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Abstract. We investigate to what extent a minimal topological dynamical system is uniquely determined

by a set of return times to some open set. We show that in many situations this is indeed the case as

long as the closure of this open set has no non-trivial translational symmetries. For instance, we show that

under this assumption two Kronecker systems with the same set of return times must be isomorphic. More

generally, we show that if a minimal dynamical system has a set of return times that coincides with a set

of return times to some open set in a Kronecker system with translationarily asymmetric closure, then that

Kronecker system must be a factor. We also study similar problems involving Nilsystems and polynomial

return times. We state a number of questions on whether these results extend to other homogeneous spaces

and transitive group actions, some of which are already interesting for finite groups.

1. Introduction

We study the question of whether knowing the exact times a point in an unknown dynamical system enters

an open set is enough to determine the system. In this paper, a topological dynamical system is a pair (X,T )

where X is a compact metric space with metric d (all metrics will be refered to as d even for different spaces

if no ambiguity arises) and T : X → X is a homeomorphism. Recall that (X,T ) is minimal if for all x0 ∈ X
the orbit TZx0 = {Tnx0 | n ∈ Z} is dense and is transitive if some orbit is dense. If x0 ∈ X and U ⊂ X is

an open set then we can define the set of return times

R(X,T )(x0, U) = {n ∈ Z | Tnx0 ∈ U}.

Thus our question may now be stated as follows: Given two minimal topological dynamical systems (X1, T1)

and (X2, T2) with x1 ∈ X1, x2 ∈ X2 and U1 ⊂ X1, U2 ⊂ X2 open such thatR(X1,T1)(x1, U1) = R(X2,T2)(x2, U2),

then is it necessarily true that (X1, T1) and (X2, T2) are isomorphic? If so, is there an isomorphism mapping

x1 to x2?

Recall that an isomorphism φ : (X1, T1) → (X2, T2) is a homeomorphism φ : X1 → X2 such that φ ◦ T1 =

T2 ◦ φ. One can contrast this to the Taken’s Reconstruction Theorem [6] as well as recent developments

[2] where one instead is given a system (X,T ) where the dimension of X is d and asks whether the delay

observation mapping X → [0, 1]2d+1 given by x 7→ (h(x), h(Tx), . . . , h(T 2d+1x)) is injective for some generic

continuous h : X → [0, 1]. Thus our question can instead be posed as asking to what extent the mapping

(X,T, x0, U) 7→ (1U (Tnx0))n∈Z

is injective up to isomorphism.

1.1. Reconstructing Kronecker Systems. Let us now start with some motivating examples where no

such isomorphism exists.

1

ar
X

iv
:2

10
7.

03
63

1v
2 

 [
m

at
h.

D
S]

  2
3 

Ju
l 2

02
1



2 KAMIL BULINSKI AND ALEXANDER FISH

Example 1.1. Let X1 = X2 = T = R/Z and suppose α ∈ T is irrational. Let

U1 = U2 = (−ε, ε) ∪ (−ε+
1

2
, ε+

1

2
) ⊂ T.

Then for each n ∈ Z we have that nα ∈ U1 if and only if n(α + 1
2 ) ∈ U2. However, the minimal systems

(T, x 7→ x+ α) and (T, x 7→ x+ α+ 1
2 ) are not isomorphic.

Example 1.2. Let X1 = T, X2 = T2, α1 =
√

2 ∈ T and α2 = (
√

2,
√

3) ∈ T2. Let U1 ⊂ T be any non-empty

proper open subset and let U2 = U1×T. Then clearly nα1 ∈ U1 if and only if nα2 ∈ U2. Yet X1 and X2 are

not even homeomorphic.

These two examples highlight that open sets with non-trivial translational symmetries are a source of issues.

For a compact abelian metrizable group (K,+) and A ⊂ K we can define the stabilizer

StabK(A) = {k ∈ K | A+ k = A}.

Note that in our examples above the stabilizers are not trivial; the stabilizer of (−ε, ε) ∪ (−ε + 1
2 , ε + 1

2 ) is

{0, 1
2} while the stabilizer of U1 × T, for U1 ⊂ T non-empty and proper, is the vertical subgroup {0} × T.

Our first main result demonstrates that the only way two non-isomorphic Kronecker systems can yield the

same set of return times is if the closure of one of the defining open sets has a non-trivial stabilizer.

Theorem 1.3. Let (K1,+) and (K2,+) be two compact metrizable abelian groups and suppose that α1 ∈ K1

and α2 ∈ K2 are such that Zαi = Ki for i = 1, 2. Suppose that U1 ⊂ K1 and U2 ⊂ K2 are open sets such

that the stabilizers of their closures are trivial, i.e., StabKi(Ui) = {0}. Then if

{n ∈ Z | nα1 ∈ U1} = {n ∈ Z | nα2 ∈ U2}

then there exists an isomorphism of topological groups (so continuous) K1 → K2 mapping α1 to α2.

Note that if one removes a point not on the trajectory {nαi | n ∈ Z} from Ui then Ui remains open and the

return times and the closures do not change, so it is indeed natural to study the stabilizer of the closure Ui

rather than Ui.

1.2. Detecting Kronecker Factors of Minimal Systems. We now turn our attention to minimal topo-

logical systems. As demonstrated in Example 1.2 if a minimal system has a non-trivial factor, then it shares

a set of return times with it. Of course, this is also the case if one replaces in that example the rotation

(x, y) 7→ (x +
√

2, y +
√

3) with an ergodic skew product such as T2 → T2 : (x, y) 7→ (x +
√

2, x + y). Our

next result shows that essentially the only way a minimal system can share a set of return times with a

Kronecker system is if the latter is a factor of the former.

Theorem 1.4. Let (X,T ) be a minimal topological dynamical system and U ⊂ X be a non-empty open

set and x0 ∈ X. Let (K,+) be a compact metrizable abelian group and α ∈ K such that Zα = K and let

U ′ ⊂ K be a non-empty open set. Suppose that

{n ∈ Z | Tnx0 ∈ U} = {n ∈ Z | nα ∈ U ′}(1)

and that StabK(U ′) = {0}. Then the pointed Kronecker system (K, 0, k 7→ k + α) is a factor of the pointed

system (X,x0, T ), i.e., there is a continuous map φ : X → K with φ(x0) = 0 satisfying

φ(Tx) = φ(x) + α for all x ∈ X.
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Note that Theorem 1.4 immediately implies Theorem 1.3 (apply twice to both Kronecker systems to obtain

two factor maps that are inverses) since an isomorphism of Kronecker systems that preserves the zero elements

is necessarily a group isomorphism. The following example shows that we cannot replace the minimality

assumption with transitivity.

Example 1.5. (Insufficient to assume transitivity instead of minimality) Let X ⊂ [−1, 1] be the set X =

{xn | n ∈ Z ∪ {−∞,∞}} where x±∞ = ±1 and for n ∈ Z,

xn =


−1 + 1

|n| n < 0

0 n = 0

1− 1
n n > 0

Thus X is closed and all xn with n ∈ Z are isolated points. So we have a homeomorphism T : X → X

mapping xn to xn+1 and fixing x±∞. Hence it is transitive (all xn with n ∈ Z have dense orbits) but not

minimal. Now U = {xn | n ∈ 2Z} is open and the return times set 2Z = {n ∈ Z | Tnx0 ∈ U} is also equal to

{n ∈ Z | nα ∈ U ′} where U ′ = {0} ⊂ K = Z/2Z is open and α = 1 ∈ K. But there is no factor π from (X,T )

to the Kronecker system (K, k 7→ k + 1) as it would yield the contradiction π(x∞) = π(Tx∞) = π(x∞) + 1.

1.3. Return times along a polynomial sequence. We recall the following result which follows imme-

diately from the Polynomial Weyl Equidistribution [7] and the fact that connected compact abelian groups

have no non-trivial characters with finite image.

Proposition 1.6. Let K be a connected compact abelian group and suppose that P (x) ∈ Z[x] is a

non-constant polynomial. If α ∈ K is such that Zα = K then P (Z)α = {P (n)α | n ∈ Z} is dense in K.

Given this, it is natural to ask whether we can extend Theorem 1.3 to the case where we only know the set

of return times inside a polynomial sequence, i.e., the set {n | P (n)α ∈ U}. The next result shows that this

is indeed the case.

Theorem 1.7. Let K1 and K2 be compact connected abelian groups and suppose that αi ∈ Ki with

Zαi = Ki. Let P (x) ∈ Z[x] be a polynomial with P (0) = 0. Let Ui ⊂ Ki be non-empty open sets and let

Ri = {n ∈ Z | P (n)αi ∈ Ui}. If R1 = R2 and StabK1
(U1) = {0} and StabK2

(U2) = {0} then there exists an

isomorphism K1 → K2 (of topological groups, so continuous) mapping P (n)α1 to P (n)α2 for each n ∈ Z.

In particular, if P (Z) is not contained in any proper subgroup of Z then this isomorphism maps α1 to α2.

Example 1.8. Consider the polynomial P (n) = n5 − n and let α1 =
√

2 ∈ T and α2 =
√

2 + 1
5 ∈ T. Then

for any open set U ⊂ T we have that {n ∈ Z | P (n)α1 ∈ U} = {n ∈ Z | P (n)α2 ∈ U} and indeed there is an

isomorphism (the identity map) mapping P (n)α1 to P (n)α2 as they are equal, but there is no isomorphism

mapping α1 to α2.

We remark that it seems that there is no obvious way to extend Theorem 1.4 to polynomial times under the

assumption that X is connected since an example of Pavlov [4] shows that there exists a minimal connected

system (X,T ) such that {Tn2

x0 | n ∈ Z} is not dense for some x0 ∈ X.
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1.4. Return times sets of nilmanifolds. It is natural to try to extend Theorem 1.3 on the return times

in Kronecker systems to other homogeneous spaces such as nilmanifolds. The following is a partial result on

this which establishes that if a Kronecker system (K,+) and a minimal nilsystem (G/Γ, T ) share the same

return times, with the closures of the defining open sets having trivial stabilizers under translations of K

and G respectively, then they must be isomorphic as dynamical systems.

Theorem 1.9. Let X = G/Γ be a nilmanifold, where G is a nilpotent Lie group and Γ ≤ G is a cocompact

discrete subgroup. Suppose that τ ∈ G is such that (X,T ) is minimal, where T : X → X is given by Tx = τx

for x ∈ X. Suppose that U ⊂ X is open and satisfies that StabG(U) := {g ∈ G | gU = U} consists of only

those g ∈ G such that gx = x for all x ∈ X. Now suppose that (K,+) is a compact abelian group and α ∈ K
is such that Zα = K and V ⊂ K is open such that StabK(V ) = {0} and

{n ∈ Z | Tnx0 ∈ U} = {n ∈ Z | nα ∈ V }

for some x0 ∈ X. Then the pointed system (X,x0, T ) is isomorphic to the pointed Kronecker system

(K, 0, k 7→ k + α), i.e., there is a homeomorphism φ : X → K with φ(x0) = 0 satisfying

φ(Tx) = α+ φ(x) for all x ∈ X.

Note that Theorem 1.4 shows that such a continuous map φ exists but does not show that it is a homeo-

morphism (and indeed it may not be without the assumption on StabG(U)). Thus it suffices to show the

existence of an inverse to φ, which will be established in Section 4.

It is interesting to ask whether the same result holds more generally for two nilsystems rather than a nilsystem

and a Kronecker system. Furthermore, one can extend this question to more general homogeneous spaces.

1.5. An explicit reconstruction for Jordan Measurable sets. One way of stating Theorem 1.4 is that

one can uniquely reconstruct a Kronecker system (K,x 7→ x+α), where K is a compact group with Zα = K,

from the set R = {n | nα ∈ U} provided that U is some (unknown) open set with StabK(U) is trivial. If

we further assume that U is Jordan measurable (recall that this means that mK(U) = mK(U) where mK

is the Haar measure) then the following result shows that there is in fact a rather explicit reconstruction of

(K,α) from R. Let U = {z ∈ C | |z| = 1} denote the unit complex numbers.

Theorem 1.10. Let K be a compact abelian group and let α ∈ K be such that Zα = K and suppose

U ⊂ K is a Jordan measurable open set such that StabK(U) is trivial. Let R = {n | nα ∈ U} and let

Λ =

{
λ ∈ U | 1

N

N∑
n=1

λn1R(n) does not converge to 0 as N →∞

}
.

Then Λ = {λ1, λ2, . . .} is countable and there is an injective continuous group homomorphism K → UN

mapping α to ~λ = (λ1, λ2, . . .). In particular, K is isomorphic to the closure of the subgroup generated by ~λ.

Note that this implies Theorem 1.4 in the case where the open sets are Jordan measurable but it is not

difficult to construct examples with U not Jordan measurable where this reconstruction is invalid despite

Theorem 1.4 still guaranteeing the uniqueness of the Kronecker system.
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1.6. Further questions. We now gather some open questions. Our first question asks about a natural

extension of Theorem 1.9 to two nilsystems and more general homogeneous spaces.

Question 1.11. Let X1 = G1/Γ1 and X2 = G2/Γ2 be homogeneous spaces, where Gi are Polish groups

and Γi ≤ Gi are cocompact discrete subgroups. For all i = 1, 2, suppose that Ui ⊂ Xi is an open set with

closure having a trivial stabilizer in the sense that whenever g ∈ G is such that gUi = Ui then gx = x for all

x ∈ Xi. Suppose that τi ∈ Gi are such that (Xi, x 7→ τix) are minimal systems and

{n ∈ Z | τn1 x1 ∈ U1} = {n ∈ Z | τn2 x2 ∈ U2}

for some x1 ∈ X1 and x2 ∈ X2. Then are the systems (X1, x 7→ τ1x) and (X2, x 7→ τ2x) isomorphic (via a

map sending x1 to x2)? If not true in general, is it true if Gi are nilpotent Lie groups?

The next question asks whether one can extend our results on minimal dynamical Z systems to actions of

other groups. It turns out that this seems difficult even without any topology, so we assume full orbits rather

than just dense orbits as follows.

Question 1.12. Suppose that G is a group acting on sets X1 and X2 transitively. Thus there are x1 ∈ X1

and x2 ∈ X2 with Gx1 = X1 and Gx2 = X2. Suppose that U1 ⊂ X1 and U2 ⊂ X2 are subsets with trivial

setwise stabilizer, i.e.,

{g ∈ G | gU1 = U1} = {1} = {g ∈ G | gU2 = U2}.

If {g ∈ G | gx1 ∈ U1} = {g ∈ G | gx2 ∈ U2} then does it mean that the two actions are isomorphic? That

is, does there exist a bijection φ : X1 → X2 such that φ(gx) = gφ(x) for all g ∈ G and x ∈ X1? Does there

exist one mapping x1 to x2?

Using the language of [1] and [5] such group actions satisfying the trivial setwise stabilizer hypothesis are

called 2-distinguishable. This question is already interesting for G finite. In fact, we can simplify this to the

following interesting question, which again is already interesting for finite sets (we will show this equivalence

in Section 6).

Definition 1.13. Let G be a group acting on a set X. We say that U ⊂ X is simple (for this action)

if whenever π : X → X ′ is a factor (i.e., X ′ is a G-set and π : X → X ′ is a surjective map such that

π(gx) = gπ(x) for all g ∈ G, x ∈ X) such that U = π−1(U ′) for some U ′ ⊂ X ′, then π is a bijection

(isomorphism of G-sets). In other words, U is simple if it can not be realised as a preimage of a factor in a

non-trivial way (i.e., the factor is not an isomorphism).

Question 1.14. Let G be a group acting transitively on a set X and suppose that U ⊂ X has trivial setwise

stabilizer, i.e., {g ∈ G | gU = U} consists of only 1 ∈ G. Then is it true that U is simple for this G-action?

In other words, is it true that if B ⊂ 2X is a G-invariant partition of X such that U is a union of elements

in B, then B consists of only singletons?

Acknowledgements: The authors were partially supported by the Australian Research Council grant

DP210100162. They are grateful to Sean Gasiorek and Robert Marangell for interesting discussions.
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2. Bohr Set Return Times of Minimal Systems (Proof of Theorem 1.4)

Proof of Theorem 1.4. Consider the product system (Z, S) where Z = X ×K and S : Z → Z is given by

S(x, k) = (Tx, k + α).

Let Θ = SZz0 be the orbit closure of z0 = (x0, 0) ∈ Z. Let πX : Θ → X and πK : Θ → K denote the

projection maps, which are surjective by the minimality of (X,T ) and (K, k 7→ k + α). Let

H = {h ∈ K | (x0, h) ∈ Θ}.

Claim: H is a closed subgroup of K.

Note that (x0, 0) = z0 ∈ Θ so 0 ∈ H. Now if h, h′ ∈ H then that means (x0, h), (x0, h
′) ∈ Θ and thus there

exists a sequence n1, n2, . . . ∈ Z such that

Sniz0 = (Tnix0, niα)→ (x0, h)

as i → ∞ and another sequence n′1, n
′
2 . . . ∈ Z such that (Tn

′
ix0, n

′
iα) → (x0, h

′). Now fix ε > 0. We may

choose J = J(ε) ∈ N such that1 nJα ≈ε h and choose δ > 0 such that

d(TnJx, x0) < ε whenever d(x, x0) < δ.

Now take I large enough so that d(Tn
′
Ix0, x0) < δ and n′Iα ≈ε h′. Thus d(TnJ+n′

Ix0, x0) < ε and (nJ +

n′I)α ≈2ε h+ h′. As ε > 0 is arbitrary, this means (x0, h+ h′) ∈ SZz0 = Θ, thus h+ h′ ∈ H. Finally, notice

that H is closed (as it is πK(Θ ∩ ({x0} × K))) and so it is a closed non-empty sub-semigroup and thus a

closed subgroup as K is compact.

Now for x ∈ X let Hx = {k ∈ K | (x, k) ∈ Θ}, thus H = Hx0
.

Claim: For each x ∈ X, we have that Hx is a coset of H, i.e., Hx and Hx′ are translates of each other for

all x, x′ ∈ X.

To see this note that by minimality of (X,T ), there exists a sequence n1, n2, . . . ∈ Z such that Tnix → x′

and by compactness we suppose that niα→ αx,x′ ∈ K. It follows that Hx + αx,x′ ⊂ Hx′ . In particular this

means that α0,x + αx,0 ∈ H, so

H + α0,x = H − (α0,x + αx,0) + α0,x = H − αx,0 ⊃ Hx

and thus Hx = H + α0,x is a coset of H as desired.

Claim: H ⊂ StabK(U ′).

To see this suppose that h ∈ H and u′ ∈ U ′. Then by the surjectivity of πK : Θ → K there exists x ∈ X
such that (x, u′) ∈ Θ. Now we may find a sequence n1, n2, . . . ∈ Z such that niα → u′ and Tnix0 → x. So

for large enough i, we have niα ∈ U ′ and thus by the assumption of the equality of return times (1) we have

Tnix0 ∈ U . Since (Tnix0, niα) ∈ Θ we must have that (Tnix0, niα+ h) ∈ Θ as HTnix0
is a coset of H. This

means that, for each fixed i, we may find a sequence m1,m2, . . . ∈ Z such that Smjz0 → (Tnix0, niα + h).

So for large enough j we have that Tmjx0 is so close to Tnix0 ∈ U that Tmjx0 ∈ U and so again by the

equality of return times we have mjα ∈ U ′. But as mjα→ niα+h, we must have that niα+h ∈ U ′. Finally,

as niα → u′ we must have that u′ + h ∈ U ′. Thus as u′ ∈ U ′ is arbitrary we must have that h + U ′ ⊂ U ′

and by continuity of translation h+ U ′ ⊂ U ′. Thus h ∈ StabK(U ′) as claimed.

Now by the assumption that this stabilizer is trivial, we get that H is trivial and thus πX : Θ → X is

injective and hence a homeomorphism. Thus our desired factor is πK ◦ π−1
X : X → K. �

1By this we mean that we have fixed an invariant metric dK on K and we write k ≈ε k′ if dK(k, k′) < ε for k, k′ ∈ K.
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3. Polynomial return times (proof of Theorem 1.7)

3.1. The case of compact connected abelian Lie groups. We now embark on proving Theorem 1.7.

We first prove this for the case where K1 and K2 are compact connected abelian Lie groups, i.e., subgroups

of a finite dimensional torus. We leave the more subtle case of non-Lie groups to the next subsection.

Proposition 3.1. Let K be a compact abelian Lie group with α ∈ K such that Zα is dense in K. Let K0

be the connected component of the identity, thus d = |K/K0| is finite (as K is a compact Lie group). Let

P (x) ∈ Z[x] be a non-constant polynomial with P (0) = 0. Then

P (dZ)α = K0

and

P (Z)α =
⋃
a∈A

(K0 + a)

for some finite set A ⊂ K.

Proof. Note that dk ∈ K0 for all k ∈ K. In particular Zdα ⊂ K0. Let K ′0 = Zdα. Note that K ′0 ⊂ K0 and

it is of finite index in K since

K = Zα =

d−1⋃
m=0

(dZ +m)α =

d−1⋃
m=0

(K ′0 +mα) .

Thus K ′0 is of finite index in K0 as well. But as K0 is connected, we must have that K ′0 = K0. Now let

Q(x) = 1
dP (dx) ∈ Z[x] (as P (0) = 0). From Weyl equidistribution and connectedness of K0 we see that the

sequence Q(1)dα,Q(2)dα,Q(3)dα . . . equidistributes in K0. As Q(n)(dα) = P (dn)α this implies the first

claim that

P (dZ)α = K0.

Now for the second claim, we write

P (Z)α =

d−1⋃
m=0

P (dZ +m)α =

d−1⋃
m=0

Pm(dZ)α+ am

for some non-constant Pm(x) ∈ Z[x] with Pm(0) = 0 and am ∈ K. Thus applying the previous claim to the

Pm we get that Pm(dZ)α+ am is a coset of K0, as required. �

Proposition 3.2. Let K1 and K2 be compact connected abelian Lie groups and suppose that αi ∈ Ki with

Zαi = Ki. Let P (x) ∈ Z[x] be a polynomial with P (0) = 0 such that P (Z) is not contained in any proper

subgroup of Z. Let Ui ⊂ Ki be non-empty open sets and let Ri = {n ∈ Z | P (n)αi ∈ Ui}. If R1 = R2 and

StabK1(U1) = {0} and StabK2(U2) = {0} then there exists an isomorphism K1 → K2 (of topological groups,

so continuous) mapping α1 to α2.

Proof. Let α = (α1, α2) ∈ K1 ×K2 and let K = Zα ⊂ K1 ×K2. Let Θ = P (Z)α. We know that

Θ =
⋃
a∈A

(K0 + a)

for some finite A ⊂ K where K0 is the identity connected component of K. Let πi : K → Ki be the

projection maps. We know that πi is surjective by the assumption that Zαi = Ki. In fact, since K0 is

finite index in K, we have that πi(K0) of finite index in Ki and thus πi(K0) = Ki by the assumption that

Ki is connected. We now wish to show that πi is injective on Θ. To see this, suppose that θ, θ′ ∈ Θ are

such that π1(θ) = π1(θ′). We know that θ ∈ K0 + a and θ′ ∈ K0 + a′ for some a, a′ ∈ A. We now wish
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to show that π2(θ − θ′) ∈ StabK2
(U2). To do this, suppose that u2 ∈ U2. From π2(K0) = K2 we get that

π2(K0 + a′) = K2, thus there exists x ∈ K1 such that (x, u2) ∈ K0 + a′. Now

(x, u2 + π2(θ − θ′)) = (x, u2) + θ − θ′ ∈ (K0 + a′) + (K0 + a− a′) = K0 + a,

that is (x, u2 +π2(θ−θ′)) ∈ Θ. Now since (x, u2) ∈ Θ this means there exists a sequence n1, n2, . . . of integers

such that P (nj)α→ (x, u2). In particular, P (nj)α2 → u2 so P (nj)α2 ∈ U2 for sufficiently large j. But since

R1 = R2 this means that P (nj)α1 ∈ U1. Now since (x, u2) ∈ K0 +a′ and K0 +a′ is open in K, we must have

that P (nj)α ∈ K0 +a′ for sufficiently large j. Thus P (nj)α+(θ−θ′) ∈ K0 +a ⊂ Θ for sufficiently large j. In

particular, this means that we may choose an integer n′j so that P (n′j)α is so close to P (nj)α+(θ−θ′) so that

P (n′j)α1 is sufficiently close to P (nj)α1 ∈ U1 so that P (n′j)α1 ∈ U1 and so that P (n′j)α→ (x, u2+π2(θ−θ′)).
But as R1 = R2 this means that P (n′j)α2 ∈ U2. But P (n′j)α2 → u2 + π2(θ − θ′), thus showing that

u2 + π2(θ − θ′) ∈ U2. So we have shown that if u2 ∈ U2 then u2 + π2(θ − θ′) ∈ U2, and by continuity

of addition this holds more generally for u2 ∈ U2, thus π2(θ − θ′) ∈ StabK2(U2). But by the assumption

that StabK2
(U2) = {0} we get that π2(θ) = π2(θ′), which means that θ = θ′. Thus we have shown that

π1 : Θ → K1 is injective, and thus a homeomorphism. As K1 is connected this means that Θ is connected

and so in fact Θ = K0 (as P (0)α = (0, 0)). So π1 : K0 → K1 is in fact an isomorphism of topological

groups. By symmetry (using now the assumption that StabK1(U1) = {0}) we get that π2 : K0 → K2 is an

isomorphism of topological groups. Thus we have an isomorphism K1 → K2 mapping P (n)α1 to P (n)α2 for

all n ∈ Z. Finally, from the assumption that P (Z) is not contained in any proper subgroup, we have that

1 =
∑
i aiP (ni) for some integers ai and ni. Thus α1 =

∑
i aiP (ni)α1 is mapped to

∑
i aiP (ni)α2 = α2

under this isomorphism. �

3.2. Infinite dimensional polynomial orbit. We now remove the assumption that our groups K1 and

K2 are Lie groups (i.e., embedded in a finite dimensional torus). Thus let K1 and K2 be compact metrizable

connected abelian groups. Note that this means they are closed subgroups of the countable dimensional

torus TN and thus we may approximate them by compact Lie groups as follows.

Definition 3.3. Let (X, dX) and (Y, dY ) be metric spaces. For δ > 0, we say that a map φ : X → Y is a

δ-almost isometry if for all x1, x2 ∈ X we have that

|dX(x1, x2)− dY (φ(x1), φ(x2))| < δ.

Thus we have a decreasing sequence δ1 > δ2 > . . . of positive real numbers converging to 0 and, for each

positive integer D, surjective continuous group homomorphisms φ1
D : K1 → F 1

D and φ2
D : K2 → F 2

D where

F 1
D and F 2

D are closed subgroups of TD and φ1
D and φ2

D are δD almost isometries (we have fixed an invariant

metric on each compact metrizable abelian group K, which we shall call dK or d if clear from the context).

For concreteness, we construct these maps conveniently as follows. Equip TD with the metric

d(x, y) =

D∑
i=1

2−i‖xi − yi‖,

where ‖v‖ is the shortest distance from v ∈ T to 0 ∈ T, and TN with the metric

d(x, y) =

∞∑
i=1

2−i‖xi − yi‖,

that way φ1
D and φ2

D are (restrictions to K1 and K2 respectively) the projections onto the first D co-ordinates,

which are clearly O(2−D)-almost isometries. The F 1
D and F 2

D are then defined to be the images of these,

thus φ1
D : K1 → F 1

D and φ2
D : K2 → F 2

D are surjective.
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Now let P (x) ∈ Z[x] be a non-constant polynomial such that P (0) = 0. We now let

Θ = P (Z)α ⊂ K1 ×K2

where α = (α1, α2) ∈ K1 ×K2 are such that Zαi = Ki for i = 1, 2. We let φD : K1 ×K2 → F 1
D × F 2

D be

the map φD = φ1
D × φ2

D. We also let ΘD = φD(Θ) ⊂ F 1
D × F 2

D. We equip K1 × K2 and F 1
D × F 2

D with

the metrics d((x1, y1), (x2, y2)) = max{d(x1, x2), d(y1, y2)}, that way φD is also a O(2−D)-almost isometry.

Observe that

ΘD = P (Z)φD(α)

and thus we may apply Proposition 3.1 to obtain that

ΘD =
⋃

a∈AD

(ΓD + a)(2)

for some finite AD ⊂ F 1
D × F 2

D and closed connected subgroup ΓD ≤ F 1
D × F 2

D. Note that ΓD ⊂ ΘD as

0 ∈ ΘD since P (0) = 0.

Let

Γ =

∞⋂
D=1

φ−1
D (ΓD)

and notice that this is a closed subgroup.

Lemma 3.4. We have Γ ⊂ Θ.

Proof. Since φD is a O(2−D)-almost isometry, we have that if p ∈ φ−1
D (ΓD) then φD(p) ∈ ΓD ⊂ φD(Θ) and

so d(p,Θ) < O(2−D). But Θ is closed, so the proof is complete by letting D →∞. �

Lemma 3.5. We have that φ−1
D (ΓD) ⊃ φ−1

D+1(ΓD+1).

Proof. The natural projection F 1
D+1 × F 2

D+1 → F 1
D × F 2

D maps ΘD+1 to ΘD, so in particular maps the

connected component ΓD+1 to the connected component ΓD. �

We let πi : K1 ×K2 → Ki and πi,D : F 1
D × F 2

D → F iD denote the projections.

Lemma 3.6. For i = 1, 2 we have that πi(Γ) = Ki.

Proof. Fix i ∈ {1, 2}. We first show that πi,D(ΓD) = F iD. First notice that

πi,D(ΘD) = P (Z)φD(αi) = F iD

where the last equality follows from Weyl equdisitribution, connectendess of F iD and ZφD(αi) = F iD. But

πi,D(ΘD) =
⋃

a∈AD

(πi,D(ΓD) + πi,D(a))

is a disjoint union of closed sets, thus by connectedness they must all be the same and equal to πi,D(ΓD),

so indeed πi,D(ΓD) = F iD. Now let k ∈ Ki. Then by our first claim we have that φiD(k) = πi,D(γD) for

some γD ∈ ΓD. Now by surjectivity of φiD, we may take βD ∈ φ−1
D (ΓD) such that φD(βD) = γD. By

compactness, we may pass to a subsequence such that βDj → β for some β ∈ K1 ×K2. But it now follows

from Lemma 3.5 that β ∈ Γ. The proof will be complete if we can show that πi(β) = k. To see this, note

that φiD(πi(β)) = πi,D(φD(β)) but φD(β) can be made arbitrarily close to φD(βD) = γD for large enough

D. So φiD(πi(β)) can be made arbitrarily close to πi,D(γD) = φiD(k). It now follows that πi(β) is arbitrarily

close to k for large enough D (as φiD is a O(2−D)-almost isometry), thus they are equal. �



10 KAMIL BULINSKI AND ALEXANDER FISH

Proposition 3.7. There exists A ⊂ K1 ×K2, with 0 ∈ A, such that

Θ =
⋃
a∈A

(Γ + a).

Proof. We already know that Γ ⊂ Θ by Lemma 3.4. Thus it remains to show that if γ0 + a ∈ Θ for some

γ0 ∈ Γ and a ∈ K1 × K2 then for every γ ∈ Γ we have that γ + a ∈ Θ. Let D be a positive integer, we

thus have that φD(γ0 + a) ∈ ΘD and so (2) and the fact that Γ ⊂ φ−1
D (ΓD) (by definition) implies that

ΓD + φD(a) ⊂ ΘD. In particular, this means that φD(γ + a) ∈ ΘD. Thus there exists a βD ∈ Θ such that

φD(γ + a) = φD(βD). But since φD is a O(2−D)-almost isometry, we have that d(γ + a, βD) < O(2−D).

Thus βD → γ + a and since Θ is closed we must have γ + a ∈ Θ. �

Now let U1 ⊂ K1 and U2 ⊂ K2 be open sets. Let

Ri = {n ∈ Z | P (n)αi ∈ Ui}.

Proposition 3.8. If R1 = R2 and θ, θ′ ∈ Θ are such that π1(θ1) = π1(θ2), then π2(θ − θ′) ∈ StabK2
(U2).

Proof. We have θ′− θ = (0, v) for some v ∈ K2, so we wish to show v ∈ StabK2
(U2). By Lemma 3.7 we have

a, a′ ∈ A such that θ ∈ Γ + a and θ′ ∈ Γ + a′. Now let u2 ∈ U2. Since π2(Γ) = K2 there exists x ∈ K1 such

that (x, u2) ∈ Γ + a. Now fix ε > 0 such that the ball of radius ε centred at u2 is contained in U2. Since

π1|Γ : Γ → K1 is a surjective homomorphism between compact groups, it is an open map and thus there

exists a δ > 0 such that if g1 ∈ K1 with d(0, g1) < δ then there exists a γ ∈ Γ with d(0, γ) < ε and π1(γ) = g1.

Now since (x, u2) ∈ Γ + a ⊂ Θ there exists a positive integer n1 such that d(P (n1)α, (x, u2)) < max{δ, ε}.
Writing P (n1)α = (x1, y1) with x1 ∈ K1, y1 ∈ K2 we see that d(y1, u2) < ε and thus y1 ∈ U2 and thus since

n1 ∈ R2 = R1 we have x1 ∈ U1. We set g1 = x1 − x. Notice that d(0, g1) < δ and so there exists a γ ∈ Γ

with d(0, γ) < ε such that π1(γ) = g1. Writing γ = (g1, g2) for some g2 ∈ K2 we get that

(x1, u2 + g2) = (x, u2) + γ ∈ Γ + a+ γ = Γ + a.

Thus θ′′ := (x1, u2 + g2 + v) ∈ Γ + a′ ⊂ Θ. This means that there exists n2 ∈ Z such that P (n2)α is so close

to θ′′ that π1(P (n2)α) is so close to x1 that π1(P (n2)α) ∈ U1 and d(π2(P (n2)α), u2 + g2 + v) < ε. Thus

n2 ∈ R1 = R2 and so π2(P (n2)α) ∈ U2. This means that

d(u2 + v, U2) ≤ d(u2 + v + g2, U2) + ε ≤ d(u2 + v + g2, π2(P (n2)α)) + ε < 2ε.

As ε > 0 was arbitrary and independent of v, we may take ε → 0 to get that d(u2 + v, U2) = 0, and thus

u2 + v ∈ U2. Thus U2 + v ⊂ U2 and by continuity of addition we have that U2 + v ⊂ U2. The reverse

inclusion holds by swapping the roles of θ and θ′, thus v ∈ StabK2(U2). �

Proposition 3.9. If R1 = R2 and StabK1
(U1) and StabK2

(U2) are trivial, then there exists an isomorphism

of topological groups K1 → K2 mapping P (n)α1 to P (n)α2 for all n ∈ Z.

Proof. By Proposition 3.8 and the assumption StabK2(U2) = {0} we have that the mapping π1|Θ : Θ→ K1

is injective and thus a homeomorphism. But since π1(Γ) = K1 by Lemma 3.6, we must have that Θ = Γ,

so π1|Θ : Θ→ K1 is also a group homomorpishm. By symmetry (this time using StabK1
(U1) = {0}) we get

that π2|Θ : Θ → K2 is also an isomorphism of topological groups. Thus π2|Θ ◦ (π1|Θ)
−1

: K1 → K2 is the

desired isomorphism. �
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4. Return times sets for nilsystems

We now prove Theorem 1.9. As noted, Theorem 1.4 already defines the map φ : X → K and so it remains

to provide an inverse ψ : K → X, which is established by the following result.

Proposition 4.1. Let X = G/Γ be a nilmanifold, where G is a nilpotent Lie group and Γ ≤ G is a

cocompact discrete subgroup. Suppose that τ ∈ G is such that (X,T ) is minimal, where T : X → X is given

by Tx = τx for x ∈ X. Suppose that U ⊂ X is open and satisfies that StabG(U) := {g ∈ G | gU = U}
consists of only those g ∈ G such that gx = x for all x ∈ X. Now suppose that (K,+) is a compact Lie

group and α ∈ K is such that Zα = K and V ⊂ K is open such that

{n ∈ Z | Tnx0 ∈ U} = {n ∈ Z | nα ∈ V }

for some x0 ∈ X. Then the pointed system (X,x0, T ) is a factor of the pointed Kronecker system (K, 0, k 7→
k + α), i.e., there is a continuous map ψ : K → X with ψ(0) = x0 satisfying

ψ(α+ k) = Tψ(x) for all k ∈ K.

Proof. Let Z = K ×X and z0 = (0, x0) ∈ Z. Then Z = (K ⊕G)/({0} ⊕ Γ) is a nilmanifold and thus (Z, S)

is a nilsystem where S : Z → Z is given by T (k, x) = (k + α, Tx). Now let Θ = SZz0 be the closure of the

S-orbit of z0. Then (see Theorem 9 in Chapter 11 of [3]) we have that

Θ = Hz0

for some closed subgroup H of K ⊕ G. Now let πK : Θ → K and πX : Θ → X denote the projection

maps. We wish to show that πK is injective as it would then be a homeomorphism and our desired factor

map would be πX ◦ π−1
K : K → X. Thus suppose that θ1, θ2 ∈ Θ are such that πK(θ1) = πK(θ2). Thus

we can write θ1 = h1z0 and θ2 = h2z0 for some h1, h2 ∈ H. For i = 1, 2, we may write hi = (ki, gi) where

ki ∈ K and gi ∈ G, thus θi = (ki, gix0). But k1 = k2 and so we have h0 := h2h
−1
1 = (0, g2g

−1
1 ) ∈ H

and we have the relation h0θ1 = θ2. Now let u ∈ U be arbitrary. By surjectivity of πX : Θ → X we may

find a h′ ∈ H such that h′z0 = (k′, u) ∈ Θ for some k′ ∈ K. Thus we may find a sequence of integers

n1, n2, . . . such that Sniz0 → h′z0. In particular Tnix0 → u and thus Tnix0 ∈ U for large enough ni. This

must mean that niα ∈ V . Now h0S
niz0 = (niα, g2g

−1
1 Tniz0) ∈ Θ and so, for each fixed i, we may find a

sequence of integers m1,m2, . . . such that limj→∞ Smjz0 = (niα, g2g
−1
1 Tnix0). In particular this means that

mjα→ niα ∈ V and so for large enough j we have mjα ∈ V and so Tmjx0 ∈ U . But Tmjx0 → g2g
−1
1 Tnix0

and so g2g
−1
1 Tnix0 ∈ U . Finally taking the limit as i→∞ and using Tnix0 → u we have that g2g

−1
1 u ∈ U .

As u ∈ U was arbitrary, this shows that g2g
−1
1 U ⊂ U and thus g2g

−1
1 U ⊂ U . The reverse inclusion follows

from swapping the roles of θ1 and θ2, thus g2g
−1
1 ∈ StabG(U). Thus g2g

−1
1 stabilizes every x ∈ X thus

g2x0 = g2g
−1
1 g1x0 = g1x0, so in fact θ2 = θ1. Thus πK is injective as desired. �

5. Spectral construction for Jordan Measurable sets (Proof of Theorem 1.10)

Let U ⊂ K be a Jordan measurable open subset of a compact abelian group K. Let α ∈ K be an element

such that Zα is dense in K. Let Λ denote the set of unit complex numbers λ such that

1

N

N∑
n=1

λn1U (nα)

does not converge to 0 as N →∞.
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Lemma 5.1. We have Λ ⊂ {χ(α) | χ ∈ K̂}. In fact, if

1U =
∑
χ

cχχ

is the Fourier decomposition in L2(K), then Λ is the set of those χ(α) for which cχ 6= 0.

Proof. Let U be the unit complex numbers. Suppose that λ ∈ U but λ /∈ {χ(α) | χ ∈ K̂}. Note that for any

character χ on K we have that

1

N

N∑
n=1

λnχ(nα) =
1

N

N∑
n=1

(λχ(α))n → 0.

As any continuous function f : K → C can be uniformly approximated by a linear combination of characters,

we have that

1

N

N∑
n=1

λnf(nα)→ 0.

Now observe that there exist continuous functions f+
ε : K → [0, 1] such that

f+
ε ↘ 1U , as ε→ 0.

In particular we choose these functions so that

mK(supp f+
ε \ U) = mK(supp f+

ε \ U) < ε

where mK denotes the Haar measure on K and in the first equality we used that U and U are mK almost

the same (as U is Jordan measurable). Now as supp f+
ε \ U is a closed set its indicator function can be

written as a pointwise decreasing limit of continuous functions, thus we have that

lim sup
N→∞

1

N
|{n ∈ [1, N ] | nα ∈ supp f+

ε \ U}| ≤ mK(supp f+
ε \ U) < ε.

This means that

lim sup
N→∞

| 1

N

N∑
n=1

λnf+
ε (nα)− 1

N

N∑
n=1

λn1U (nα)| < ε.

Thus

1

N

N∑
n=1

λn1U (nα)→ 0

and hence we have shown the first claim that

Λ ⊂ {χ(α) | χ ∈ K̂}.

Now suppose that λ ∈ {χ(α) | χ ∈ K̂}. Thus λ = χ(α) for some unique (by density of Zα) character χ on

K. But χ1U is Riemann-integrable thus we have that

1

N

N∑
n=1

λn1U (nα) =
1

N

N∑
n=1

χ1U (nα)→
∫
χ1UdmK = cχ.

�

Now let E = {χ(α) | χ ∈ K̂}. Note that the mapping K̂ → E mapping χ to χ(α) is injective (by density of

Zα) and thus bijective. Consequently, let Γ ⊂ K̂ be the set corresponding to Λ, i.e., Λ = {χ(α) | χ ∈ Γ}.

Now observe that the mapping ι : K → UK̂ given by ι(k) = (χ(k))χ∈K̂ is injective and continuous, thus a

homeomorphism onto its image. Now let

π : K → UΓ
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be the projection given by

k 7→ (χ(k))χ∈Γ .

Proposition 5.2. ker(π) ⊂ StabK(U).

Proof. Suppose that k ∈ kerπ. Thus χ(k) = 1 for all χ ∈ Γ. But since

1U =
∑
χ∈Γ

cχχ

we have that 1U (x + k) = 1U (x) for almost all x ∈ K. As U and U are mK almost equal, this means that

the open set (U − k) \ U has zero measure and is thus empty. This means that u− k ∈ U for all u ∈ U and

k ∈ ker(π). Thus ker(π) ⊂ StabK(U). �

Proof of Theorem 1.10. The assumption that StabK(U) is trivial together with Proposition 5.2 implies that

π is injective and thus an isomorphism onto its image. But the image of π is the closed subgroup of UΓ

generated by

π(α) = (χ(α))χ∈Γ .

Finally, by applying the natural isomorphism UΓ ∼= UΛ (i.e., the one induced by the bijection χ 7→ χ(α)

from Γ to Λ) we get that K is isomorphic to the closed subgroup of UΛ generated by (λ)λ∈Λ . �

6. Equivalence of Question 1.12 and Question 1.14

We now show that Question 1.12 and Question 1.14 are equivalent. Recall that a block system of a group

action G y X is a partition B ⊂ 2X of X (collection of non-empty disjoint sets whose union is X) that is

G-invariant (i.e., if g ∈ G and B ∈ B then gB ∈ B). Let us define the block system generated by U ⊂ X (for

this action) to be the smallest (with respect to inclusion) block system such that U is a union of elements

of B. More concretely, the the block system generated by U consists of those minimal non-empty sets that

can be written as intersections of elements in {gU | g ∈ G} ∪ {X \ gU | g ∈ G}.

Proposition 6.1. Let G be a group acting transitively on a set X1 and also acting transitively on a set X2

and suppose that U1 ⊂ X1 and U2 ⊂ X2 are simple for the respective actions. Suppose that x1 ∈ X1 and

x2 ∈ X2 are such that

{g ∈ G | gx1 ∈ U1} = {g ∈ G | gx2 ∈ U2}.

Then there is an isomorphism φ : X1 → X2 of G-sets mapping x1 to x2, i.e., φ(gx) = gφ(x) for all g ∈ G
and x ∈ X1.

Proof. Let B denote the block system generated by U1. Thus there is a well defined map π : X1 → B where

for x ∈ X1 we define π(x) to be the unique element of B containing x ∈ X1. Note that π is a morphism of

G-actions, i.e., gπ(x) = π(gx) for all g ∈ G and x ∈ X1. Note that

U1 = π−1

 ⋃
{B∈B | B⊂U1}

B


since by definition U1 is a union of elements of B. Thus since U1 is simple we must have that π is an

isomorphism. In particular this means {x} ∈ B for all x ∈ X1. Now let

R(V ) = {g ∈ G | gx1 ∈ V }
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for any V ⊂ X1. Notice the properties R(gV ) = gR(V ) and R(
⋂
i∈I Vi) =

⋂
i∈I R(Vi) and R(X1 \ V ) =

G \ R(V ). Now let BG denote the block system generated by R(U1) for the action of G y G by left

multiplication. By the aforementioned properties we have that BG consists of those sets of the form R(B)

for B ∈ B and so we have that BG consists of exactly the sets of the form R({x}) for x ∈ X1. Note that

R({x1}) = {g ∈ G | gx1 = x1} = Stab(x1) and any other R({x}) must be a coset of Stab(x1) (by transitivity

x = gx1 for some g ∈ G and so R({x}) = gR({x1})). So in fact Stab(x1) may be desribed as member of

BG that contains 1 ∈ G. Since X1
∼= G/Stab(x1), this means that we have an isomorphism of G-actions

X1 → BG that maps x1 to the unique element of BG containing 1 ∈ G (it maps x to R({x})). Notice that

BG is the same if we replace X1, x1, U1 with X2, x2, U2 respectively by the assumption that

{g ∈ G | gx1 ∈ U1} = {g ∈ G | gx2 ∈ U2}.

Thus indeed we have an isomorphism X1
∼= X2 of G-actions (they are both isomorphic to G acting on

BG). �

This demonstrates the equivalence of the two questions as follows. If the answer to Question 1.14 is affir-

mative, then the two sets in Question 1.12 are simple and thus the Proposition 6.1 provides an affirmative

answer. Conversely, if U ⊂ X is a subset in a transitive G-set X with a trivial setwise stabilizer, then we

have a factor π : X → B, where B is the block system generated by U , mapping x ∈ X to the unique element

of B containing x (as constructed in the proof of the Propostion 6.1). But π(U) also has a trivial setwise

stabilizer and {g ∈ G | gx0 ∈ U} = {g ∈ G | gπ(x0) ∈ π(U)} so if the answer to Question 1.12 is affirmative,

then π must be an isomorphism and so B consists of singletons.
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