Semileptonic $B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell$ decay with $\pi\pi$ invariant mass spectrum

Shang-Yuu Tsai^{1,*} and Yu-Kuo Hsiao^{1,†}

¹School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China

(Dated: November 16, 2021)

Abstract

BELLE has recently reported the measurement of the branching fraction of the semileptonic $B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell$ decay, where ℓ represents an electron or a muon. With the new information on the $\pi\pi$ invariant mass spectrum, we extract $|V_{ub}| = (3.31 \pm 0.61) \times 10^{-3}$ in agreement with those from the other exclusive *B* decays. In particular, we determine the non-resonant $B \to \pi\pi$ transition form factors, and predict the non-resonant branching fraction $\mathcal{B}(B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell) = (3.5 \pm 1.4^{+4.3}_{-2.4}) \times 10^{-5}$, which is accessible to the BELLEII and LHCb experiments.

[†] yukuohsiao@gmail.com

I. INTRODUCTION

For the Cabibbo-Kobayashi-Maskawa (CKM) matrix element $|V_{ub}|$, there have been the long-standing inconsistent determinations from the inclusive and exclusive *b*-hadron decays [1, 2], which might indicate the existence of new physics [3–11]. For a careful examination, the exclusive $B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell$ decay can provide another path to determining $|V_{ub}|$, where ℓ represents an electron or a muon. Nonetheless, although $B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell$ has been observed many times [13–16], it is essentially $B^- \to \rho^0 \ell^- \bar{\nu}_\ell$ along with $\rho^0 \to \pi^+ \pi^-$, instead of a genuine four-body decay.

Recently, BELLE has newly reported the measurement of the branching fractions of $B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell$ with the full $\pi \pi$ invariant mass $(M_{\pi\pi})$ spectrum [17]. In addition to the resonant processes of $B^- \to R \ell^- \bar{\nu}_\ell, R \to \pi^+ \pi^-$ with $R = \rho^0$ and $f_2 \equiv f_2(1270)$, the non-resonant contribution is also found. Explicitly, we present the branching fractions as [1, 17, 18]

$$\mathcal{B}_{\rm T}(B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell) = (22.7^{+1.9}_{-1.6} \pm 3.4) \times 10^{-5} ,$$

$$\mathcal{B}_{\rho}(B^- \to \rho^0 \ell^- \bar{\nu}_\ell, \rho^0 \to \pi^+ \pi^-) = (15.8 \pm 1.1) \times 10^{-5} ,$$

$$\mathcal{B}_{f_2}(B^- \to f_2 \ell^- \bar{\nu}_\ell, f_2 \to \pi^+ \pi^-) = (1.8 \pm 0.9^{+0.2}_{-0.1}) \times 10^{-5} ,$$

$$\mathcal{B}_{\rm N}(B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell) = (5.1 \pm 4.3) \times 10^{-5} ,$$

(1)

where $\mathcal{B}_{T,N}$ denote the total and non-resonant branching fractions, respectively, while $\mathcal{B}_{\rho} \simeq \mathcal{B}(B^- \to \rho^0 \ell^- \bar{\nu}_{\ell}) \times \mathcal{B}(\rho^0 \to \pi^+ \pi^-)$ is from PDG [1]. By excluding \mathcal{B}_{ρ,f_2} from \mathcal{B}_T , we estimate \mathcal{B}_N in Eq. (1).

As depicted in Fig. 1, $B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell$ proceeds through the resonant and non-resonant $B \to \pi \pi$ transitions, respectively, with the lepton-pair produced from the emitted W-boson. One has been enabled to parameterize the resonant $B \to \rho(f_2), \rho(f_2) \to \pi \pi$ transition [19]. Despite the theoretical attempts [5, 12, 20–29], the non-resonant $B \to \pi \pi$ transition is still poorly understood. With the full $\pi \pi$ invariant mass spectrum provided for the first time, the information on the non-resonant $B \to \pi \pi$ transition form factors $(F_{\pi\pi})$ becomes available. Hence, we propose to newly extract $|V_{ub}|$ and $F_{\pi\pi}$, by which we will be able to study \mathcal{B}_{N} . We will also study the angular distribution and its asymmetry to be compared to the future measurements.

FIG. 1. $B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell$ with (a) non-resonant and (b) resonant contributions.

II. THEORETICAL FRAMEWORK

The semileptonic $B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell$ decay is observed with the full $M_{\pi\pi}$ spectrum, which indicates the existence of the non-resonant contribution [17]. Moreover, the simulation is performed to seek the resonances that contribute to $B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell$. It turns out that only a dominant peak and a small bump are observed, which correspond to $B^- \to \rho^0 \ell \bar{\nu}, f_2 \ell \bar{\nu},$ respectively, with $\rho^0, f_2 \to \pi^+ \pi^-$. Therefore, the total amplitude of $B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell$ can be written as

$$\mathcal{M}_{\mathrm{T}} = \mathcal{M}_{\mathrm{N}}(B^{-} \to \pi^{+}\pi^{-}\ell\bar{\nu}_{\ell}) + \mathcal{M}_{\rho}(B^{-} \to \rho^{0}\ell^{-}\bar{\nu}_{\ell}, \rho^{0} \to \pi^{+}\pi^{-}) + \mathcal{M}_{f_{2}}(B^{-} \to f_{2}\ell^{-}\bar{\nu}_{\ell}, f_{2} \to \pi^{+}\pi^{-}), \mathcal{M}_{\mathrm{N}(\mathrm{R})} = \frac{G_{F}V_{ub}}{\sqrt{2}} \langle \pi^{+}\pi^{-}|\bar{u}\gamma_{\mu}(1-\gamma_{5})b|B^{-}\rangle_{\mathrm{N}(\mathrm{R})} \bar{u}_{\ell}\gamma^{\mu}(1-\gamma_{5})v_{\nu}, \qquad (2)$$

with $R = (\rho, f_2)$. The matrix elements of the (non-)resonant B meson to $\pi\pi$ transitions can be parameterized as [12, 30]

$$\langle \pi^{+}(p_{a})\pi^{-}(p_{b})|\bar{u}\gamma_{\mu}(1-\gamma_{5})b|B^{-}\rangle_{N}$$

$$= h\epsilon_{\mu\nu\alpha\beta}p_{B}^{\nu}p^{\alpha}(p_{b}-p_{a})^{\beta} + irq_{\mu} + iw_{+}p_{\mu} + iw_{-}(p_{b}-p_{a}),$$

$$\langle \pi^{+}(p_{a})\pi^{-}(p_{b})|\bar{u}\gamma_{\mu}(1-\gamma_{5})b|B^{-}\rangle_{\rho(f_{2})}$$

$$= \langle \pi^{+}\pi^{-}|\rho(f_{2})\rangle \frac{i}{(t-m_{\rho(f_{2})}^{2})+im_{\rho(f_{2})}\Gamma_{\rho(f_{2})}} \langle \rho(f_{2})|\bar{u}\gamma_{\mu}(1-\gamma_{5})b|B^{-}\rangle,$$

$$(3)$$

with $p = p_b + p_a$, $q = p_B - p = p_\ell + p_\nu$, $(s, t) \equiv (q^2, p^2)$, and the form factors $F_{\pi\pi} = (h, r, w_{\pm})$. The matrix elements of $B \to \rho(f_2)$ transition are written as [33–35]

$$\langle \rho(f_2) | \bar{u} \gamma_{\mu} b | B \rangle = \epsilon_{\mu\nu\alpha\beta} \epsilon^{(\prime)\nu} p_B^{\alpha} p_{\rho(f_2)}^{\beta} \frac{2V_1^{(\prime)}}{m_B + m_{\rho(f_2)}} ,$$

$$\langle \rho(f_2) | \bar{u} \gamma_{\mu} \gamma_5 b | B \rangle = i \Big[\epsilon_{\mu}^{(\prime)} - \frac{\epsilon^{(\prime)} \cdot p_B}{s} q_{\mu} \Big] (m_B + m_{\rho(f_2)}) A_1^{(\prime)} + i \frac{\epsilon^{(\prime)} \cdot p_B}{s} q_{\mu} (2m_{\rho(f_2)}) A_0^{(\prime)}$$

$$- i \Big[(p_B + p_{\rho(f_2)})_{\mu} - \frac{m_B^2 - m_{\rho(f_2)}^2}{s} q_{\mu} \Big] (\epsilon^{(\prime)} \cdot p_B) \frac{A_2^{(\prime)}}{m_B + m_{\rho(f_2)}} ,$$

$$(4)$$

with $\epsilon'^{\mu} \equiv \epsilon^{\mu\nu} p_{B\nu}/m_B$ and the form factors $F_{\rho(f_2)} = (V_1^{(\prime)}, A_{0,1,2}^{(\prime)})$, where ϵ^{ν} and $\epsilon^{\mu\nu}$ are the polarization vector and tensor, respectively. To describe the $\rho^0, f_2 \to \pi^+\pi^-$ decays, $\langle \pi\pi | \rho, f_2 \rangle$ in Eq. (2) are given by [9, 19, 36]

$$\langle \pi \pi | \rho \rangle = g_1 \epsilon \cdot (p_b - p_a) ,$$

$$\langle \pi \pi | f_2 \rangle = g_2 \epsilon^{\mu\nu} p_{a\mu} p_{b\nu} , \qquad (5)$$

where $g_{1,2}$ are strong coupling constants. To sum over the vector and tensor spins for ρ and f_2 , respectively, as the intermediate states in the resonant $B \to \pi\pi$ transitions, we use the following identities [33–35],

$$\Sigma \epsilon_{\mu} \epsilon_{\mu'}^{*} = M_{\mu\mu'},$$

$$\Sigma \epsilon_{\mu\nu} \epsilon_{\mu'\nu'}^{*} = \frac{1}{2} M_{\mu\mu'} M_{\nu\nu'} + \frac{1}{2} M_{\mu\nu'} M_{\nu\mu'} - \frac{1}{3} M_{\mu\nu} M_{\mu'\nu'},$$
(6)

with $M_{\mu\mu'} = -g_{\mu\mu'} + p_{\mu}p_{\mu'}/p^2$. The form factors in Eqs. (3,4) are momentum-dependent, modelled in the single-pole or double-pole forms [33–35]:

$$F_{\rho}(s) = \frac{F_{\rho}(0)}{1 - s/m_V^2},$$

$$F_{f_2}(s) = \frac{F_{f_2}(0)}{(1 - s/m_B^2)^2},$$

$$F_{\pi\pi}(t) = \frac{F_{\pi\pi}(0)}{1 - a(t/m_B^2) + b(t/m_B^2)^2},$$
(7)

where $F_{\rho,f_2}(s)$ have been studied in QCD models, whereas $(a, b, F_{\pi\pi}(0))$ need to be extracted in the global fit.

For the four-body decay channel $B^-(p_B) \to \pi^+(p_a)\pi^-(p_b)\ell^-(p_\ell)\bar{\nu}_\ell(p_\nu)$, one has to integrate over the kinematic variables $(s, t, \theta_M, \theta_L, \phi)$ in the phase space. See Fig. 2, $\theta_{M(L)}$ is the angle between π^+ and $\pi^-(\ell^-$ and $\bar{\nu}_\ell)$ moving directions in the $\pi^+\pi^-(\ell^-\bar{\nu}_\ell)$ rest frame. In addition, the angle ϕ is between the $\pi^+\pi^-$ and $\ell^-\bar{\nu}_\ell$ planes, defined by $\vec{p}_{a,b}$ and $\vec{p}_{\ell,\bar{\nu}_\ell}$,

FIG. 2. The angular variables $(\theta_M, \theta_L, \phi)$ in the four-body $B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell$ decay.

respectively, in the B-meson rest frame. Then, the partial decay width reads [37, 38]

$$d\Gamma = \frac{|\mathcal{M}|^2}{4(4\pi)^6 m_B^3} X \alpha_M \alpha_L \, ds \, dt \, d\cos\theta_M \, d\cos\theta_L \, d\phi \,, \tag{8}$$

where X, α_M and α_L are defined by

$$X = \left[\frac{1}{4}(m_B^2 - s - t)^2 - st\right]^{1/2},$$

$$\alpha_M = \frac{1}{t}\lambda^{1/2}(t, m_\pi^2, m_\pi^2),$$

$$\alpha_L = \frac{1}{s}\lambda^{1/2}(s, m_\ell^2, m_{\bar{\nu}}^2),$$
(9)

with $\lambda(a, b, c) = a^2 + b^2 + c^2 - 2ab - 2bc - 2ca$. The allowed ranges for (s, t) and the angular variables $(\theta_M, \theta_L, \phi)$ are given by

$$(m_{\ell} + m_{\bar{\nu}_{\ell}})^{2} \leq s \leq (m_{B} - \sqrt{t})^{2},$$

$$4m_{\pi}^{2} \leq t \leq (m_{B} - m_{\ell} - m_{\bar{\nu}_{\ell}})^{2},$$

$$0 \leq \theta_{M,L} \leq \pi,$$

$$0 \leq \phi \leq 2\pi,$$
(10)

with $m_{\ell} + m_{\bar{\nu}_{\ell}} \simeq 0$. From Eq. (8), we define the angular distribution asymmetry as

$$A_{\theta_M} \equiv \frac{\int_0^{+1} \frac{d\Gamma}{d\cos\theta_M} d\cos\theta_M - \int_{-1}^0 \frac{d\Gamma}{d\cos\theta_M} d\cos\theta_M}{\int_0^{+1} \frac{d\Gamma}{d\cos\theta_M} d\cos\theta_M + \int_{-1}^0 \frac{d\Gamma}{d\cos\theta_M} d\cos\theta_M} , \qquad (11)$$

where $d\Gamma/d\cos\theta_M$ is the angular distribution.

TABLE I. The *B* to (ρ, f_2) transition form factors with $M_V = 7.0$ GeV in Eq. (7) [32, 34]. Here, we present $\sqrt{2}F_{\rho^0} = F_{\rho}$ for the *B* to ρ^0 transition.

	$V_{1}^{(\prime)}$	$A_1^{(\prime)}$	$A_{2}^{(\prime)}$
$\sqrt{2}F_{\rho^0}(0)$	$0.35\substack{+0.06\\-0.05}$	$0.27\substack{+0.05 \\ -0.04}$	$0.26\substack{+0.05 \\ -0.03}$
$F_{f_2}(0)$	(0.18 ± 0.02)	(0.13 ± 0.02)	(0.12 ± 0.02)

III. NUMERICAL ANALYSIS

In the numerical analysis, we perform the minimum χ^2 -fit, in order to extract $|V_{ub}|$, $F_{\pi\pi}$ and $\delta_{1,2}$ as the free parameters, where $\delta_{1(2)}$ is the relative phase for $\mathcal{A}_{\rho(f_2)}$. The equation of the χ^2 -fit is given by

$$\chi^{2} = \left(\frac{\mathcal{B}_{\rho\,th} - \mathcal{B}_{\rho\,ex}}{\sigma_{\rho\,ex}}\right)^{2} + \left(\frac{\mathcal{B}_{f_{2}\,th} - \mathcal{B}_{f_{2}\,ex}}{\sigma_{f_{2}\,ex}}\right)^{2} + \sum_{i} \left(\frac{\frac{d\mathcal{B}_{th}^{i}}{dM_{\pi\pi}} - \frac{d\mathcal{B}_{ex}^{i}}{dM_{\pi\pi}}}{\sigma_{ex}^{i}}\right)^{2} + \sum_{j} \left(\frac{F_{\rho(f_{2})}^{j} - F_{th\,\rho(f_{2})}^{j}}{\delta F_{th\,\rho(f_{2})}^{j}}\right)^{2},$$
(12)

where $d\mathcal{B}/dM_{\pi\pi}$ denotes the partial branching ratio, and σ_{ex} (δF_{th}) the uncertainty from the observation (form factor). $\mathcal{B}_{\rho(f_2)th}$ and $d\mathcal{B}_{th}/dM_{\pi\pi}$ are the theoretical inputs from the amplitudes in Eq. (2), and the experimental inputs are given in Eq. (1) and Fig. 3. We take F_{ρ} and F_{f_2} in Table I as the initial values in Eq. (12), together with $|g_1| = 5.98$ and $|g_2| = 18.56 \text{ GeV}^{-1}$ [36, 39].

Subsequently, we extract that

$$|V_{ub}| = (3.31 \pm 0.61) \times 10^{-3},$$

$$a = (0.96 \pm 0.93) \times m_B^2, \ b = (1.84 \pm 0.87) \times m_B^4,$$

$$h(0) = 1.90 \pm 0.43, \ w_+(0) = 6.16 \pm 3.41, \ w_-(0) = 3.67 \pm 1.79,$$

$$(\delta_1, \delta_2) = (-111.6 \pm 29.3, 0.0 \pm 1.4)^{\circ}$$

$$\chi^2/n.d.f = 1.1,$$

(13)

with n.d.f = 7 the number of degrees of freedom. The form factors $V_1^{(\prime)}$ and $A_{1,2}^{(\prime)}$ are fitted to slightly deviate from their initial inputs in Table I, given by

$$(V_1(0), A_1(0), A_2(0)) = (0.35 \pm 0.06, 0.29 \pm 0.04, 0.28 \pm 0.04),$$

$$(V_1'(0), A_1'(0), A_2'(0)) = (0.18 \pm 0.02, 0.11 \pm 0.02, 0.14 \pm 0.02).$$
 (14)

Nonetheless, r and $A_0^{(l)}$ in Eqs. (3, 4) are not involved in the global fit, since they have been vanishing with $q_{\mu}\bar{u}_{\ell}\gamma^{\mu}(1-\gamma_5)v_{\nu}=0$ in the amplitudes, where the lepton pair is nearly massless.

Using the fit results in Eqs. (13,14), we obtain

$$\mathcal{B}_{\rm T}(B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell) = (19.6 \pm 7.9^{+7.5+0.7}_{-5.4-0.1}) \times 10^{-5} ,$$

$$\mathcal{B}_{\rho}(B^- \to \rho^0 \ell^- \bar{\nu}_\ell, \rho^0 \to \pi^+ \pi^-) = (15.8 \pm 6.4^{+7.1}_{-5.7}) \times 10^{-5} ,$$

$$\mathcal{B}_{f_2}(B^- \to f_2 \ell^- \bar{\nu}_\ell, f_2 \to \pi^+ \pi^-) = (2.6 \pm 1.1^{+1.2}_{-0.9}) \times 10^{-5} ,$$

$$\mathcal{B}_{\rm N}(B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell) = (3.5 \pm 1.4^{+4.3}_{-2.4}) \times 10^{-5} ,$$
(15)

where the first errors are from $|V_{ub}|$, the second ones from the form factors, and the third error for \mathcal{B}_T from the relative phase δ_1 . Moreover, we draw the partial branching fractions as the functions of $M_{\pi\pi}$ and $\cos \theta_M$ in Fig. 3 and Fig. 4, respectively. We also calculate the angular distribution asymmetries, given by

$$A_{\theta_M,T}(B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell) = (1.3 \pm 8.9^{+0.8}_{-2.5})\%,$$

$$A_{\theta_M,\rho}(B^- \to \rho^0 \ell^- \bar{\nu}_\ell, \rho^0 \to \pi^+ \pi^-) = (0.20 \pm 0.04)\%,$$

$$A_{\theta_M,f_2}(B^- \to f_2 \ell^- \bar{\nu}_\ell, f_2 \to \pi^+ \pi^-) = (0.31 \pm 0.08)\%,$$

$$A_{\theta_M,N}(B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell) = (-43.0 \pm 22.3)\%,$$
(16)

where the first errors come from the uncertainties of the form factors, and the second error for $A_{\theta_M,T}$ is from the relative phase δ_1 .

IV. DISCUSSIONS AND CONCLUSIONS

We study $B^- \to \pi^+ \pi^- \ell \bar{\nu}$, in order to explain the $\pi \pi$ invariant mass spectrum observed by BELLE [17]. In Fig. 3, the curves for $B^- \to (\rho^0, f_2)\ell\bar{\nu}, (\rho^0, f_2) \to \pi^+\pi^-$ are shown to barely fit the first three data points in the spectrum. Nonetheless, the non-resonant $B^- \to \pi^+\pi^-\ell\bar{\nu}$ raises the contribution as the dot-dashed curve describes. As a result, the solid curve that takes into account the resonant and non-resonant contributions is able to explain the data, with $\chi^2/d.o.f = 1.1$ that presents a reasonable fit. The relative phase $\delta_1 = -111.6^\circ$ causes a destructive interference between the non-resonant $B^- \to \pi^+\pi^-\ell\bar{\nu}$ and $B^- \to \rho^0\ell\bar{\nu}, \rho^0 \to \pi^+\pi^-$. As a demonstration, we turn off δ_1 and obtain $\mathcal{B}_T = 22.2 \times 10^{-5}$. By contrast, δ_2 is fitted to be zero, in accordance with the fact that the non-resonant

FIG. 3. The $\pi\pi$ invariant mass spectrum, where the solid curve that takes into account the all contributions explains the data points from BELLE [17]. On the other hand, the dashed (dotted) and dot-dashed curves depict the contributions from $B^- \to \rho(f_2)\ell\bar{\nu}, \rho(f_2) \to \pi^+\pi^-$, and nonresonant $B^- \to \pi^+\pi^-\ell^-\bar{\nu}_\ell$, respectively.

FIG. 4. Angular distributions of $B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_\ell$, where the solid, dashed, dotted and dot-dashed curves represent the same contributions as those in Fig. 3.

contribution is tiny in the range of $M_{\pi\pi} > 1$ GeV, barely having the interference with $B^- \to f_2 \ell \bar{\nu}, f_2 \to \pi^+ \pi^-$.

It turns out that $\mathcal{B}_{\rm N} = (3.5 \pm 1.4^{+4.3}_{-2.4}) \times 10^{-5}$ is given for the first time. Also importantly, we determine $|V_{ub}| = (3.31 \pm 0.61) \times 10^{-3}$ from the first genuine four-body semileptonic $B \rightarrow$

 $\pi \pi \ell \bar{\nu}$ decay, instead of $B^- \to \rho^0 \ell \bar{\nu}, \rho^0 \to \pi^+ \pi^-$. For the angular distribution asymmetries, we obtain $A_{\theta_M,\rho(f_2)} = 0$, showing the symmetric distributions as the curves in Fig. 4. By contrast, $|A_{\theta_M,N}|$ is as large as 40%. This is due to the main contributions from the form factors $w_+(p_b + p_a)_{\mu}$ and $w_-(p_b - p_a)$. With $p_b + p_a = (2E_b, \vec{0})$ and $p_b - p_a = (0, 2\vec{p}_b)$ in the $\pi^+(p_a)\pi^-(p_b)$ rest frame (see Fig. 2), the projection of $w_{\mp}(p_b \mp p_a)$ onto the four-momentum of the lepton pair system causes a $\cos \theta_M$ -(in)dependent term, such that their interference leads to the large angular distribution asymmetry.

In summary, we have studied the semileptonic $B^- \to \pi^+ \pi^- \ell \bar{\nu}$ decay. With the full $\pi \pi$ invariant mass spectrum observed by BELLE, we have determined $|V_{ub}| = (3.31\pm0.61)\times10^{-3}$ agreeing with the other exclusive determinations. Besides, we have extracted the nonresonant $B \to \pi \pi$ transition form factors, by which we have predicted the non-resonant branching fraction $\mathcal{B}_{N}(B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_{\ell}) = (3.5\pm1.4^{+4.3}_{-2.4})\times10^{-5}$. We have also predicted the non-resonant angular distribution asymmetry $A_{\theta_M,N}(B^- \to \pi^+ \pi^- \ell^- \bar{\nu}_{\ell}) = (-43.0\pm22.3)\%$ to be checked by the future measurements.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation of China (No. 11675030).

- [1] P.A. Zyla et al. [Particle Data Group], PTEP 2020, 083C01 (2020).
- [2] Please see PDG for a review.
- [3] A. Crivellin, Phys. Rev. D 81, 031301 (2010).
- [4] A.J. Buras, K. Gemmler and G. Isidori, Nucl. Phys. B 843, 107 (2011).
- [5] X.W. Kang, B. Kubis, C. Hanhart and U.G. Meiβner, Phys. Rev. D 89, 053015 (2014).
- [6] A. Crivellin and S. Pokorski, Phys. Rev. Lett. 114, 011802 (2015).
- [7] T. Feldmann, B. Müller and D. van Dyk, Phys. Rev. D 92, 034013 (2015).
- [8] Y.K. Hsiao and C.Q. Geng, Phys. Lett. B **755**, 418 (2016).
- [9] C.S. Kim, G.L. Castro and S.L. Tostado, Phys. Rev. D **95**, 073003 (2017).
- [10] Y.K. Hsiao and C.Q. Geng, Eur. Phys. J. C 77, 714 (2017).
- [11] Y.K. Hsiao and C.Q. Geng, Phys. Lett. B 782, 728 (2018).

- [12] C.L.Y. Lee, M. Lu and M.B. Wise, Phys. Rev. D 46, 5040 (1992).
- [13] B. H. Behrens et al. [CLEO Collaboration], Phys. Rev. D 61, 052001 (2000).
- [14] T. Hokuue *et al.* [Belle Collaboration], Phys. Lett. B **648**, 139 (2007).
- [15] A. Sibidanov et al. [Belle Collaboration], Phys. Rev. D 88, 032005 (2013).
- [16] P. del Amo Sanchez et al. [BaBar Collaboration], Phys. Rev. D 83, 032007 (2011).
- [17] C. Beleño et al. [Belle Collaboration], arXiv:2005.07766 [hep-ex].
- [18] C. Beleño, "Measurement of $B \to \pi \pi \ell \bar{\nu}$ with Full Hadronic Reconstruction at Belle," thesis, Gottingen University (2018).
- [19] H.Y. Cheng and C.K. Chua, Phys. Rev. D 102, 053006 (2020).
- [20] S. Fajfer, R.J. Oakes and T.N. Pham, Phys. Rev. D 60, 054029 (1999).
- [21] C.K. Chua, W.S. Hou, S.Y. Shiau and S.Y. Tsai, Phys. Rev. D 67, 034012 (2003).
- [22] C.K. Chua, W.S. Hou, S.Y. Shiau and S.Y. Tsai, Eur. Phys. J. C 33, S253 (2004).
- [23] C. Hambrock and A. Khodjamirian, Nucl. Phys. B **905**, 373 (2016).
- [24] P. Boer, T. Feldmann and D.van Dyk, JHEP **1702**, 133 (2017).
- [25] S. Cheng, A. Khodjamirian and J. Virto, JHEP **1705**, 157 (2017).
- [26] Y.K. Hsiao and C.Q. Geng, Phys. Lett. B 770, 348 (2017).
- [27] Y.K. Hsiao, S.Y. Tsai and E. Rodrigues, Eur. Phys. J. C 80, 565 (2020).
- [28] T. Feldmann, D.Van Dyk and K.K. Vos, JHEP **1810**, 030 (2018).
- [29] S. Cheng, Phys. Rev. D **99**, 053005 (2019).
- [30] A. Pais and S.B. Treiman, Phys. Rev. **168**, 1858 (1968).
- [31] M. Wirbel, B. Stech and M. Bauer, Z. Phys. C 29, 637 (1985).
- [32] L. Del Debbio et al. [UKQCD], Phys. Lett. B 416, 392 (1998).
- [33] W. Wang, Phys. Rev. D 83, 014008 (2011).
- [34] H.Y. Cheng and K.C. Yang, Phys. Rev. D 83, 034001 (2011).
- [35] Y.B. Zuo, C.X. Yue, B. Yu, Y.H. Kou, Y. Chen and W. Ling, Eur. Phys. J. C 81, 30 (2021).
- [36] M. Suzuki, Phys. Rev. D 47, 1043 (1993).
- [37] C.Q. Geng and Y.K. Hsiao, Phys. Lett. B **704**, 495 (2011).
- [38] C.Q. Geng and Y.K. Hsiao, Phys. Rev. D 85, 094019 (2012).
- [39] Y.K. Hsiao, Y. Yu and B.C. Ke, Eur. Phys. J. C 80, 895 (2020).