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REMARKS ON ALGEBRAIC DYNAMICS IN POSITIVE

CHARACTERISTIC

JUNYI XIE

Abstract. In this paper, we study arithmetic dynamics in arbitrary charac-
teristic, in particular in positive characteristic. We generalise some basic facts
on arithmetic degree and canonical height in positive characteristic. As appli-
cations, we prove the dynamical Mordell-Lang conjecture for automorphisms
of projective surfaces of positive entropy, the Zariski dense orbit conjecture
for automorphisms of projective surfaces and for endomorphisms of projective
varieties with large first dynamical degree. We also study ergodic theory for
constructible topology. For example, we prove the equidistribution of backward
orbits for finite flat endomorphisms with large topological degree. As appli-
cations, we give a simple proof for weak dynamical Mordell-Lang and prove
a counting result for backward orbits without multiplicities. This gives some
applications for equidistributions on Berkovich spaces.

1. Introduction

Let k be an algebraically closed field. In this paper, most of the time (from
Section 2 to Section 4), we are mainly interested in the case chark > 0.
Many problems in arithmetic dynamics, such as Dynamical Mordell-Lang con-

jecture, Zariski dense orbit conjecture are proposed in characteristic 0. Indeed,
their original statements do not hold in positive characteristic. But their known
counter-examples often involve some Frobenius actions or some group structures.
We suspect that the original statement of these conjecture still valid for “general”
dynamical systems in positive characteristic.

The p-adic interpolation lemma ([47, Theorem 1] and [6, Theorem 3.3]) is
a fundamental tool in arithmetic dynamics. It has important applications in
Dynamical Mordell-Lang and Zariski dense orbit conjecture [9, 6, 3, 2, 55]. But
this lemma does not work in positive characteristic. Because this, some very
basic cases of Dynamical Mordell-Lang and Zariski dense orbit conjecture are
still open in positive characteristic. We hope that some corollaries of the p-adic
interpolation lemma still survive in positive characteristic. For this, I propose
the following conjecture.

Conjecture 1.1. Set K := Fp((t)) and K◦ = Fp[[t]] its valuation ring. Let
f : (K◦)r → (K◦)r be an analytic automorphism satisfying f = id mod t. If
there is no n ≥ 1 such that fn = id, then the f -periodic points are not dense in
(K◦)r w.r.t. t-adic topology.
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On the other hand, we observed that, under certain assumption on the com-
plexity of f , a global argument using height can be used to replace the local
argument using the p-adic interpolation lemma. We generalise the notion of
arithmetic degree and prove some basic properties of it in positive characteristic.
In particular, we generalise Kawaguchi-Silverman-Matsuzawa’s upper bound for
arithmetic degree [42, Theorem 1.4] in positive characteristic. With such notion,
we apply our observation to dynamical system in positive characteristic. In par-
ticular, we prove the Dynamical Mordell-Lang and Zariski dense orbit conjecture
in some cases (see Section 1.1 and 1.2).

Another aim of this paper is to study the ergodic theory on algebraic vari-
ety w.r.t constructible topology. Using this, we get some equidistribution reults
and apply them to get some weak verisons of Dynamical Mordell-Lang, Manin-
Mumford conjecture in arbitrary characteristic. This also gives some applications
for equidistributions on Berkovich spaces.

1.1. Dynamical Mordell-Lang conjecture. Let X be a variety over k and
f : X 99K X be a rational self-map.

Definition 1.2. We say (X, f) satisfies the DML property if for every x ∈ X(k)
whose f -orbit is well defined and every subvariety V ofX , the set {n ≥ 0| fn(x) ∈
V } is a finite union of arithmetic progressions.

Here an arithmetic progression is a set of the form {an+b| n ∈ N} with a, b ∈ N
possibly with a = 0.

Dynamical Mordell-Lang Conjecture. If chark = 0, then (X, f) satisfies the
DML property.

It was proved when f is unramified [6] and when f is an endomorphism of A2
Q

[52]. See [9, 30] for other known results. In general, this conjecture does not
hold in positive characteristic. An example is [9, Example 3.4.5.1] as follows (see
[25, 16] for more examples).

Example 1.3. Let k = Fp(t), f : A2 → A2 be the endomorphism defined by
(x, y) 7→ (tx, (1− t)y). Set V := {x−y = 0} and e = (1, 1). Then {n ≥ 0| fn(e) ∈
V } = {pn| n ≥ 0}.

In [9, Conjecture 13.2.0.1], Ghioca and Scanlon proposed a variant of the
Dynamical Mordell-Lang conjecture in positive characteristic (=p-DML), which
asked {n ≥ 0| fn(x) ∈ V } to be a finite union of arithmetic progressions along
with finitely many sets taking form

{
m∑

i=1

cip
lini| ni ∈ Z≥0, i = 1, . . . , m}

where m ∈ Z>1, ki ∈ Z≥0, ci ∈ Q. See [25, 16] for known results of p-DML. How-
ever, we suspect that for a “general” dynamical system in positive characteristic
still has the DML property.
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Theorem 1.4. Let X be a projective surface over k. Let f : X → X be an
automorphism. Assume that λ1(f) > 1. Then the pair (X, f) satisfies the DML
property.

Here λi(f) is the i-th dynamical degree of f (see Section 2.1). The following is a
similar result for birational endomorphisms of A2. In [50, Theorem A], it is stated
in characteristic 0. But when λ1(f) > 1, its proof works in any characteristic.

Theorem 1.5. [50, Theorem A] Let f : A2 → A2 be a birational endomorphism
over k. If λ1(f) > 1, (A2, f) satisfies the DML property.

1.2. Zariski dense orbit conjecture. Let X be a variety over k and f : X 99K

X be a dominant rational self-map. Denote by k(X)f the field of f -invariant
rational functions on X. Let Xf(k) is the set of X(k) whose orbit is well-defined.
For x ∈ Xf(k), Of(x) is the orbit of x.

Definition 1.6. We say (X, f) satisfies the SZDO property if there is x ∈ Xf (k)
such that Of(x) is Zariski dense in X.
We say (X, f) satisfies the ZDO property if either k(X)f 6= k or it satisfies

SZDO property.

The Zariski dense orbit conjecture was proposed by Medvedev and Scanlon
[44, Conjecture 5.10], by Amerik, Bogomolov and Rovinsky [2] and strengthens
a conjecture of Zhang [56].

Zariski dense orbit Conjecture. If chark = 0, then (X, f) satisfies the ZDO
property.

This conjecture was proved for endomorphisms of projective surfaces [37, 55],
endomorphisms of (P1)N [45, 55] and endomorphisms of A2 [53]. See [3, 1, 2, 23,
4, 5, 29, 26, 28, 7, 36] for other known results.

The original statement of Zariski dense orbit conjecture is not true in charac-
teristic p > 0. It is completely wrong over k = Fp and has counter-examples even
when tr.d.Fp

k ≥ 1 (see [55, Section 1.6] and [27, Remark 1.2]). Concerning the
variants of the Zariski dense orbit conjecture in positive characteristic proposed
in [55, Section 1.6] and [27, Conjecture 1.3], we get the following result.

Proposition 1.7. Let K be an algebraically closed field extension of k with
tr.d.kK ≥ dimX. Then (fK , XK) satisfies the ZDO property. Here XK and
fK are the base change by K of X and f.

The following example shows that the assumption tr.d.kK ≥ dimX is sharp.

Example 1.8. Let X be a variety over k := Fp of dimension d ≥ 1. Assume
that X is defined over Fp. Let F : X → X be the Frobenius endomorphism. It

is clear that Fp(X)F = Fp. For every algebraically closed field extension K of k
with tr.d.kK ≤ d− 1, and every x ∈ XK(K), OFK

(x) is not Zariski dense in XK .

On the other hand, the known counter-examples often involve some Frobenius
actions. See [27, Theorem 1.5, Question 1.7] for this phenomenon. We suspect
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that when tr.d.Fp
k ≥ 1, a “general” dynamical system in positive characteris-

tic still have the ZDO property. Applying arguments using height, we get the
following results.

Theorem 1.9. Assume that char k = p > 0 and tr.d.Fp
k ≥ 1. Let f : X → X be

a dominant endomorphism of a projective variety. If λ1(f) > 1, then for every
nonempty Zariski open subset U of X, there is x ∈ U(k) with infinite orbit and
Of(x) ⊆ U .

Theorem 1.9 can be viewed as a weak version of [1, Corollary 9] in positive
characteristic.

Theorem 1.10. Assume that chark = p > 0 and tr.d.Fp
k ≥ 1. Let f : X → X be

an automorphism of a projective surface. Then (X, f) satisfies the ZDO property.

The following result is a generalization of [36, Theorem 1.12 (iii)] in positive
characteristic.

Theorem 1.11. Assume that char k = p > 0 and tr.d.Fp
k ≥ 1. Let f : X → X

be a dominant endomorphism of a projective variety. Assume that X is smooth
of dimension d ≥ 2, and λ1(f) > maxdi=2{λi(f)}. Then (X, f) satisfies the SZDO
property.

1.3. Ergodic theory. Let X be a variety over k. Denote by |X| the underling
set of X with the constructible topology i.e. the topology on a X generated by
the constructible subsets (see [34, Section (1.9) and in particular (1.9.13)]). In
particular every constructible subset is open and closed. This topology is finer
than the Zariski topology on X. Moreover |X| is (Hausdorff) compact.
Denote byM(|X|) the space of Radon measures onX endowed with the weak-∗

topology.

Theorem 1.12. Every µ ∈ M(|X|) takes form

µ =
∑

i≥0

aiδxi

where δxi
is the Dirac measure at xi ∈ X, ai ≥ 0.

Remark 1.13. Theorem 1.12 is inspired by [32, Theorem A]. In [32, Theorem
A], Gignac worked on the Zariski topology, which is not Hausdorff. Here, we
use the constructible topology systematically. We think that the constructible
topology is the right topology for studying ergodic theory in algebraic dynamics.
For example, using constructible topology, we may avoid the conception of finite
signed Borel measure used in [32, Theorem A]. Instead of it, we use the more
standard notion of Radon measure.

A sequence xn ∈ X, n ≥ 0 is said to be generic, if every subsequence xni
, i ≥ 0

is Zariski dense in X.

Corollary 1.14. A sequence xn ∈ X, n ≥ 0 is generic if and only if

lim
n→∞

δxn
= δη,

where η is the generic point of X.
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Let f : X 99K X be a dominant rational self-map. Set |X|f := |X|\(∪i≥1I(f
i)).

Because every Zariski closed subset of X is open and closed in the constructible
topology, |X|f is a closed subset of |X|. The restriction of f to |X|f is continuous.
We still denote by f this restriction.

1.3.1. DML problems. Applying Corolary 1.14, the dynamical Moredell-Lang con-
jecture can be interpreted as the following equidistribution statement:

Dynamical Mordell-Lang Conjecture (DML in form of equidistribution).
For x ∈ Xf(k), if Of(x) is Zariski dense in X , then

lim
n→∞

δfn(x) = δη.

Remark 1.15. Here the assumption that Of(x) is Zariski dense in X does not
cause any problem. Because after replacing x by some fm(x) and f by a suitable

iterate, we may assume that Of(x) is irreducible. Then after replacing X by

Of(x), we may assume that Of(x) is Zariski dense in X .

Using Theorem 1.12, we give a fast proof of the weak dynamical Mordell-Lang.
Same result was proved in [8, Corollary 1.5] (see also [24, Theorem 2.5.8], [32,
Theorem D, Theorem E], [46, Theorem 2], [10, Theorem 1.10]).

Theorem 1.16 (Weak DML). Let x be a points ∈ Xf(k) with Of(x) = X.
Let V be a proper subvariety of X. Then {n ≥ 0| fn(x) ∈ V } is of Banach
density zero in Z≥0 i.e. for every sequence of intervals In, n ≥ 0 in Z≥0 with
limn→∞#In = +∞, we have

lim
n→∞

#({n ≥ 0| fn(x) ∈ V } ∩ In)

#In
= 0.

We also prove the weak dynamical Mordell-Lang for coherent backward orbits.
A slightly weaker version was proved in [32, Theorem F]. This can be viewed as
a weak version of [54, Conjecture 1.5].

Theorem 1.17 (Weak DML for coherent backward orbits). Let xn ∈ Xf (k), n ≤

0 be a sequence of points such that {xn, n ≤ 0} = X and f(xn) = xn+1 for all
n ≤ −1. Let V be a proper subvariety of X. Then {n ≤ 0| xn ∈ V } is of Banach
density zero in Z≤0

1.3.2. Backward orbits. Now assume that f : X → X is a flat and finite endo-
morphism. Let df := [k(X)/f ∗k(X)] be topological degree of f . It is just the
(dimX)-th dynamical degree of f .

Recall that for every x ∈ X , the multiplicity of f at x is

mf (x) := dimκ(f(x))(OX,x/mf(x)OX,x) ∈ Z≥1

where OX,x is viewed as an OX,f(x)-module via f . For every x ∈ X , we have∑
y∈f−1(x)mf (y) = df (see [31, Theorem 2.4]).
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In Section 5.2, we define a natural pullback f ∗ : M(X) → M(X) which is
continuous and for every x ∈ X ,

f ∗δx =
∑

y∈f−1(x)

mf (y)δy.

We get the following equidistribution result.

Theorem 1.18. Let f : X → X be a flat and finite endomorphism. Let x ∈ X(k)

with ∪i≥0f−i(x) = X. Then for every sequence of intervals In, n ≥ 0 in Z≥0 with
limn→∞#In = +∞, we have

lim
n→∞

1

#In
(
∑

i∈In

d−i
f (f i)∗δx) = δη.

Remark 1.19. The assumption ∪i≥0f−i(x) = X is necessary. Otherwise,

1

#In
(
∑

i∈In

d−i
f (f i)∗δx), n ≥ 0

are supported on the proper closed subset ∪i≥0f−i(x) of X.

Applying Theorem 1.18, we count the preimages of a point without multiplic-
ities.

Theorem 1.20. Let f : X → X be a flat and finite endomorphism. Assume
that the field extension k(X)/f ∗k(X) is separable. Let x ∈ X(k) be a point with

∪i≥0f−i(x) = X. For c ∈ (0, 1], n ≥ 0, define

Sn
c := min{#S| S ⊆ f−n(x),

∑

y∈S

mfn(y) ≥ cdnf}.

Then for every c ∈ (0, 1], we have

lim
n→∞

(Sn
c )

1/n = df .

Taking c = 1 in Theorem 1.20, we get the following corollary.

Corollary 1.21. Let f : X → X be a flat and finite endomorphism. If the field
extension k(X)/f ∗k(X) is separable, then for every x ∈ X(k) with ∪i≥0f−i(x) =
X,

lim
n→∞

(#f−n(x))1/n = df .

If the topological degree is large, we have the following stronger equidistribution
result.

Theorem 1.22. Let f : X → X be a flat and finite endomorphism of a quasi-
projective variety. Assume that

(1.1) df := λdimX(f) > max
1≤i≤dimX−1

λi.

If the field extension k(X)/f ∗k(X) is separable, then for every x ∈ X(k) with

∪i≥0f−i(x) = X,
lim
n→∞

d−n
f (fn)∗δx = δη.
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Moreover, for every irreducible subvariety V of X of dimension dV ≤ dimX − 1,

lim sup
n→∞

#(f−n(x) ∩ V )1/n ≤ λdV < df .

Assumption 5.5 holds for polarized endomorphisms on projective varieties. A
similar statement for polarized endomorphisms can be fund in [31, Theorem 5.1].
See [35, 20] for according result for complex topology.

Theorem 1.22 is not true without Assumption 5.5.

Example 1.23. Under the notation of Example 1.3. Set g := f−1. Then λi(g) =
1, i = 0, 1, 2. Denote by 1V the characteristic function of V . Since V is open and
closed in |A2|, 1V is continuous. We have

lim
n→∞

∫
1V (g

−pn)∗δe = lim
n→∞

1V (f
pn(e)) = 1 6= 0 =

∫
1V δη.

1.4. Relation to Berkovich spaces. We will see in Section 5.4, |X| can be
viewed as a closed subset of the Berkovich analytification Xan of X w.r.t the
trivial norm on k. So the statements in ergodic theory on |X| can be translated
to statements on Xan. See the translation of Corollary 1.14 and Theorem 1.22 in
Section 5.4.
Using reduction map, we may also use ergodic theory w.r.t. the constructible

topology to study endomorphisms on Berkovich spaces with good reduction. In
Section 5.6, we apply Theorem 1.22 to get an equidistribution result for endo-
morphisms of large topological degree with good reduction.

1.5. Notation and Terminology.

• For a set S, denote by #S the cardinality of S.
• A variety is an irreducible separated scheme of finite type over a field. A
subvariety of a variety X is a closed subset of X.

• For a variety X (resp. a rational self-map f : X 99K Y ) over a field k and
a subfield K of k, we say that X (resp. f) is defined over K if there is
a variety XK (resp. a rational map fK) over K such that X (resp. f) is
the base change by k of X (resp. f).

• For a rational map f : X 99K Y between varieties. Denote by I(f) the
indeterminacy locus of f .

• For a dominant rational self-map f : X 99K X between varieties, a sub-
variety V of X is said to be f -invariant if I(f) does not contain any
irreducible component of V and f(V ) ⊆ V.

• For a projective variety X , N i(X) is the the group of numerical i-cycles
of X and N i(X)R := N i(X)⊗ R.

• For two Cartier R-divisors D1, D2, write D1 ≡ D2 if D1, D2 are numeri-
cally equivalent.

• For a field extension k/K, tr.d.Kk is the transcendence degree of k/K.

Acknowledgement. I would like to thank Xinyi Yuan. Section 5 of this paper
is motivated by some interesting discussion with him.
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2. Dynamical degree and arithmetic degree

2.1. The dynamical degrees. In this section we recall the definition and some
basic facts on the dynamical degree.
Let X be a variety over k and f : X 99K X a dominant rational self-map. Let

X ′ be a normal projective variety which is birational to X . Let L be an ample (or
just nef and big) divisor on X ′. Denote by f ′ the rational self-map of X ′ induced
by f .
For i = 0, 1, . . . , dimX , and n ≥ 0, (f ′n)∗(Li) is the (dimX − i)-cycle on

X ′ as follows: let Γ be a normal projective variety with a birational morphism
π1 : Γ → X ′ and a morphism π2 : Γ → X ′ such that f ′n = π2 ◦ π−1

1 . Then
(f ′n)∗(Li) := (π1)∗π

∗
2(L

i). The definition of (f ′n)∗(Li) does not depend on the
choice of Γ, π1 and π2. The i-th dynamical degree of f is

λi(f) := lim
n→∞

((f ′n)∗(Li) · LdimX−i)1/n.

The limit converges and does not depend on the choice ofX ′ and L [48, 21, 49, 18].
Moreover, if π : X 99K Y is a generically finite and dominant rational map
between varieties and g : Y 99K Y is a rational self-map such that g ◦ π = π ◦ f ,
then λi(f) = λi(g) for all i; for details, we refer to [18, Theorem 1] (and the
projection formula), or Theorem 4 in its arXiv version [17].
The following result is easy when k is of characteristic 0 and Z 6⊆ SingX .

Proposition 2.1. [36, Proposition 3.2] Let X be a variety over k and f : X 99K X
a dominant rational self-map. Let Z be an irreducible subvariety in X which is
not contained in I(f) such that f |Z induces a dominant rational self-map of Z.
Then λi(f |Z) ≤ λi(f) for i = 0, 1, . . . , dimZ.

2.2. Arithmetic degree. The arithmetic degree was defined in [38] over a num-
ber field or a function field of characteristic zero. In this section we extend this
definition to the case over function field of positive characteristic and we prove
some basic fact of it.
Let k = K(B), where K is an algebraically closed field and B is a smooth

projective curve.

2.2.1. Weil height. Let X be a normal and projective variety over k. For every
L ∈ Pic(X), we denote by hL : X(k) → R a Weil height associated to L and the
function field K(B). It is unique up to adding a bounded function.

Example 2.2. Assume that X is defined over K(B) i.e. there is a projective
morphism π : XB → B where XB is normal, projective and geometric generic
fiber of π is X . Assume that there is a line bundle LB on XB whose restriction
on X is L. In this case, for every x ∈ X(k), we may take hL to be

h(XB ,LB)(x) = [K(B)(x) : K(B)]−1(x · L),

where x is the Zariski closure of x in XB.

Keep the notations in Example 2.2. Let b be a point in B(K). It induces a norm
| · |b on K(B). Denote by K(B)b the completion of K(B) w.r.t. | · |b. Denote by

Cb the completion of K(B)b. Every field embedding τ : k = K(B) →֒ Cb induces
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an embedding φτ : X(k) →֒ X(Cb). On X(Cb), we have a natural b-adic topology
induced by | · |b.

Remark 2.3. Let xb be a point in Xb. Then xb defines a nonempty open subset
Uxb

consisting of all points in X(Cb) whose reduction is xb ∈ Xb(K). Then for
every x ∈ φ−1

τ (Uxb
), x0 is contained in the Zariski closure of x in XB.

Lemma 2.4. There is d ≥ 1 such that for every b ∈ B(K), every nonempty
b-adic open subset of U ⊆ X(Cb), and every l ≥ 1, there is x ∈ X(k) such that
deg(x) ≤ d and hL(x) ≥ l.

Proof. By Noether normalization lemma, we only need to prove the lemma when
X = PN and L = O(1). After replace K(B) by a finite extension, a changing
of coordinates, we may assume that 0 ∈ U. We may assume that hL is the
naive height on PN i.e. the height defined by the model (PN

B , OPN(B)(1)). Pick
any rational function g ∈ K(B) \ {0} with g(b) = 0. Then for n ≥ 1, xn :=
(gn, . . . , gn) ∈ AN (K(B)). We have hL(xn) → ∞ as n → ∞ and φτ(xn) → 0 in
the b-adic topology. This concludes the proof. �

2.2.2. Admissible triples. As in [36], we define an admissible triple to be (X, f, x)
where X is a quasi-projective variety over k, f : X 99K X is a dominant rational
self-map and x ∈ Xf(k).
We say that (X, f, x) dominates (resp. generically finitely dominates) (Y, g, y)

if there is a dominant rational map (resp. generically finite and dominant rational
map) π : X 99K Y such π ◦ f = g ◦ π, π is well defined along Of(x) and π(x) = y.
We say that (X, f, x) is birational to (Y, g, y) if there is a birational map

π : X 99K Y such π ◦ f = g ◦ π and if there is a Zariski dense open subset V
of Y containing Og(y) such that π|U : U := π−1(V ) → V is a well-defined iso-
morphism and π(x) = y. In particular, if (X, f, x) is birational to (Y, g, y), then
(X, f, x) generically finitely dominates (Y, g, y).

Remark 2.5.

(1) If (X, f, x) dominates (Y, g, y) and if Of(x) is Zariski dense in X , then
Og(y) is Zariski dense in Y . Moreover, if (X, f, x) generically finitely
dominates (Y, g, y), then Of(x) is Zariski dense in X if and only if Og(y)
is Zariski dense in Y .

(2) Every admissible triple (X, f, x) is birational to an admissible triple (X ′, f ′, x′)
where X ′ is projective. Indeed, we may pick X ′ to be any projective com-
pactification of X , f ′ the self-map of X ′ induced from f , and x′ = x.

2.2.3. The set Af (x). As in [36], we will associate to an admissible triple (X, f, x)
a subset

Af (x) ⊆ [1,∞].

Remark 2.6. We will show in Proposition 2.10 that Af (x) ⊆ [1, λ1(f)].

We first define it when X is projective. Let L be an ample divisor on X , we
define

Af(x) ⊆ [1,∞]
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to be the limit set of the sequence (h+
L(f

n(x)))1/n, n ≥ 0, where h+
L(·) :=

max{hL(·), 1}.
The following lemma was proved in [36, Lemma 3.8] when k = Q, but its proof

still works our case. It shows that the set Af(x) does not depend on the choice
of L and is invariant in the birational equivalence class of (X, f, x).

Lemma 2.7. [36, Lemma 3.8] Let π : X 99K Y be a dominant rational map
between projective varieties. Let U be a Zariski dense open subset of X such that
π|U : U → Y is well-defined. Let L be an ample divisor on X and M an ample
divisor on Y . Then there are constants C ≥ 1 and D > 0 such that for every
x ∈ U , we have

(2.1) hM (π(x)) ≤ ChL(x) +D.

Moreover if V := π(U) is open in Y and π|U : U → V is an isomorphism, then
there are constants C ≥ 1 and D > 0 such that for every x ∈ U , we have

(2.2) C−1hL(x)−D ≤ hM(π(x)) ≤ ChL(x) +D.

Now for every admissible triple (X, f, x), we define Af (x) to be Af ′(x′) where
(X ′, f ′, x′) is an admissible triple which is birational to (X, f, x) such that X ′

is projective. By Lemma 2.7, this definition does not depend on the choice of
(X ′, f ′, x′).

2.2.4. The arithmetic degree. We define (see also [38]):

αf (x) := supAf(x), αf (x) := inf Af(x).

We say that αf(x) is well-defined and call it the arithmetic degree of f at x, if
αf (x) = αf(x); and, in this case, we set

αf (x) := αf(x) = αf (x).

By Lemma 2.7, if (X, f, x) dominates (Y, g, y), then αf (x) ≥ αg(y) and αf(x) ≥
αg(y).
Applying Inequality (2.1) of Lemma 2.7 to the case where Y = X and M = L,

we get the following trivial upper bound: let f : X 99K X be a dominant rational
self-map, L any ample line bundle on X and hL a Weil height function associated
to L; then there is a constant C ≥ 1 such that for every x ∈ X \ I(f), we have

(2.3) h+
L(f(x)) ≤ Ch+

L(x).

For a subset A ⊆ [1,∞), define A1/ℓ := {a1/ℓ | a ∈ A}.
We have the following simple properties, where the second half of 3 used In-

equality (2.3).

Proposition 2.8. We have:

(1) Af (x) ⊆ [1,∞).
(2) Af (x) = Af (f

ℓ(x)), for any ℓ ≥ 0.

(3) Af (x) =
⋃ℓ−1

i=0(Afℓ(f i(x)))1/ℓ. In particular, αfℓ(x) = αf (x)
ℓ, αfℓ(x) =

αf(x)
ℓ.

The following lemma is easy.
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Lemma 2.9. Let f : X 99K X be a dominant rational self-map of a projective
variety X and W ⊆ X an f -invariant subvariety. Then Xf(k)∩W (k) ⊆ Wf |W (k)
and for every x ∈ Xf(k) ∩W (k), αf |W (x) = αf (x).

When k = Q, the next result was proved in [42, Theorem 1.4] in the smooth
case and in [36, Proposition 3.11] in the singular case. The proof here in the
function field case is much easier.

Proposition 2.10 (Kawaguchi-Silverman-Matsuzawa’s upper bound). For every
admissible triple (X, f, x0), we have αf(x0) ≤ λ1(f).

Proof. We may assume that X is projective. Set d := dimX. After replacing
f by a suitable iteration and x0 by fn(x0) for some n ≥ 0 and noting that
λ1(f

n) = λ1(f)
n and by Proposition 2.8, we may assume that the Zariski closure

Zf(x0) of Of(x0) is irreducible. By Proposition 2.1 and Lemma 2.9, we may
replace X by Zf(x0) and assume that Of(x0) is Zariski dense in X .
Assume that X is defined over K(B) i.e. there is a projective morphism π :

X → B where X is projective, normal and geometric generic fiber of π is X . Pick
an ample line bundle LB on X and let L be its restriction to X . We take the
Weil height hL : X(k) → R as follows: for every x ∈ X(k),

hL(x) := h(X ,LB)(x) = [K(B)(x) : K(B)]−1(x · L).

We may assume that x0 is defined over K(B).
Let F : X 99K X be the rational self-map over B induced by f. The relative

dynamical degree formula [17, Theorem 4], shows that

λ1(F ) = max{1, λ1(f)} = λ1(f).

So for every r > 0, there is Cr > 0 such that for every n ≥ 0,

(2.4) ((F n)∗LB · Ld
B) ≤ Cr(λ1(f) + r)n.

Let I be the ideal sheaf of x0 on X . After replacing LB be a suitable multiple,
we may assume that L ⊗ I is globally generated. For every n ≥ 0, there are
divisors Hi, i = 0, . . . , d in |LB| such that dimH1 ∩ · · · ∩Hd = 1 and containing
x0 as an irreducible component.
Set Vn := H1 · · · · ·Hd. Let Γ be a normal projective variety with a birational

morphism π1 : Γ → X and a morphism π2 : Γ → X such that F n = π2 ◦ π−1
1 .

Write (π1)
#x0 the strict transform of V n x0 by πN

1 . Then (π1)
#x0 is an irreducible

component of ∩d
i=1(π

∗
1Hi). In N1(Γ), we have π∗

1Vn = π∗
1H1 · · · · · π

∗Hd. By [36,
Lemma 3.3], π∗

1Vn − (π1)
#x0 is pseudo-effective. Then we have

hL(f
n(x0)) = (fn(x0) · LB) = ((π1)

#x0 · π
∗
2LB)

≤ (π∗
1H1 · · · · · π

∗
1Hd · π

∗
2LB) = ((F n)∗LB · Ld

B).

≤ Cr(λ1(f) + r)n.

It follows that

αf (x0) = lim sup
n→∞

hL(f
n(x0))

1/n ≤ lim
n→∞

(Cr(λ1(f) + r)n)1/n = λ1(f) + r.

Letting r → ∞, we conclude the proof. �
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2.3. Canonical height. Let X be a normal projective variety and f : X → X
a surjective endomorphism.
Let A be an ample divisor of X , denote by hA a Weil height on X(k) associated

to A with hA ≥ 1.

Proposition 2.11. Let D be a nonzero Cartier R-divisor such that f ∗D ≡ βD
where β > λ1(f)

1/2. Let [D] ∈ N1(X)R be the numerical class of D. Then for
every x ∈ X(k), the limit h+

[D](x) := limn→∞ hD(f
n(x))/βn exist, only depend on

the numerical class [D] and satisfies the following properties:

(i) h+
[D] = hD +O(h

1/2
A );

(ii) h+
[D] ◦ f = βh+.

Proof. This result was proved in [38, Theorem 5] in characteristic zero. The proof
presented here is the same as [38, Theorem 5], but slightly shorter.
By [42, Proposition B.3], there is C > 0 such that for every x ∈ X(k),

|hD(f(x))− βhD(x)| ≤ ChA(x)
1/2.

Pick µ ∈ (λ1(f)
1/2, β), by Proposition 2.10, for every x ∈ X(k), there is Cx > 0

such that ,

hA(f
n(x)) ≤ Cxµ

2nhA(x).

Then we have

|hD(f
n(x))/βn − hD(f

n−1(x))/βn−1| = β−n|hD(f
n(x))− βhD(f

n−1(x))|

≤ β−nChA(f
n−1(x))1/2 ≤ β−nCC1/2

x µnhA(x)
1/2 = CC1/2

x (µ/β)nhA(x)
1/2.

Since 0 < µ/β < 1,

h+
[D](x) = hD(x) +

∑

n≥1

(hD(f
n(x))/βn − hD(f

n−1(x))/βn−1)

converges and

|h+
[D](x)− hD(x)| ≤

∑

n≥1

|hD(f
n(x))/βn − hD(f

n−1(x))/βn−1|

≤ (
∑

n≥1

CC1/2
x (µ/β)n)hA(x)

1/2 = O(hA(x)
1/2).

Then we get (i). The statement (ii) follows from the definition.
For D′ ≡ D, by [42, Proposition B.3], there is B > 0 such that for every

x ∈ X(k),

|hD′(x)− hD(x)| ≤ BhA(x)
1/2.

Then

|h+
[D′](x)− h+

[D](x)| := lim
n→∞

|hD′(fn(x))− hD(f
n(x))|/βn

≤ lim sup
n→∞

BhA(f
n(x))1/2/βn ≤ lim sup

n→∞
BCxhA(x)

1/2(µ/β)n = 0,

which concludes the proof. �
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The following was proved in [43, Lemma 9.1] when k = Q and X is smooth.
After replacing [38, Theorem 5] by Proposition 2.11, [43, Lemma 9.1] is still valid
when k = K(B) and X is singular.

Proposition 2.12. Assume that λ1(f) > 1. Let D 6≡ 0 be a nef R-Cartier divisor
on X such that f ∗D ≡ λ1(f)D. Let V ⊆ X be a subvariety of positive dimension
such that (DdimV · V ) > 0. Then there exists a nonempty open subset U ⊆ V
and a set S ⊆ U(k) of bounded height such that for every x ∈ U(k) \ S we have
αf(x) = λ1(f).

Corollary 2.13. Keep the notation in Proposition 2.12. For every Zariski dense
open subset U of X, there is x ∈ U(k) such that αf (x) = λ1(f) and Of(x) ⊆ U .

Proof of Corollary 2.13. We may assume that X is normal and X, f,D and U
are defined over K(B). There is a normal and projective B-scheme π : XB → B
and a rational self-map fB : XB 99K XB over B such that the geometric generic
fiber of (XB, fB) is (X, f). Let b be a general point of B(K) and denote by
(Xb, fb) the fiber of (XB, fB) above b. Then fb is an endomorphism of Xb. Set
Z := X \ U . Let ZB be the Zariski closure of Z in XB. Then Ub := Xb \ ZB.
By Proposition 4.1 (see Section 4.1 for its proof), there is xb ∈ (Ub)fb|Ub

(K).
Let M be a very ample line bundle on XB. Taking WB to be the intersection of
dimX − 1 general elements of |10M | of XB passing through xb. By [11, Theorem
0.4], WB is irreducible. Let W ⊆ X be the generic fiber of WB. It is of pure
dimension 1. Then (W ∩D) > 0. Because WB is irreducible, for every irreducible
component W ′ of W , (W ′ · D) > 0. By Lemma 2.4 and Remark 2.3, there are

xn ∈ W ′(k), n ≥ 0 such that xb ∈ {xn} and the height of xn tends to +∞.
Because Ofb(xb) ⊆ U , Of(xn) ⊆ U for all n ≥ 0. By Proposition 2.12, for n >> 0,
we have xn ∈ V (k) ∩ U and αf (xn) = λ1(f). �

3. Proof of Theorem 1.4

This proof mixes the ideas from [50] and [40].

3.1. Reduce to the smooth case. By [41], there is a minimal desingularization
π : X ′ → X . Then one may lift f to an automorphism f ′ of X ′. The following
lemma allows us to replace (X, f) by (X ′, f ′) and assume that X is smooth.

Lemma 3.1. If (X ′, f ′) satisfies the DML property, then (X, f) satisfies the DML
property.

Proof. Assume that (X ′, f ′) satisfies the DML property. We only need to prove
the following statement: for every x ∈ X(k) and an irreducible curve C ⊆ X(k),
if Of(x) ∩ C is infinite, then C is f -periodic.
Pick x′ ∈ π−1(x)(k). There is an irreducible component C ′ of π−1(C) such that

Of ′(x′) ∩C ′ is infinite. We have dimC ′ ≤ 1. If π(C ′) 6= C, then π(C ′) is a point.
Then x = π(x′) is periodic. So π(C ′) = C and dimC ′ = 1. Since (X ′, f ′) satisfies
the DML property, C ′ is f ′-periodic. So C = π(C ′) is f ′-periodic. �
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3.2. Numerical geometry. Set λ := λ1(f) > 1. There is a nef class θ∗ ∈
N1(X)R \ {0} such that f ∗θ∗ = λθ∗. By projection formula λ1(f

−1) = λ. So there
is a nef class θ∗ ∈ N1(X)R \ {0} such that (f−1)∗θ∗ = λθ∗. Then f ∗θ∗ = λ−1θ∗.
Since λ2(θ∗2) = (f ∗θ∗2) = (θ∗2), we get (θ∗2) = 0. Similarly, (θ∗

2) = 0. By Hodge
index theorem, (θ∗ · θ∗) > 0. It follows that (θ∗ + θ∗)

2 > 0. So θ∗ + θ∗ is big and
nef.
Set H := {α ∈ N1(X)R| (θ

∗ · α) = (θ∗ · α) = 0}. It is clear that N1(X)R =
Rθ∗⊕Rθ∗⊕H and f ∗H = H. By Hodge index theorem, the intersection form on
H is negative define. Since f ∗ preserves the intersection form, all eigenvalues of
f ∗|H are of norm 1.
Since f ∗ is an automorphism of the lattes N1(X) ⊆ N1(X)R, all eigenvalues of

f ∗ : N1(X)R → N1(X)R are algebraic integers. In particular both λ and λ−1 are
algebraic integers.

Lemma 3.2. There is σ ∈ Gal(Q/Q) such that σ(λ) = λ−1.

Proof of Lemma 3.2. Since λ1 is an algebraic integer with |λ| > 1, by product
formula, there is σ ∈ Gal(Q/Q) such that |σ(λ1)| < 1. Because σ(λ1) is an
eigenvalue of f ∗ and λ−1

1 is the unique eigenvalue of f ∗ with norm < 1, we have
σ(λ1) = λ−1

1 . �

Then f ∗σ(θ∗) = σ(f ∗θ∗) = σ(λ)σ(θ∗) = λ−1σ(θ∗). So there is c > 0 such that
θ∗ = cσ(θ∗). After replacing θ∗ by c−1θ∗, we may assume that σ(θ∗) = θ∗.

Corollary 3.3. For every curve C of X, (θ∗ · C) = 0 if and only if (θ∗ · C) = 0.

Proof of Corollary 3.3. The subspace P := {α ∈ N1(X)C| (α · C) = 0} is a
hyperplane of N1(X)C defined over Q. We have σ(P ) = P. Embed N1(X)R in
N1(X)C. Then θ∗ ∈ P if and only if θ∗ = σ(θ∗) ∈ σ(P ) = P. �

3.3. Canonical height. In this section, we assume

(i) either k = Q;
(ii) or there is an algebraically closed subfield K ⊆ k, a curve B over K, such

that X and f are defined over K(B) and k = K(B).

Let A be an ample divisor of X , denote by hA a Weil height on X(k) associated
to A with hA ≥ 1. Pick R-divisors D∗ and D∗ with numerical classes θ∗, θ∗. By
[38, Theorem 5] and [39] in characteristic zero and Proposition 2.11 in positive
characteristic, for every y ∈ X(k), the limits

h+(y) := lim
n→∞

hD∗(fn(y))/λn

and

h−(y) := lim
n→∞

hD∗
(f−n(y))/λn

exist, do not depend on the choice of D∗, D∗, hD∗ and hD∗
, and satisfies the

following properties:

(i) h+ = hD∗ +O(h
1/2
A ), h− = hD∗

+O(h
1/2
A );

(ii) h+ ◦ f = λh+ and h− ◦ f = λ−1h−.
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Lemma 3.4. Let C be an irreducible curve of X such that (C · θ∗) > 0. Then for
every M ≥ 0, there is M ′ ≥ 0, such that

{y ∈ C(k)| h−(y) ≤ M} ⊆ {y ∈ C(k)| hA(y) ≤ M ′}.

Proof of Lemma 3.4. There is d > 0, such that

h− ≥ hD∗
− dh

1/2
A .

Pick a > 0 such that a(D∗ ·C) > (A ·C). Then there is b > 0 such that for every
y ∈ C,

ahD∗(y) + b ≥ hA(y).

So for every y ∈ C,

h−(y) ≥ a−1(hA(y)− b)− dh
1/2
A (y).

If h−(y) ≤ M , we get

M ≥ a−1(hA(y)− b)− dh
1/2
A (y) = (a−1h

1/2
A (y)− d)h

1/2
A (y)− a−1b.

This implies that

h
1/2
A (y) ≤ max{ad, aM + b+ ad} = aM + b+ ad.

Then we get hA(y) ≤ (aM + b+ ad)2. �

3.4. The case (C · θ∗) > 0.

Lemma 3.5. Let C be an irreducible curve of X such that (C ·θ∗) > 0. For every
x ∈ X(k), Of(x) ∩ C is finite.

Proof of Lemma 3.5. Let F be the minimal algebraically closed subfield of k. So
F = Q if chark = 0 and F = Fp when chark = p > 0. There is an algebraically
closed subfield k′ of k with tr.d.Fk

′ < ∞ such that X, f, C and x are defined over
k′. After replacing k by k′, we may assume tr.d.Fk < ∞. Now we prove Lemma
3.5 by induction on tr.d.Fk.

When k = Fp for some prime p > 0, Of(x) is finite. Then Lemma 3.5 holds.

Assume k = Q. Set I := {i ≥ 0| f i(x) ∈ C}. For every i ≥ I, h−(f i(x)) =
λ−ih−(x) ≤ h−(x). By Lemma 3.4, there is M > 0 such that hA(f

i(x)) < M for
every i ∈ I. We conclude the proof by the Northcott property.

Now we may assume that tr.d.Fk ≥ 1. There is an algebraically closed subfield
K ⊆ k, a smooth irreducible projective curve B over K, such that X , f , C and
x are defined over K(B) and k = K(B).
There is a projective morphism π : X → B whose geometric generic fiber is X .

The automorphism f extends to a birational self-map fB : X 99K X over B. Let
AB be an ample divisor on B. Let CB be the Zariski closure of C in X . Let A be
the restriction of AB on the generic fiber X. There is a nonempty open subset U
of B, such that π is smooth above U and fB|π−1(U) is an automorphism. Assume
that (A · θ∗) = 1.
For every b ∈ B, let Xb := π−1(b), Cb := C ∩ Xb, fb be the restriction of f

to Xb and Ab be the restriction of LB to Xb. After shrinking U , we may assume
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that Cb is irreducible for every b ∈ U. For every n ≥ 0 and b ∈ U , we have
((fn)∗A · A) = ((fn

b )
∗Ab · Ab). So λ1(fb) = λ1(f) = λ > 1. For b ∈ U , set

θ′∗,b := lim
n→∞

((f−n
b )∗Ab · Ab)/λ

n.

The discussion in Section 3.2 shows that Rθ′∗,b the eigenspace of (f
−1
b )∗ in N1(Xb)

for eigenvalue λ. Set θ∗,b := θ′∗,b/(θ
′
∗,b · A). We have

(θ∗,b · Cb) = (θ∗ · C) > 0.

Set I := {i ≥ 0| f i(x) ∈ C}. For every i ≥ I, h−(f i(x)) = λ−ih−(x) ≤ h−(x).
By Lemma 3.4, there is M > 0 such that hA(f

i(x)) < M for every i ∈ I.
For every point y ∈ X defined over K(B), its closure sy in X is a section of

π. We may assume that for every y ∈ X(K(B)), hA(y) = (AB · sy). Also, for
every section s of π, its generic fiber defines a point ys ∈ X(K(B)). For every
y ∈ X(K(B)), π induces an isomorphism from sy to the curve B. Consider the
Hilbert polynomial

χ(s∗yO(nAB)) = 1− g(B) + n(sy · AB) = 1− g(B) + nhA(y).

So there is a quasi-projective K-variety MM that parameterizes the sections s
of π with hA(ys) ≤ M (see [19]). For every b ∈ U , denote by eb : MM → Xb

the morphism s 7→ s(b). Pick a sequence bi, i ≥ 1 of distinct points in U(K). For
s1, s2 ∈ MM , s1 = s2 if and only if ebi(s1) = ebi(s2) for every i ≥ 1. For l ≥ 1, set

el :=

l∏

i=1

ebi : MM →
l∏

i=1

Xbi .

By [50, Lemma 8.1], there is L ≥ 1 such that eL is quasi-finite. For j ∈ I,
f j(x) defines a point sfj(x) ∈ MM . The induction hypothesis shows that, for
i = 1, . . . , L,

ebi({f
j(x)| j ∈ I}) = {f j

bi
(xbi)| j ∈ I} ⊆ Ofbi

(xbi) ∩ Cbi

is finite. So eL({f
j(x)| j ∈ I}) is finite. Since eL is quasi-finite, Of(x) ∩ C =

{f j(x)| j ∈ I} is finite. �

3.5. Conclusion. Let x ∈ X(k) and C be an irreducible curve of X . If (C ·θ∗) >
0, we conclude the proof by Lemma 3.5.
Now assume that (C · θ∗) = 0. Let B(f) be the set of curves C ′ with (C ′ ·

θ∗) = 0. By Corollary 3.3, C ′ ∈ B(f) if and only if (C ′ · θ∗) = 0, if and only if
(C ′ · (θ∗+ θ∗)) = 0. Since θ∗+ θ∗ is big and nef, B(f) is finite. Since f ∗θ∗ = λ1θ

∗,
C ′ ∈ B(f) if and only if f(C ′) ∈ B(f). So every curve in B(f) is periodic. Since
C ∈ B(f), C is periodic. �

4. Zariski dense orbit conjecture

Let X be a variety over k of dimension dX . Let f : X 99K X be a dominant
rational self-map.
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4.1. Existence of well-defined orbits. In characteristic 0, the following result
is well know. In positive characteristic, the proof is similar.

Proposition 4.1. For every Zariski dense open subset U of X, there is x ∈ U(k)
whose f -orbit is well defined and contained in U.

Proof of Proposition 4.1. After replacing X, f by U, f |U , we may assume that
X = U. So we only need to show that Xf(k) 6= ∅.
Let F be the smallest algebraically closed subfield of k. So F = Q or Fp. We

may replace k by an algebraically closed subfield k′ of k with tr.d.Fk
′ < ∞ such

that X, f are defined over k′. Now assume that tr.d.Fk < ∞. If chark = 0, we
conclude the proof by [55, Proposition 3.22]. Now assume that chark = p > 0.
The case k = Fp is essentially proved in [22, Proposition 5.5]. On may also see

[51, Proposition 6.2]. In [51, Proposition 6.2], f is assumed to be birational, but
its proof works for arbitrary dominant rational self-map.
Now assume that tr.d.Fk ≥ 1. There is a subfield L of K which is finitely

generated over k such that X, f are defined over L. Let B be a projective and
normal variety over F such that L = k. There is a B-scheme π : XB → B and a
rational self-map fB : XB 99K XB over B such that the geometric generic fiber of
(XB, fB) is (X, f). Let b be a general point of B(F) and denote by (Xb, fb) the fiber
of (XB, fB) above b. Then Vb := Xb\I(fB) and fb is dominant. Applying the case
over Fp to (Vb, fb|Vb

), there is xb ∈ (Vb)fb|Vb (F). Cutting by general hyperplanes
of XB, there is an irreducible subvariety S of XB of dimension dimS = dimB
passing through b with π(S) = B. Then the generic point of S defines a point
x ∈ Xf(k), which concludes the proof. �

4.2. Tautological upper bound. The following lemmas was proved in charac-
teristic zero, but their proof works in any characteristic.

Lemma 4.2. [36, Lemma 2.15] Let K be an algebraically closed field extension
of k. Then k(X)f = k if and only if, K(XK)

fK = K.

Lemma 4.3. [55, Lemma 2.1]Let X ′ be an irreducible variety over k, f ′ : X ′
99K

X ′ be a rational self-map and π : X ′
99K X be a generically finite dominant

rational map satisfying f ◦ π = π ◦ f ′, then we have the following properties.

(i) If there exists m ≥ 1, and H ∈ k(X)f
m

\k, then there exists G ∈ k(X)f\k.
(ii) There exists H ′ ∈ k(X ′)f

′

\ k, if and only if there exists H ∈ k(X)f \ k.

They show that the assumption k(X)f = k is stable under base change, under
positive iterate and under semiconjugacy by generaically finite dominant mor-
phism. As an example of realization problems, the author asked the following
question in [55, Section 1.6].

Question 4.4. What is the minimal transcendence degree R(k, X, f) of an al-
gebraically closed field extension K of k such that (XK , fK) satisfies the ZDO
property?

Proposition 1.7 gives a tautological upper bound of R(k, X, f).
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Proof of Proposition 1.7. We may assume that k(X)f = k. By Lemma 4.2,
K(XK)

fK = K.
An irreducible fK-invariant variety V is said to be maximal, if the only ir-

reducible fK-invariant variety W containing V is XK . We note that I(fK) =
I(f)⊗k K is defined over k.

Lemma 4.5. Let V be an irreducible fK-invariant variety. Then V is over defined
over k.

Proof of Lemma 4.5. Set r := dimV < dX . There is a subfield L of K which is
finitely generated over k such that V is defined over L. Let B be a projective and
normal variety over k such that L = k(B).
Then there is a subvariety VB of X × B such that π2(VB) = B where π2 :

X × B → B is the projection to the second coordinate and V = Vη ×L K
where η is the generic point of B and Vη is the generic fiber of π2|VB

. We have
dimVB = dimB+r. Since V is fK-invariant, VB ⊆ X×B is fB := f×id invariant.
Consider π1 : X × B → B the projection to the first coordinate. It is clear

that π1(V ) is irreducible and f -invariant. Since V ⊆ π1(V )K and V is maximal,
we get either VB = π−1

1 (π1(VB)) or π2(VB) = X. In the former case V = π1(VB)K
is defined over k. Now we assume that π2(VB) = X. Then dimB = dim VB − r ≥
dX − r ≥ 1 and k ( π∗

2(k(B)) ⊆ k(VB)
fB|VB .

If dimVB = dX , we conclude the proof by Lemma 4.3. Now assume that
dimVB ≥ dX + 1. So a general fiber of π1|VB

has dimension s ≥ 1. We have
dimB = dX + s − r > s. Let H1, . . . , H2 be very ample divisors on B which
are general in their linear system. Then the intersection of π−1

2 (Hi), i = 1, . . . , s
and a general fiber of π1|VB

is of dimension 0 and W ′ := VB ∩H1 · · · ∩Hs is fB-
invariant. Because π1(W

′) = X, there is an irreducible component W of W ′ with
π1(W ) = X and there is l ≥ 1 such that W is f l-invariant. Because dX = dimW

and dim π2(W ) = dX − r > 0. So k ( k(W )(fB |W )l , which is a contradiction by
Lemma 4.3. �

We only need to treat the case tr.d.kK = d. So we may assume that K = k(X).
The diagonal ∆ of X ×X defines a point o in XK(K). Here we view XK as the
geometric generic fiber of the second projection π2 : X × X → X. Because
π1(∆) = X where π1 : X ×X → X is the first projection, OfK(o) is well defined
and for every n ≥ 0, fn

K(o) is not contained in any proper subvariety of XK

defined over k. An irreducible component W of OfK(o) of maximal dimension is
fK-periodic and does not contained in any proper subvariety of XK defined over
k. By Lemma 4.5, W = XK which concludes the proof. �

In fact, with a slight modification, we prove a stronger result related to the
strong form of the Zariski dense orbit conjecture [55, Conjecture 1.4].

Proposition 4.6. Assume that k(X)f = k. Let K be an algebraically closed field
extension of k with tr.d.kK ≥ dimX. Then for every nonempty Zariski open
subset U of XK, there is a point x ∈ U(K) whose fK-orbit is well defined and
contained in U.
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Proof of Proposition 4.6. Keep the notation in the proof of Proposition 1.7. Pick
a general point b ∈ X(k). Then Ub := X \(XK ∩ U) is not empty. By Proposition
4.1, there is xb ∈ Ub, whose f orbit is well defined and contained in Ub. Cutting
by general hyperplanes of X ×X , there is an irreducible subvariety S of X ×X
of dimension dimS = dimX passing through (xb, b) such that π1(S) = X and
π2(S) = X. The generic point of S defines a point in x ∈ XK(K). Then the fK-
orbit of x is well defined and contained in U. After replacing o by x, the argument
in the last paragraph of the proof of Proposition 1.7 shows that OfK (x) is Zariski
dense in XK . �

4.3. Height argument. The aim of this section is to prove Theorem 1.9, 4.9
and 1.11.
Assume that char k = p > 0 and tr.d.Fp

k ≥ 1. Let f : X → X be a dominant
endomorphism of a projective variety. There is a algebraically closed subfield K
of k such that tr.d.Kk = 1. So there is smooth projective curve B over K, such
that f,X are defined over K(B). The Weil heights appeared in the section are
associated to the function field K(B).

Proof of Theorem 1.9. By Corollary 2.13, there exists a point x ∈ U(k) with
αf(x) = λ1(f) > 1 and Of(x) ⊆ U . So x has infinite orbit. �

Proof of Theorem 1.11. The proof of [36, Proposition 8.6] shows that for every f -
periodic proper subvariety V of periodm ≥ 1, λ1(f

m|V ) < λ1(f
m). By Propositon

2.12, there exists a point x ∈ X(k) with αf(x) = λ1(f) > 1. Let W be an

irreducible component of Of(x) of maximal dimension. There is m ≥ 1 with
fm(W ) = W. There is l ≥ 0 such that f l(x) ∈ W .
If W 6= X , by Proposition 2.10 and Lemma 2.9, we get

λ1(f)
m = αf (x)

m = αfm(f l(x)) ≤ λ1(f
m|W ) < λ1(f)

m.

We get a contradiction. So W = X , which concludes the proof. �

The following theorem was proved in [14, Theorem 1], but when f is an auto-
morphism, its proof work in arbitrary characteristic.

Theorem 4.7. If f is an automorphism and it preserves infinitely many (not
necessarily irreducible) hyperplanes, then k(X)f 6= k.

Proposition 4.8. Let X be a projective variety over k of dimension dX . Let L
be an ample line bundle on X. Let f : X → X be an automorphism such that
((fn)∗L · LdX−1), n ≥ 0 is bounded. Then (X, f) satisfies the ZDO property.

Proof of Proposition 4.8. Let Aut(X) be the scheme of automorphisms of X. Ev-
ery connected component of Aut(X) is a variety over k, but Aut(X) may have
infinite connected component.
Because ((fn)∗L · LdX−1), n ≥ 0 is bounded, the Zariski closure G of fn, n ≥ 0

in Aut(X) is a commutative algebraic group. After replacing f by a suitable
iterate, we may assume that G is irreducible. We may assume that f is of infinite
order. So dimG ≥ 1.
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For every x ∈ X(k), Of(x) = G.x. Consider the morphism Φ : G×X → X×X
sending (g, x) to (g(x), x). Denote by πi : X × X → X the i-th projection.
Consider the G-action on X × X by g.(x, y) = (g(x), y). Set F := f × id :
X ×X → X ×X.
The image W of Φ is a constructible subset of X × X . Let Y be the Zariski

closure of W in X ×X . It is irreducible and F -invariant. Let ∆ be the diagonal
of X×X. Then ∆ ⊆ W ⊆ Y. So π1(Y ) = π2(Y ) = X. Because dimG ≥ 1 and the
action of G on X is faithful, Y 6= ∆. So the general fiber of π2|Y has dimension

r ≥ 1. If r = dimX , then for a general x ∈ X(k), Of(x) = G.x = X which
concludes the proof. Now assume that r < dimX.
We have dimY = dimX + r. The general fiber of π1|Y also has dimension

r ≥ 1. Let H1, . . . , Hr be very ample hyperplanes of X which are general in their
linear system. The intersection of π∗

2H1, . . . , π
∗
2Hr and a general fiber of π1|Y

is proper. Set Z := π−1
2 (∩r

i=1Hi). We have π1(Z) = X , dimZ = dimX and
dim π2(Z) = dim(H1 ∩ · · · ∩Hr) = dimX − r ≥ 1. Because G is connected, every
irreducible component of Z is G-invariant. In particular, let T be an irreducible
component of Z with π1(T ) = X , then T is F invariant and we have dimT =
dimX , dim π2(T ) = dimX − r ≥ 1. Because k ( k(T )F |T and π1 ◦ F |T = f ◦ π2,
we conclude the proof by Lemma 4.3. �

Theorem 4.9. Assume that char k = p > 0 and tr.d.Fp
k ≥ 1. Let f : X → X be

an automorphism of a projective surface. Then (X, f) satisfies the ZDO property.

Proof of Theorem 4.9. By [41], there is a minimal desingularization π : X ′ →
X . Then one may lift f to an automorphism f ′ of X ′. Easy to see that (X, f)
satisfies the ZDO property if and only if (X ′, f ′) satisfies the ZDO property. After
replacing (X, f) by (X ′, f ′), we may assume that X is smooth. By Theorem 1.11,
we may assume that λ1(f) = 1. Let L be an ample line bundle on X .
If ((fn)∗L · L), n ≥ 0 is unbounded, by Gizatullin [33], there is a surjective

morphism π : X 99K C to a smooth projective curve C and an automorphism
fC : C → C such that fC ◦ π = π ◦ f. 1 After replacing π : X 99K C by a minimal
resolution of π, we may assume that π is a morphism. There is m ≥ 1 such that
fm
C = id, we have k ( π∗(k(C)fC) ⊆ k(X)f .
Now we may assume that ((fn)∗L · L), n ≥ 0 is bounded. We conclude the

proof by Proposition 4.8. �

5. Ergodic theory

Let X be a variety over k. Denote by |X| the underling set of X with the
constructible topology i.e. the topology on a X generated by the constructible
subsets. This topology is finer than the Zariski topology on X. Moreover |X| is
(Hausdorff) compact. Denote by η the generic point of X .

Using the Zariski topology, on may define a partial ordering on |X| by x ≥ y
if and only if y ∈ x. The noetherianity of X implies that this partial ordering

1In [33], there is an assumption that chark 6= 2, 3. But, it is checked in [15] that such
assumption in [33] can be removed.
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satisfies the descending chain condition: for every chain in |X|,

x1 ≥ x2 ≥ . . .

there is N ≥ 1 such that xn = xN for every n ≥ N. For every x ∈ |X|, the Zariski

closure of x in X is Ux := {x} = {y ∈ |X|| y ≤ x} which is open and closed in
|X|.

Let M(X) be the space of Radon measure on X endowed with the weak-∗
topology and M1(|X|) be the space of probability Radon measure on |X|. Note
that M1(|X|) is compact.

Proof of Theorem 1.12. We claim that for every Radon measure µ on |X| with
µ(|X|) > 0, there exists x ∈ X such that µ(x) > 0.

Then for every Radon measure µ on |X|, set S(µ) := {x ∈ |X|| µ(x) > 0}.
Then S(µ) is at most countable and we have c :=

∑
x∈S(µ) µ(x) ∈ (0, µ(|X|)]. If

c = µ(|X|), then we have µ =
∑

x∈S(µ) µ(x)δx, which concludes the proof. Assume

that c < µ(|X|), set

α := µ−
∑

x∈S(µ)

µ(x)δx.

Then α is a Radon measure with α(|X|) = µ(|X|)− c > 0 and S(α) = ∅. This
contradicts our claim.

Now we only need to prove the claim.

Lemma 5.1. For x ∈ |X|, if µ(Ux) > 0 and µ(x) = 0, then there exists y ∈
Ux \ {x} such that µ(Uy) > 0.

Now assume that for every x ∈ |X|, µ(x) = 0. Since |X| = ∪x∈XUx and |X|
is compact, there exists a finite subset F of |X| such that |X| = ∪x∈FUx. Then
there exists x0 ∈ F such that µ(Ux0) > 0. Since µ(x0) = 0 by the assumption, by
Lemma 5.1, we get a sequence of points xi, i ≥ 0, xi > xi+1 such that µ(Uxi

) >
0, µ(xi) = 0. This contradicts the descending chain condition. �

Proof of Lemma 5.1. Observe that Ux \ {x} is open and µ(Ux \ {x}) > 0. Since µ
is Radon, there exists a compact subset K ⊆ Ux \ {x} such that µ(K) > 0. Since
K ⊆ ∪z∈KUz, there exists a finite set x1, . . . , xm in K such that K ⊆ ∪m

i=1Uxi
.

Since
∑m

i=1 µ(Uxi
) ≥ µ(K) > 0, there exists some 1 ≤ i ≤ m such that µ(Uxi

) > 0.
Set y := xi, we concludes the proof. �

Proof of Corollary 1.14. Let xn ∈ X, n ≥ 0 be a sequence of points.
We first assume that xn ∈ X, n ≥ 0 is generic. Because M1(|X|) is compact,

we only need to show that for every subsequence with limi→∞ δxni
= µ, we have

µ = δη. By Theorem 1.12, we may write

µ =
m∑

i≥0

aiδxi
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where m ∈ Z≥0 ∪ {∞}, xi are distinct points, ai > 0 and
∑

i≥0 ai = 1. If µ 6= δη,

we may assume that x0 6= η. Then V := {x0} is a closed proper subvariety of X.
Then we have

1V (xni
) =

∫
1V δxni

→

∫
1V µ > a0

as n → ∞. So xni
∈ V for all but finitely many i, which is a contradiction.

Now assume that limn→∞ δxn
= δη. For every subsequence xni

, i ≥ 0 and every
closed proper subvariety V of X,

lim
i→∞

1V (xni
) = lim

i→∞

∫
1V δxni

=

∫
1V δη = 0.

So xni
6∈ V for all but finitely many i. So xni

is Zariski dense in X . �

5.1. DML problems. Let f : X 99K X be a dominant rational self-map. Set
|X|f := |X| \ (∪i≥1I(f

i)). Because every Zariski closed subset of X is open and
closed in the constructible topology, |X|f is a closed subset of |X|. The restriction
of f to |X|f is continuous. We still denote by f this restriction.

Denote by P(X, f) the set of f -periodic points in |X|f . Theorem 1.12 implies
directly the following lemma.

Lemma 5.2. If µ ∈ M1(|X|f) with f∗µ = µ, then there are xi ∈ P(X, f), i ≥ 0
and ai ≥ 0, i ≥ 0 with

∑
i=0 ai = 1 such that

µ =
∑

i≥0

ai
#Of (y)

(
∑

y∈Of (xi)

δy)

Now we prove Theorem 1.16 and Theorem 1.17.

Proof of Theorem 1.16. Let x be a points ∈ Xf(k) with Of(x) = X. Let V be a
proper subvariety of X . Consider a sequence of intervals In, n ≥ 0 in Z≥0 with
lim
n→∞

#In = +∞. For every n ≥ 0, set µn := (#In)
−1(

∑
i∈In

δf i(x)) ∈ M1(|X|f).

Because
#({n ≥ 0| fn(x) ∈ V } ∩ In)

#In
=

∫
1V µn,

we only need to show that

(5.1) lim
n→∞

µn = δη.

Because M1(|X|) is compact, we only need to show that for every convergence
subsequence µni

, i ≥ 0, µni
→ δη as i → ∞. Set µ := limn→∞ µni

. We have

f∗µ = lim
n→∞

f∗µni
= lim

i→∞
µni

+ lim
i→∞

(#Ini
)−1(δfmax Ini

+1(x) − δfmin Ini (x))

= lim
i→∞

µni
= µ.

For every y ∈ P(X, f) \ {η}, Uy is open and closed in |X|f . Then

Y := |X|f \ (∪y∈P(X,f)Uy)

is an f -invariant closed proper subset of |X|f . Because Of(x) = X, x ∈ Y . So for
every n ≥ 0, Suppµn ⊆ Y. Because Y ∩ P(X, f) = {η}, Lemma 5.2 shows that
µ = δη. �
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Proof of Theorem 1.17. Let xn ∈ Xf(k), n ≤ 0 be a sequence of points such that

{xn, n ≤ 0} = X and f(xn) = xn+1 for all n ≤ −1. Consider a sequence of
intervals In, n ≥ 0 in Z≤0 with lim

n→∞
#In = +∞. For n ≥ 1, define xn := fn(x0).

For every n ≥ 0, set µn := (#In)
−1(

∑
i∈In

δxi
) ∈ M1(|X|f). As the proof of

Theorem 1.16, we only need to show

(5.2) lim
n→∞

µn = δη.

Because M1(|X|) is compact, we only need to show that for every convergence
subsequence µni

, i ≥ 0, µni
→ δη as i → ∞. Set µ := limn→∞ µni

. We have

f∗µ = lim
n→∞

f∗µni
= lim

i→∞
µni

+ lim
i→∞

(#Ini
)−1(δxmax In+1+1

− δxmin In+1+1
)

= lim
i→∞

µni
= µ.

For every y ∈ P(X, f) \ {η}, Uy ∩ {xi, i ≤ 0} is finite. Otherwise {xi, i ≤ 0} ⊆
∪z∈Of (y)Uz is not Zariski dense in X. This implies that µ(Uy) = limi→∞ µni

(Uy) =
0. So Suppµ ⊆ Y := |X|f \ (∪y∈P(X,f)Uy). Because Y ∩ P(X, f) = {η}, Lemma
5.2 shows that µ = δη. �

5.2. Functoriality. Assume that f : X → X is a flat and finite endomorphism.
Because the image by f of every constructible subset is constructible, f is open
w.r.t the constructible topology. Moreover, for every x ∈ X , f(Ux) = Uf(x).

Denote by C(|X|) the space of continuous R-valued functions on |X| with the
L∞ norm ‖ · ‖. For every φ ∈ C(|X|), define f∗φ to be the function

x ∈ |X| 7→ f∗φ :=
∑

y∈f−1(x)

mf (y)φ(y).

The following Lemma shows that f∗ is a bounded linear operator on C(|X|).

Lemma 5.3. For every φ ∈ C(|X|), f∗φ is continuous and ‖f∗φ‖ ≤ df‖φ‖.

Proof. By [31, Proposition 2.8], for every x ∈ |X|, there is an open subset Vx ⊆ Ux

containing x such that Vx = f−1(f(Vx)) ∩ Ux and for every y ∈ f(Vx),

mf(x) =
∑

z∈f−1(y)∩Vx

mf (z).

Because {x} = f−1(f(x)) ∩ Ux, such Vx can be taken arbritarily small.

Because φ ∈ C(|X|), for every x ∈ |X| and r > 0, there is an open subset V r
x

containing x such that for every y ∈ V r
x , |φ(y)− φ(x)| < r.

Let w be a point in |X|. There are open neighborhoods Oy of y ∈ f−1(w),
such that for distinct y1, y2 ∈ f−1(w), Oy1 ∩ Oy2 = ∅. For every r > 0, and

y ∈ f−1(w), we may take Vy as in the first paragraph such that Vy ⊆ Oy ∩ V
r/df
y .

Then W r
w := ∩y∈f−1(w)f(Vy) is an open set containing w. For every x ∈ W r

w and
distinct y1, y2 ∈ f−1(w), we have

(f−1(x) ∩ Vy1) ∩ (f−1(x) ∩ Vy2) = ∅.
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Since

df =
∑

z∈f−1(x)

mf (z) ≥
∑

y∈f−1(w)

∑

z∈f−1(x)∩Vy

mf (x) =
∑

y∈f−1(w)

mf(y) = df ,

we have

f−1(x) = ⊔y∈f−1(w)(f
−1(x) ∩ Vy).

Then we get

|f∗φ(x)− f∗φ(w)| ≤
∑

y∈f−1(w)

|mf(y)φ(y)−
∑

z∈Vy∩f−1(x)

mf (z)φ(z)|

≤
∑

y∈f−1(w)

∑

z∈Vy∩f−1(x)

mf(z)|φ(y)− φ(z)| <
∑

y∈f−1(w)

∑

z∈Vy∩f−1(x)

mf(z)r/df = r.

So f∗φ is continuous. Moreover for every x ∈ |X|

f∗φ(x) = |
∑

y∈f−1(x)

mf (x)φ(y)| ≤
∑

y∈f−1(x)

mf(x)‖φ‖ = df‖φ‖,

which concludes the proof. �

Now one may define the pullback f ∗ : M(|X|) → M(|X|) by the duality: for
every µ ∈ M(|X|) and φ ∈ C(|X|),

∫
φ(f ∗µ) =

∫
(f∗φ)µ.

In particular, f ∗µ(|X|) = dfµ(|X|). The pullback f ∗ : M(|X|) → M(|X|) is
continuous w.r.t. the weak-∗ topology on M(|X|) and one may check that for
every x ∈ |X|,

f ∗δx =
∑

y∈f−1(x)

mf(y)δ(y).

5.3. Backward orbits. Assume that f : X → X is a flat and finite endomor-
phism. In particular, f is surjective. The aim of this section is to prove Theorem
1.18, 1.20 and 1.22.

Let TP (X, f) be the point x ∈ |X| such that ∪n≥0f
−n(x) is finite. It is

clear that f ∗TP (X, f) ⊆ TP (X, f). For x ∈ TP (X, f), since f : ∪n≥1f
−n(x) →

∪n≥0f
−n(x) is surjective, it is bijective. So x is periodic. Then f−1(TP (X, f)) =

TP (X, f) and for every x ∈ TP (X, f), f−1(x) is a single point. For the simplicity,
we still denote by f−1(x) the unique points in it.
For every x ∈ TP (X, f), f−1(Ux) = ∪y∈f−1(x)Uf−1(y). Then

Y := X \ ∪x∈TP (X,f)\{η}Ux

is a closed subset of |X| such that f−1(Y ) = f(Y ) = Y. It is clear that Y is

exactly the subset of x ∈ |X| such that ∪i≥0f−i(x) = X.

Lemma 5.4. For µ ∈ M(|X|) supported in Y , if d−1
f f ∗µ = µ, then µ = δη.
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Proof. Assume that µ 6= δη. We may assume that µ(η) = 0. Otherwise, we may
replace µ by µ− µ(η)δη. By Theorem 1.12, one may write

µ =

m∑

i=0

aiδxi

where m ∈ Z≥0 ∪ {∞}, xi are distinct points in Y \ {η}, ai > 0 and
∑

i≥0 ai = 1.
We have

µ = d−1
f f ∗µ =

m∑

i=0

∑

y∈f−1(x)

aimf(y)

df
δy.

Terms in the right hand side have distinct supports.
Assume that ai is decreasing. We claim that for every i, f−1(xi) is a single

point. Otherwise, pick l minimal such that f−1(xl) is not a single point. Assume
that s ≥ 0 is maximal such that al+s = al. Think µ as a function µ : |X| → [0, 1]
sending x to µ(x). We have µ−1(al) = s+ 1. On the other hand

(d−1
f f ∗µ)−1(al) = {i = l, . . . , l + s| f−1(xi) is a single point} ≤ s,

which is a contradiction. Then we get µ =
∑m

i=0 aiδf−1(xi). Because for every
r > 0, {i = 0, . . . , m| ai ≥ r} is finite, all xi, i = 0, . . . , m are contained in
TP (X, f) ∩ (Y \ {η}) = ∅. We get a contradiction. �

Proof of Theorem 1.18. Let x be a point in X(k) with ∪i≥0f−i(x) = X. Let
In, n ≥ 0 be a sequence of intervals in Z≥0 with limn→∞#In = +∞. Set

µn :=
1

#In
(
∑

i∈In

d−i
f (f i)∗δx) ∈ M1(|X|).

Because M1(|X|) is compact, only need to show that for every convergence sub-
sequence µni

, i ≥ 0, µni
→ δη as i → ∞. Set µ := limn→∞ µni

.
Then

f ∗µ = lim
i→∞

f ∗µni
= lim

i→∞

1

#In
(
∑

j∈Ini

d−j
f (f j+1)∗δx)

lim
i→∞

dfµni
+ lim

i→∞

df
#In

(d
−max Ini

−1

f (fmax Ini
+1)∗δx − d

−min Ini

f (fmin Ini )∗δx)

Because d
−max Ini

−1

f (fmax Ini
+1)∗δx(|X|) = d

−min Ini

f (fmin Ini )∗δx(|X|) = 1, we get

f ∗µ = lim
i→∞

dfµni
= dfµ.

Because x ∈ Y , for every n ≥ 0, Supp µn ⊆ Y. So µ ⊆ Y. We conclude the proof
by Lemma 5.4. �

Proof of Theorem 1.20. Assume that k(X)/f ∗k(X) is separable. Let x ∈ X(k)

be a point with ∪i≥0f−i(x) = X. Pick c ∈ (0, 1] Because

#fn(x) ≤
∑

y∈f−n(x)

mfn(y) = dnf ,
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we have

lim sup
n→∞

(Sn
c )

1/n ≤ lim sup
n→∞

#fn(x)1/n ≤ df .

We now prove the inequality in the other direction.

By [31, Theorem 2.1] and [31, Proposition 2.3], there is a proper Zariski closed
subset R of X , such that for every y ∈ X(k) \R, mf (y) = 1. Set

µn :=
1

n
(

n∑

i=1

d−i
f (f i)∗δx) ∈ M1(|X|).

By Theorem 1.18,

(5.3) lim
n→∞

µn = δη.

Set D := {1, . . . , df}. Let Ω := ⊔n≥0D
n be the set of words in D of finite

length. In particular D0 = {∅}. By induction, one may define a map

φ : Ω → ⊔n≥0f
−n(x) ⊆ ⊔n≥0X

such that

(i) θ(Dn) = f−n(x), in particular φ(∅) = x.
(ii) for every word w1 . . . wn ∈ Dn, n ≥ 1,

θ(w1 . . . wn−1) = f(θ(w1 . . . wn));

(iii) for every y ∈ f−n−1(x) and w1 . . . wn ∈ Dn satisfying θ(w1 . . . wn) = f(y),

#{w ∈ D| θ(w1 . . . wnw) = y} = mf (y).

By [31, Proposition 2.5], for every y ∈ f−n−1(x), mfn+1(y) = mfn(f(y))mf(y).
This implies that for every y ∈ f−n(x),

#{ω ∈ Dn| θ(ω) = y} = mfn(y).

Define a function A : Ω → (0, 1] by

A : ω ∈ Dn 7→ mfn(θ(ω))−1.

We have

(i)
∑

ω∈Dn A(ω) = #f−n(x);
(ii) for every w1 . . . wn+1 ∈ Dn+1,

A(w1 . . . wn+1) = mf (θ(w1 . . . wn+1))
−1A(w1 . . . wn).

We have A(∅) = 1 and

A(w1 . . . wn+1) ≥ d
−1R(θ(w1...wn+1))
f A(w1 . . . wn).

Then we have
∏

ω∈Dn+1

A(ω) =
∏

ω∈Dn

∏

w∈D

A(ωw) ≥
∏

ω∈Dn

∏

w∈D

d
−1R(θ(w1...wn+1))
f A(ω)

= (
∏

ω∈Dn+1

d
−1R(θ(ω))
f )(

∏

ω∈Dn

A(ω))df = d
−
∫
1R(fn+1)∗δx

f (
∏

ω∈Dn

A(ω))df .
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Set Bn := logdf
∏

ω∈Dn A(ω). We get

Bn+1/d
n+1
f ≥ −d−n−1

f

∫
1R(f

n+1)∗δx +Bn/d
n
f .

Then we get

Bn/d
n
f ≥

n∑

i=1

−d−i
f

∫
1R(f

i)∗δx = −n

∫
1Rµn.

For every n ≥ 0, pick En ⊆ f−n(x), such that
∑

y∈En

mfn(y) ≥ cdnf

and #En = Sn
c . So

#θ−1(En) =
∑

y∈En

mfn(y) ≥ cdnf .

By Inequality of arithmetic and geometric means, we have

Sn
c =

∑

ω∈θ−1(En)

A(ω) ≥ #θ−1(En)(
∏

ω∈θ−1(En)

A(ω))
1

#θ−1(En)

≥ cdnf (
∏

ω∈θ−1(En)

A(ω))
1

cdn
f ≥ cdnf (

∏

ω∈Dn

A(ω))
1

cdn
f

= cd
n+Bn/cdnf
f ≥ cd

n(1−c−1
∫
1Rµn)

f .

So (Sn
c )

1/n ≥ c1/nd
1−

∫
1Rµn

f . By Equality 5.3,

lim inf
n≥0

(Sn
c )

1/n ≥ df ,

whcih concludes the proof. �

Proof of Theorem 1.22. Set dX := dimX. Assume that k(X)/f ∗k(X) is separa-
ble and

λdimX(f) > max
1≤i≤dimX−1

λi.

Let x be a point in X(k) with ∪i≥0f−i(x) = X.

We first show that for every irreducible subvariety V of X of dimV = dV < dX ,

(5.4) lim sup
n→∞

#(f−n(x) ∩ V )1/n ≤ λdV .

Let Y be a normal and projective variety containing X as an Zariski dense open
subset. Let Z be the Zariski closure of V inW. Let IZ be the ideal sheaf associated
to Z. Let H be a very ample divisor on Y such that O(H)⊗ IZ is generated by
global sections.
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For every n ≥ 0, consider the following commutative diagram

Γn

πn
1
��

πn
2

$$❏
❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

Y
fn

//❴❴❴❴❴ Y

where πn
1 is birational and it is an isomorphism aboveX. There areH1, . . . , HdX−dV ∈

|H| such that the intersection of H1, . . . , HdX−dV is proper, V is an irreducible

component of ∩dX−dV
i=1 Hi and V is the unique irreducible component meeting

f−n(x) ∩ V. Take H ′
1, . . . , H

′
dV

general in those elements of |H| containing x.
Then the intersection of H ′

1, . . . , H
′
dV

and f(V ) at x is proper. Since f is finite,
the intersection of f ∗(H ′

1), . . . , f
∗H ′

dV
and V is proper at every y ∈ f−n(x) ∩ V.

We have

(πn
1 )

−1(f−n(x) ∩ V ) ⊆ (∩dX−dV
i=1 (πn

1 )
∗Hi) ∩ (∩dV

i=1(π
n
2 )

∗H ′
i),

and every point y ∈ (πn
1 )

−1(f−n(x)∩V ) is isolated in (∩dX−dV
i=1 (πn

1 )
∗Hi)∩(∩

dV
i=1(π

n
2 )

∗H ′
i).

By [36, Lemma 3.3],

(HdX−dV · (fn)∗HdV ) = ((πn
1 )

∗H1 · · · · · (π
n
1 )

∗HdX−dV · (πn
2 )

∗H ′
1 · · · · · (π

n
2 )

∗H ′
dV
)

≥ #(πn
1 )

−1(f−n(x) ∩ V ) = #(f−n(x) ∩ V ).

Then we get

lim sup
n→∞

#(f−n(x) ∩ V )1/n ≤ lim
n→∞

(HdX−dV · (fn)∗HdV )1/n = λdV .

Now we only need to show

lim
n→∞

d−n
f (fn)∗δx = δη.

Because M1(|X|) is compact, only need to show that for every convergence subse-
quence d−ni

f (fni)∗δx, i ≥ 0, limi→∞ d−ni

f (fni)∗δx = δη. Set µ := limi→∞ d−ni

f (fni)∗δx.
By Theorem 1.12, we may write

µ =
m∑

i≥0

aiδxi

where m ∈ Z≥0 ∪ {∞}, xi are distinct points, ai > 0 and
∑

i≥0 ai = 1. Assume

that µ 6= δη. Then we may assume that a0 > 0 and x0 6= η. Set r := {x0} < dX .
Then ∫

1Ux0
µ ≥

∫
1Ux0

a0δx0 = a0.

Pick c ∈ (0, a0). Then there is N ≥ 0 such that for every i ≥ N ,
∑

y∈f−ni (x)∩{x0}
mfni (y)

dni

f

=

∫
1Ux0

d−ni

f (fni)∗δx ≥ c.
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So
∑

y∈f−ni (x)∩{x0}
mfni (y) ≥ cdni

f , then #(f−ni(x) ∩ {x0}) ≥ Sni
c . By Theorem

1.20 and Inequality 5.4, we get

df > λr ≥ lim sup
i→∞

(#(f−ni(x) ∩ {x0}))
1/ni ≥ lim inf

i→∞
(Sni

c )1/ni = df ,

which is a contradiction. �

5.4. Berkovich spaces. In this section, k is a complete nonarchimedean valued
field with norm | · |. See [12] and [13] for basic theory of Berkovich spaces.
Let X be a variety over k. Recall that, as a topological space, Berkovich’s

analytification of X is

Xan := {(x, | · |x)| x ∈ X, | · |x is a norm on κ(x) which extends | · | on k},

endowed with the weakest topology such that

(i) τ : Xan → X by (x, | · |x) 7→ x is continuous;
(ii) for every Zariski open U ⊆ X and φ ∈ O(U), the map |φ| : τ−1(U) →

[0 +∞) sending (x, | · |x) to |φ|x is continuous.

Let M(Xan) be the space of Radon measures on Xan and let M1(Xan) be the
space of probability Radon measures on Xan.

5.5. Trivial norm case. Assume that | · | is the trivial norm.
For every x ∈ X , let | · |x,0 be the trivial norm on κ(x). Then we have an

embedding σ : X → Xan sending x ∈ X to (x, | · |x,0). We have τ ◦ σ = id. One
may check that the constructible topology on X is exact the topology induced
by the topology on Xan and the embedding σ. Because |X| is compact, σ(X) is
closed in Xan and σ : |X| → σ(|X|) is a homeomorphism.

Remark 5.5. We note that, if X is endowed with the constructible topology,
τ : Xan → |X| is no longer continuous.

Using the embedding σ, Corollary 1.14 can be translated to a statement on
Xan.

Corollary 5.6 (=Corollary 1.14). A sequence xn ∈ X, n ≥ 0 is generic if and
only if in M(Xan)

lim
n→∞

δσ(xn) = δσ(η).

Let f : X → X be a finite flat morphism. It induces a morphism f an : Xan →
Xan. We have

f an ◦ σ = σ ◦ f and τ ◦ f an = f ◦ τ.

According to [31, Lemma 6.7], there is a natural pullback f an∗ : M(Xan) →
M(Xan). One may check that the following diagram is commutative.

M(|X|)

σ∗

��

f∗

// M(|X|)

σ∗

��

M(Xan)
fan∗

// M(Xan)

Then we may translate Theorem 1.22 to a statement on Xan.
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Theorem 5.7 (=Theorem 1.22). Let f : X → X be a flat and finite endomor-
phism of a quasi-projective variety. Assume that

(5.5) df := λdimX(f) > max
1≤i≤dimX−1

λi.

If the field extension k(X)/f ∗k(X) is separable, then for every x ∈ X(k) with

∪i≥0f−i(x) = X,
lim
n→∞

d−n
f (fn)∗δσ(x) = δσ(η).

5.6. Reduction. Let k◦ be the valuation ring of k and k◦◦ the maximal ideal of

k◦. Set k̃ := k◦/k◦◦ the residue field of k. Let X be a flat projective scheme over

k◦. Denote by X0 its special fiber, it is a (maybe reducible) variety over k̃. Let
X be the generic fiber of X . Let Y1, . . . , Ym be the irreducible components of X0

and ηi, i = 1, . . . , m the generic points of Yi. Set ξi the unique point in red−1(ηi).

Denote by red : Xan → X0 the reduction map. It is anti-continuous i.e. for
every Zariski open subset U of X0, red

−1(U) is closed. In particular, for con-
structible topology on X0, red : Xan → |X0| Borel measurable.

For every µ ∈ M(Xan), we may define its push forward red∗µ ∈ M(|X0|) as
follows: For every φ ∈ C(|X0|),∫

φ red∗µ :=

∫
(red∗φ)µ.

Because red∗φ is Borel measurable and bounded,
∫
(red∗φ)µ is well defined and

we have |
∫
(red∗φ)µ| ≤ ‖φ‖∞µ(Xan). We note that, in general, red∗ : M(Xan) →

M(|X0|) is not continuous.

Example 5.8. Let X = PN
k◦ . Let xn, n ≥ 0 be the Gauss point of the polydisc

{|Ti| ≤ 1 − 1/(n + 2), i = 1, . . . , N} ⊆ (AN)an ⊆ (PN)an. We have δxn
→ ξ1 as

n → ∞, but for every n ≥ 0,

red∗δxn
= δred(xn) = δ[1:0:···:0] 6= δη1 = red∗δξ1 .

Proposition 5.9. Let µn ∈ M1(Xan), n ≥ 0 be a sequence of probability Radon
measures on Xan. Assume that there are ai ≥ 0, i = 1, . . . , m with

∑m
i=1 ai = 1

such that

red∗(µn) →
m∑

i=1

aiδηi

as n → ∞. Then we have

µn →
m∑

i=1

aiδξi

as n → ∞.

Proof. Because Xan is compact, M1(Xan) is weak-∗ compact. So we may assume
that

lim
n→∞

µn = µ

for some µ ∈ M1(Xan). We first show that Supp µ ⊆ {ξ1 . . . , ξm}. Otherwise
µ(Xan \ {ξ1 . . . , ξm}) = 1. Then there is a compact subset K of Xan \ {ξ1 . . . , ξm}
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such that µ(K) > 0. For every x ∈ K, set Vx := red−1(red(x)). It is an open
neighborhood of x in Xan\{ξ1 . . . , ξm}. Because K is compact, there is one x ∈ K

such that µ(Vx) > 0. Set Z := red(x). There is a compact subset S ⊆ Vx such that
µ(S) > 0. By Urysohn’s Lemma, there is a continuous function χ : Xan → [0, 1]
such that χ|S = 1 and χ|Xan\Vx

= 0. Then we have

0 = lim
n→∞

∫
1Z red∗µn = lim

n→∞

∫
(red∗1Z)µn = lim

n→∞

∫
1Vx

µn

≥ lim
n→∞

∫
χµn =

∫
χµ ≥ µ(S) > 0,

which is a contradiction.
Now we may write µ =

∑m
i=1 biδξi with bi ≥ 0 and

∑m
i=1 bi = 1. For each

i = 1, . . . , m, set Ui := Zi \ (∪j 6=iZj). Then red−1(Ui) is a closed subset contained
in the open subset red−1(Zi). By Urysohn’s Lemma, there is a continuous function
χi : X

an → [0, 1] such that χ|red−1(Ui)
= 1 and χ|Xan\red−1(Zi)

= 0. Then we have

bi =

∫
χiµ = lim

n→∞

∫
χiµn

≥ lim
n→∞

µn(red
−1(Ui)) = lim

n→∞

∫
1Ui

red∗µn

=

∫
1Ui

(

m∑

j=1

ajδηj ) = ai.

Because
∑m

i=1 bi =
∑m

i=1 ai = 1, we get bi = ai for every i = 1, . . . , m. This
concludes the proof. �

Now assume thatX0 is irreducible and smooth. Denote by η the generic point of
X0 and ξ the unique point in red−1(η). Let F : X → X be a finite endomorphism.
Denote by f, f0 the restriction of F to X,X0. We note that for i = 0, . . . , dimX ,
one has λi(f) = λi(f0).

By Theorem 1.22 and Proposition 5.9, we get the following equidistribution
result for endomorphisms of good reductions.

Corollary 5.10. Assume that

df := λdimX(f) > max
1≤i≤dimX−1

λi.

If the field extension k̃(X0)/f
∗
0 k̃(X0) is separable, then for every x ∈ X(k) with

∪i≥0f
−i
0 (redx) = X0,

lim
n→∞

d−n
f (fn)∗δx = δξ.

One may compare Corollary 5.10 with [31, Theorem A] for polarized endomor-
phism. See [35, 20] for according result for complex topology.
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