Semileptonic $B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$ decay with $\pi \pi$ invariant mass spectrum

Shang-Yuu Tsai ${ }^{1, *}$ and Yu-Kuo Hsiao ${ }^{1, \dagger}$
${ }^{1}$ School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China

(Dated: November 16, 2021)

Abstract

BELLE has recently reported the measurement of the branching fraction of the semileptonic $B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$ decay, where ℓ represents an electron or a muon. With the new information on the $\pi \pi$ invariant mass spectrum, we extract $\left|V_{u b}\right|=(3.31 \pm 0.61) \times 10^{-3}$ in agreement with those from the other exclusive B decays. In particular, we determine the non-resonant $B \rightarrow \pi \pi$ transition form factors, and predict the non-resonant branching fraction $\mathcal{B}\left(B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}\right)=$ $\left(3.5 \pm 1.4_{-2.4}^{+4.3}\right) \times 10^{-5}$, which is accessible to the BELLEII and LHCb experiments.

[^0]
I. INTRODUCTION

For the Cabibbo-Kobayashi-Maskawa (CKM) matrix element $\left|V_{u b}\right|$, there have been the long-standing inconsistent determinations from the inclusive and exclusive b-hadron decays [1, 2], which might indicate the existence of new physics [3-11]. For a careful examination, the exclusive $B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$ decay can provide another path to determining $\left|V_{u b}\right|$, where ℓ represents an electron or a muon. Nonetheless, although $B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$ has been observed many times [13-16], it is essentially $B^{-} \rightarrow \rho^{0} \ell^{-} \bar{\nu}_{\ell}$ along with $\rho^{0} \rightarrow \pi^{+} \pi^{-}$, instead of a genuine four-body decay.

Recently, BELLE has newly reported the measurement of the branching fractions of $B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$ with the full $\pi \pi$ invariant mass $\left(M_{\pi \pi}\right)$ spectrum [17]. In addition to the resonant processes of $B^{-} \rightarrow R \ell^{-} \bar{\nu}_{\ell}, R \rightarrow \pi^{+} \pi^{-}$with $R=\rho^{0}$ and $f_{2} \equiv f_{2}(1270)$, the nonresonant contribution is also found. Explicitly, we present the branching fractions as [1, 17, 18]

$$
\begin{align*}
& \mathcal{B}_{\mathrm{T}}\left(B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}\right)=\left(22.7_{-1.6}^{+1.9} \pm 3.4\right) \times 10^{-5}, \\
& \mathcal{B}_{\rho}\left(B^{-} \rightarrow \rho^{0} \ell^{-} \bar{\nu}_{\ell}, \rho^{0} \rightarrow \pi^{+} \pi^{-}\right)=(15.8 \pm 1.1) \times 10^{-5}, \\
& \mathcal{B}_{f_{2}}\left(B^{-} \rightarrow f_{2} \ell^{-} \bar{\nu}_{\ell}, f_{2} \rightarrow \pi^{+} \pi^{-}\right)=\left(1.8 \pm 0.9_{-0.1}^{+0.2}\right) \times 10^{-5}, \\
& \mathcal{B}_{\mathrm{N}}\left(B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}\right)=(5.1 \pm 4.3) \times 10^{-5}, \tag{1}
\end{align*}
$$

where $\mathcal{B}_{\mathrm{T}, \mathrm{N}}$ denote the total and non-resonant branching fractions, respectively, while $\mathcal{B}_{\rho} \simeq$ $\mathcal{B}\left(B^{-} \rightarrow \rho^{0} \ell^{-} \bar{\nu}_{\ell}\right) \times \mathcal{B}\left(\rho^{0} \rightarrow \pi^{+} \pi^{-}\right)$is from PDG [1]. By excluding $\mathcal{B}_{\rho, f_{2}}$ from \mathcal{B}_{T}, we estimate \mathcal{B}_{N} in Eq. (11).

As depicted in Fig. 目, $B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$ proceeds through the resonant and non-resonant $B \rightarrow \pi \pi$ transitions, respectively, with the lepton-pair produced from the emitted W-boson. One has been enabled to parameterize the resonant $B \rightarrow \rho\left(f_{2}\right), \rho\left(f_{2}\right) \rightarrow \pi \pi$ transition [19]. Despite the theoretical attempts [5, 12, 20-29], the non-resonant $B \rightarrow \pi \pi$ transition is still poorly understood. With the full $\pi \pi$ invariant mass spectrum provided for the first time, the information on the non-resonant $B \rightarrow \pi \pi$ transition form factors $\left(F_{\pi \pi}\right)$ becomes available. Hence, we propose to newly extract $\left|V_{u b}\right|$ and $F_{\pi \pi}$, by which we will be able to study \mathcal{B}_{N}. We will also study the angular distribution and its asymmetry to be compared to the future measurements.

FIG. 1. $B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$ with (a) non-resonant and (b) resonant contributions.

II. THEORETICAL FRAMEWORK

The semileptonic $B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$ decay is observed with the full $M_{\pi \pi}$ spectrum, which indicates the existence of the non-resonant contribution [17]. Moreover, the simulation is performed to seek the resonances that contribute to $B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$. It turns out that only a dominant peak and a small bump are observed, which correspond to $B^{-} \rightarrow \rho^{0} \ell \bar{\nu}, f_{2} \ell \bar{\nu}$, respectively, with $\rho^{0}, f_{2} \rightarrow \pi^{+} \pi^{-}$. Therefore, the total amplitude of $B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$ can be written as

$$
\begin{align*}
\mathcal{M}_{\mathrm{T}} & =\mathcal{M}_{\mathrm{N}}\left(B^{-} \rightarrow \pi^{+} \pi^{-} \ell \bar{\nu}_{\ell}\right)+\mathcal{M}_{\rho}\left(B^{-} \rightarrow \rho^{0} \ell^{-} \bar{\nu}_{\ell}, \rho^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& +\mathcal{M}_{f_{2}}\left(B^{-} \rightarrow f_{2} \ell^{-} \bar{\nu}_{\ell}, f_{2} \rightarrow \pi^{+} \pi^{-}\right), \\
\mathcal{M}_{\mathrm{N}(\mathrm{R})} & =\frac{G_{F} V_{u b}}{\sqrt{2}}\left\langle\pi^{+} \pi^{-}\right| \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) b\left|B^{-}\right\rangle_{\mathrm{N}(\mathrm{R})} \bar{u}_{\ell} \gamma^{\mu}\left(1-\gamma_{5}\right) v_{\nu}, \tag{2}
\end{align*}
$$

with $R=\left(\rho, f_{2}\right)$. The matrix elements of the (non-)resonant B meson to $\pi \pi$ transitions can be parameterized as [12, 30]

$$
\begin{align*}
& \left\langle\pi^{+}\left(p_{a}\right) \pi^{-}\left(p_{b}\right)\right| \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) b\left|B^{-}\right\rangle_{N} \\
= & h \epsilon_{\mu \nu \alpha \beta} p_{B}^{\nu} p^{\alpha}\left(p_{b}-p_{a}\right)^{\beta}+i r q_{\mu}+i w_{+} p_{\mu}+i w_{-}\left(p_{b}-p_{a}\right), \\
& \left\langle\pi^{+}\left(p_{a}\right) \pi^{-}\left(p_{b}\right)\right| \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) b\left|B^{-}\right\rangle_{\rho\left(f_{2}\right)} \\
= & \left\langle\pi^{+} \pi^{-} \mid \rho\left(f_{2}\right)\right\rangle \frac{i}{\left(t-m_{\rho\left(f_{2}\right)}^{2}\right)+i m_{\rho\left(f_{2}\right)} \Gamma_{\rho\left(f_{2}\right)}}\left\langle\rho\left(f_{2}\right)\right| \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) b\left|B^{-}\right\rangle, \tag{3}
\end{align*}
$$

with $p=p_{b}+p_{a}, q=p_{B}-p=p_{\ell}+p_{\nu},(s, t) \equiv\left(q^{2}, p^{2}\right)$, and the form factors $F_{\pi \pi}=\left(h, r, w_{ \pm}\right)$. The matrix elements of $B \rightarrow \rho\left(f_{2}\right)$ transition are written as [33-35]

$$
\begin{align*}
\left\langle\rho\left(f_{2}\right)\right| \bar{u} \gamma_{\mu} b|B\rangle & =\epsilon_{\mu \nu \alpha \beta} \epsilon^{(\prime) \nu} p_{B}^{\alpha} p_{\rho\left(f_{2}\right)}^{\beta} \frac{2 V_{1}^{(\prime)}}{m_{B}+m_{\rho\left(f_{2}\right)}}, \\
\left\langle\rho\left(f_{2}\right)\right| \bar{u} \gamma_{\mu} \gamma_{5} b|B\rangle & =i\left[\epsilon_{\mu}^{(\prime)}-\frac{\epsilon^{(\prime)} \cdot p_{B}}{s} q_{\mu}\right]\left(m_{B}+m_{\rho\left(f_{2}\right)}\right) A_{1}^{(\prime)}+i \frac{\epsilon^{(\prime)} \cdot p_{B}}{s} q_{\mu}\left(2 m_{\rho\left(f_{2}\right)}\right) A_{0}^{(\prime)} \\
& -i\left[\left(p_{B}+p_{\left.\rho\left(f_{2}\right)\right)_{\mu}}-\frac{m_{B}^{2}-m_{\rho\left(f_{2}\right)}^{2}}{s} q_{\mu}\right]\left(\epsilon^{(\prime)} \cdot p_{B}\right) \frac{A_{2}^{(\prime)}}{m_{B}+m_{\rho\left(f_{2}\right)}},\right. \tag{4}
\end{align*}
$$

with $\epsilon^{\prime \mu} \equiv \epsilon^{\mu \nu} p_{B \nu} / m_{B}$ and the form factors $F_{\rho\left(f_{2}\right)}=\left(V_{1}^{(\prime)}, A_{0,1,2}^{(\prime)}\right)$, where ϵ^{ν} and $\epsilon^{\mu \nu}$ are the polarization vector and tensor, respectively. To describe the $\rho^{0}, f_{2} \rightarrow \pi^{+} \pi^{-}$decays, $\left\langle\pi \pi \mid \rho, f_{2}\right\rangle$ in Eq. (21) are given by [9, 19, 36]

$$
\begin{align*}
\langle\pi \pi \mid \rho\rangle & =g_{1} \epsilon \cdot\left(p_{b}-p_{a}\right), \\
\left\langle\pi \pi \mid f_{2}\right\rangle & =g_{2} \epsilon^{\mu \nu} p_{a \mu} p_{b \nu}, \tag{5}
\end{align*}
$$

where $g_{1,2}$ are strong coupling constants. To sum over the vector and tensor spins for ρ and f_{2}, respectively, as the intermediate states in the resonant $B \rightarrow \pi \pi$ transitions, we use the following identities [33-35],

$$
\begin{align*}
\Sigma \epsilon_{\mu} \epsilon_{\mu^{\prime}}^{*} & =M_{\mu \mu^{\prime}} \\
\Sigma \epsilon_{\mu \nu} \epsilon_{\mu^{\prime} \nu^{\prime}}^{*} & =\frac{1}{2} M_{\mu \mu^{\prime}} M_{\nu \nu^{\prime}}+\frac{1}{2} M_{\mu \nu^{\prime}} M_{\nu \mu^{\prime}}-\frac{1}{3} M_{\mu \nu} M_{\mu^{\prime} \nu^{\prime}} \tag{6}
\end{align*}
$$

with $M_{\mu \mu^{\prime}}=-g_{\mu \mu^{\prime}}+p_{\mu} p_{\mu^{\prime}} / p^{2}$. The form factors in Eqs. (3, (4) are momentum-dependent, modelled in the single-pole or double-pole forms [33-35]:

$$
\begin{align*}
F_{\rho}(s) & =\frac{F_{\rho}(0)}{1-s / m_{V}^{2}} \\
F_{f_{2}}(s) & =\frac{F_{f_{2}}(0)}{\left(1-s / m_{B}^{2}\right)^{2}} \\
F_{\pi \pi}(t) & =\frac{F_{\pi \pi}(0)}{1-a\left(t / m_{B}^{2}\right)+b\left(t / m_{B}^{2}\right)^{2}} \tag{7}
\end{align*}
$$

where $F_{\rho, f_{2}}(s)$ have been studied in QCD models, whereas $\left(a, b, F_{\pi \pi}(0)\right)$ need to be extracted in the global fit.

For the four-body decay channel $B^{-}\left(p_{B}\right) \rightarrow \pi^{+}\left(p_{a}\right) \pi^{-}\left(p_{b}\right) \ell^{-}\left(p_{\ell}\right) \bar{\nu}_{\ell}\left(p_{\nu}\right)$, one has to integrate over the kinematic variables $\left(s, t, \theta_{M}, \theta_{L}, \phi\right)$ in the phase space. See Fig. 2, $\theta_{M(L)}$ is the angle between π^{+}and $\pi^{-}\left(\ell^{-}\right.$and $\left.\bar{\nu}_{\ell}\right)$ moving directions in the $\pi^{+} \pi^{-}\left(\ell^{-} \bar{\nu}_{\ell}\right)$ rest frame. In addition, the angle ϕ is between the $\pi^{+} \pi^{-}$and $\ell^{-} \bar{\nu}_{\ell}$ planes, defined by $\vec{p}_{a, b}$ and $\vec{p}_{\ell, \bar{\nu}_{\ell}}$,

FIG. 2. The angular variables $\left(\theta_{M}, \theta_{L}, \phi\right)$ in the four-body $B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$ decay.
respectively, in the B-meson rest frame. Then, the partial decay width reads [37, 38]

$$
\begin{equation*}
d \Gamma=\frac{|\mathcal{M}|^{2}}{4(4 \pi)^{6} m_{B}^{3}} X \alpha_{M} \alpha_{L} d s d t d \cos \theta_{M} d \cos \theta_{L} d \phi \tag{8}
\end{equation*}
$$

where X, α_{M} and α_{L} are defined by

$$
\begin{align*}
X & =\left[\frac{1}{4}\left(m_{B}^{2}-s-t\right)^{2}-s t\right]^{1 / 2} \\
\alpha_{M} & =\frac{1}{t} \lambda^{1 / 2}\left(t, m_{\pi}^{2}, m_{\pi}^{2}\right) \\
\alpha_{L} & =\frac{1}{s} \lambda^{1 / 2}\left(s, m_{\ell}^{2}, m_{\bar{\nu}}^{2}\right) \tag{9}
\end{align*}
$$

with $\lambda(a, b, c)=a^{2}+b^{2}+c^{2}-2 a b-2 b c-2 c a$. The allowed ranges for (s, t) and the angular variables $\left(\theta_{M}, \theta_{L}, \phi\right)$ are given by

$$
\begin{align*}
\left(m_{\ell}+m_{\bar{\nu}_{\ell}}\right)^{2} & \leq s \leq\left(m_{B}-\sqrt{t}\right)^{2} \\
4 m_{\pi}^{2} & \leq t \leq\left(m_{B}-m_{\ell}-m_{\bar{\nu}_{\ell}}\right)^{2} \\
0 & \leq \theta_{M, L} \leq \pi \\
0 & \leq \phi \leq 2 \pi \tag{10}
\end{align*}
$$

with $m_{\ell}+m_{\bar{\nu}_{\ell}} \simeq 0$. From Eq. (8), we define the angular distribution asymmetry as

$$
\begin{equation*}
A_{\theta_{M}} \equiv \frac{\int_{0}^{+1} \frac{d \Gamma}{d \cos \theta_{M}} d \cos \theta_{M}-\int_{-1}^{0} \frac{d \Gamma}{d \cos \theta_{M}} d \cos \theta_{M}}{\int_{0}^{+1} \frac{d \Gamma}{d \cos \theta_{M}} d \cos \theta_{M}+\int_{-1}^{0} \frac{d \Gamma}{d \cos \theta_{M}} d \cos \theta_{M}} \tag{11}
\end{equation*}
$$

where $d \Gamma / d \cos \theta_{M}$ is the angular distribution.

TABLE I. The B to $\left(\rho, f_{2}\right)$ transition form factors with $M_{V}=7.0 \mathrm{GeV}$ in Eq. (77) 32, 34]. Here, we present $\sqrt{2} F_{\rho^{0}}=F_{\rho}$ for the B to ρ^{0} transition.

	$V_{1}^{(\prime)}$	$A_{1}^{(1)}$	$A_{2}^{(1)}$
$\sqrt{2} F_{\rho^{0}}(0)$	$0.35_{-0.05}^{+0.06}$	$0.27_{-0.04}^{+0.05}$	$0.26_{-0.03}^{+0.05}$
$F_{f_{2}}(0)$	(0.18 ± 0.02)	(0.13 ± 0.02)	(0.12 ± 0.02)

III. NUMERICAL ANALYSIS

In the numerical analysis, we perform the minimum χ^{2}-fit, in order to extract $\left|V_{u b}\right|, F_{\pi \pi}$ and $\delta_{1,2}$ as the free parameters, where $\delta_{1(2)}$ is the relative phase for $\mathcal{A}_{\rho\left(f_{2}\right)}$. The equation of the χ^{2}-fit is given by

$$
\begin{align*}
\chi^{2}= & \left(\frac{\mathcal{B}_{\rho t h}-\mathcal{B}_{\rho e x}}{\sigma_{\rho e x}}\right)^{2}+\left(\frac{\mathcal{B}_{f_{2} t h}-\mathcal{B}_{f_{2} e x}}{\sigma_{f_{2} e x}}\right)^{2} \\
& +\sum_{i}\left(\frac{\frac{d \mathcal{B}_{t h}^{i}}{d M_{\pi \pi}}-\frac{d \mathcal{B}_{e x}^{i}}{d M_{\pi \pi}}}{\sigma_{e x}^{i}}\right)^{2}+\sum_{j}\left(\frac{F_{\rho\left(f_{2}\right)}^{j}-F_{t h \rho\left(f_{2}\right)}^{j}}{\delta F_{t h \rho\left(f_{2}\right)}^{j}}\right)^{2} \tag{12}
\end{align*}
$$

where $d \mathcal{B} / d M_{\pi \pi}$ denotes the partial branching ratio, and $\sigma_{e x}\left(\delta F_{t h}\right)$ the uncertainty from the observation (form factor). $\mathcal{B}_{\rho\left(f_{2}\right) t h}$ and $d \mathcal{B}_{t h} / d M_{\pi \pi}$ are the theoretical inputs from the amplitudes in Eq. (21), and the experimental inputs are given in Eq. (1) and Fig. 3. We take F_{ρ} and $F_{f_{2}}$ in Table【 as the initial values in Eq. (12), together with $\left|g_{1}\right|=5.98$ and $\left|g_{2}\right|=18.56 \mathrm{GeV}^{-1}$ [36, 39].

Subsequently, we extract that

$$
\begin{align*}
& \left|V_{u b}\right|=(3.31 \pm 0.61) \times 10^{-3} \\
& a=(0.96 \pm 0.93) \times m_{B}^{2}, b=(1.84 \pm 0.87) \times m_{B}^{4} \\
& h(0)=1.90 \pm 0.43, w_{+}(0)=6.16 \pm 3.41, w_{-}(0)=3.67 \pm 1.79 \\
& \left(\delta_{1}, \delta_{2}\right)=(-111.6 \pm 29.3,0.0 \pm 1.4)^{\circ} \\
& \chi^{2} / n . d . f=1.1 \tag{13}
\end{align*}
$$

with n.d.f $=7$ the number of degrees of freedom. The form factors $V_{1}^{(\prime)}$ and $A_{1,2}^{(\prime)}$ are fitted to slightly deviate from their initial inputs in Table (1) given by

$$
\begin{align*}
& \left(V_{1}(0), A_{1}(0), A_{2}(0)\right)=(0.35 \pm 0.06,0.29 \pm 0.04,0.28 \pm 0.04) \\
& \left(V_{1}^{\prime}(0), A_{1}^{\prime}(0), A_{2}^{\prime}(0)\right)=(0.18 \pm 0.02,0.11 \pm 0.02,0.14 \pm 0.02) \tag{14}
\end{align*}
$$

Nonetheless, r and $A_{0}^{(1)}$ in Eqs. (3, (4) are not involved in the global fit, since they have been vanishing with $q_{\mu} \bar{u}_{\ell} \gamma^{\mu}\left(1-\gamma_{5}\right) v_{\nu}=0$ in the amplitudes, where the lepton pair is nearly massless.

Using the fit results in Eqs. (13),14), we obtain

$$
\begin{align*}
& \mathcal{B}_{\mathrm{T}}\left(B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}\right)=\left(19.6 \pm 7.9_{-5.4-0.1}^{+7.5+0.7}\right) \times 10^{-5}, \\
& \mathcal{B}_{\rho}\left(B^{-} \rightarrow \rho^{0} \ell^{-} \bar{\nu}_{\ell}, \rho^{0} \rightarrow \pi^{+} \pi^{-}\right)=\left(15.8 \pm 6.4_{-5.7}^{+7.1}\right) \times 10^{-5}, \\
& \mathcal{B}_{f_{2}}\left(B^{-} \rightarrow f_{2} \ell^{-} \bar{\nu}_{\ell}, f_{2} \rightarrow \pi^{+} \pi^{-}\right)=\left(2.6 \pm 1.1_{-0.9}^{+1.2}\right) \times 10^{-5}, \\
& \mathcal{B}_{\mathrm{N}}\left(B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}\right)=\left(3.5 \pm 1.4_{-2.4}^{+4.3}\right) \times 10^{-5}, \tag{15}
\end{align*}
$$

where the first errors are from $\left|V_{u b}\right|$, the second ones from the form factors, and the third error for \mathcal{B}_{T} from the relative phase δ_{1}. Moreover, we draw the partial branching fractions as the functions of $M_{\pi \pi}$ and $\cos \theta_{M}$ in Fig. 3 and Fig. 4. respectively. We also calculate the angular distribution asymmetries, given by

$$
\begin{align*}
& A_{\theta_{M}, \mathrm{~T}}\left(B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}\right)=\left(1.3 \pm 8.9_{-2.5}^{+0.8}\right) \%, \\
& A_{\theta_{M}, \rho}\left(B^{-} \rightarrow \rho^{0} \ell^{-} \bar{\nu}_{\ell}, \rho^{0} \rightarrow \pi^{+} \pi^{-}\right)=(0.20 \pm 0.04) \%, \\
& A_{\theta_{M}, f_{2}}\left(B^{-} \rightarrow f_{2} \ell^{-} \bar{\nu}_{\ell}, f_{2} \rightarrow \pi^{+} \pi^{-}\right)=(0.31 \pm 0.08) \%, \\
& A_{\theta_{M}, \mathrm{~N}}\left(B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}\right)=(-43.0 \pm 22.3) \%, \tag{16}
\end{align*}
$$

where the first errors come from the uncertainties of the form factors, and the second error for $A_{\theta_{M}, \mathrm{~T}}$ is from the relative phase δ_{1}.

IV. DISCUSSIONS AND CONCLUSIONS

We study $B^{-} \rightarrow \pi^{+} \pi^{-} \ell \bar{\nu}$, in order to explain the $\pi \pi$ invariant mass spectrum observed by BELLE [17]. In Fig. 3, the curves for $B^{-} \rightarrow\left(\rho^{0}, f_{2}\right) \ell \bar{\nu},\left(\rho^{0}, f_{2}\right) \rightarrow \pi^{+} \pi^{-}$are shown to barely fit the first three data points in the spectrum. Nonetheless, the non-resonant $B^{-} \rightarrow \pi^{+} \pi^{-} \ell \bar{\nu}$ raises the contribution as the dot-dashed curve describes. As a result, the solid curve that takes into account the resonant and non-resonant contributions is able to explain the data, with $\chi^{2} /$ d.o. $f=1.1$ that presents a reasonable fit. The relative phase $\delta_{1}=-111.6^{\circ}$ causes a destructive interference between the non-resonant $B^{-} \rightarrow \pi^{+} \pi^{-} \ell \bar{\nu}$ and $B^{-} \rightarrow \rho^{0} \ell \bar{\nu}, \rho^{0} \rightarrow \pi^{+} \pi^{-}$. As a demonstration, we turn off δ_{1} and obtain $\mathcal{B}_{T}=22.2 \times 10^{-5}$. By contrast, δ_{2} is fitted to be zero, in accordance with the fact that the non-resonant

FIG. 3. The $\pi \pi$ invariant mass spectrum, where the solid curve that takes into account the all contributions explains the data points from BELLE [17]. On the other hand, the dashed (dotted) and dot-dashed curves depict the contributions from $B^{-} \rightarrow \rho\left(f_{2}\right) \ell \bar{\nu}, \rho\left(f_{2}\right) \rightarrow \pi^{+} \pi^{-}$, and nonresonant $B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$, respectively.

FIG. 4. Angular distributions of $B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$, where the solid, dashed, dotted and dot-dashed curves represent the same contributions as those in Fig. 3.
contribution is tiny in the range of $M_{\pi \pi}>1 \mathrm{GeV}$, barely having the interference with $B^{-} \rightarrow f_{2} \ell \bar{\nu}, f_{2} \rightarrow \pi^{+} \pi^{-}$.

It turns out that $\mathcal{B}_{\mathrm{N}}=\left(3.5 \pm 1.4_{-2.4}^{+4.3}\right) \times 10^{-5}$ is given for the first time. Also importantly, we determine $\left|V_{u b}\right|=(3.31 \pm 0.61) \times 10^{-3}$ from the first genuine four-body semileptonic $B \rightarrow$
$\pi \pi \ell \bar{\nu}$ decay, instead of $B^{-} \rightarrow \rho^{0} \ell \bar{\nu}, \rho^{0} \rightarrow \pi^{+} \pi^{-}$. For the angular distribution asymmetries, we obtain $A_{\theta_{M}, \rho\left(f_{2}\right)}=0$, showing the symmetric distributions as the curves in Fig. 4. By contrast, $\left|A_{\theta_{M}, \mathrm{~N}}\right|$ is as large as 40%. This is due to the main contributions from the form factors $w_{+}\left(p_{b}+p_{a}\right)_{\mu}$ and $w_{-}\left(p_{b}-p_{a}\right)$. With $p_{b}+p_{a}=\left(2 E_{b}, \overrightarrow{0}\right)$ and $p_{b}-p_{a}=\left(0,2 \vec{p}_{b}\right)$ in the $\pi^{+}\left(p_{a}\right) \pi^{-}\left(p_{b}\right)$ rest frame (see Fig. (2), the projection of $w_{\mp}\left(p_{b} \mp p_{a}\right)$ onto the four-momentum of the lepton pair system causes a $\cos \theta_{M^{-}}$(in)dependent term, such that their interference leads to the large angular distribution asymmetry.

In summary, we have studied the semileptonic $B^{-} \rightarrow \pi^{+} \pi^{-} \ell \bar{\nu}$ decay. With the full $\pi \pi$ invariant mass spectrum observed by BELLE, we have determined $\left|V_{u b}\right|=(3.31 \pm 0.61) \times 10^{-3}$ agreeing with the other exclusive determinations. Besides, we have extracted the nonresonant $B \rightarrow \pi \pi$ transition form factors, by which we have predicted the non-resonant branching fraction $\mathcal{B}_{\mathrm{N}}\left(B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}\right)=\left(3.5 \pm 1.4_{-2.4}^{+4.3}\right) \times 10^{-5}$. We have also predicted the non-resonant angular distribution asymmetry $A_{\theta_{M}, \mathrm{~N}}\left(B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}\right)=(-43.0 \pm 22.3) \%$ to be checked by the future measurements.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation of China (No. 11675030).
[1] P.A. Zyla et al. [Particle Data Group], PTEP 2020, 083C01 (2020).
[2] Please see PDG for a review.
[3] A. Crivellin, Phys. Rev. D 81, 031301 (2010).
[4] A.J. Buras, K. Gemmler and G. Isidori, Nucl. Phys. B 843, 107 (2011).
[5] X.W. Kang, B. Kubis, C. Hanhart and U.G. Mei β ner, Phys. Rev. D 89, 053015 (2014).
[6] A. Crivellin and S. Pokorski, Phys. Rev. Lett. 114, 011802 (2015).
[7] T. Feldmann, B. Müller and D. van Dyk, Phys. Rev. D 92, 034013 (2015).
[8] Y.K. Hsiao and C.Q. Geng, Phys. Lett. B 755, 418 (2016).
[9] C.S. Kim, G.L. Castro and S.L. Tostado, Phys. Rev. D 95, 073003 (2017).
[10] Y.K. Hsiao and C.Q. Geng, Eur. Phys. J. C 77, 714 (2017).
[11] Y.K. Hsiao and C.Q. Geng, Phys. Lett. B 782, 728 (2018).
[12] C.L.Y. Lee, M. Lu and M.B. Wise, Phys. Rev. D 46, 5040 (1992).
[13] B. H. Behrens et al. [CLEO Collaboration], Phys. Rev. D 61, 052001 (2000).
[14] T. Hokuue et al. [Belle Collaboration], Phys. Lett. B 648, 139 (2007).
[15] A. Sibidanov et al. [Belle Collaboration], Phys. Rev. D 88, 032005 (2013).
[16] P. del Amo Sanchez et al. [BaBar Collaboration], Phys. Rev. D 83, 032007 (2011).
[17] C. Beleño et al. [Belle Collaboration], arXiv:2005.07766 [hep-ex].
[18] C. Beleño, "Measurement of $B \rightarrow \pi \pi \ell \bar{\nu}$ with Full Hadronic Reconstruction at Belle," thesis, Gottingen University (2018).
[19] H.Y. Cheng and C.K. Chua, Phys. Rev. D 102, 053006 (2020).
[20] S. Fajfer, R.J. Oakes and T.N. Pham, Phys. Rev. D 60, 054029 (1999).
[21] C.K. Chua, W.S. Hou, S.Y. Shiau and S.Y. Tsai, Phys. Rev. D 67, 034012 (2003).
[22] C.K. Chua, W.S. Hou, S.Y. Shiau and S.Y. Tsai, Eur. Phys. J. C 33, S253 (2004).
[23] C. Hambrock and A. Khodjamirian, Nucl. Phys. B 905, 373 (2016).
[24] P. Boer, T. Feldmann and D.van Dyk, JHEP 1702, 133 (2017).
[25] S. Cheng, A. Khodjamirian and J. Virto, JHEP 1705, 157 (2017).
[26] Y.K. Hsiao and C.Q. Geng, Phys. Lett. B 770, 348 (2017).
[27] Y.K. Hsiao, S.Y. Tsai and E. Rodrigues, Eur. Phys. J. C 80, 565 (2020).
[28] T. Feldmann, D.Van Dyk and K.K. Vos, JHEP 1810, 030 (2018).
[29] S. Cheng, Phys. Rev. D 99, 053005 (2019).
[30] A. Pais and S.B. Treiman, Phys. Rev. 168, 1858 (1968).
[31] M. Wirbel, B. Stech and M. Bauer, Z. Phys. C 29, 637 (1985).
[32] L. Del Debbio et al. [UKQCD], Phys. Lett. B 416, 392 (1998).
[33] W. Wang, Phys. Rev. D 83, 014008 (2011).
[34] H.Y. Cheng and K.C. Yang, Phys. Rev. D 83, 034001 (2011).
[35] Y.B. Zuo, C.X. Yue, B. Yu, Y.H. Kou, Y. Chen and W. Ling, Eur. Phys. J. C 81, 30 (2021).
[36] M. Suzuki, Phys. Rev. D 47, 1043 (1993).
[37] C.Q. Geng and Y.K. Hsiao, Phys. Lett. B 704, 495 (2011).
[38] C.Q. Geng and Y.K. Hsiao, Phys. Rev. D 85, 094019 (2012).
[39] Y.K. Hsiao, Y. Yu and B.C. Ke, Eur. Phys. J. C 80, 895 (2020).

[^0]: * shangyuu@gmail.com
 \dagger yukuohsiao@gmail.com

