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REMARKS ON ALGEBRAIC DYNAMICS IN POSITIVE
CHARACTERISTIC

JUNYI XIE

ABSTRACT. In this paper, we study arithmetic dynamics in arbitrary charac-
teristic, in particular in positive characteristic. We generalise some basic facts
on arithmetic degree and canonical height in positive characteristic. As appli-
cations, we prove the dynamical Mordell-Lang conjecture for automorphisms
of projective surfaces of positive entropy, the Zariski dense orbit conjecture
for automorphisms of projective surfaces and for endomorphisms of projective
varieties with large first dynamical degree. We also study ergodic theory for
constructible topology. For example, we prove the equidistribution of backward
orbits for finite flat endomorphisms with large topological degree. As appli-
cations, we give a simple proof for weak dynamical Mordell-Lang and prove
a counting result for backward orbits without multiplicities. This gives some
applications for equidistributions on Berkovich spaces.

1. INTRODUCTION

Let k be an algebraically closed field. In this paper, most of the time (from
Section 2 to Section 4), we are mainly interested in the case chark > 0.

Many problems in arithmetic dynamics, such as Dynamical Mordell-Lang con-
jecture, Zariski dense orbit conjecture are proposed in characteristic 0. Indeed,
their original statements do not hold in positive characteristic. But their known
counter-examples often involve some Frobenius actions or some group structures.
We suspect that the original statement of these conjecture still valid for “general”
dynamical systems in positive characteristic.

The p-adic interpolation lemma ([47, Theorem 1] and [0, Theorem 3.3]) is
a fundamental tool in arithmetic dynamics. It has important applications in
Dynamical Mordell-Lang and Zariski dense orbit conjecture [9, [6l 3], 2, 55]. But
this lemma does not work in positive characteristic. Because this, some very
basic cases of Dynamical Mordell-Lang and Zariski dense orbit conjecture are
still open in positive characteristic. We hope that some corollaries of the p-adic
interpolation lemma still survive in positive characteristic. For this, I propose
the following conjecture.

Conjecture 1.1. Set K := F,((t)) and K° = T,[[t]] its valuation ring. Let
f: (K°)" — (K°)" be an analytic automorphism satisfying f = id mod t. If
there is no n > 1 such that f” = id, then the f-periodic points are not dense in
(K°)" w.r.t. t-adic topology.
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On the other hand, we observed that, under certain assumption on the com-
plexity of f, a global argument using height can be used to replace the local
argument using the p-adic interpolation lemma. We generalise the notion of
arithmetic degree and prove some basic properties of it in positive characteristic.
In particular, we generalise Kawaguchi-Silverman-Matsuzawa’s upper bound for
arithmetic degree [42, Theorem 1.4] in positive characteristic. With such notion,
we apply our observation to dynamical system in positive characteristic. In par-
ticular, we prove the Dynamical Mordell-Lang and Zariski dense orbit conjecture
in some cases (see Section [T and [[2]).

Another aim of this paper is to study the ergodic theory on algebraic vari-
ety w.r.t constructible topology. Using this, we get some equidistribution reults
and apply them to get some weak verisons of Dynamical Mordell-Lang, Manin-
Mumford conjecture in arbitrary characteristic. This also gives some applications
for equidistributions on Berkovich spaces.

1.1. Dynamical Mordell-Lang conjecture. Let X be a variety over k and
f X --+» X be a rational self-map.

Definition 1.2. We say (X, f) satisfies the DML property if for every z € X (k)
whose f-orbit is well defined and every subvariety V' of X, the set {n > 0| f*(x) €
V'} is a finite union of arithmetic progressions.

Here an arithmetic progression is a set of the form {an—+b| n € N} with a,b € N
possibly with a = 0.

Dynamical Mordell-Lang Conjecture. If chark = 0, then (X, f) satisfies the
DML property.

It was proved when f is unramified [6] and when f is an endomorphism of A%
[52]. See [9, B0] for other known results. In general, this conjecture does not
hold in positive characteristic. An example is [9, Example 3.4.5.1] as follows (see
[25], [16] for more examples).

Example 1.3. Let k = F,(¢), f : A2 — A? be the endomorphism defined by
(x,y) — (tx,(1—t)y). Set V:= {x—y =0} and e = (1,1). Then {n > 0| f"(e) €
Vi =A{p"[n=0}.

In [9 Conjecture 13.2.0.1], Ghioca and Scanlon proposed a variant of the
Dynamical Mordell-Lang conjecture in positive characteristic (=p-DML), which
asked {n > 0| f*(x) € V} to be a finite union of arithmetic progressions along
with finitely many sets taking form

m
{Z cip ™| n; € Zsg,i=1,...,m}
i=1

where m € Zs1, ki € Zso,¢; € Q. See [25], [16] for known results of p-DML. How-
ever, we suspect that for a “general” dynamical system in positive characteristic
still has the DML property.
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Theorem 1.4. Let X be a projective surface over k. Let f : X — X be an
automorphism. Assume that \i(f) > 1. Then the pair (X, f) satisfies the DML
property.

Here \;(f) is the i-th dynamical degree of f (see Section[21]). The following is a
similar result for birational endomorphisms of A2. In [50, Theorem A], it is stated
in characteristic 0. But when A\ (f) > 1, its proof works in any characteristic.

Theorem 1.5. [50, Theorem A] Let f : A? — A? be a birational endomorphism
over k. If \i(f) > 1, (A2, f) satisfies the DML property.

1.2. Zariski dense orbit conjecture. Let X be a variety over k and f : X --»
X be a dominant rational self-map. Denote by k(X)/ the field of f-invariant
rational functions on X. Let X (k) is the set of X (k) whose orbit is well-defined.
For z € X¢(k), Of(x) is the orbit of z.

Definition 1.6. We say (X, f) satisfies the SZDO property if there is © € X (k)
such that Oy (z) is Zariski dense in X.

We say (X, f) satisfies the ZDO property if either k(X)/ # k or it satisfies
SZDO property.

The Zariski dense orbit conjecture was proposed by Medvedev and Scanlon
[44, Conjecture 5.10], by Amerik, Bogomolov and Rovinsky [2] and strengthens
a conjecture of Zhang [50].

Zariski dense orbit Conjecture. If chark = 0, then (X, f) satisfies the ZDO
property.

This conjecture was proved for endomorphisms of projective surfaces [37, [55],
endomorphisms of (P')V [45, 55] and endomorphisms of A? [53]. See [3| [T} 2, 23|
4, 5, 291 26], 28, [7, [36] for other known results.

The original statement of Zariski dense orbit conjecture is not true in charac-
teristic p > 0. It is completely wrong over k = I, and has counter-examples even
when tr.d.zzk > 1 (see [55, Section 1.6] and [27, Remark 1.2]). Concerning the
variants of the Zariski dense orbit conjecture in positive characteristic proposed
in [55 Section 1.6] and [27, Conjecture 1.3], we get the following result.

Proposition 1.7. Let K be an algebraically closed field extension of k with
tr.dy K > dim X. Then (fx, Xk) satisfies the ZDO property. Here Xk and
fx are the base change by K of X and f.

The following example shows that the assumption tr.d., K > dim X is sharp.

Example 1.8. Let X be a variety over k := F, of dimension d > 1. Assume
that X is defined over F,. Let F' : X — X be the Frobenius endomorphism. It
is clear that F,(X)¥ = F,. For every algebraically closed field extension K of k
with tr.d K < d—1, and every x € Xk(K), Op, () is not Zariski dense in Xg-.

On the other hand, the known counter-examples often involve some Frobenius
actions. See [27, Theorem 1.5, Question 1.7] for this phenomenon. We suspect
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that when tr.d.zk > 1, a “general” dynamical system in positive characteris-
tic still have the ZDO property. Applying arguments using height, we get the
following results.

Theorem 1.9. Assume that chark =p > 0 and tr.d.F—pk >1. Let f: X — X be

a dominant endomorphism of a projective variety. If \i(f) > 1, then for every
nonempty Zariski open subset U of X, there is x € U(k) with infinite orbit and

Theorem can be viewed as a weak version of [I Corollary 9] in positive
characteristic.

Theorem 1.10. Assume that chark = p > 0 and tr.d.F—pk >1.Let f: X — X be
an automorphism of a projective surface. Then (X, f) satisfies the ZDO property.

The following result is a generalization of [36, Theorem 1.12 (iii)] in positive
characteristic.

Theorem 1.11. Assume that chark = p > 0 and trdpk >1. Let f: X — X
be a dominant endomorphism of a projective variety. Assume that X is smooth
of dimension d > 2, and A\ (f) > max? ,{\;(f)}. Then (X, f) satisfies the SZDO
property.

1.3. Ergodic theory. Let X be a variety over k. Denote by |X| the underling
set of X with the constructible topology i.e. the topology on a X generated by
the constructible subsets (see [34, Section (1.9) and in particular (1.9.13)]). In
particular every constructible subset is open and closed. This topology is finer
than the Zariski topology on X. Moreover |X| is (Hausdorff) compact.

Denote by M(|X|) the space of Radon measures on X endowed with the weak-x
topology.

Theorem 1.12. Every u € M(|X]|) takes form

n= Z aiéxi

i>0
where 0., is the Dirac measure at x; € X, a; > 0.

Remark 1.13. Theorem is inspired by [32 Theorem A]. In [32, Theorem
A], Gignac worked on the Zariski topology, which is not Hausdorff. Here, we
use the constructible topology systematically. We think that the constructible
topology is the right topology for studying ergodic theory in algebraic dynamics.
For example, using constructible topology, we may avoid the conception of finite
signed Borel measure used in [32, Theorem A]. Instead of it, we use the more
standard notion of Radon measure.

A sequence z,, € X,n > 0 is said to be generic, if every subsequence z,,,7 > 0
is Zariski dense in X.
Corollary 1.14. A sequence x, € X,n > 0 is generic if and only if
A1 Oan = 0

where 1 1s the generic point of X.
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Let f : X --» X be a dominant rational self-map. Set | X |; := | X|\(Ui>11(f*))-
Because every Zariski closed subset of X is open and closed in the constructible
topology, | X|f is a closed subset of | X|. The restriction of f to |X|; is continuous.
We still denote by f this restriction.

1.3.1. DML problems. Applying Corolary[L.14] the dynamical Moredell-Lang con-
jecture can be interpreted as the following equidistribution statement:

Dynamical Mordell-Lang Conjecture (DML in form of equidistribution).
For x € Xy(k), if Of(z) is Zariski dense in X, then

nll_)fglo 5fn(m) = (577.
Remark 1.15. Here the assumption that Oy (z) is Zariski dense in X does not
cause any problem. Because after replacing x by some f”(x) and f by a suitable
iterate, we may assume that Og(x) is irreducible. Then after replacing X by

O¢(z), we may assume that Oy(x) is Zariski dense in X.

Using Theorem [I.12], we give a fast proof of the weak dynamical Mordell-Lang.
Same result was proved in [8, Corollary 1.5] (see also [24, Theorem 2.5.8], [32
Theorem D, Theorem EJ, [46, Theorem 2|, [10, Theorem 1.10]).

Theorem 1.16 (Weak DML). Let z be a points € Xy(k) with Of(z) = X.
Let V' be a proper subvariety of X. Then {n > 0| f"(x) € V} is of Banach
density zero in Zsq t.e. for every sequence of intervals I,,n > 0 in Zso with
lim,, .o, #1,, = +00, we have

iy #0200 @) VYN 1)

= 0.
n—00 #In

We also prove the weak dynamical Mordell-Lang for coherent backward orbits.
A slightly weaker version was proved in [32, Theorem F|. This can be viewed as
a weak version of [54, Conjecture 1.5].

Theorem 1.17 (Weak DML for coherent backward orbits). Let z,, € Xs(k),n <

0 be a sequence of points such that {z,,n <0} = X and f(x,) = xpq1 for all
n < —1. Let V' be a proper subvariety of X. Then {n < 0| z,, € V'} is of Banach
density zero in Z<

1.3.2. Backward orbits. Now assume that f : X — X is a flat and finite endo-
morphism. Let d; := [k(X)/f*k(X)] be topological degree of f. It is just the
(dim X )-th dynamical degree of f.

Recall that for every x € X, the multiplicity of f at x is
mf(z) = dimn(f(m))(OX@/mf(:c)OX,x) € Zzl

where Oy, is viewed as an Oy j)-module via f. For every x € X, we have
> yef-1(x) Mf(y) = dy (see [31, Theorem 2.4]).



6 JUNYI XIE

In Section (2] we define a natural pullback f* : M(X) — M(X) which is
continuous and for every z € X,

for=> " myy)d,
yef~(@)
We get the following equidistribution result.
Theorem 1.18. Let f : X — X be a flat and finite endomorphism. Let x € X (k)
with U;sof~(x) = X. Then for every sequence of intervals I,,n > 0 in Zso with
lim,,_, #I, = +00, we have

1 o
Jim (A 6 = 8y

1€ln

Remark 1.19. The assumption U;>of~%(z) = X is necessary. Otherwise,
1 —1 7\ *
LSy )n =0

are supported on the proper closed subset U;>of~%(x) of X.

Applying Theorem [L.I8, we count the preimages of a point without multiplic-
ities.
Theorem 1.20. Let f : X — X be a flat and finite endomorphism. Assume
that the field extension k(X)/f*k(X) is separable. Let x € X (k) be a point with

Uisof~(z) = X. Forc € (0,1], n > 0, define
St = min{#8| S C f"(x), Y _mya(y) > cd}}.

yes

Then for every c € (0, 1], we have
lim (S™)'/" = dj.

n—oo

Taking ¢ = 1 in Theorem [[.20, we get the following corollary.

Corollary 1.21. Let f: X — X be a flat and finite endomorphism. If the field
extension k(X)/f*k(X) is separable, then for every x € X (k) with U;>of~%(x) =
X,

lim (17" (2))/" = dy.

n—oo

If the topological degree is large, we have the following stronger equidistribution
result.

Theorem 1.22. Let f : X — X be a flat and finite endomorphism of a quasi-
projective variety. Assume that
(11) df = AdimX(f) > max A

1<i<dim X —1

If the field extension k(X)/f*k(X) is separable, then for every x € X (k) with

Uisof 7H(z) = X,
lim d;"(f")*éx =0,

n—oo



7

Moreover, for every irreducible subvariety V of X of dimension dy < dim X — 1,

lim sup #(f " (z) N V)" < A, < dj.
n— oo
Assumption holds for polarized endomorphisms on projective varieties. A
similar statement for polarized endomorphisms can be fund in [31, Theorem 5.1].
See [35] 20] for according result for complex topology.

Theorem [1.22] is not true without Assumption [5.5

Example 1.23. Under the notation of Example Set g := f~1. Then \;(g) =
1,2 =0,1,2. Denote by 1y the characteristic function of V. Since V is open and
closed in |A?%|, 1y is continuous. We have

lim Ly (g7")*6, = Jggow(fp”(e)) =1#0 :/1V577.
1.4. Relation to Berkovich spaces. We will see in Section [5.4] |X| can be
viewed as a closed subset of the Berkovich analytification X" of X w.r.t the
trivial norm on k. So the statements in ergodic theory on |X| can be translated
to statements on X?". See the translation of Corollary [[L.T4] and Theorem in
Section [5.4]

Using reduction map, we may also use ergodic theory w.r.t. the constructible
topology to study endomorphisms on Berkovich spaces with good reduction. In
Section 5.6, we apply Theorem to get an equidistribution result for endo-
morphisms of large topological degree with good reduction.

1.5. Notation and Terminology.

e For a set S, denote by #5S5 the cardinality of S.

e A wariety is an irreducible separated scheme of finite type over a field. A
subvariety of a variety X is a closed subset of X.

e For a variety X (resp. a rational self-map f: X --»Y") over a field k£ and
a subfield K of k, we say that X (resp. f) is defined over K if there is
a variety Xk (resp. a rational map fx) over K such that X (resp. f) is
the base change by k of X (resp. f).

e For a rational map f : X --» Y between varieties. Denote by I(f) the
indeterminacy locus of f.

e For a dominant rational self-map f : X --+ X between varieties, a sub-
variety V' of X is said to be f-invariant if I(f) does not contain any
irreducible component of V' and f(V) C V.

e For a projective variety X, N'(X) is the the group of numerical i-cycles
of X and N(X)g := N(X) @ R.

e For two Cartier R-divisors Dy, Do, write Dy = D, if D, Dy are numeri-
cally equivalent.

e For a field extension k/K, tr.d.xk is the transcendence degree of k/K.

Acknowledgement. I would like to thank Xinyi Yuan. Section [ of this paper
is motivated by some interesting discussion with him.
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2. DYNAMICAL DEGREE AND ARITHMETIC DEGREE

2.1. The dynamical degrees. In this section we recall the definition and some
basic facts on the dynamical degree.

Let X be a variety over k and f : X --+» X a dominant rational self-map. Let
X' be a normal projective variety which is birational to X. Let L be an ample (or
just nef and big) divisor on X’. Denote by f’ the rational self-map of X’ induced
by f.

For i = 0,1,...,dim X, and n > 0, (f™)*(L") is the (dim X — i)-cycle on
X' as follows: let I' be a normal projective variety with a birational morphism
71: I — X’ and a morphism 7: I' — X’ such that f™ = m o7 '. Then
(f™*(L") := (m1)«m3(L"). The definition of (f™)*(L") does not depend on the
choice of I'; m; and my. The i-th dynamical degree of f is

)\z(f) — nh_)nolo«f/n)*(Lz) . LdimX—i)l/n'

The limit converges and does not depend on the choice of X’ and L [48], 211,149, [1§].
Moreover, if 7 : X --» Y is a generically finite and dominant rational map
between varieties and ¢g: Y --» Y is a rational self-map such that gom =7 o f,
then \;(f) = Ai(g) for all 4; for details, we refer to [I8, Theorem 1] (and the
projection formula), or Theorem 4 in its arXiv version [I7].

The following result is easy when k is of characteristic 0 and Z ¢ SingX.

Proposition 2.1. [36, Proposition 3.2] Let X be a variety overk and f: X --» X
a dominant rational self-map. Let Z be an irreducible subvariety in X which is
not contained in I(f) such that f|z induces a dominant rational self-map of Z.

Then Ni(flz) < Ni(f) fori=0,1,...,dim Z.

2.2. Arithmetic degree. The arithmetic degree was defined in [38] over a num-
ber field or a function field of characteristic zero. In this section we extend this
definition to the case over function field of positive characteristic and we prove
some basic fact of it.

Let k = K(B), where K is an algebraically closed field and B is a smooth
projective curve.

2.2.1. Weil height. Let X be a normal and projective variety over k. For every
L € Pic(X), we denote by hr : X (k) — R a Weil height associated to L and the
function field K(B). It is unique up to adding a bounded function.

Example 2.2. Assume that X is defined over K(B) i.e. there is a projective
morphism 7 : Xp — B where Xpg is normal, projective and geometric generic
fiber of m is X. Assume that there is a line bundle Lg on Xp whose restriction
on X is L. In this case, for every € X (k), we may take hy to be

htoa(®@) = [K(B)(@) : K(B)| (7 - L),
where T is the Zariski closure of z in Xg.

Keep the notations in Example[Z2l Let b be a point in B(K). It induces a norm
|+ |» on K(B). Denote by K(B), the completion of K(B) w.r.t. |- |,. Denote by

Cy the completion of K(B),. Every field embedding 7 : k = K(B) < C, induces
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an embedding ¢, : X (k) — X (Cp). On X (C,), we have a natural b-adic topology
induced by | - |-

Remark 2.3. Let x;, be a point in X;. Then z;, defines a nonempty open subset
U,, consisting of all points in X (C,) whose reduction is z, € X,(K). Then for
every x € ¢-'(U,,), o is contained in the Zariski closure of z in Xp.

Lemma 2.4. There is d > 1 such that for every b € B(K), every nonempty
b-adic open subset of U C X (Cy), and every l > 1, there is x € X (k) such that
deg(z) < d and hp(z) > 1.

Proof. By Noether normalization lemma, we only need to prove the lemma when
X =PV and L = O(1). After replace K(B) by a finite extension, a changing
of coordinates, we may assume that 0 € U. We may assume that hy is the
naive height on PV i.e. the height defined by the model (P¥, Opyp(1)). Pick
any rational function ¢ € K(B) \ {0} with g(b) = 0. Then for n > 1, z,, :=
(g, ...,g") € AN(K(B)). We have hr(z,) — oo as n — oo and ¢,(z,) — 0 in
the b-adic topology. This concludes the proof. 0

2.2.2. Admissible triples. As in [36], we define an admissible triple to be (X, f, x)
where X is a quasi-projective variety over k, f: X --+» X is a dominant rational
self-map and =z € X (k).

We say that (X, f, ) dominates (resp. generically finitely dominates) (Y, g,y)
if there is a dominant rational map (resp. generically finite and dominant rational
map) 7: X --» Y such mo f = gom, 7 is well defined along O¢(x) and 7 (z) = y.

We say that (X, f,z) is birational to (Y, g,y) if there is a birational map
m: X --+ Y such mo f = gonw and if there is a Zariski dense open subset V
of Y containing O,(y) such that «|y : U := 7 (V) = V is a well-defined iso-
morphism and 7(x) = y. In particular, if (X, f, x) is birational to (Y, g,y), then
(X, f,x) generically finitely dominates (Y, g,y).

Remark 2.5.

(1) If (X, f,z) dominates (Y, g,y) and if O(x) is Zariski dense in X, then
Oy(y) is Zariski dense in Y. Moreover, if (X, f,x) generically finitely
dominates (Y, g,y), then Og(x) is Zariski dense in X if and only if O4(y)
is Zariski dense in Y.

(2) Every admissible triple (X, f, x) is birational to an admissible triple (X', ', ')
where X' is projective. Indeed, we may pick X’ to be any projective com-
pactification of X, f’ the self-map of X’ induced from f, and 2’ = z.

2.2.3. The set As(x). Asin [36], we will associate to an admissible triple (X, f, z)
a subset

Ag(x) € [1,00],
Remark 2.6. We will show in Proposition 210 that A¢(z) C [1, A(f)]-

We first define it when X is projective. Let L be an ample divisor on X, we
define

Ag(x) € 1, 00
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to be the limit set of the sequence (hf(f™(z)))™, n > 0, where hj(:) :=
max{hr(-),1}.

The following lemma was proved in [36, Lemma 3.8] when k = Q, but its proof
still works our case. It shows that the set A(x) does not depend on the choice
of L and is invariant in the birational equivalence class of (X, f, z).

Lemma 2.7. [36 Lemma 3.8] Let m: X --» Y be a dominant rational map
between projective varieties. Let U be a Zariski dense open subset of X such that
mly: U = Y is well-defined. Let L be an ample divisor on X and M an ample
divisor on Y. Then there are constants C' > 1 and D > 0 such that for every
x € U, we have

(2.1) hy(m(z)) < Chr(x) + D.

Moreover if V .= w(U) is open in'Y and 7|y: U — V' is an isomorphism, then
there are constants C' > 1 and D > 0 such that for every x € U, we have
(2.2) C~'hi(z) — D < hy(n(x)) < Chy(x) + D.

Now for every admissible triple (X, f,z), we define A;(z) to be Ap(z’) where
(X', f',2') is an admissible triple which is birational to (X, f,x) such that X’
is projective. By Lemma 2.7 this definition does not depend on the choice of
(X', f'. ).

2.2.4. The arithmetic degree. We define (see also [38]):
af(x) = sup As(x), ag(r) :=inf Ap(z).
We say that oy(z) is well-defined and call it the arithmetic degree of f at z, if
as(z) = a,(z); and, in this case, we set
ap(x) == ap(r) = ay(z).
By Lemma 27 if (X, f,z) dominates (Y, g,y), then @y(x) > @,(y) and a(v) >

Applying Inequality (2] of Lemma 27 to the case where Y = X and M = L,

we get the following trivial upper bound: let f: X --+ X be a dominant rational
self-map, L any ample line bundle on X and h; a Weil height function associated
to L; then there is a constant C' > 1 such that for every x € X \ I(f), we have
(2.3) hi(f(z)) < Chy ().

For a subset A C [1,00), define AY* := {a'/* | a € A}.
We have the following simple properties, where the second half of 3] used In-
equality (2.3)).
Proposition 2.8. We have:
(1) Ag(z) € [1,00).
(2) Aglw) = Ag(f(x)), for any € > 0.
(3) Ag(w) = UZb(Ap(f @) In particular, ap(x) = ap(@), ap(z) =
Qf(x)z'

The following lemma is easy.
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Lemma 2.9. Let f: X --+» X be a dominant rational self-map of a projective
variety X and W C X an f-invariant subvariety. Then Xy(k)NW (k) C Wy, (k)
and for every x € Xy(k) N W (k), ayg,, () = ay(z).

When k = Q, the next result was proved in [42, Theorem 1.4] in the smooth
case and in [36l Proposition 3.11] in the singular case. The proof here in the
function field case is much easier.

Proposition 2.10 (Kawaguchi-Silverman-Matsuzawa’s upper bound). For every
admissible triple (X, f,zo), we have @(xg) < Ai(f).

Proof. We may assume that X is projective. Set d := dim X. After replacing
f by a suitable iteration and xg by f"(xo) for some n > 0 and noting that
A (f™) = A1(f)™ and by Proposition 2.8 we may assume that the Zariski closure
Z¢(xg) of Og(xp) is irreducible. By Proposition 2.1] and Lemma 2.9, we may
replace X by Z;(zo) and assume that Of(z) is Zariski dense in X.

Assume that X is defined over K(B) i.e. there is a projective morphism 7 :
X — B where X is projective, normal and geometric generic fiber of 7 is X. Pick
an ample line bundle Lg on X and let L be its restriction to X. We take the
Weil height Ay : X (k) — R as follows: for every = € X (k),

hi(z) = h r)(7) = [K(B)(z) : K(B)] (7 - L).
We may assume that xz is defined over K (B).

Let F: X --» X be the rational self-map over B induced by f. The relative
dynamical degree formula [I7, Theorem 4], shows that

A (F) = max{1, \(f)} = M (f).
So for every r > 0, there is C,. > 0 such that for every n > 0,
(2.4) ((F™)Lp - LE) < Co(Ai(f) +1)".

Let Z be the ideal sheaf of Ty on X'. After replacing Lg be a suitable multiple,
we may assume that £ ® Z is globally generated. For every n > 0, there are
divisors H;,i = 0,...,d in |Lp| such that dim H; N---N H; = 1 and containing
T as an irreducible component.

Set V,, :=Hy----- H,. Let I' be a normal projective variety with a birational
morphism 7;: I' — X and a morphism 7, : I' — X such that F” = my o 7"
Write ()#Tg the strict transform of V™ Zg by 7i¥. Then (m;)#Tg is an irreducible
component of N, (7} H;). In N*(T), we have 7}V, = nfH, - --- - 7" Hy. By [36]
Lemma 3.3], 7V, — (m)#Tg is pseudo-effective. Then we have

hi(f"(20)) = (f*(wo) - L) = ((m1)*Tg - w5 L)
< (mpHyp----- miHg - mLg) = ((F")"Lg - L).
< Cr(M(f) +r)™
It follows that
ay(xo) = limsup oy (f"(20))"™ < lim (Co(M(f) + 7)) = M (f) +r

n—o00 n—00

Letting » — 0o, we conclude the proof. 0
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2.3. Canonical height. Let X be a normal projective variety and f : X — X
a surjective endomorphism.

Let A be an ample divisor of X, denote by h4 a Weil height on X (k) associated
to A with hy > 1.

Proposition 2.11. Let D be a nonzero Cartier R-divisor such that f*D = D
where B > M\ (f)Y%. Let [D] € NY(X)g be the numerical class of D. Then for
every x € X (k), the limit hf})] () :=limy, 00 hp(f™(x)) /8™ exist, only depend on
the numerical class [D] and satisfies the following properties:

(i) h[g] — hp 4+ OWY?);

(i) iy o f = B
Proof. This result was proved in [38, Theorem 5] in characteristic zero. The proof

presented here is the same as [38, Theorem 5|, but slightly shorter.
By [42], Proposition B.3], there is C' > 0 such that for every z € X (k),

Ao (f(2)) = Bhp(x)] < Cha(x)'/.

Pick 1 € (A (f)'2,8), by Proposition 210, for every = € X (k), there is C, > 0
such that ,

ha(f*(x)) < Cop®ha(z).
Then we have
[ (f"(2))/8" = hp(f"~(2)) /8" = B7"|hp(f"(2)) — Bho(f"~ (2))|
< BTCha(f"H @) < BTMCC A ha(w)' = CC () B)" ha ()2,
Since 0 < p/p < 1,
Wy (@) = h(@) + 3 (ho(f"(2))/8" = ho(f*~H(2))/8"7)
n>1

converges and

By (x) = hp ()] < Z Ao (f"(x)) /8" = ho(f"~ () /8"
< (O CC(u/B)Yha(@)? = O(ha(w)'?).

Then we get (i). The statement (ii) follows from the definition.
For D' = D, by [42, Proposition B.3], there is B > 0 such that for every
x € X(k),
|hp () = hp(z)| < Bha(x)"?.
Then
() = iy (@) 1= Tim [y (£7(@)) = b (7 ()16

< limsup Bha(f"(x))Y?/8" < limsup BC,ha(x)Y?(u/B)" =

n—oo n—oo

which concludes the proof. O
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The following was proved in [43, Lemma 9.1] when k = Q and X is smooth.
After replacing [38, Theorem 5] by Proposition 2.TT] [43, Lemma 9.1] is still valid
when k = K(B) and X is singular.

Proposition 2.12. Assume that \i(f) > 1. Let D # 0 be a nef R-Cartier divisor
on X such that f*D = X\ (f)D. Let V C X be a subvariety of positive dimension
such that (DY™V . V) > 0. Then there exists a nonempty open subset U C V
and a set S C U(k) of bounded height such that for every x € U(k) \ S we have

ag(z) = M(f).

Corollary 2.13. Keep the notation in Proposition[2.12. For every Zariski dense
open subset U of X, there is x € U(k) such that af(x) = A\ (f) and Of(z) CU.

Proof of Corollary[2.13. We may assume that X is normal and X, f,D and U
are defined over K (B). There is a normal and projective B-scheme 7 : Xp — B
and a rational self-map fp : Xp --+ Xp over B such that the geometric generic
fiber of (Xg, fg) is (X, f). Let b be a general point of B(K) and denote by
(Xs, fp) the fiber of (Xp, fg) above b. Then f, is an endomorphism of Xj. Set
Z := X \U. Let Zp be the Zariski closure of Z in Xp. Then U, := X, \ Zp.
By Proposition EL1] (see Section [ for its proof), there is z, € (Us)y,y, (K).
Let M be a very ample line bundle on X . Taking W to be the intersection of
dim X — 1 general elements of |[10M| of X passing through z;. By [11, Theorem
0.4], Wg is irreducible. Let W C X be the generic fiber of Wg. It is of pure
dimension 1. Then (W N D) > 0. Because Wiy is irreducible, for every irreducible
component W’ of W, (W'- D) > 0. By Lemma 2.4l and Remark 23] there are
z, € W/(k),n > 0 such that z;, € {z,} and the height of z, tends to 4oo.
Because Oy, (z,) C U, Of(z,,) C U for all n > 0. By Proposition 212, for n >> 0,
we have z,, € V(k) N U and af(x,) = A\ (f). O

3. PROOF OF THEOREM [1.4]

This proof mixes the ideas from [50] and [40].

3.1. Reduce to the smooth case. By [41], there is a minimal desingularization
7 : X' — X. Then one may lift f to an automorphism f’ of X’. The following
lemma allows us to replace (X, f) by (X', f') and assume that X is smooth.

Lemma 3.1. If (X', f') satisfies the DML property, then (X, f) satisfies the DML
property.

Proof. Assume that (X', f') satisfies the DML property. We only need to prove
the following statement: for every x € X (k) and an irreducible curve C' C X (k),
if Of(x) N C is infinite, then C' is f-periodic.

Pick 2’ € 7!(x)(k). There is an irreducible component C’ of 7~(C') such that
O (2") N C" is infinite. We have dim C" < 1. If 7(C”) # C', then 7(C") is a point.
Then = = w(2’) is periodic. So m(C’) = C and dim C” = 1. Since (X', f’) satisfies
the DML property, C' is f’-periodic. So C' = 7(C") is f’-periodic. O
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3.2. Numerical geometry. Set A := A(f) > 1. There is a nef class 6* €
NY(X)g\ {0} such that f*6* = \0*. By projection formula A;(f~') = \. So there
is a nef class 0* € N'(X)g \ {0} such that (f7!)*0, = M,. Then f*0, = X\7'4..
Since A2(6*%) = (f*0*?) = (6*%), we get (6*?) = 0. Similarly, (6,%) = 0. By Hodge
index theorem, (0* - 6,) > 0. It follows that (6* + 6,)*> > 0. So #* + 0, is big and
nef.

Set H := {a € N (X)g| (6* - o) = (0, - @) = 0}. Tt is clear that N'(X)g =
RO*® RO, ® H and f*H = H. By Hodge index theorem, the intersection form on
H is negative define. Since f* preserves the intersection form, all eigenvalues of
f*|g are of norm 1.

Since f* is an automorphism of the lattes N1(X) C N!(X)g, all eigenvalues of
f*: NY(X)g — N'(X)g are algebraic integers. In particular both A and A~! are
algebraic integers.

Lemma 3.2. There is o € Gal(Q/Q) such that o(\) = A1,

Proof of Lemmal3.2. Since \; is an algebraic integer with [A| > 1, by product
formula, there is ¢ € Gal(Q/Q) such that |o(A;)] < 1. Because o();) is an

eigenvalue of f* and ;' is the unique eigenvalue of f* with norm < 1, we have
a(A) = A\ O

Then f*o(0*) = o(f*0*) = o(N)o(6%) = A"1a(6*). So there is ¢ > 0 such that
0, = co(0*). After replacing 6, by ¢7'0,, we may assume that o(6*) = 6..

Corollary 3.3. For every curve C of X, (0* - C) =0 if and only if (6, -C) = 0.

Proof of Corollary[Z3. The subspace P := {a € N'Y(X)c| (a-C) = 0} is a
hyperplane of N'(X)c¢ defined over Q. We have ¢(P) = P. Embed N!'(X)g in
N'(X)c. Then 6* € P if and only if 6, = o(6*) € o(P) = P. O

3.3. Canonical height. In this section, we assume
(i) either k = Q;
(ii) or there is an algebraically closed subfield K C k, a curve B over K, such

that X and f are defined over K(B) and k = K(B).

Let A be an ample divisor of X, denote by h4 a Weil height on X (k) associated
to A with hy > 1. Pick R-divisors D* and D, with numerical classes 6*,6,. By
[38, Theorem 5] and [39] in characteristic zero and Proposition 2.11] in positive
characteristic, for every y € X (k), the limits

W (y) = Tim hpe (" (y)/X"
and
h™(y) == lim hp, (f7"(y))/A"
exist, do not depend on the choice of D*, D,, hp- and hp,, and satisfies the
following properties:
(i) h* = hpe + O(hY?), h= = hp. + O(hY?);
(ii) htof =Mt and h=o f = A\"1h™.
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Lemma 3.4. Let C be an irreducible curve of X such that (C-6,) > 0. Then for
every M >0, there is M’ > 0, such that

{ye CK)| h(y) < M} C {y € C(k)| haly) < M'}.
Proof of Lemma[3.4 There is d > 0, such that
h™ > hp, —dh'’.
Pick a > 0 such that a(D, - C) > (A-C). Then there is b > 0 such that for every
yed,
ahp-(y) +b = ha(y).
So for every y € C,

B (y) = a” (haly) = b) — dh{*(y).
If h=(y) < M, we get
M > a M (hay) = b) — dh{*(y) = (a 'h{*(y) = AR (y) — a7 b,
This implies that
h}f(y) < max{ad,aM + b+ ad} = aM + b+ ad.
Then we get ha(y) < (aM + b+ ad)?. O

3.4. The case (C-6,) > 0.

Lemma 3.5. Let C be an irreducible curve of X such that (C-0,) > 0. For every
x € X(k), Of(x) N C is finite.

Proof of Lemmal[3.3. Let F be the minimal algebraically closed subfield of k. So
F = Q if chark = 0 and F = F, when chark = p > 0. There is an algebraically
closed subfield k’ of k with tr.d.gk’ < oo such that X, f, C and x are defined over
k. After replacing k by k/, we may assume tr.d.pk < co. Now we prove Lemma
by induction on tr.d.rpk.

When k = F,, for some prime p > 0, O(x) is finite. Then Lemma holds.

Assume k = Q. Set I := {i > 0| fi(x) € C}. For every i > I, h™=(fi(x)) =
A'h™(z) < h™(x). By Lemma [B.4] there is M > 0 such that ha(f(x)) < M for
every i € I. We conclude the proof by the Northcott property.

Now we may assume that tr.d.gk > 1. There is an algebraically closed subfield
K C k, a smooth irreducible projective curve B over K, such that X, f, C' and
x are defined over K(B) and k = K(B).

There is a projective morphism 7 : X — B whose geometric generic fiber is X.
The automorphism f extends to a birational self-map fz: X --+ X over B. Let
Ap be an ample divisor on B. Let Cg be the Zariski closure of C' in X'. Let A be
the restriction of Ag on the generic fiber X. There is a nonempty open subset U
of B, such that 7 is smooth above U and fg|,-1(y) is an automorphism. Assume
that (A-6,) = 1.

For every b € B, let X, := 7w (b), Cy := C N X,, f, be the restriction of f
to X, and A, be the restriction of Lg to X,. After shrinking U, we may assume
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that C}, is irreducible for every b € U. For every n > 0 and b € U, we have
((f")A-A) = (/1) Ap- Ap). So Mi(fy) =M(f)=A>1.ForbeU, set

L= i ((f7)7 Ay - Ap) /A
The discussion in Section 3.2 shows that R, , the eigenspace of (f; D*in N1(Xp)
for eigenvalue \. Set 0. := 0, ,/(0., - A). We have

(0.0 - Cy) = (6, - C) > 0.

Set I := {1 > 0] fi(x) € C}. For every i > I, h=(f'(x)) = A*h~(z) < h™(x).
By Lemma [3.4] there is M > 0 such that ha(f*(z)) < M for every i € I.

For every point y € X defined over K(B), its closure s, in X’ is a section of
7. We may assume that for every y € X(K(B)), ha(y) = (Ap - s,). Also, for
every section s of 7, its generic fiber defines a point y, € X(K(B)). For every
y € X(K(B)), m induces an isomorphism from s, to the curve B. Consider the
Hilbert polynomial

X(5,0(nAp)) =1—g(B) +n(sy - Ap) =1 —g(B) + nha(y).

So there is a quasi-projective K-variety M, that parameterizes the sections s
of m with ha(ys) < M (see [19]). For every b € U, denote by e, : My — X,
the morphism s — s(b). Pick a sequence b;,7 > 1 of distinct points in U(K). For
1,82 € My, s1 = s if and only if e, (s1) = ep,(s2) for every @ > 1. For [ > 1, set

l

l
e .= Hebi ZMM — HXbl

i=1 i=1

By [50, Lemma 8.1], there is L > 1 such that e is quasi-finite. For j € I,

f7(x) defines a point Spi@ € M. The induction hypothesis shows that, for
1=1,...,L,

ev, ({F/(2)| j € I}) = {f] (x,)

is finite. So e, ({f?(z)| j € I}) is finite. Since ey, is quasi-finite, Of(z) N C' =
{fi(x)] j € I} is finite. O

j € ]} - Ofbi(xbi) N Cbi

3.5. Conclusion. Let z € X (k) and C' be an irreducible curve of X. If (C-6,) >
0, we conclude the proof by Lemma

Now assume that (C - 6,) = 0. Let B(f) be the set of curves C" with (C” -
0.) = 0. By Corollary B3, ¢’ € B(f) if and only if (C"-60*) = 0, if and only if
(C"-(0*+0,)) = 0. Since 6* + 0, is big and nef, B(f) is finite. Since f*0* = \16*,
C’ € B(f) if and only if f(C") € B(f). So every curve in B(f) is periodic. Since
C € B(f), C is periodic. O

4. ZARISKI DENSE ORBIT CONJECTURE

Let X be a variety over k of dimension dx. Let f : X --+ X be a dominant
rational self-map.
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4.1. Existence of well-defined orbits. In characteristic 0, the following result
is well know. In positive characteristic, the proof is similar.

Proposition 4.1. For every Zariski dense open subset U of X, there is x € U(k)
whose f-orbit is well defined and contained in U.

Proof of Proposition[{.1]. After replacing X, f by U, f|y, we may assume that
X =U. So we only need to show that X (k) # 0.

Let F be the smallest algebraically closed subfield of k. So F = Q or F,. We
may replace k by an algebraically closed subfield k' of k with tr.d.pk’ < oo such
that X, f are defined over k/. Now assume that tr.d.pk < oo. If chark = 0, we
conclude the proof by [55, Proposition 3.22]. Now assume that chark = p > 0.

The case k = F, is essentially proved in [22, Proposition 5.5]. On may also see
[51, Proposition 6.2]. In [51, Proposition 6.2], f is assumed to be birational, but
its proof works for arbitrary dominant rational self-map.

Now assume that tr.d.gk > 1. There is a subfield L of K which is finitely
generated over k such that X, f are defined over L. Let B be a projective and
normal variety over [F such that L = k. There is a B-scheme 7 : Xg — B and a
rational self-map fp : Xp --+ X over B such that the geometric generic fiber of
(X, fB)is (X, f). Let b be a general point of B(F) and denote by (X5, f;) the fiber
of (Xp, fg) above b. Then V;, := X, \ I(fg) and f;, is dominant. Applying the case
over F, to (Vj, folv,), there is z;, € (Vo) g1y, (F). Cutting by general hyperplanes
of Xp, there is an irreducible subvariety S of Xp of dimension dim S = dim B
passing through b with 7(S) = B. Then the generic point of S defines a point
x € X;(k), which concludes the proof. O

4.2. Tautological upper bound. The following lemmas was proved in charac-
teristic zero, but their proof works in any characteristic.

Lemma 4.2. [36, Lemma 2.15] Let K be an algebraically closed field extension
of k. Then k(X)/ =k if and only if, K(Xg)'* = K.

Lemma 4.3. [55, Lemma 2.1]Let X’ be an irreducible variety over k, f': X' --»
X' be a rational self-map and © : X' --» X be a generically finite dominant
rational map satisfying fomw = mwo f', then we have the following properties.

(i) If there existsm > 1, and H € k(X)/"\k, then there exists G € k(X)'\k.
(ii) There exists H' € k(X')¥' \ k, if and only if there exists H € k(X)? \ k.

They show that the assumption k(X)/ = k is stable under base change, under
positive iterate and under semiconjugacy by generaically finite dominant mor-
phism. As an example of realization problems, the author asked the following
question in [55 Section 1.6].

Question 4.4. What is the minimal transcendence degree R(k, X, f) of an al-
gebraically closed field extension K of k such that (X, fx) satisfies the ZDO
property?

Proposition [ gives a tautological upper bound of R(k, X, f).
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Proof of Proposition[1.7. We may assume that k(X)/ = k. By Lemma H2
K(Xg)'x =K.
An irreducible fg-invariant variety V is said to be maximal, if the only ir-

reducible fx-invariant variety W containing V' is Xgx. We note that I(fx) =
I(f) ®k K is defined over k.

Lemma 4.5. Let V' be an irreducible fx-invariant variety. ThenV is over defined
over k.

Proof of Lemma[{.J. Set r := dimV < dx. There is a subfield L of K which is
finitely generated over k such that V' is defined over L. Let B be a projective and
normal variety over k such that L = k(B).

Then there is a subvariety Vg of X x B such that (V) = B where my :
X x B — B is the projection to the second coordinate and V =V, x;, K
where 7 is the generic point of B and V,, is the generic fiber of ms|y,. We have
dim Vg = dim B+r. Since V' is fg-invariant, Vg C X x B is fp := f xid invariant.

Consider 7; : X x B — B the projection to the first coordinate. It is clear
that 1 (V) is irreducible and f-invariant. Since V' C m(V)g and V is maximal,
we get either Vi = m;*(m (V) or m(Vp) = X. In the former case V = m(Vz)k
is defined over k. Now we assume that my(Vp) = X. Then dim B = dim Vg —r >
dx —r >1and k C 75(k(B)) C k(Vg)/8lvs.

If dimVp = dx, we conclude the proof by Lemma 4.3 Now assume that
dimVp > dx + 1. So a general fiber of m |y, has dimension s > 1. We have
dimB = dx +s—1r > s. Let Hy,..., Hy be very ample divisors on B which
are general in their linear system. Then the intersection of 7, ' (H;),i =1,...,s
and a general fiber of 7|y, is of dimension 0 and W' := Vg N Hy--- N Hy is fp-
invariant. Because 7 (W') = X, there is an irreducible component W of W’ with
(W) = X and there is [ > 1 such that W is fl-invariant. Because dy = dim W
and dim my(W) = dx — r > 0. So k C k(W)Usw)' | which is a contradiction by
Lemma O

We only need to treat the case tr.d. K = d. So we may assume that K = k(X).
The diagonal A of X x X defines a point o in X (K). Here we view Xy as the
geometric generic fiber of the second projection m : X x X — X. Because
m(A) = X where m : X x X — X is the first projection, Oy, (0) is well defined
and for every n > 0, fR(0) is not contained in any proper subvariety of Xy

defined over k. An irreducible component W of Oy, (0) of maximal dimension is

fr-periodic and does not contained in any proper subvariety of Xg defined over
k. By Lemma [£.5] W = Xk which concludes the proof. U

In fact, with a slight modification, we prove a stronger result related to the
strong form of the Zariski dense orbit conjecture [55, Conjecture 1.4].

Proposition 4.6. Assume that k(X)' = k. Let K be an algebraically closed field
extension of k with tr.d K > dim X. Then for every nonempty Zariski open
subset U of X, there is a point x € U(K) whose fx-orbit is well defined and
contained in U.
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Proof of Proposition [{.6 Keep the notation in the proof of Proposition [[.7 Pick
a general point b € X (k). Then Uy, := X \ (Xx N U) is not empty. By Proposition
4.1l there is x;, € Uy, whose f orbit is well defined and contained in U,. Cutting
by general hyperplanes of X x X, there is an irreducible subvariety S of X x X
of dimension dim S = dim X passing through (x;,b) such that m(S) = X and
mo(S) = X. The generic point of S defines a point in x € Xg(K). Then the f-
orbit of = is well defined and contained in U. After replacing o by z, the argument
in the last paragraph of the proof of Proposition [[.7 shows that Oy, (z) is Zariski
dense in Xg. O

4.3. Height argument. The aim of this section is to prove Theorem [1.9]
and [L111

Assume that chark = p > 0 and tr.d.F—pk > 1. Let f: X — X be a dominant
endomorphism of a projective variety. There is a algebraically closed subfield K
of k such that tr.d.xk = 1. So there is smooth projective curve B over K, such
that f, X are defined over K(B). The Weil heights appeared in the section are
associated to the function field K(B).

Proof of Theorem[L.9. By Corollary 213 there exists a point = € U(k) with
af(x) = M(f) > 1 and Of(z) C U. So z has infinite orbit. O

Proof of Theorem [I.11. The proof of [30, Proposition 8.6] shows that for every f-
periodic proper subvariety V' of period m > 1, A\;(f™]v) < A1 (f™). By Propositon
212, there exists a point z € X (k) with ay(z) = A\ (f) > 1. Let W be an

irreducible component of Of(x) of maximal dimension. There is m > 1 with
f™(W) = W. There is [ > 0 such that f!(z) € W.
If W # X, by Proposition 210l and Lemma 2.9 we get

()™ =ap(x)™ =am(f(2) < MM w) < ()™
We get a contradiction. So W = X, which concludes the proof. O

The following theorem was proved in [14, Theorem 1], but when f is an auto-
morphism, its proof work in arbitrary characteristic.

Theorem 4.7. If f is an automorphism and it preserves infinitely many (not
necessarily irreducible) hyperplanes, then k(X)' # k.

Proposition 4.8. Let X be a projective variety over k of dimension dx. Let L
be an ample line bundle on X. Let f : X — X be an automorphism such that
((fM)*L- Lx=1), n > 0 is bounded. Then (X, f) satisfies the ZDO property.

Proof of Proposition[{.§ Let Aut(X) be the scheme of automorphisms of X. Ev-
ery connected component of Aut(X) is a variety over k, but Aut(X) may have
infinite connected component.

Because ((f")*L - L ~1) n > 0 is bounded, the Zariski closure G of f",n >0
in Aut(X) is a commutative algebraic group. After replacing f by a suitable

iterate, we may assume that G is irreducible. We may assume that f is of infinite
order. So dimG > 1.
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For every = € X (k), Of(z) = G.x. Consider the morphism ® : Gx X — X x X
sending (g,z) to (g(x),z). Denote by m; : X x X — X the i-th projection.
Consider the G-action on X x X by g.(x,y) = (g9(x),y). Set F := f x id :
XxX =X xX.

The image W of ® is a constructible subset of X x X. Let Y be the Zariski
closure of W in X x X. It is irreducible and F-invariant. Let A be the diagonal
of X xX. Then ACW CY.Som(Y)=m(Y)=X.Because dim G > 1 and the
action of G on X is faithful, Y # A. So the general fiber of m,|y has dimension
r > 1. If r = dim X, then for a general z € X(k), Os(z) = G.x = X which
concludes the proof. Now assume that » < dim X.

We have dimY = dim X + r. The general fiber of 7|y also has dimension
r > 1. Let Hy,..., H, be very ample hyperplanes of X which are general in their
linear system. The intersection of w5Hy,...,m3H, and a general fiber of m|y
is proper. Set Z := m, {(M_,H;). We have 7(Z) = X, dimZ = dim X and
dimmy(Z) = dim(H;N---NH,) =dim X —r > 1. Because G is connected, every
irreducible component of Z is G-invariant. In particular, let T' be an irreducible
component of Z with m1(T) = X, then T is F' invariant and we have dim T =
dim X, dim 7(7T) = dim X — r > 1. Because k C k(7)71" and 7, o F|p = f o m,
we conclude the proof by Lemma [£.3 O

Theorem 4.9. Assume that chark =p > 0 and tr.d.F—pk >1. Let f: X — X be
an automorphism of a projective surface. Then (X, f) satisfies the ZDO property.

Proof of Theorem[{.9. By [41], there is a minimal desingularization = : X’ —
X. Then one may lift f to an automorphism f’ of X’. Easy to see that (X, f)
satisfies the ZDO property if and only if (X', f') satisfies the ZDO property. After
replacing (X, f) by (X', f'), we may assume that X is smooth. By Theorem [[.TT]
we may assume that A\;(f) = 1. Let L be an ample line bundle on X.

If ((f*)*L-L),n > 0 is unbounded, by Gizatullin [33], there is a surjective
morphism 7 : X --» (' to a smooth projective curve C' and an automorphism
foc : C — C such that foor =mo f. [ After replacing 7 : X --» C' by a minimal
resolution of 7, we may assume that 7 is a morphism. There is m > 1 such that
f& =id, we have k C 7*(k(C)f¢) C k(X)/.

Now we may assume that ((f™)*L - L),n > 0 is bounded. We conclude the
proof by Proposition .8 O

5. ERGODIC THEORY

Let X be a variety over k. Denote by |X| the underling set of X with the
constructible topology i.e. the topology on a X generated by the constructible
subsets. This topology is finer than the Zariski topology on X. Moreover | X| is
(Hausdorff) compact. Denote by 7 the generic point of X.

Using the Zariski topology, on may define a partial ordering on |X| by x >y
if and only if y € T. The noetherianity of X implies that this partial ordering

'In [33], there is an assumption that chark # 2,3. But, it is checked in [I5] that such
assumption in [33] can be removed.
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satisfies the descending chain condition: for every chain in | X/,
T 2 T Z c.

there is N > 1 such that z,, = xy for every n > N. For every x € | X|, the Zariski

closure of z in X is U, := {z} = {y € |X|| y < x} which is open and closed in
| XT.

Let M(X) be the space of Radon measure on X endowed with the weak-x
topology and M!(|X]) be the space of probability Radon measure on |X|. Note
that M*(] X]) is compact.

Proof of Theorem[1.12. We claim that for every Radon measure p on |X| with
(] X]) > 0, there exists z € X such that p(z) > 0.

Then for every Radon measure p on |X|, set S(u) := {z € |X|| u(z) > 0}.
Then S(u) is at most countable and we have ¢ := 3 s,y () € (0, u(|X])]. If
¢ = pu(|X]), then we have p = 3~ g,y #(2)d;, which concludes the proof. Assume
that ¢ < p(]X]), set

ai=p— 3 ),
z€S(n)

Then « is a Radon measure with (| X|) = p(|X|) — ¢ > 0 and S(«) = 0. This
contradicts our claim.

Now we only need to prove the claim.

Lemma 5.1. For x € |X|, if p(U,) > 0 and p(x) = 0, then there ezists y €
Uz \ {z} such that u(U,) > 0.

Now assume that for every = € |X|, u(z) = 0. Since | X| = U,exU, and | X|
is compact, there exists a finite subset F' of |X| such that |X| = U,epU,. Then
there exists xp € F such that u(U,,) > 0. Since u(x¢) = 0 by the assumption, by
Lemma [5.1] we get a sequence of points z;,7 > 0, z; > x;;1 such that u(U,,) >
0, u(x;) = 0. This contradicts the descending chain condition. O

Proof of Lemmal5dl Observe that U, \ {z} is open and u(U, \ {z}) > 0. Since u
is Radon, there exists a compact subset K C U, \ {x} such that u(K) > 0. Since
K C U,egU,, there exists a finite set z4,...,x,, in K such that K C U*,U,,.

Since > 7" 11(Uy,) > p(K) > 0, there exists some 1 < i < m such that u(U,,) > 0.

1

Set y := x;, we concludes the proof. O

Proof of Corollary[1.74 Let z,, € X,n > 0 be a sequence of points.

We first assume that z, € X,n > 0 is generic. Because M'(|X]) is compact,
we only need to show that for every subsequence with lim; .., d,, = p, we have
i = 6,. By Theorem [[.12] we may write

H= Zm: aiéxi

1>0

Tn,
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where m € Z>o U {oo}, z; are distinct points, a; > 0 and ;oo a; = 1. If p # 9,

we may assume that xg # 7. Then V' := {z,} is a closed proper subvariety of X.
Then we have

1v(£L'm) :/1\/5an — /1‘/,u > ap

as n — 00. So x,, € V for all but finitely many ¢, which is a contradiction.
Now assume that lim,,_, 05, = 0,. For every subsequence x,,,7 > 0 and every
closed proper subvariety V of X,

i—00 1—00 v
So x,,, € V for all but finitely many ¢. So z,, is Zariski dense in X. O

5.1. DML problems. Let f : X --» X be a dominant rational self-map. Set
| X |7 := |X]\ (U>11(f")). Because every Zariski closed subset of X is open and
closed in the constructible topology, | X | is a closed subset of | X|. The restriction
of f to |X|s is continuous. We still denote by f this restriction.

Denote by P(X, f) the set of f-periodic points in |X|f. Theorem [[.12] implies
directly the following lemma.

Lemma 5.2. If u € M*(|X|;) with fou = p, then there are x; € P(X, f),i >0
and a; > 0,4 > 0 with ) ,_,a; = 1 such that

a;
=2 (> &)
= #0s(y) yeoren
Now we prove Theorem and Theorem [L.IT

Proof of Theorem[1L.10. Let x be a points € X(k) with Of(z) = X. Let V be a
proper subvariety of X. Consider a sequence of intervals I,,,n > 0 in Z~, with

lim #1I,, = +o0. For every n > 0, set i, := (#1,) " (X e Ori(m)) € M (1 X]y).

Bocaus: #({n > 0| fr(z) € VINL,)
n -~ "x) € n
ya = / Lvbin,

we only need to show that
(5.1) lim p, = 9,.

n—oo

Because M'(|X]) is compact, we only need to show that for every convergence
subsequence i, ¢ > 0, fi,, —+ 0, as i — 00. Set p = lim,, oo ftn,. We have

T IERT . -1 . '
f*/i - nh—>r20 f*ﬂnz == }i}rg) Hn,; + Zlifg,(#[nl) ((Sfmax I"iJrl(;(;) 5fmm In; (x))
= lim p,, = p.
11— 00
For every y € P(X, f) \ {n}, U, is open and closed in |X|;. Then
Vo= [X[p \ (Uyerx,pn Uy)

is an f-invariant closed proper subset of | X |;. Because Of(z) = X, z € Y. So for
every n > 0, Supp i, C Y. Because Y N P(X, f) = {n}, Lemma shows that
= 10,. O
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Proof of Theorem[1.17. Let x, € X;(k),n <0 be a sequence of points such that
{z,,n <0} = X and f(z,) = x,41 for all n < —1. Consider a sequence of
intervals I,,,n > 0 in Z<o with lim #I, = +o00. For n > 1, define z,, := f"(zy).

For every n > 0, set p, = (#1,) (s 0z) € MY (|X]|s). As the proof of

Theorem [LI6, we only need to show
(5.2) lim i, = 6.

n—oo

1€ln

Because M!'(|X]) is compact, we only need to show that for every convergence
subsequence i, ¢ > 0, fi,, —+ 0, as i — 00. Set 1= lim,,_,oo ftn,. We have

f*lu = 7}1_)1’1010 f*lunz = ’L]i)r?o /’l’nz + i]i%(#[ni)_l((smmaxln+l+l - 5-'Emin1n+1+1)
= lim fun, = pu.
71— 00
For every y € P(X, f) \ {n}, U, N {z;,i < 0} is finite. Otherwise {z;,7 < 0} C
U.c0,(y») U= is not Zariski dense in X. This implies that p(Uy) = im0 pin, (Uy) =

0. So Suppp C Y := | X|[; \ (Uyepx,5)Uy). Because Y N P(X, f) = {n}, Lemma
shows that = d,,. O

5.2. Functoriality. Assume that f: X — X is a flat and finite endomorphism.
Because the image by f of every constructible subset is constructible, f is open
w.r.t the constructible topology. Moreover, for every z € X, f(U,) = Uy().

Denote by C(|X|) the space of continuous R-valued functions on | X | with the

Ly norm || - ||. For every ¢ € C(|X|), define f.¢ to be the function
re|X|m fubi= Y my(y)dy).
yef~'(z)

The following Lemma shows that f. is a bounded linear operator on C'(|X]).
Lemma 5.3. For every ¢ € C(|X|), f«¢ is continuous and || f.¢|| < dy||¢]|.

Proof. By 31, Proposition 2.8], for every « € | X|, there is an open subset V,, C U,
containing x such that V, = f~1(f(V,)) N U, and for every y € f(V,),

my(x)= Y my(2).

Zefil(y)mvm
Because {z} = f~!(f(z)) N U,, such V, can be taken arbritarily small.

Because ¢ € C(]X]), for every x € |X| and r > 0, there is an open subset V)
containing x such that for every y € VI, |¢(y) — o(x)| < 7.

Let w be a point in |X|. There are open neighborhoods O, of y € f~(w),
such that for distinct yi,y2 € f~'(w), O, N O,, = 0. For every r > 0, and
y € f~1(w), we may take Vj, as in the first paragraph such that V, C O, N Vyr/df.
Then W), := Nyes-13w)f(V}) is an open set containing w. For every x € W}, and
distinct y1,y2 € f~1(w), we have

(f @) NV N (f @) NV,) =0.
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Since
dp= > my(z) > ), Yo ompl@) = > myly) =dy.
z€f~1(z) yef~1(w) zef~1(2)NVy yef~H(w)
we have
F7H2) = Uyepry(fH@) N V).
Then we get

fp(z) = fd)| < > Imp)oy) = D mp(2)é(2)]

yef~1(w) 2e€VyNf—1(x)

Yo D m@ew) —eI< Y, Y my(a)r/dy =

yefH(w) zeVynf—1(z) yef—1(w) zeVynf—1(z)

So f.¢ is continuous. Moreover for every z € | X|

fole) =1 Y my@o)l< Y me@)ell = dsllol,

yef~'(z) yef~'(z)

which concludes the proof. O

Now one may define the pullback f*: M(|X|) = M(|X]) by the duality: for
every u € M(|X]) and ¢ € C(|X]),

[otrn = [trom

In particular, f*u(|X|) = dpu(]X]). The pullback f* : M(|X]) = M(|X]) is
continuous w.r.t. the weak-* topology on M(|X]) and one may check that for
every x € |X|,

fror=Y my)dy).

yef~1(x)

5.3. Backward orbits. Assume that f : X — X is a flat and finite endomor-
phism. In particular, f is surjective. The aim of this section is to prove Theorem

IR, 200 and .22

Let TP(X, f) be the point x € |X| such that U,>of "(z) is finite. It is
clear that f*TP(X, f) C TP(X, f). For v € TP(X, f), since f : Up>1 f"(z) —
Unsof ™(x) is surjective, it is bijective. So x is periodic. Then f~YTP(X, f)) =
TP(X, f)and for every z € TP(X, f), f~!(z) is a single point. For the simplicity,
we still denote by f~!(z) the unique points in it.

For every © € TP(X, f), f7'(Us) = Uyes—1(2)Up-1(). Then

Y = X\ Userrx,/)\{n} Uz

is a closed subset of [X| such that f~'(Y) = f(Y) = Y. It is clear that Y is
exactly the subset of z € |X| such that Ui>of~i(z) = X.

Lemma 5.4. For yp € M(|X]) supported in'Y, z'fd;lf*u =, then = 9,.
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Proof. Assume that p # §,. We may assume that p(n) = 0. Otherwise, we may
replace p by g — p(n)d,. By Theorem [[LI2] one may write

H= i aiéxi
1=0

where m € Zxo U {oo}, z; are distinct points in Y\ {n}, a; > 0 and 3, ga; = 1.

We have
p=d;' fu= Z > a’mf
=0 yef~1(z)
Terms in the right hand side have distinct supports.

Assume that a; is decreasing. We claim that for every 4, f~!(z;) is a single
point. Otherwise, pick [ minimal such that f~!(z;) is not a single point. Assume
that s > 0 is maximal such that a;;s = @;. Think p as a function p : | X| — [0, 1]
sending = to p(z). We have u~(q;) = s + 1. On the other hand

(d;lf*u)_l(al) ={i=1,...,1+s| f'(z;) is a single point} < s,

which is a contradiction. Then we get p = ZZ Oaléf . Because for every
r >0, {t =0,...,m|a; > r} is finite, all z;,i = 0,. m are contained in
TP(X, f)n (Y \ {n}) = 0. We get a contradiction. O

Proof of Theorem[L18. Let x be a point in X (k) with U;>of~%(z) = X. Let
I,,n > 0 be a sequence of intervals in Z>q with lim,,_,o, #I, = +00. Set

= (O 7 ()8:) € MU,

Zeln

Because M*'(| X|) is compact, only need to show that for every convergence sub-
sequence fin,, % > 0, f,, — 0y as it — 00. Set p = lim,, o0 fin,-

Then
fru=lm f*u,, = hm— (> d
1—00 ]EI%
lim d m (d—maxln —1(fmaxln +1) 5. — d—minlni (fmin[ni)*5 )
i—00 FHmi i—00 #[ T f w

—max In,—1, prpos 7 —minTn;  emin 7, \# —
Because d; EO(frant ) 5, (1 X)) = d; (frinlni) 5. (|X]) = 1, we get
fru=lim dgpip, = dyp.

Because z € Y, for every n > 0, Supp p, C Y. So  C Y. We conclude the proof
by Lemma [5.4] O

Proof of Theorem[1.20. Assume that k(X)/f*k(X) is separable. Let = € X (k)
be a point with U;>of~%(x) = X. Pick ¢ € (0, 1] Because

#fM@) < ) mpely) = dY,

yef~m(x)
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we have
lim sup(S™)"/™ < lim sup # £ ()™ < d;.

n—o0 n—o0

We now prove the inequality in the other direction.

By [31, Theorem 2.1] and [31}, Proposition 2.3|, there is a proper Zariski closed
subset R of X, such that for every y € X (k) \ R, my(y) = 1. Set

po 1= (7 (18,) € M),

By Theorem [[LI]]
(5.3) lim f1, = 8,

n—oo

Set D = {1,...,ds}. Let Q := U,>oD" be the set of words in D of finite
length. In particular D° = {(}}. By induction, one may define a map

¢ Q= Unzof_n(llf) g l—'nZOX
such that

(i) 6(D™) = f~™(x), in particular ¢(0) = x.
(ii) for every word wy ... w, € D", n > 1,

9(w1 .. .'LUn_l) = f(@(wl .. wn)),
(iii) for every y € f~" " }(z) and w; ... w, € D" satisfying 0(w; ... w,) = f(y),
#{w € D| O(w; ... w,w) =y} = my(y).

By [31], Proposition 2.5], for every y € f~" " Nx), mpms1(y) = my(f(y))ms(y).
This implies that for every y € f~"(z),

#Hw e D" 0(w) =y} = mpm(y).
Define a function A : Q — (0, 1] by
A:we D" = mym(O(w))
We have
() Xpepn Alw) = #f7"(2);

(i) for every wy ... w13 € D"
Alwy . wpgr) = mp(O(wy .. wyg)) AWy - wy).
We have A(f) =1 and
Awy . wpgy) > d BOC D) Ay ).

Then we have

I Aw =TI I] Aww) > I I d; =P Aw)

weDn+1 weD™ weD weD™ weD

= ( H d;lR(ﬁ(w)))( H A(w))¥ = d;flR(an)*éx( H Alw))®.

weDnt+1 weDn weD™
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Set B, 1= logy, [[,cpn Alw). We get

B /di* > —d;m / La(f™ )6, + BoJd.

Then we get

B,/d} > —d]?i/lR(fi)*(Sw = —n/ 1Rfin.
=1

For every n > 0, pick E, C f~"(x), such that

and #E, = S. So

By Inequality of arithmetic and geometric means, we have

St= > Aw)z#7UEN [ Aw)E e TEw

weh—1(Ey) wee H(En)

> edy( H Aw)) ;f

>cdj( [ Alw ))63?

web—1(Ey) weDn
n+ By /cd? -1/
— Cdf " f > d f Run),

So (SM)Y/m > cl/"d}_flw". By Equality 5.3
E n\1/n
hr%lglf(Sc )" > dy,

whcih concludes the proof. U

Proof of Theorem[I.22. Set dx := dim X. Assume that k(X)/f*k(X) is separa-
ble and

Adimx (f) > 1§i§rgi?nXX—1 Ai

Let = be a point in X (k) with U;>of 7 (z) = X.
We first show that for every irreducible subvariety V of X of dimV = dy < dy,
(5.4) lim sup #(f~"(z) N V)" < Agy, .

n—oo
Let Y be a normal and projective variety containing X as an Zariski dense open
subset. Let Z be the Zariski closure of V' in W. Let Z; be the ideal sheaf associated
to Z. Let H be a very ample divisor on Y such that O(H) ® Z is generated by
global sections.
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For every n > 0, consider the following commutative diagram

L'y
. l &
™
Y- - 2Y
f’!L
where 77" is birational and it is an isomorphism above X. There are Hy, ..., Hj, 4, €
|H| such that the intersection of Hj,..., H4,_q4, is proper, V is an irreducible

component of N H; and V is the unique irreducible component meeting

[ (x) N V. Take Hj,..., H) general in those elements of |H| containing .
Then the intersection of Hy,..., H} and f(V) at x is proper. Since f is finite,
the intersection of f*(Hy),..., f*H; and V is proper at every y € f~"(z) N V.
We have
(7)) 7M@) N V) S (NN (x) Hy) 0 (03 (7)) H),

7

and every point y € (7)1 (f " (x)NV) is isolated in (N, (z7)* H)N(NY, (z5)* HY).
By [36, Lemma 3.3],

(H = () HY) = () Hy - (x0) Hayay - (13) HY - (2)"H,)

> #(r0) (@) NV) = (T (@) N V).

Then we get
limsup #(f " (z) N V)" < lim (H~4 . (fry HW )Y = Ny .
n—oo n—00

Now we only need to show

lim d;"(f")°8, = 4,

n—oo

Because M (| X]) is compact, only need to show that for every convergence subse-
quence d;"i(f"i)*éx,i >0, lim; o0 d;"i(f"i)*éx = 0,. Set p = lim; d]?"i(f"i)*éx.
By Theorem [[LT2] we may write

M= Zm: i0z,
i>0

where m € Zso U {00}, z; are distinct points, a; > 0 and Zizo a; = 1. Assume
that p # 0,. Then we may assume that ap > 0 and z # 1. Set r := {20} < dx.

Then
/leO,u 2 /1Um0a05x0 = Qaop.

Pick ¢ € (0,ag). Then there is N > 0 such that for every i > N,

> e fmi (x)moy s ()
d}”

~ v, dm ez e
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S0 D yepmi(ongaey M () = cdi, then #(f 7" (x) N {zo}) = ST By Theorem
20 and Inequality 5.4], we get
d; > X\ > limsup(#(f ™ (2) N {xo}))Y" > lim inf (7)™ = dy,
17— 00 1—00

which is a contradiction. O

5.4. Berkovich spaces. In this section, k is a complete nonarchimedean valued
field with norm | - |. See [12] and [13] for basic theory of Berkovich spaces.

Let X be a variety over k. Recall that, as a topological space, Berkovich’s
analytification of X is

X :={(z,||)| v € X,||s is a norm on k(z) which extends |- | on k},

endowed with the weakest topology such that
(i) 7: X*™ — X by (,| - |.) — « is continuous;
(i) for every Zariski open U C X and ¢ € O(U), the map |¢| : 771 (U) —
[0 4+ 00) sending (z, | - |.) to |¢|, is continuous.
Let M(X®) be the space of Radon measures on X** and let M!'(X®") be the
space of probability Radon measures on X®".

5.5. Trivial norm case. Assume that |- | is the trivial norm.

For every x € X, let | - |.0 be the trivial norm on x(x). Then we have an
embedding o : X — X*" sending x € X to (x,| - [40). We have 7 0o 0 = id. One
may check that the constructible topology on X is exact the topology induced
by the topology on X®" and the embedding o. Because | X| is compact, o(X) is
closed in X* and o : |X| — ¢(|X]) is a homeomorphism.

Remark 5.5. We note that, if X is endowed with the constructible topology,
7 : X* — | X]| is no longer continuous.

Using the embedding o, Corollary [[.14] can be translated to a statement on
Xan,
Corollary 5.6 (=Corollary [LT4]). A sequence x,, € X,n > 0 is generic if and
only if in M(X?)
lim 50(1,”) = (50(77).

n—oo

Let f: X — X be a finite flat morphism. It induces a morphism f*" : X*" —
X2 We have
ffoo=0cofandTo f*" = for.
According to [31, Lemma 6.7], there is a natural pullback f** : M(X*") —
M(X?*). One may check that the following diagram is commutative.

f*

M(lX) M(lX)
M(X™) — e M(X)

Then we may translate Theorem [I.22] to a statement on X®".
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Theorem 5.7 (=Theorem [[L22). Let f : X — X be a flat and finite endomor-
phism of a quasi-projective variety. Assume that

(5.5) df == Ximx(f) > max A,

1<i<dim X -1

If the field extension k(X)/f*k(X) is separable, then for every x € X (k) with

UiZOf_i(x) =X,
lim d;”(fn)*&;(x) = Oo(n)-

n—oo

5.6. Reduction. Let k® be the valuation ring of k and k*° the maximal ideal of
k°. Set k := k°/k® the residue field of k. Let X be a flat projective scheme over

k°. Denote by X its special fiber, it is a (maybe reducible) variety over k. Let
X be the generic fiber of X. Let Y7, ...,Y,, be the irreducible components of X
and 7;,7 = 1,..., m the generic points of ¥;. Set & the unique point in red ™ (n;).

Denote by red : X** — X; the reduction map. It is anti-continuous i.e. for
every Zariski open subset U of X, red *(U) is closed. In particular, for con-
structible topology on Xy, red : X** — | X| Borel measurable.

For every p € M(X?"), we may define its push forward red,u € M(|Xy|) as
follows: For every ¢ € C(|Xy|),

/(;Sred*,u = /(red*¢) 1.

Because red*¢ is Borel measurable and bounded, [(red*¢)u is well defined and
we have | [(red*¢)u| < ||¢]|oopt(X?). We note that, in general, red, : M(X*") —
M(|Xo|) is not continuous.

Example 5.8. Let X = PL,. Let z,,,n > 0 be the Gauss point of the polydisc
(I <1-1/(n+2),i=1,...,N} C (AV)™ C (PV)*™ We have 6,, — & as
n — oo, but for every n > 0,

red*éxn = 6red(xn) = (5[1:0:...:0} 75 5,71 = red*égl.

Proposition 5.9. Let j,, € MY(X™) n > 0 be a sequence of probability Radon
measures on X*. Assume that there are a; > 0,0 = 1,....,m with Y ", a; = 1
such that

red, (p,) — Z a;0y,

i=1

m
L, —> Z a;0¢,
i=1

as n — o0o. Then we have

as n — Q.

Proof. Because X®" is compact, M*(X?") is weak-* compact. So we may assume
that

lim Hn = M

n—oo
for some p € M(X*). We first show that Suppu C {& ...,&n}. Otherwise
w( X\ A{& ..., &n}) = 1. Then there is a compact subset K of X**\ {& ..., &}
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such that u(K) > 0. For every » € K, set V, := red”'(red(x)). It is an open
neighborhood of z in X**\ {&;...,&,}. Because K is compact, there is one z € K
such that (V) > 0. Set Z := red(x). There is a compact subset S C V. such that
w(S) > 0. By Urysohn’s Lemma, there is a continuous function y : X** — [0, 1]
such that x|g = 1 and x|xan\, = 0. Then we have

0= lim [ 1zred.pu, = hm (red™1z) p hm /lvx fhn

n—oo
zlim/X,un /,U>M >0,
n—oo

which is a contradiction.

Now we may write u = Z:nlb% with b; > 0 and >_" b; = 1. For each
i=1,...,m,set U= Z;\ (UjzZ;). Then red " (U;) is a closed subset contained
in the open subset red ' (Z;). By Urysohn’s Lemma, there is a continuous function
Xi + X — [0, 1] such that x|,eq-1@;) = 1 and x| xamrea-1(z) = 0. Then we have

by = /Xm: lim /an
n—oo

> lim p,(red ™ (U;)) = lim /1Ui red, iy,
n—oo n—oo

_ /1U1- (é a6,)

Because > " b, = Y " a; = 1, we get b; = q; for every i = 1,...,m. This
concludes the proof. O

Now assume that X is irreducible and smooth. Denote by 7 the generic point of
X, and ¢ the unique point in red ™' (n). Let F : X — X be a finite endomorphism.
Denote by f, fo the restriction of F' to X, Xy. We note that for : =0,...,dim X,

one has \;(f) = Xi(fo)-
By Theorem [[.22] and Proposition 5.9, we get the following equidistribution
result for endomorphisms of good reductions.

Corollary 5.10. Assume that

df = Aaimx (f) > 1§i§1¥iliilxx_1)\i'

If the field extension E(XO)/fO*E(XO) is separable, then for every v € X (k) with

Uisofy " '(redz) = X,
lim d;"(f")"6, = d¢.

One may compare Corollary 510/ with [31, Theorem A] for polarized endomor-
phism. See [35] 20] for according result for complex topology.
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