution to the kinetic energy [78]. At finite temperatures
θ > 0, although a rigorous proof is lacking, PIMC simula-
tions have revealed that this divergence persists [74, 79].
Given the above, dielectric schemes that are based on the
G(k, ω) ≡ G(k) assumption, even empirical schemes that
incorporate exact PIMC data [71, 72], are bound to ex-
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hibit increasingly large LFC deviations for k/kF & 3. (c)
The IET-based scheme drastically improves the χ(k, 0)
static density-density response predictions of the HNC-
based scheme. Improvements include the extremummag-
nitude, while the predictions for k/kF ≤ 2 are nearly ex-
act. The conclusions are valid for all simulated states, see
Figs.4,5 for examples. In terms of thermodynamics, the
favorable error cancellation persists, thus, the IET-based
interaction energies are accurate within 0.7% compared
to 1.4% for the HNC-based scheme, see Table II. It is also
noted that the IET- and HNC-based interaction energies
are much more accurate than those of the classical map-
ping method [80, 81], see the Supplemental Material [62].
Discussion. We performed specially designed MD sim-

ulations to indirectly extract the bridge functions of clas-
sical OCP liquids. Systematic extractions led to an accu-
rate parametrization that was embedded in the recently
proposed IEMHNC integral equation theory approach for
classical YOCP liquids and a novel IET-based dielectric
scheme for quantum OCP liquids. Extensive PIMC sim-
ulations were carried out to facilitate benchmarking. For
both liquids, the structural and thermodynamic proper-
ties were predicted with unprecedented precision.
Classical OCP bridge functions can be used to explore

the limits of other existing theoretical approaches. For
the YOCP, the classical OCP liquid can constitute the
reference system of the VMHNC approach in place of the
Percus-Yevick hard-sphere liquid with the effective cou-
pling parameter determined by minimizing an approxi-
mate free energy functional [82]. For the quantum OCP,
classical OCP bridge functions can be used in classical
mapping approaches in place of hard-sphere bridge func-
tions [83]. Moreover, although this Letter is dedicated to
3D one-component plasma liquids, the bridge function in-
direct extraction technique, IEMHNC integral equation
theory approach and IET-based dielectric scheme can be

directly extended to 2D and multi-component systems.
Finally, it should be pointed out that knowledge of the

OCP bridge function is directly transferable to any model
system (hard sphere, Lennard-Jones, inverse power law,
Gaussian core). To be more specific, a substantial part of
the success of integral equation theory and fundamental
measure classical density functional theory is owed to the
bridge function universality ansatz of Rosenfeld-Ashcroft
[84] & bridge functional universality ansatz of Rosenfeld
[85, 86]. These celebrated conjectures state that bridge
functions and functionals have reduced-unit forms that
are weakly dependent on the details of the pair interac-
tions. In other words, the exact knowledge of the bridge
function or functional of one model liquid, supplemented
with a powerful variational principle that determines an
optimal state correspondence between systems, can lead
to the accurate yet approximate knowledge of the bridge
function or functional of any other model liquid.
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