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TYPICAL ABSOLUTE CONTINUITY FOR CLASSES OF DYNAMICALLY
DEFINED MEASURES

BALAZS BARANY!, KAROLY SIMON'?, BORIS SOLOMYAK?, AND ADAM SPIEWAK?

ABSTRACT. We consider one-parameter families of smooth uniformly contractive iterated function
systems {f;'} on the real line. Given a family of parameter dependent measures {1, } on the symbolic
space, we study geometric and dimensional properties of their images under the natural projection
maps II*. The main novelty of our work is that the measures x depend on the parameter, whereas
up till now it has been usually assumed that the measure on the symbolic space is fixed and the
parameter dependence comes only from the natural projection. This is especially the case in the
question of absolute continuity of the projected measure (II*). ., where we had to develop a new
approach in place of earlier attempt which contains an error. Our main result states that if py are
Gibbs measures for a family of Holder continuous potentials ¢, with Holder continuous dependence
on X and {II*} satisfy the transversality condition, then the projected measure (II*). uy is absolutely
continuous for Lebesgue a.e. A, such that the ratio of entropy over the Lyapunov exponent is strictly
greater than 1. We deduce it from a more general almost sure lower bound on the Sobolev dimension
for families of measures with regular enough dependence on the parameter. Under less restrictive
assumptions, we also obtain an almost sure formula for the Hausdorff dimension. As applications
of our results, we study stationary measures for iterated function systems with place-dependent
probabilities (place-dependent Bernoulli convolutions and the Blackwell measure for binary channel)
and equilibrium measures for hyperbolic IFS with overlaps (in particular: natural measures for non-
homogeneous self-similar IFS and certain systems corresponding to random continued fractions).
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1. INTRODUCTION
Let A={1,...,m} and let ¥ = {f;};c4 be a set of contracting smooth functions on a compact

interval I C R mapping I into itself. We call the set ¥ an iterated function system (IFS) on I.
It is well known that there exists a unique non-empty compact set A C I such that it is invariant
with respect to the IFS, that is A = (J;c 4 f;j (A). We call the set A the attractor of the IFS, see
Hutchinson [I7] or Falconer [11].

Moreover, let Q = AN be the symbolic space and o the left shift transformation on Q. There is a
natural projection II: Q +— A defined as

M(w) := nli_)rgofw1 00 fu.(x), for w= (w1,ws,...) € Q,

where x € I is any point (the limit does not depend on the choice of x). If i is a probability measure
on € then we call the measure I, = o II7! on A the push-forward measure of p. Usually, we
assume that p is o-invariant and ergodic. Let us denote the entropy of u by h, and the Lyapunov
exponent by x,. The ratio h,/x, is called the Lyapunov dimension of p.

Considerable attention has been paid to the dimension theory and measure theoretic properties of
attractors and push-forward measures of iterated function systems. A natural upper bound for the
Hausdorff and box counting dimension of the attractor is the unique root s of the pressure function
s P(—slog|f,, (II(ow))|) = 0, see the next section for definitions. Ruelle [36] showed that in case
of separation, e.g., the Open Set Condition (OSC), the Hausdorff dimension of the attractor equals
to the root of the pressure function, see also Falconer [10]. Similarly, the Hausdorff dimension of the
push-forward measures is bounded above by the Lyapunov dimension of u; moreover, if the OSC

holds, then the dimension equals to the Lyapunov dimension of u, see Feng and Hu [I3].
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The situation becomes more complicated if there are overlaps between the maps. To handle this
case, Pollicott and Simon [34] introduced the transversality method for parametrized families of
iterated function systems. Later, this method was widely applied and generalised, see for example,
Solomyak [45], 46], Peres and Solomyak [30, [31], Simon and Solomyak [42], Neunh&userer [26], Ngai
and Wang [27], and Peres and Schlag [29].

We have a deeper understanding in the special case, when the maps of the IFS are similarities
and the measure p is Bernoulli, thanks to recent results. In his seminal paper, Hochman [I5],
using methods of additive combinatorics, determined the value of the Hausdorff dimension of the
attractor (self-similar set) and the push-forward measure (self-similar measure) under the ezponential
separation condition. Relying on this result and the Fourier decay of the push-forward measure,
Shmerkin [39] proved that the exceptional set of parameters for absolute continuity of Bernoulli
convolution measures has zero Hausdorff dimension. These results were extended by Shmerkin and
Solomyak [40] and Saglietti, Shmerkin and Solomyak [37] to more general IFS of similarities and
Bernoulli measures. Further progress on absolute continuity of Bernoulli convolutions was obtained
by Varju [48]. Jordan and Rapaport [19] showed that the dimension of the push-forward measure of
any ergodic shift-invariant measure equals to the entropy over Lyapunov exponent ratio under the
exponential separation condition. However, such strong results are unknown in the case when the
IFS consists of general conformal maps.

Simon, Solomyak and Urbariski [43, 44] showed that if a smoothly parametrized (hyperbolic or
parabolic) family of conformal IFS’s {f}};c 4 satisfies the transversality condition over a bounded
open domain U of parameters, then for Lebesgue almost every parameter A € U the dimension of
the attractor equals to min{1, sy}, where s, is the root of the pressure function, which depends on
the parameter. Moreover, it has positive Lebesgue measure for almost every parameter, such that
sy > 1. Similarly, the dimension of the push-forward measure of any fixed ergodic shift-invariant
measure p is equal to the Lyapunov dimension of u, and the measure is absolutely continuous for
almost every parameter where h,/x, > 1. Peres and Schlag [29] obtained upper bounds on the
Hausdorff dimension of the set of exceptional parameters using a version of transversality, in the
framework of a “generalized projection”. All these results required a fixed ergodic shift-invariant
measure on ). However, there are important cases when the measure on {2 depends also on the
parameter A\. There are two natural occurrences of such situation.

One is the so-called place-dependent measures, which were studied by Fan and Lau [12], Hu, Lau
and Wang [16], Jaroszewska [18], Jaroszewska and Rams [19], Kwiecinska and W. Stomczynski [22],
Czudek [8] and others. Let {p;}ica be a family of Holder continuous maps p;: I — [0, 1] such that
Y icaPi = 1. Fan and Lau [I12] showed that there exists a unique measure v on I such that

/@(x)dl/(:c) = /sz(m)gp(fl(w))dl/(w) for any continuous test function ¢.

€A

In view of a result by Bowen [6], it is clear that v is the push-forward of the equilibrium measure p
(on the symbolic space AY) of the pressure corresponding to the potential w + log p,, (II(ow)). It
is shown in [I2] that if the open set condition holds, then the dimension of v equals Z—Z In the case

of parametrized family { ff‘}ze A the equilibrium measure depends on the parameter.

Barany [I] studied such parametrized place-dependent families and claimed to generalise the result
of [44] for this case. However, the proof contains a crucial error, which cannot be fixed easily. In
the present paper we have managed to overcome the obstacles and correct the error, using a delicate

modification of the Peres-Schlag [29] method. In fact, our results are much more general. Here we
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state the main result in the most important situation, in non-technical terms; complete statements
may be found in Section 3.

Theorem 1.1. Let {fj)\}jEA be a C* smooth family of hyperbolic IFS on a compact interval,
smoothly depending on a real parameter X € U, and let TI* : Q — R be the corresponding natural
projection map. We assume that the (classical) transversality condition holds on U. Let {u}rcv
be a family of Gibbs measures, corresponding to a family of Holder-continuous potentials, with a
Holder-continuous dependence on parameter. Then the push-forward measure (IIN)4puy is absolutely
continuous for Lebesgque-a.e. X € U such that hy, [xu, > 1.

We also showed, under slightly less restrictive assumptions, that the push-forward measure (HA)* L
has Hausdorff dimension equal to min{1, h,, /x,, } almost everywhere in U. The proof of this result
is not as difficult, similar to Barany-Rams [7], and is included for completeness.

Place-dependent measures play an important role, for example, in the theory of hidden Markov
chains. Blackwell [5] expressed the entropy of hidden Markov chains over finite state space as
an integral with respect to a place-dependent measure, which is nowadays called the Blackwell
measure. The singularity of the Blackwell measure was studied by Barany, Pollicott and Simon
[3]. Later, Barany and Kolossvary [2] showed that the transversality condition holds on a certain
region of parameters and applied the main theorem of Barany [I] to claim absolute continuity almost
everywhere in this region. Since the Blackwell measure satisfies the assumptions of the main result
of the present paper, we recover this result of Barany and Kolossvary [2].

Another important case, when the parameter dependence of the measure occurs, is the natural
measure of the parametrized IFS {f?};c4, which is the equilibrium measure vy with respect to
the potential w — sylog|(f2,)'(IIx(ow))|. See [35] for more on the subject. In case of overlaps,
neither the dimension nor the absolute continuity was known. Our result applies in this situation
as well. In particular, it follows that a natural measure for non-homogeneous self-similar IFS is
absolutely continuous for almost every parameter with similarity dimension strictly larger than 1, in
the transversality region (such regions were found e.g. for non-homogeneous Bernoulli convolutions,
see [26], 27]). A similar conclusion is obtained for a (non-linear) system corresponding to certain
random continued fractions.

1.1. About the proof. In order to prove “almost-sure” results for push-forwards of measures )
depending on parameter, we need to impose “correct” continuity assumptions on the measure, which
are, on one hand, sufficiently strong to apply the techniques, but on the other hand, can be verified
in practice. These continuity assumptions are imposed on measures of cylinder sets and involve
estimates of the ratios py([w])/pa, ([w]) for A close to Ag. For the result on Hausdorff dimension
of the push-forward measure, the condition is less restrictive, see below, and we could apply
more or less “classical” transversality techniques, since roughly speaking, we can “afford” to lose € in
dimension estimates.

The results on absolute continuity are much more delicate. The idea is to adapt the method of
Peres-Schlag [29] and to show that almost everywhere in the super-critical parameter interval, the
Sobolev dimension of the push-forward measure is greater than one. This implies not just absolute
continuity, but also L?-density and even existence of L?-fractional derivatives of some positive order.
This adaptation is not straightforward. First, [29] uses the notion of transversality of degree 3, which
has to be verified in our situation. Second, we cannot apply the result of [29] as a “black box”, but
rather have to work at a certain “discretized” level, in order to utilize the continuity assumptions

on the measure dependence, see [(M)| below. It should be mentioned that Peres-Schlag [29] used
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their theorem on Sobolev dimension to estimate the Hausdorff dimension of the set of exceptional
parameters for absolute continuity. We do not deal with this issue and only concern ourselves with
almost sure absolute continuity. We should also point out that [29] contains two kinds of results: the
infinite regularity case and the limited regularity case. It is the latter one (in fact, with the lowest
possible regularity) that we adapt.

Another issue that comes up is that absolute continuity by the Peres-Schlag method is originally
shown under the assumption that the correlation dimension of the measure p) is greater than one
(in the metric corresponding to \), which is a stronger condition, in general, than h,, /x,, > 1. The
usual approach to overcome this is to restrict the measure to a “Egorov set”, where the convergence
in the definitions of the entropy and the Lyapunov exponent is uniform. This works fine when we
consider the push-forward of a fixed measure, but in our case this is more delicate, since we have
to guarantee that is preserved under the restriction. Here we manage to overcome the obstacle
with the help of large deviations estimates for Gibbs measures (see [49] 9] 28]).

1.2. Organization of the paper. In the next section we collect all the main assumptions, defini-
tions and notation. In Section 3 we state our main results. In fact, we state two results on almost
sure absolute continuity: in the first one we don’t make the assumption that u) is a family of Gibbs
measure and only assume what is needed to prove almost sure absolute continuity in the parameter
interval where the correlation dimension is greater than one. The second one is the sharp result for
Gibbs measures. Section 4 is devoted to preliminaries, mainly the regularity properties of the IFS
and the parameter dependence. Shorter proofs are included in this section, but longer and more
technical calculations are postponed to the Appendices. In Section 5 we prove the theorem on the
Hausdorff dimension of the push-forward measures. In Section 6 we verify that the transversality
of degree 8 condition of Peres-Schlag holds under our “standard” transversality assumptions, given
sufficient regularity. The “heart” of the proof, namely, the adaptation of a discretized Peres-Schlag
method, where transversality condition is used, is contained in Section 7. Section 8 is devoted to the
case of Gibbs measures: first we show that under the continuity assumptions on the potential, the
Gibbs measures satisfy , and then use large deviation estimates to extract “large submeasures”
still satisfying but with correlation dimension arbitrary close to hy, /x,,. After that, it only
remains to collect the pieces to complete the proof of the main results; this is done in Section 9.
Section 10 is devoted to applications. There we also present a sufficient condition for transversality
to hold for "vertical" translation families of the form f])‘(x) = fj(z) + aj(N). Last, but not least,
Section [11] contains some open questions and possible directions for further research.

1.3. Acknowledgements. Balizs Barany and Karoly Simon acknowledge support from grants
OTKA K123782 and OTKA FK134251. Boris Solomyak and Adam Spiewak acknowledge support
from the Israel Science Foundation, grant 911/19.

2. ASSUMPTIONS7 NOTATION AND DEFINITIONS

Let A ={1,...,m} and suppose we have an IFS {f]f\}jeA on a compact interval X C R, depending
on a parameter A € U C R with U being an open and bounded interval. Let diam(X) = 1 for
simplicity. We assume that there exists § € (0, 1] such that
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(Al) the maps f)‘ are C*t9-smooth on X with M; = sup sup{’
AeU jeA

2 .
fdsz f J’\H } < oo and there exist
o)

constants C1,Cy > 0 such that

d2 A d2 by ) d2 )\1 d2 )\2
o l@) — 5 )| < Cule — gl and | £ (@) = 2 £ ()

hold for all z,y € X, j € A, A\, A1, € U.

< Oyl — Aof®

(A2) the maps A — f;‘(az) are C'*9-smooth on U and there exists a constant C3 > 0 such that

d d
SN @) = @)

holds for all z € X, j € A, A, € U.

< C3A — Ao)®

(A3) the second partial derivatives ;v d/\ f)‘(a:), v da: ( ) exist and are continuous on U x X (hence

equal) with My = sup sup Hmf)‘ x)H < oo and there exist constants C4,C5 > 0 such
JEANEU o]
that

d? d?

A S ) < _ 9 A1 A2 < T
@) = )] < Gl =l and | ) - @ < i -l

hold for all z,y € X, j € A, A\, A1, € U.

(A4) the system { f;\}je A 1s uniformly hyperbolic and contractive: there exists 1, 2 > 0 such
that

0<m < |(%fﬁ)(z)| <7y <1 holdsforallj € A z€ X, AeU.

Let Q = AN and let o denote the left shift on Q. Let Q* = |J A" be the set of finite words over A
n>0
and let |u| be the length of w. For u = (uy,...u,) € Q* denote

A A A A

fu = fu1un = ful ©...0 fun

(with f, = id if u is an empty word) and let II* : Q@ — X, A € U
A (u) = hm fu1 w, (x0) for u € 0

be the natural projection (it does not depend on the choice of o € X). For u € Q* U Q let
ulp, = (u1,...,up) denote the restriction of u to the first n coordinates. For u = (uy,...,u,) € Q*
and 0 < k < |u| let oFu = (upq1,...,un). For u,v € Qlet uAv = (uy,...,u,), where n = sup{k >
L :up = v}, i.e. wAw is the common prefix of u and v. For u € Q* let [u] = {w € Q: w|, = u} be

the cylinder corresponding to w.
We will assume that the following transversality condition is satisfied for A\ € U:

(T) 3n>0: Yu,veQ, u # vy,

I (u) = T ()| < = [F I (u) = T (v))] > 7.

In our setting, transversality Condition is equivalent to other transversality conditions appear-
ing in the literature - see Section [10.6] and Lemma [I0.7] for details.

Let {ux}yc be a collection of finite Borel measures on . We will consider two continuity
assumptions on py:



(MO) for every A\g and every € > 0 there exist C,& > 0 such that
O e Mg ([W]) < ma([w]) < Celpng ([w])
holds for every w € Q*, |w| > 1 and A € U with |A — X\o| < &;

(M) there exists ¢ > 0 and 6 € (0, 1] such that for all w € Q*, |w| > 1, and all \, N € U,

e~ PN ([w]) < pua([w]) < el ().

Note that |(M)|implies [(MO)
For a compact metric space (X,d), let M(X) denote the set of finite Borel measures on X and
P(X) the set of Borel probability measures on X. For p € M(X) and o > 0, define the a-energy as

(21) Ealid) = [ [ dla.p) du(e)duty).
Define the correlation dimension of u with respect to the metric d as
dimeor (p, d) = sup{a > 0: E,(p, d) < o0}

For a Borel measure v on R, the Fourier transform of v is given by (§) = [ e®®dy(x). For a finite
Borel measure v and v € R, we define the homogenous Sobolev norm as

HW%z/W@%W%
R

and the Sobolev dimension
a—1
dimg(v) =supq a € R: /] 2(1+ [¢))*tae < o0

Note that 0 < dimg(v) < oo and

/r wa1@<w¢¢ ﬂ E)PIEI"dE = o1 s < o0

for « > 0 (see [24, Section 5.2]). If 0 < dimg(r) < 1, then dimg(r) = dime(v), where the
correlation dimension is taken with respect to the standard metric on R. If dimg(v) > 1, then v
is absolutely continuous with a density (Radon-Nikodym derivative) in L?(R), and moreover v has
fractional derivatives in L? of some positive order — see [24, Theorem 5.4]
For an IFS { f]f\}je A and a family of shift-invariant and ergodic probability measure py on €2, let
h,, be the entropy of py defined as
s = = Jim = 3 ) log aa ()

n—oo n
wEA"

and let x,, be the Lyapunov exponent of p) given by
AY
o = = [ 10g| (1) (00| i),
Q

For A € U we define a metric dy on by

(2.2) dy(u,v) =

ngv(X)‘ for u,v € Q.
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Let ¢ : © — R be a continuous function on the symbolic space 2. A shift-invariant ergodic
probability measure p on € is called a Gibbs measure of the potential ¢ if there exists P € R and
Cg > 1 such that for every w € Q and n € N, holds the inequality

p([w]n])

n—1
exp(—Pn+ 3 ¢(ofw))

k=0

Cq' < < Cc.

It is known that if ¢ is Holder continuous, then there exists a unique Gibbs measure of ¢ (see [6]).

3. MAIN RESULTS

Theorem 3.1. Let {f]f\}jeA be a parametrized IFS satisfying smoothness assumptions|(A1) -|(A4)

and the transversality condition onU. Let {“A}AGU be a collection of finite ergodic shift-invariant
Borel measures on € satisfying such that h,, and x,, are continuous in X. Then equality

h
dimp (1Y), p1y) = min{ ,m}
Xpx

holds for Lebesque almost every A € U.

The most general version of our main result is the following:

Theorem 3.2. Let {fj)\}jE.A be a parametrized IFS satisfying smoothness assumptions|(A1) -|(A4)
and the transversality condz’tion on U. Let {pr} cp be a collection of finite Borel measures on

Q satisfying|(M). Then
dimg((H)‘)*uA) > min {dimeo (py, dy), 1 + min{d, 0}}

holds for Lebesgue almost every A € U, where dy is the metric on 0 defined in (2.2)) and 0,0 are
from assumptions |(A1)H(A4) and|(M) respectively. Consequently, (IIM),puy is absolutely continuous
with a density in L? for Lebesgue almost every \ in the set {\ € U : dimeor(py, dy) > 1}.

In the special case of Gibbs measures for potentials with Holder continuous dependence on the
parameter, we get the following:

Theorem 3.3. Let {fj)\}jGA be a parametrized IFS satisfying smoothness assumptions|(A1) -|(A4)
and the transversality condz’tion on U. Let {ux},\cg be a family of Gibbs measures on §) corre-

sponding to a family of continuous potentials ¢*:  — R such that there exists 0 < a < 1 and b > 0
with

(3.1) sup vary(¢*) < ba®,
AeU

where varg(¢) = sup{|p(w1) — ¢(w2)| : |w1 Awa| = k}. Moreover, suppose that there exist constants
cog > 0 and 6 > 0 such that

(3.2) 10N w) — N (w)] < oA = N|? for every w € Q and A, N € U.

Then {ux}\c satisfies hence conclusions of Theorem hold (with 6 as in (3.2])). Further-

more, (IIM) .y is absolutely continuous for Lebesque almost every X in the set {\ € U : % > 1}.
A
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4. PRELIMINARIES

Throughout this section we assume that we are given an IFS { fj)‘}je A satisfying [(A1)| - |(A4)
for some § € (0,1]. We state several auxiliary results concerning regularity properties of the IFS
{ f]f\}je 4 and the natural projection II*, which will be used in subsequent sections. As some of the
proofs are lengthy, yet standard in techniques, we postpone them partially to the Appendix.

Lemma 4.1. There exist constants 051 > 0 and Cs9 > 0 such that

d
A < KN
(11) L] <onEpw
and
. < A
hold for all N e U, z € X, u € Q*.
Proof. See Appendix [A] O

Lemma 4.2 (Parametric bounded distortion property). There exist constants cgo > 0, Cgo > 1
such that inequality

1
e es2lh—dellul <

Ce2

|z fu (@)

< 0626062\)\1 Aa||u|
A2
fu y)

(4.3)

e %\a

holds for all \\, o € U, z,y € X, u € Q*.

Proof. First, let us prove the inequality with A\ = Ag. For u = (uq,...,u,) € Q*, applying |(A1)]
lz—yl

and |(A4)| together with inequality log £ for z,y > 0 yields

y = mm{w y}
d g n d A (£ n i fu) e = | (G2 (2
log }ddzfu (l’)’ — Zlog (d;fuk) (f(;\kux) < Z |(dmfdk) (fa uf)‘ ‘(dw;lf o )'\uy { ‘
}@fﬁ\(?/)‘ k=1 (@fﬁ‘k) (fo.kuy) k=1 mlﬂ{‘(@fﬁ‘k) (f 93) (@fuk) (fakuy)}}
i - i A )
< 5X (575) ) = (o) e < 20 > [ =
My~ ok Mdiam(X)
(4.4) < - kZI’VQ |z —y| < =) < 0.

Therefore, (4.3]) holds for A = Ay with some constant Cga > 1. Fix now A1, Ao € U. By the mean
value theorem we have

d? €
1ogw < Jlog | f21(@)| ~ 1o g‘fAQ )H = P -
@) e fita)

for some & between A1 and As. Applying (4.2) we obtain

d fA1 (g
(4.5) logw S Cﬁg‘u")\l — )\2‘.

d /\2($ ’

dzJU
Combining (4.4) with (4.5)) finishes the proof. O

The following proposition implies that, in the language of [29, Section 4.2], the natural projection

IT* belongs to the class C0(U).
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Proposition 4.3. There exists a constant Cs > 0 such that
d d
I ) - )

holds for all A1, o € U and u € 2.

< Cs|A — Ao

Proof. Fix u = (u1,uz,...) € Q,y € X and let F,(\) = f3 o---o f2 (y) for A € U. It is clear from
that Fy,()\) converge to IT* uniformly on U. Therefore, by Lemma it is enough to show
that %Fn is uniformly convergent. It is sufficient to show

(4.6) >
n=1
We have
d dn A
P = (5 un<fun+1< D) (@) + (G ) (72 00)
Consequently, by |(A4)| and

d d d . A d .
aFnJrl - aFn < ‘<fu1...un(fun+1 (y))> : <d>\fun+1 (y)> ‘ +

d d
—Fpi1 — —F,
AT a

< 0.

A
d
< A — 20 —
< <i‘é£ P )]+ 20 ) g,
As sup | & 1)[n+1(y)’ < oo by [(A2), we have proved (|4.6). O
AeU

Lemma 4.4. For every 8 > 0 and \g there exist constants £ > 0 and 0 < c¢1 < 1 such that

d .

Cld)\o(uv U)1+6/4 < % u/\v(x)

1
S 7d)\0 (U, U)175/4
C1

holds for all x € X,u,v € Q and X\ € U with |A — \o| < &.

Proof. Let n = |uAv|. Note that by the mean value theorem dy,(u,v) = ’dx 20 (y)| for some y € X
(recall that we assume diam(X) = 1). Therefore, Lemma [4.2| implies

fu/\v( )

1
4.7 e oAl <
(47) d)\o (u,v)

Cé2 -
On the other hand, by |(A4)]

< 0626062|/\7/\0\n_

d/\() (U,U) S ’Yga

hence 1
crdy, (u,v)P/* < 6173’8/4 < e 2A—oln,
Ce2
where the second inequality holds for all n € N provided that ¢; and |\ — Xg| are small enough.
Combining this with (4.7 finishes the proof. O

10



The following proposition implies that the natural projection II* is 1, §-regular, as defined in [29,
Section 4.2]

Proposition 4.5. For every f > 0 and \g there exist constants Cg1,Cpg1,5 > 0 such that inequalities

(4.8) % (H’\(u) - nk(u))‘ < Clyadag (u,v) P
and
@9) | & () 1N () - & () — () ‘ < Copalh — Dol 0)1

hold for all u,v € Q and X\, A1, Ao € U close enough to \g.
Proof. See Appendix [C] O

5. PROOF OF THEOREM [3.1]

The argument follows closely the proof of [7, Theorem 4.2] (note that we do not assume measures
ey to be quasi-Bernoulli), extending the method of [44] to the case of parameter dependent measures.
The key step in the proof of Theorem is the following proposition.

Proposition 5.1. Let {fj)\}jGA be a parametrized IFS satisfying smoothness assumptions (A1) -

and the transversality condition on U. Let {ux}ycp be a collection of finite ergodic shift-
tmwvariant Borel measures on € satisfymg such that h,, and x,, are continuous in . Then

for every Mg € U and every € > 0 there exists an open neighbourhood U’ of \g such that

h
dimyg ((T1N),pex) > min{ 1, 420 & —
Xbng
holds for Lebesque almost every A € U’.

Proof. Fix \g € U, € > 0 and ¢’ > 0. By the Shannon-McMillan-Breiman theorem and Birkhoff’s
ergodic theorem applied to the function Q 3 w s —log| f/, (I*(ow))|, we have that

1
glog,uA([w\n]) — —hy, for py-ae. we

and

— —Xu, for pr-a.e. w e Q,

(£,) o)

hold for every A € U. By Egorov’s theorem, for every A € U there exists Cy > 0 and a Borel set
Ay C Q with py(A4y)) > 1 — ¢, such that

1
— log
n

(5.1) Cte bl <y ([w]n]) < Cre ™ hin=2)
and
!
(5.2 oy tem0e ) < (13, ) (")) | < Cpem

hold for every w € Ay and n > 1. Let & > 0 be such that holds and [hy, — hy, | < €,
Xpux = Xpuay | < & co2lA = Ao| < € for [A = Ag| < £ (c62 is the constant from Lemma , and set
U' = B(\g,&) NU. By Lusin’s theorem, there exists C > 0 and a Borel set U, C U’ containing \g
such that

Leb(U' \ U) < &' and Cy < C for X € U..
11



Now let

4 {"J €Q: ¥ OTICTe M < irg([wln]) < CCe™ i, =29) and

w|n

Cﬁ_zléfle_n(x“*o +2¢) < ’(f)\o )l (T (a"w))’ < 0626'6_”(XM0 _26)}.
It follows from (5.1)), (5.2)), the choice of £ and Lemma that for each A € U, we have Ay C A,
hence py(A) > 1—¢'. Let fiy = ux|a. Note that the set A does not depend on A. Define

A, ={ue A" : there exists w € A with u = w|,}.

Note that if u ¢ A, then [u] N A = 0, hence fix([u]) = 0. If u € A, then

(5'3) C_lé_le_n(h‘”\o—i_%) SM)\O([U]) < Cée—n(h#)\o—%)
and

- / -
(5.4) O Cgre "0 < ‘(fﬁ) (z)| < CCe Mo ™)

hold for any = € X by Lemma[1.2] Fix 0 < s <1 and consider the integral

= [ [ [ 1m e - )| diaeon) diali) i
Q Q

If Z < oo, then by Frostman’s lemma [T, Theorem 4.13] we have dimz ((TI* ),y ) > dim g ((TT ). fiy) >
s for Lebesgue almost every A € U.. By (/5.4)),

/zzz

n=0u€A, a,bc A

2 (H’\(a"wl)) o (HA(U%Q))] djix (w1) dfir(ws) dX

asth [ua] x [ub]
/Z nS(X;A)\ +3¢) Z Z // ‘HA(O_nwl) _ H)\(O'an)’_s dﬂ)\(wl) dﬂ)\(wQ) D\
u€dn a, bjg“ [ua] x [ub]
For m > 0 set
By, = {(w1,w2) € @ x Q[T (wy) = TP (wa)| < 277}
and note that
(5.5) ’H)‘ (w1) — T (w2) Z gs(m+1) ]lB* (w1, ws).

m=0

Indeed, if TT1*(w;) = T1*(w2), then the right-hand side is divergent. Otherwise, there exists m > 0
such that 27+ < |IT(w;) — T (w2)| < 27™, hence | (w1) — M (wo)|° < 2S(m+1)]lB%1(w1,w2).
For m > 0 let k = k(m) be minimal such that 4§ < 2=+ 5o k < Q(m + 1) for a constant

Q= [—p£2-]. Let

D = {(w1,w2) €2 % Q: ‘HA(W1|I€100) - Hk(w2|k1°0)‘ < 9=(m=1)y
12



where 1°° denotes the infinite sequence in € formed by the symbol 1 € A. Note that by |(A4)| and
the choice of kg we have B), C D). Moreover, D), is a union of cylinders of length k. Applying this
together with ( and [(MO) - )| for A € U, yields

// ‘H o"wi) (U”wz)‘i djix(w1) dfix(w2)
[ua] x [ub]

o0

Z o(m+1)s // ]lBA o"wi, 0" ws) diiy(w1) dfiy(w2)
[ua] x [ub]
<2° Z 2me // Lpa (0"wr, 0"ws) dfi(wi) dfir(w2)
[ua] x [ub]
=2 2™ N i ([ual) fix ([ubp]) 1 py (al1, bp1™)
m=0 I,pec Ak—1

< €%y " omeeln Q) N ([uall) g ([ubp]) 1py (a1, bp1™)

m=0 l,peAk—1
[e.9]
— (029502:Q Z gms ,2e(n+Qm) // ILD?\” (0" wr, 0" wa) dpir, (w1) dping (w2).
m=0
[ua] x [ub]

Moreover, transversality condition |(T)|implies that for (w1,w2) € [ua] x [ub] with a # b we have (we
use here an equivalent condition (10.8)), see Lemma [10.7))

/ ]lD%l(O'nwl, O'n(,UQ) dX\ < ch {)\ eU: ’H)\(O'nwl) — H/\(O'nWQ)‘ < 27(m71)} < CT27(m71)
U,

for some constant Cp (depending only on the IFS). Applying both of the above calculations to Z,
changing the order of integration, and applying (5.3), we obtain, setting C7g = C*C35C?C7257! and
Cni = CCCr,

I<C70625Q26 Xy 19 122) §7§ sz“ e*9™ pr, ([ua]) pr, ([ub))

n=0 u€An a,be Am=0
a#b
3 2
< C7062€Q Z Xu)\ +3¢)+ 6 Z M}\O Z 2m s—1) 25Qm
n=0 u€Any
oo
2 s(Xpy . +3€)—h +4s +Qle—1
< Cre EQZe W W ZNAO [u ])ng(s Q'e—1)
n=0 u€Ay, m=0
9]
<C 2eQ XuA +3¢)—huy +45) m(s+Q'e—1)
neey e () 37 s,
n=0 m=0

R —
where Q' = 2Q log, e. Therefore, Z < oo provided s + Qe < 1 and s < X“io +3z. Consequently,
0

h
dim (T4 py) > dimy ((ITY)4 /1)) > min {1 —Qle, 2

Xt

—4e
0 for Leb-a.e. A € U,.
+ 3¢

As ¢’ can be taken arbitrary small, the proof is finished. O
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We can now finish the proof of Theorem As dim g ((IT1"),p2) < min {1, %} (see [47, Theorem
A

3.1 and Remark 3.2]), it is enough to prove that dimz ((IT*).p) > min {1, %} holds almost surely.
A
Assume that this is not the case. Then, there exists ¢ > 0 such that the set

— h
A= {/\EU:dimH((H)‘)*,uA) <min{1, “A} —5}
X

has positive Lebesuge measure. Let Ay be a density point of A. By the continuity of A — h,,, A —

Xu, and x,, > 0 (following from |(A4)), we obtain that A — min{l, %} is continuous as well.
A

Therefore, there exists an open neighbourhood U’ of Ay such that

h h
min{l, “*}Smin 1, o +5 for NeU.
Xpx Xbxg 2

By Proposition [5.1] we can also assume that

h
dimH((HA)*uA) > min< 1, Mo L€ for Leb-ae. A clU’,
Xhxg 2

hence

h
dimr ((TT)span) > min{ ,“*} — ¢ for Leb-a.e. A € U'.
Xpx

This however means that Ay cannot be a density point of A, a contradiction. Theorem is proved.

6. TRANSVERSALITY OF DEGREE [3

In this section we prove that an IFS satisfying the transversality condition satisfies also the
transversality of degree (3, as defined in [29], with arbitrary small 8 > 0. This will be useful later, as
the proof of follows the approach of Peres and Schlag [29], where the transversality of degree [
is a key concept. In fact, [29] uses the term “transversality of order 7, but the term “transversality
of degree ,” as in Mattila, seems more appropriate.

Proposition 6.1. Let {f]‘)\}jGA be a parametrized IFS satisfying smoothness assumptions (A1) -

and the transversality condition on U. For every \g € U and 3 > 0 there exists cg > 0
and an open neighbourhood J of \g such that

(6.1) ‘HA(U) — H)‘(v)‘ <cg- dAO(u,v)HB = ‘%(HA(U) — H’\(v))‘ >cg- d,\o(u,fu)Hﬁ.

holds for all u,v € Q and A € J.
14



Proof. For short, let us denote the metric dy, by d. Let n = |[u A v|, so that u Av = uy ... u,. We
have

AP (W) ~T0W) = & [ ™) — £, (P (070)

UL ... Up

")) = (5 fonan) (I (0™0)) +

Q

0"u)) = (G f ) (I (0"0)) +

(62) =: Ay + A+ As.
On the other hand,

@) - @) = [ 7 )] [P — T ")
(6.3) > ey -d(u,v) T ‘HA(UHU) — I o™)|,

for some y € X, ¢; > 0, and A sufficiently close to A9, by Lemma Similarly,
(6.4) |Aa| > e1 - d(u, 0) T [ (A (0™ u) — T (070)).
Further, by Lemmas and Proposition (which implies that C%\H’\ is bounded) we have

(6.5) 1A,] < ‘H)‘(a”u) - HA(U%)] Chn - d(u,v) =8/
and
(6.6) 45| < ’H)‘(U”u) — TN o™)| €Y - d(u, v) 1P/

for some constant CY large enough. Assuming
‘H)‘(u) - H)‘(v)’ < cg - d(u,v)'t7,
we obtain from (6.3]):

(6.7) ‘H)‘(Unu) - H)‘(U”v)‘ < % d(u, v)38/4,

1
and then, from , , , :

|5 (w) =T (0)| > [Ag] = |A1| - |A3]
> cp - d(u,v) T (TN o) - TN (0™))]
—Ch(n+1) - d(u,v) P )HA(a"u) - H)‘(a"v)‘
> cp - d(u,0) T (T (0™ ) — TN (07))|

/
_Cacs (n+1) - d(u,v) /2,

15
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Assuming cg < c17, so that we can use transversality assumption for the pair c™u, c™v by (6.7)),
keeping in mind that d(u,v) < 1, we obtain
d
|5 (T (0"u) — I (0™v))| = n,
hence

Che
| & (I (w) — TN (v))] > c1 - d(u, v) /4 |y — z—%ﬁ (4 1) - d(u,v)P4|
Note that d(u,v) < ~4, where 72 < 1 is from |(A4), and let

C4 := max{(n + 1)7?6/4, n > 0}.

Choose )
ney
< .
RaNTee!
then .
[h () = 1P @)] = T - d(, 0) P > e d(u,0) 7,
if we also make sure that cg < ¢11/2, completing the proof of (6.1)). O

7. ENERGY ESTIMATES

The following theorem is the main result of this section and the main ingredient of the proof of
Theorem [3.2] It is modelled after [29, Theorem 4.9].

Theorem 7.1. Let {fj)\}jGA be a parametrized IFS satisfying smoothness assumptions|(A1) -|(A4)
and the transversality conditz’on on U. Let {ux} e be a collection of finite Borel measures on §)

satisfying|(M). Fiz \g € U, 5>0,~v>0,e>0 and ¢ > 1 such that 1 +2y+¢ < g < 1+ min{J, 6}.
Then, there exists a (small enough) open interval J C U containing \g such that for every smooth
function p on R with 0 < p <1 and supp(p) C J there exist constants Cy > 0, Cy > 0 such that

/J HV/\H%,WP()‘) dA < 515q(1+a06) (:u)\oa d)\o) + é?a

8446

where ag = T+min{5,0}

The rest of this section is devoted to the proof of the above theorem and we assume throughout that
all the assumptions of Theorem [7.1{hold. We follow the approach of [29], with suitable modifications
coming from the fact that measures ) depend on the parameter.

Throughout the section z < y will mean x < Ay + B, while z < y will mean 7 <y < A-x, with
positive constants A, B being possibly dependent on all the parameters on which constants 5’1, 62
depend in Theorem [7.1]

Let 9 be a Littlewood-Paley function on R from [29, Lemma 4.1|, that is, ¢ is of Schwarz class,
>0,

supp() C{6: 1< [¢] <4}, Y (279 =1 forall £ #0.
JEZL
It is known that such a function exists. We will need that ¢ decays faster than any power, that is,
for any ¢ > 0 there is Cj such that

(7.1) [P < Cq(1+ )7

We will also use that

(7.2) [ v de =0 =0
16



In fact, all higher moments of v also vanish, but this will not be needed for our purposes. As v has
bounded derivative on R, there exists L > 0 such that

(7.3) [¥(x) = ¥(y)| < Llx -y for all z,y € R.
We have (see |29, Lemma 4.1]):

(7.4) [ IalBapian= [ 37 27 [ s )@ @pir

j=—o0

where 19—; (z) = 299(2/z). Let kK = —logy 1, Q = logy e and choose & > 0 small enough to have
2(4+ Qc)¢ < e and

44 2y < €

K—Q¢ 24+ Qo)¢

Choose an open interval J containing Ao so small that 2¢|J|® < ¢ (with ¢, 6 as in|(M))) and hold.
In order to prove Theorem 7.1} it is enough to consider in the sum over j > 0, as (¢y—; *v))(2)

is bounded by 271)||o0, hence the sum over j < 0 converges to a bounded function. We now calculate
for A € B(Xo,&), 7 >0 and n € N (we will set later n = n(j) = éj for suitable ¢):

/R(z/;Q_]- x 1)) (z) dvy(z)
_ i /R /R B2 (2 — ) dva(y) dua(x)
= 21//1/;(21(11*(@01) — 1N (w2))) dpa(w1) dpa(ws)
Q Q

(7.5) 0<

<2 [ [0 n]1%) = T ala1™) dia (1) da ) +
Q Q

27 [ [ o0 ) — T w) = 92 I ]1%) — TP 19)] dis (1) dia(w2) <
Q Q
Using we get that the last expression is

<2 NN (@A) = T (R1%))) palli]) ua([k]) +

1€A™ ke A™

+ 21'//L2j(|HA(w1) — M w1 |, 1%°)] + [T (ws) — H,\(M’nloO)’) A (1) dpis (w3) <
Q0

Applying [(A4)| to the integral, we obtain (recall that we assume diam(X) = 1):
<20 NN (2 (I E1%) = TN K1%))) pa([i]) pa([k]) + 20277 = (%)
i€A™ ke A"
Choose ¢ > 1 such that
442y €
F—QE =7 202+ o
(it exists due to ((7.5))) and set n = ¢éj. Let us define a map ej: @ x Q x J — R by

px([win])pr (w2 n]) :
(7.7) ej(w17w27)\) — {NAS([winD/‘io([iQn]), if pxg ([wiln]) g ([waln]) # 0,

1, otherwise.
17
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By ([7.6)), [(M)| and the choice of J,
(7.8) ej(wr, w2, A) < 2eA=Xol’n < 8% = 29¢% for all wy,ws and \ € B()\o, ).

Note also that by (M)} if ¢ € Q* is a fixed finite word, then py,([z]) = 0 if and only if ux([i]) =0
for all A\ € U (in other words: supp(uy,) = supp(uy)). Denote A" := {i € A" : py,([i]) # 0}. We
have, therefore, (note that now the integral is with respect to uy,),

) = 27 J(TTM1°°) — TN (k1°° (i) pa((K]) ; 2j—kéj
(+) =2 ignkgnw@ (I(1%) = TP (k1)) e = gy o (D) sao([k]) +2L2
=27 [ [0 (1) ~ TPl 1)) 501,002 0) ding (00) ding () + 21257
Q Q
<2 (27 (T (w1) — T (wa))) ej(wr, wa, A) dpag (w1) dping (ws)
/]
+2 / / (2 @) = T ea))) = (2 (T er]a1™) = T el 1)) X
Q Q

X €5 (wl, w2, A) d,u,)\o (wl) d,u,,\0 (CL)Q) + 2L2%—KC — (**)

Estimating the second integral, similarly as before, by 2027756 2Q%% we get

() <2 / / (2 (TN wr) — TN w2))) 5w, wa, A) diing (w1) dping (w2)+2L02% 70 (1 4 2967),
Q Q

Finally,

(7.9)
/(%a‘ x vy)(z) dvy(z) <
R

< / / (2 (TN (w1) = T (w2))) (Wi, wa, A) dping (1) dpang (wp) 4 412G R4,
o 0

For j large enough, we have, in view of (7.6)),

92574 [,92H(QE—rR)E _ 4 T,9i(2+27+E(QE—K)) < 97 (3+27+¢(QE—k))

(7.10) — 97 79i(4+27+E(QE—K)) <9277,

18



Combining ((7.9), and (7.10) we obtain, recalling that the sum over j < 0 in (7.4 converges:
[l ans [ 3227 [ x )@ don(a) p(3) A
J :
R J=0 R

< izm 27 P (27 (I (w1) — TN (w2))) €5 (w1, w2, A) dpng (wi) dping (w2)
R/ i=0 < Q/ Q/
+ 4L2(2+QE—)] ) p(\) dA

< i 221727 (27 (I (w1) = I (w2))) € (wi, wa, A) dping (wi) dpng (w2) p(X) dA
[Sorn ]

/ Z4L2 J
DI ///1/1 (2 (M wr) — T (wa))) € (wi, w2, A) p(A) dA dptxg (wi) dperg (ws).
7=0

To finish the proof of Theorem it is enough to show the following proposition (with notation as
in Theorem [7.1]). Recall that £ is chosen by requiring ([7.5) and J is an open interval containing \g
so small that 2¢|.J|? < ¢ (with ¢, 6 as in [(M))) and (6.1]) hold.

Proposition 7.2. There exists C7 > 0 such that for any distinct wy,ws € Q, any j € N we have
(7.11)

/¢(2j(ﬂ/\(w1) — TMw2))) ej(wi, w2, A) p(A) dA < Cr - 2@ FE (1 + 2jd(w1,w2)1+a05)
R

—q

)

where C7 depends only on q, p, and 3, and ay = Hi%r?{%@}’ and d(wy,w2) = dy,(w1,ws) is the metric

defined in (2.2)).

Indeed, if (7.11) holds, then, recalling the definition of energy (2.1)), in view of ([7.6)),

/J IallZ. p(N) dA

< i 21 (27+1) ¥ (27 (I (w1) — TN (w2))) €j (w1, w2, A) p(A) dA dpirg (wi) dpirg (w2)
/1]

=0
< Cr a3 Y000 [ (12, ) ™ g (o) ding (2
7=0

<Cy- 52ij(2’7+Q(2+C)§5+1*Q)gq(lJraoﬁ) (12 Ao )
=0

< Creey UL (s (ags dag) < C7e @ 327 E 1 aep) (tire: day),
j=0 =0

and Theorem [7.1] is proved.
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Proof of Proposition[7.2 The proof is similar to that of [29, Lemma 4.6] in the case of limited
regularity; however, some technical issues are treated here differently and in more detail, especially,
since [29] leaves much to the reader.

Fix distinct wy,wp € Q and denote r = d(wy,ws). For short, let e;(\) = e;(wi, w2, A). Let
I = supp(p) C J. Since J is open, there exists K = K(p) > 1 such that the (2K ~1)-neighborhood
of I is contained in .J.

We can assume without loss of generality that 277 > 1, and later that 27r1+@8 > 1 for a fixed a,
which is stronger, since r < 1. Indeed, the integral in is bounded above by |J| - [|%]|e0 - 2954,
in view of (7.8), hence if 2771745 < 1, then the inequality holds with C7 = |J| - [|¥]|co - 29.

Let

peC™R), 0<H<1, d=1on [-1/2,1/2], supp(é)C (~1,1),
and denote
M wi) = T (wo) _ T (w1) — T (w2)
d(wy,ws) N r

(I))\ = (I))\(O.)l,WQ) =

The idea, roughly speaking, is to separate the contribution of the zeros of ®,, which are simple by
transversality. Outside of a neighborhood of these zeros, we get an estimate using the rapid decay
of ¢ at infinity, and near the zeros we linearize and use the fact that ¢) has zero mean. The details
are quite technical, however. We have

/ p(/\)z/z(2j[H’\(w1)—H)‘(w2)]) ej(A)d\ = / p(N) (2779 €;(N) (K cz'r D)) dA
R

+ / p(\) ¥ (207®,) e () [1 - qﬁ(KcElr’ﬁCI),\)] X
= Al + A27

where cg is the constant from (6.1]). The integrand in A is constant zero when |K cglfr_ﬂ D, < %,
hence by the rapid decay of ¢ (see (7.1))) and (7.8]),

|As| < C / ]p()\)Hej()\)|(1 + 20y %Kﬁlcmﬁ)*q d\ < const-298¢ (1 + 2jr1+’8)7q,

for some constant depending on ¢, p and (3, as desired. Thus it remains to estimate A;.
Next comes the classical “transversality lemma”. It is a variant of [29, Lemma 4.3] and similar to
[24] Lemma 18.12|. Let cg be the constant from Proposition

Lemma 7.3. Under the assumptions and notation above, let
J = {)\ eJ: Py < K_lcﬁrﬁ},

which is a union of open disjoint intervals. Let I, ..., In, be the intervals of J intersecting I =
supp(p), enumerated in the order of R. Then each Iy contains a unique zero A\ of ® and

(7.12) e — dar®® X + dpr®®] C I, where dg = K~'Cg ] - ¢,
with Cg1 from . For all intervals,

(7.13) 2dj - P28 < || < 2K,

hence

(7.14) Np <24 4dg'|J|-r=%.
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Moreover,
(7.15) @5 < LK legr®  forall X € [N, — Sdgr®®, Ny, + Sdgr?P).

Proof Lemma[7.3 Since ®, is continuous, the intervals Ij, are well-defined. Since K > 1, on each
of the intervals we have ]%QJ Al > cgr? by the transversality condition of degree 3. Thus ®, is
strictly monotonic on each of the intervals. Let A € I;,NI, where I = supp(p). Then |®)| < K~ lcgr?,
and using the lower bound on the derivative we obtain that there exists unique A; € I}, such that
CI)A =0, and it satlsﬁes A — /\k\ < K~!. The same argument then shows that I, C [)\k — K '\ +
K 1], since the K ! change in A results in at least K~ 057"5 change in ®,. Note that even for £k =1
and k = N3 we have this inclusion, because A € I and the 2K ~!-neighborhood of I is contained in
J by construction. This proves the upper bound in .

On the other hand, for any A € J we have |$<I>,\| < 0/3717“_5 by . Therefore, at least a
distance of CB_ %rﬁt is required for the graph of @, to reach the level of ¢ from zero. This implies

(7.12), (7.15)) and the lower bound in (7.13). Then (7.14) is immediate. O

Now let x € C*°(R) be such that supp(x) C (—%d/g, %dﬂ), 0<x<1l,and y=1on [—idﬁ, idﬁ].
We apply Lemma[7.3] and write

A = /p(/\)w(QjTCI))\) ej()\)qb(KcElr_B(I))\)d)\

= Z/ PN =20) $ (2715 )e;(N) (K eg'r~P@y) dA

- /p 1—ZX PN =) | &N (2r@y) (K cg'r=7®y) dA

Ng
= Y a4+ B
k=1

Let us first estimate B. Notice that ijﬁl x(r=2%(A = X\g)) =1 on the 1dgr*-neighborhood of
every A\, as by (7.12), functions X(r_%) (A —Xk)) have disjoint supports for distinct k. On the other
hand, gZ)(chlr_Bq)A) is supported on 7, so by the transversality condition we have |%<I>>\| > c/grﬁ
on the support of the integrand. Combining these two claims, we obtain that |®)| > idgcm‘w on
the support of the integrand in B. It follows that on this support,

(7.16) (277 ®y)| < Cq(1+ (daeg/4) - 220 +3) 74,

by the rapid decay of 1, and using we obtain |B| < const - 2Q55j(1 + 2jr1+35) ~7 for some
constant depending on ¢ and S.

Now we turn to estimating the integrals Agk). For simplicity, we assume k = 1 and let A = \;.
In view of the bound on the number of intervals, the desired inequality will follow from this.

Observe that
(7.17) X(T‘_QB()\ -N) = X(T_QB()\ - X))gb(Kc/glr_B@,\).
We are using here that ¢ =1 on [—3, 1], so

G(Kcg'rP®y) =1 on {AeJ: [®)| < 3K 'epr’},

which holds on the support of X(T_QB()\ — X)) by construction and ((7.15)).
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By we have
AP = [ )70 = R)es () w(2ir) ax
It will be convenient to make a change of variable, so we define a function H via
(7.18) ®)=u < A=A+ H(u), provided X(T_QB()\ - ) #0.
Note that X(r_%()\ — X)) # 0 implies |A — A < %dgrw, so A € I by (7.12)), and by transversality,

(7.19) <I>,\‘ > carf if X(T_QB(A - ) #0.

’i
dA
Therefore, H is well defined. We have

AD = [ (R @) X2 Hw)e (X4 H(w) 6(2ra) B (u) du

= /F(u) Y(2ru) du,
where
(7.20) F(u) = p(X+ H(u)) x(r 2’ H(u))e;(X + H(u)) H' (u).

Observe that H'(u) = [%@,\]_1, hence (7.19) gives |H'(u)| < CEIT‘_’B on the domain of F. Since p
and y are bounded by one, we obtain by (|7.8|)

7.21 Flloo < ezl r P08,
3

Recall that ®y = 0, so that H(0) = 0. Since [z ¢(§) d§ = 0 by (7.2)), we can subtract F'(0) from
F(u) under the integral sign; we then split the integral as follows:

Agl) = /[F(u) — F(0)] (27 ru) du
(T22) = / () = FO)) (2 ru) du + / C [F(w) ~ FO)](2ru) du
|u|<(29r)—1+e lu|>(207)~1+e
=: DBj+ DB,

where ¢’ € (0, %) is a small fixed number. Recall that our goal is to show
’Agl)’ S Cf’/7 . EJQQ(Q-i-C)féJ . (1 + 2jr1+a0ﬁ)7q7

for some constants ap > 1 and C} depending only on ¢, p, and 5. We can assume that 2ipltaos > 1.
otherwise, the estimate is trivial by increasing the constant. To estimate Bs, note that for any
M > 0 we have by the rapid decay of :

0(277u)| < Car (1 + 2r|ul) ™™,
hence, by (721),

| Ba|

IN

Ca - rb. QQgéj(2jr)_1/ (1+ ]:L"|)_M dz
|z|>(277)’

IN

CZ?,M B 2Q§5j(2jT)—1(Qj,r)—a’(M—l)

< C”M . 9Q¢& (gjrlJr?ﬁ)fq

)

for M = M(q,¢') sufficiently large, as desired. Here we used that 27 > 27p1+28 > 1,
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In order to estimate Bj, we show that that the function F' from ((7.20) is J-Holder by our assump-
tions; we also need to estimate the constant in the Hoélder bound. We write

F(u)=p(\+ H(uw)) x(r " H(u))e;(X + H(u)) H (u) = Fi(u) Fa(u) F3(u)H' (u),
and then
F(u) — F(0) = (Fy(u) — F1(0)) Fa(u)F3(u)H' (u) + F1(0) (Fa(u) — F2(0)) F3(uw)H' (u)
+ F1(0)F(0) (F3(u) — F3(0)) H' (u) + F1(0)F>(0) F3(0) (H' (u) — H'(0)).
We have
[F1(u) = F1(0)] = [p(A + H(uw) — p(A + H(0))| < [|plloc - [H (u) — H(0)].
Observe that

(7.23) |H (u) — H(0)|

|H(u)| = A= A| < cglr*’B@)\ — &y = cElr*’B|<I>>\| = cglr*’3|ul,
by transversality, which applies since supp(F) C I;. Then, of course,
(7.24) [Fo(uw) = Fa(0)] < |IXlloo -~ |H () = H(0)] < C5H[[Xlloo - 7~ ul.

For F3 it is enough to assume that g, ([w1lzj]) i, ([welei]) # 0 (hence the same is true for py by
, as otherwise e; = 1 and then (7.25)), which is the goal of the calculation below, holds trivially.
In this case we have

prx([wrle]) s (fwalz])

HX4H () ([w1 |6j])NX+H(u>([W2‘EjD _1
px([wila]) px(wale;])

|F3(u) — F3(0)| = MAO([Wl‘éj])NAo([WQ‘Ej])

oezs | P (WileD sy ) (W2lg])
P (A P !
Q554NX+H(u)([W1‘6j]) NK+H(u)([W2|5J]) _ Q¢éj ”X+H(U)([w1|5j]> _
ST ) | el T T )
ez [P (W2lei]) gy | P (@ilai])
<2 115 ([walz5]) 2 15 ([wilz])

But for both wi|z and walz;, setting c3 = Qcé, we obtain

4 11y ([@les])

i)

< max{203j|H(“)‘0 —-1,1— 2—CBJ\H(U)|9}

= maX{C3j2C3jyl ) C3j2_63jy2}’H(u) |07
with y1 € (0, [H(u)]), y2 € (—=[H(u)],0)
< 035299 H (u) — H(O)[’.
Thus, for ¢y = Q(2+ ¢)¢&g

(7.25) |F5(u) — F5(0)] < 203j2c4jc§97"_95|u]9.
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Finally, we need to estimate the term [H'(u) — H'(0)|. We have H'(u) = [4®,]~, hence

1 1
d T d
2P 0y

|H'(u) — H'(0)]

@ — ix s

< W by [S-transversality (6.1))
car
c ,1‘)\ — XPT_B(H_&)
< =2 )2 by (@9)

< Gy BBy by ([723).
Below, writing “const” means constants depending on ¢, p, and 8, which may be different from line
to line. Using all of the above and ||H'||o < cEl .78 yields

|F(u) — F(0)| < const - ¢35247 - (|u\5r75(3+25) + |u|r=* + ]u\ar’ﬁ(lw)) ,
hence by (7.22) and recalling that (2/7) > 1 and r < 1,

|B1] < const - C3j2c4j/ (|u|57‘_5(3+26) + ]u|r_4ﬁ + |u]97"_6(1+'9)> du
ul<(27r)=1+¢’

< const - 3§20 (r—5(3+25) (277)~(1=eN(1+0) | (p)=2(1-)p~45 | (2jr)—(1—51)(1+9)T—6(1+6))

< const - 03j264jr_5(4+25) ((er)—(l—e/)(1+5) + (er)—Z(l—e’) + (er)—(l—s’)(1+0))

< const - 03j204jr75(4+25) (2jr)7(175’)(1+min{6,0})’

as min{d, 0} < 1. We therefore obtain

)

i (97 —(1—¢")(14+min{5,0})
|B1| < const - ¢3j2°4 <2Jr1+aoﬁ)

: 8445 4125
for appropriate ao = T 5eT 2 Ty mm{e ] -

Since €’ > 0 can be chosen arbitrarily small, we obtain

. . —q
|B1| < const - ¢352/ (1 + 23r1+“0ﬂ) for any ¢ < 1 + min{J, 6},
since as already mentioned, we can assume 27711908 > 1 without loss of generality. g

8. THE CASE OF GIBBS MEASURES

In this section we deal with case of Gibbs measures and develop tools for the derivation of Theorem
from Theorem Throughout this section, we assume that {sy} 7 is a family of shift-invariant
Gibbs measures on € corresponding to a family of continuous potentials ¢*: Q — R satisfying (3.1))

and (3.2)); o, b, ¢o and 6 denote constants from (3.1)) and (3.2)).

8.1. Proving ((M)| for Gibbs measures. Let Ly be the Perron operator on the Banach space
C(£2) of continuous functions on €, defined as

(Lah)(w) = > e @ h(iw).
i€A
Let C, be the set of functions which are constant over cylinder sets of length r, that is,

Cr(Q) ={f € C(Q) : var,(f) = 0}.
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Let w € Q) be arbitrary but fixed and denote the pressure by
.1 s
Py = lim —log Z exp (Sn¢ (z@) ,
i|=n

where S,¢(w) = ¢(w) + ¢(ow) + - - + ¢(c™ 'w). Note that the value of Py is independent of the
choice of w € (L.

Theorem 8.1. There exists co > 0 such that for every A € U there is a unique hy € C(Q) with
hy > c2 >0 and vy € P(Q) such that

Lyhy =hy, (Ly)svx =va, and /h)\dy)\ =1,

where v\ = exp(Py). Moreover, for every wi,ws € Q and X\ € U,
h)\(wl) < BW1AW2h>\(w2)7
where B, = exp (3 pe,11 2ba).
Furthermore, there exist A > 0 and 0 < § < 1 such that for every f € C(R2),
H'y/\_”_rl};l”f — /fdy)\ . h>‘H < AB"/deA for every A€ U andn > 1.
Proof. See [6, Theorem 1.7, Lemmas 1.8 and 1.12] and their proofs. O

The measure duy = h)dvy is a left-shift invariant ergodic Gibbs measure with respect to the
potential ¢*, see [6, Theorem 1.16, Proposition 1.14].

We will show that 7y, hy and vy depend uniformly continuously on the parameters in the following
sense:

Lemma 8.2. For every 0 < 6 < 0, there exists cg > 0 such that for every \,7 € U,

h ’
Bv ha(w) < e for every w € Q.
Yr hr(w)
For every i € QF,
) o epla—ri® il
vr([i]) —

Moreover, the constant Cg in the definition of the Gibbs measure can be chosen uniformly for X € U.

Proof. Simple calculations show that |Py — Py| < co|A — 7|? by (3.2)), hence the claim on 7. Now
let us turn to the claim on the eigenfunctions hy. Denote by 1 the constant 1 map over 2.
If A = 7, then there is nothing to prove. Suppose that A 7. Then by Theorem [8.1

VL
(8.1) ‘ ”h—f” - 1” <ty "Lila — ha|| < ey tABT = ATB™
Note that LY1g(w) = > 9 (i1-in) hence (3.2) gives
il,...,inEA
Lgﬂﬁ(w) < 660|)\_T|9.
L*1g(w) —
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Combining this with (8.1)) gives for every n > 1,

haw)  haw) o "(Erle)(w) 2y "(ExTe)(w)
hr(w) 97" (L31e)(w) hr(w) v "(Lidlg)(w)
L+ A8 A7 (L31g)(w)
T1-AB Y (L) (w)
L+ AB" oqperpn
=1 A '

Let n be minimal such that iﬁigz < eQCOM*T‘G, that is, let

log (1 — 220l =l” 4 1)*1> —log A/

8.2 =
(82) n Tog 3
It is easy to see that for any 0 < 6/ < 0,
/ 2
. 69 _ _
(8.3) ml_l)r&m log<1 2 1) 0,

thus, there exists cgs > 0 such that
log (1 — 2(e2e0A—Tl" 1)_1> —log A’
log g

2c0|A — 7° +2| <cor—1|"

for every \,7 € U. Hence,

h/\(W) < 1+ Alﬁn e2c0|)\—'r\6n
holw) S T— 450

< exp (200|)\ —71%(n + 1))

log (1 — 2(e2e0A—rl” 4 1)_1> —log A’

<e 2¢|\ — 7/?
<exp [ 2co|A — 7] og 3

+2

< exp (Ce/l)\ - T|9l> :

The proof for the measure is similar. In fact, suppose that A # 7. Using Theorem we get for
every n > 1 and every w € (Q,

Al n(@he) T ) 3 T ) @) how)
< ij:g: - exp (200\)\ — 7% (n+ i) + cor|A — 7’9') .

Now, choose again n > 1 as in (8.2). Then
) log <1 — 2(e2e0A—Tl” 1)_1> —log A’
) log 8

X
>
—~

~

< exp | 2co|A = 7|%)i| + cor|A — 7|7 + 2¢|A — 7|

+2

¥

—~~
)
~

< exp (200|/\ — 71%0d| + 2¢/| A — 7'|9/> < exp (ﬁ@(Zc + 2¢p) A — 7|7 m)

for some constant m = m(6,6").
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The claim on the Gibbs constant C¢ follows from the proof of [0, Theorem 1.16], combined with
uniform bounds on h)y and 7. O

The following proposition concludes the proof of the property (M )| for Gibbs measures satisfying
assumptions of Theorem [3.3]

Proposition 8.3. For every 0 < 0’ < 0 there exists ¢ > 0 such that for every \,7 € U and for every

1€ QF,

N{)
i ([2]

Proof. Fix 0" € (¢/,6). By the definition of sz, Theorem [8.1] and Lemma [8.2]

—

=

’
< ec\)\—7'|9 |g|

~
~—

(i) _ Jig ma@)dna(w)
1 ([4]) f[ﬂ hr(w)dvr(w)
o 2jiljlen P (@w)va([z])
= Bt e @, ()

< B}, exp <ce,,|A — 71" + cor(n+ |i])|A — T|9”) :

Choose n > 1 minimal such that

1
2 2 C //|)\—’T‘9
By < By < €7 )

that is,
" — 0,,10g |/\ - T‘ i (1 — oz)ceu(4b)_1 .
log log
Then
) " I — 1-— n(4b -1 1"
#A([Z]) < exp 269//|>\ B 7_|9 +09”(9H Og|>‘ 7—| + ( OZ)CQ ( ) + m + 1)‘)\ _7_|0 )
pir ([2]) log a log a

Since for every 6’ < 0" < 1 the map (A, 7) — |A—7|%" =% log |\ — 7| is bounded, the claim follows. [

8.2. Large submeasures. The goal of this subsection is to prove the following proposition, required
to deduce Theorem [3.3] from Theorem [3.21

Proposition 8.4. Let {f]‘)\}jEA be a parametrized IFS satisfying the smoothness assumptions
- . Let {pa} e be a family of shift-invariant Gibbs measures on Q corresponding to a family of
continuous potentials ¢*: Q — R satisfying and , Then for every \g € U, € >0, ¢ >0
and 0" € (0,0) there exist £ > 0, ¢ > 0, and a set A C Q such that for every A € Be(X\g) we have
pa(A) > 1 —¢" and the measures iy = px|a satisfy

(8.4) dimeor (fix, dy) > Moo —€
and
(85) el 0l ([w]) < fing (w]) < el 01y ()

for all w € Q.
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A standard approach for proving is applying Egorov’s theorem, similarly as in the proof of
Proposition In our case the difficulty is to obtain simultaneously. This requires a more
quantitative approach in constructing “Egorov-like” set. For this purpose we need certain large
deviations results, uniform with respect to the parameter, which we state in a slightly more general

setting.
We assume now that {ux}, . is a family of measures satisfying assumptions of Proposition
and {gg‘: Q= Riycg, £ =1,...,p, is a finite collection of families of potentials, each of them

satisfying properties (3.1]) and (3.2)).

Proposition 8.5. Let A\g € U be arbitrary but fixed. Then for every e > 0 there exists Ep > 0,
Cp >0 and s > 0 such that for every A € B¢, (Xo) and everyn >1, £=1,...,p,

*Sngg\(w) _/gé\dﬂ)\ > E}) < Cpe .

1
1 ({w e
n
The proof is based on two lemmas.
Lemma 8.6. For every 0’ € (0,0) and X\ € U there exist &1 > 0 and Cy = Cy(g1,...,q1,0") > 0
such that
' / gidpy — / gidpr

holds for every £ =1,...,p and X\ € Bg,, (Ao).

< Cg|A — 7.

Proof. Fix 0" € (#,0) and let ¢ be the constant from Proposition [8.3|corresponding to 6”. Let A € U
be arbitrary, and let 7 € Bg,, (\) where &1 is chosen such that ae8 < 1. Choose n > 1 minimal
such that (ce?=71" )n < |X = 7|. Then
[ st <vam+ 3 ghis)n(i0)
|i|=n
<ba” +colA = 7° + ) g7 (iw)pa([d))
li|=n
<ba" + oA — 7| + P S g (i) e (1)

jil=n

< ba" + colA — 7|7 + eenA=l’ </ grdpr + ba”) .

‘/gﬁdux—/gzduf

where M = maxycpweq |g) (w)]. Hence, by the choice of n,

‘ / gpdpy — / g7 dpir

9/

Thus,

< (eC"‘A*TW - 1) M + ba™ (eC”M*T‘g + 1) + colX —7°.

< <exp (C\A — 71" log |\ — 7]/ (log a + e[\ — 7\9”)) _ 1) M+ (co+2)|A— 77

o' log

The map x + £ is continuous, hence bounded, on [0, £21], say, by B. Further, there exists

" log a+cz?”’ N
a constant C; > 0 such that |e® — 1| < Cy|z| for every |z| < BES;. Hence,

‘ / godpy — / g dpr

as desired. O
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Lemma 8.7. Fiz \g € U and 0" € (0,0). For every e > 0 there exist E22 > 0 and Cay > 0 such that
for every X € Be,,(\o) and everyn >1, £ =1,...,p,
)

1
I\ <{w €Q: 'nSng?(W) — /g?dm
’ 1
< 022€cn|/\7/\0\9 fxg <{w cQ- ‘nsngg\o(w) _ /gé\od/i/\o

with ¢ = ¢(0') as in Lemma 8.6,

+3))

Proof. Fix \g € U and € > 0. Fix k € N large enough to have ba* < £. For a given n € N, let
@) (W) = g)(w|n+£1°°). Note that by (3.1) for g} we have H%Sngg\ — %Sncpz\Hoo < £, whereas (3.2)

for gé\ yields H %S’ncpz\ — %Sngoﬁ‘o H < g if Ais close enough to A\g. Moreover, functions w S’ngoz\(w)
oo

are constant on cylinders of length n + k. Therefore, applying Proposition 8.3 and Lemma gives
for A € B(\g, &22) with €22 small enough:
> E}>

ix ({w ceq: 'TllSng?(w) - /geAdm
21

= D (i) U103 1) f s[> 223 (0

li|l=n+k

1
< pa ({w €Q: ‘nSnsO?(W) - /g?dm

c\n - G/ ) »
L DN (1)) FITPRNIPR ()

li|=n+k
< Cone™ P 57 g (A1 g oy s 1)
li|=rtk
< 022€cn|k_/\0‘0/lh\o <{w €Q: ‘iSngz\O(w) - /QZ\OdM/\O > ;}) ;
where Cag = exp(ck&ly). O

Proof of Proposition[8-5 Fix Ao € U and € > 0. By [49, Theorem 6|, there exist Cp > 0 and s > 0

such that
1 5 —4z8Nn
[ <{w €N: ’nSngﬁ(’(w) - /gﬁoduxo > 5}) < Cpe™?

for every n € N. Combining this with Lemma [8.7] finishes the proof. O

> 45}.
¢ <min{&p, & }

such that co|A — Ao|? < € and Cy|A — Ng|? < & for A € Bg,,(A\g). Then, for such ), Lemma 8.6| gives
that for every i € Q5, we 1], £=1,...,p

1
’nSng?(w) — / 9o dpn
29

Fix ' € (0,0), Ao € U and ¢ > 0. For every n > log(By)/e let

1
Qf = {z € A" : there exist w € [i] and £ € [1, p] such that ’Sngz\o (w) — /gg‘odm\o
n

We define €, := A"\ Qf. Choose

(8.6) > €.




Let us define two sequences ng, = | (14¢)*| and my, = |1+ (1+¢)+-- -+ (14¢)*|. For every K > 1
with my > log(By)/e we let

(8.7) Ex = Qg X Qg X Q
For k > K, denote T'yy, := Qje X Qe X -++ X Q. By Proposition

mERD = D m@+Ed DY DY Y D> ialliod - - i)

jEQs, F=1ig€my 11 €nge ;o1 €y IE

ngie X 0 C L

o0
< Cppe "MK 4 ZC’Dpe_S”K““ —0as K — 0.
k=1

Proposition 8.8. For every K with nyx > log(By)/e there exists ¢ = (e, K) > 0 such that the
inequality

(8.9) (i) N Ex) < P (] N Eg)

holds for every i € Q* and every A\, 7 € Be¢(Xo) (with & defined above).

Proof. First, we shall prove for i € Q* with |i| = my, for L > K. Note that if i ¢ I';,, , then
[i] NEx = 0, hence it suffices to prove the inequality for ¢ € T'),, . By definition,

m@NE) =m@) - > m@h-> > - > > malliy ).

JEQE k=1 11€QnL+1 ikEQnL+kj€Qc

nL1 "Lkt
For short, denote
1 .
bry1(A) o= - Z pa([4]);
(), 2
ny41

bkt (A) = 1i]) 2. ) > walliy i), k>

€y €y JER%,

Hence, by Proposition [8.3]

malil NEx) _ palli]) 1= 3052 em P Omen iy, 4y ()
pr ([l N Ex) = pr(ld]) 1= 01 brs(T)

By the Mean Value Theorem, there exists p € (e‘cM_T‘e,, 1) such that

log (1 — Z €_C|/\_T|9(mL+k+il)bLJrk(T)) — log (1 — Z bLJrk(T))
k=1

k=1

(8.10)

R (mpgk + i) (1) (1 — eCP\—T'd)
- -5 mp4k+ilp (1)
k=1 P L+k
SR s+ bLis() o
- 1=3021004k(7) '
By the Gibbs property of p; we have

brk(T) < Copir U il | < Capr ({1<%I<p
i€, sts

anHng—/gZduT

><})

< pchC'DeisnLjuC 3
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where in the last two inequalities we used and Proposition . Hence,
> et (M + iD)br4k(7) pCeCp Y o (mpyy + [i])e™ " it
1= k= bk (7) B 1 —pCaCp Y 3Ly et

2pCeCp Ziozl mL+kefsnL+k
1-— pCGCD 220:1 e SnL+k

which is a uniform constant. Combining this with (8.10) and Proposition we get

MA([Q ﬁEK) < el (li+D),
pr ([ NEk)
Now let us extend to all 4 € Q* with |i| > mg. Let mp <|i| < mp4q for L > K. Then

g - —r¢ -
m(@NEk) = Y mE@ns) < Y ePTTlmiay (i N Ey)
jeAmL+1fli\ jEAmLJrl*m
’ 101 ™ML+
< e’ mitiy (] NEk) < o M 1-([]] N Zx)

< Bte)er—r|” i ([d] N Ek).

Finally, for i € Q* with |i| < mg, the same calculation as above shows

- _10; -
pa([d] N Ex) < e ATl ([ N 2k).
O

Lemma 8.9. For every ¢ = 1,...p, K > log(By)/e, n > mg, and every i € Q, with |i| = n and
[ NEx #0, every w € [i] and every X\ € Bg(Ao), the following holds:

1
' Sngi (W) — / gpdpy

- < (64 4M)e,
n

A
where M = max, .7 c01<o<p 197 (W)]-
Proof. Let L > K be such that my, <n < mpy;. Then

1
gSng?(W) — / grdp

myr | 1 1 n—my
< | S 9p (w) — / g7 dpux | + ‘(Sng?(u)) — Smy 97 (W) — / g7 dpx
n |mp n n
mpr, n—mp nL+1 (14
< —6¢e + 2M < 6e + 2M < 6e + ———F——¢-2M.
n n mr, (1+e)l -1
Since K is large, the claim follows. O

Now we are ready to prove Proposition (8.4

Proof of Proposition[§4} Let gi(w) = Py —¢*(w) and g9 (w) = — log ‘( 31)/ (H)‘(aw))‘. Then hy,, =
[ gduy and x,, = [ gaduy. Fixe >0, & >0, and ¢’ € [0,6). Let £ > 0 be small enough, so that
Proposition and Lemma hold. Let A = Zk be defined as in for fixed K > log(By)/e,
large enough to have py(A) > 1 — ¢’ for A € Be(Ag) by (8.8). Then iy = p|a satisfies by
Proposition . By the Gibbs property and Lemma for u € Q* satisfying [u] N A # () with
lu| =n > mg and any w € [u], we have

in([u]) < ma([u]) < Cg exp(=Pan + 8,0 (w)) = Cg exp(—Spgi (w)) < Cge "= (E+4AD2)
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and

‘ (ﬁj)' (HA(a”w))‘ > ¢ xuy H(E+M)2).

Therefore, setting A, = {u € A™ : [u] N A # 0} and applying Lemma [4.2] we obtain for a > 0,

fainan =3 Y 3|1

n=0ucA, z,gEA
7]

SORCEY. Y YT el OH Mty 044109, ()

n=0ucA, ’L,JEA
]

—Q

fux([wi]) i ([us])

< C6ICG#AZ n(hy, —(6+4M)e—a(xpu, +(6+4M)e)) < 00,
n=0

huy, —(6+4M)e

hNA (6+4M)e
Xpy +(6+4M)e”

provided a < = W

This shows dimee,(fix, dy) >

9. PROOFS OF THEOREMS [3.2] AND [3.3]

Lemma 9.1. Let {fj)\}jE.A be a parametrized IFS satisfying smoothness assumptions |(A1)| - |(A4)|
Let {px} e be a collection of finite Borel measures on ) satisfying . Then the map

Us A dimcor(,lt)\, d)\)
1S continuous.

Proof. Fix arbitrary a > 0, € > 0. It is enough to prove that there exists a constant C > 0 such
that inequality

Ealpn, dy) < CEare(pn, dyr)

holds provided A and A are close enough. By [(M)| and the parametric bounded distortion property

(Lemma [£.2)),
Ealpir dy) = Z > D

n=0ucA" | ,geA
7]

CC3 Y Y elernan

n=0ucAnijcA
i#]

IS

n=0ucA™ i jEA
i#]
= 0625a+5 (,UXa d)\/),

RO (i aa ()

oo

pox ([wi]) e ([ug])

‘ —(ate)

X

pox ([wi]) e ([ug])

where the last inequality holds provided |A — X| is small enough, as | (X )‘ ) >, " by|(A4)l O
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9.1. Proof of Theorem Fix Ao € U with dimeor(ptp,,dr,) > 1. Let € > 0 be small enough to
have
min {dimeor (frg, dxy ), 1 + min{d, 0}} —4e — 1 -

0.
2

Let ¢q =14 2y + 2¢. Then
142y 4 ¢ < ¢ < min {dimeor(pag, dy,), 1 + min{d, 0} } — 2¢.
Let 8 > 0 be small enough to have
q(1+ aoB) < min{dimeer(ptn,, dy,), 1 + min{o, 6} } — e,

where ag is as in Theorem [7.1} By Theorem there exists an neighbourhood J of \g in U, interval
I containing A\g and compactly supported in J and smooth function p with 0 < p <1, supp(p) C J
and p =1 on I, such that

J 103 < [ 1l NN < Crirags1ns ) + G <
as ¢(14+apf) < dimeor (12, dr,) —€. Therefore, ||1/,\||%7«Y < oo for Lebesgue almost every A € I, hence

dimg((TT)spay) > 1+ 2y > min {dimeor (2, dag ), 1 + min{d,0}} — 4e

holds almost surely on I. As e can be taken arbitrary small and the function A — dimey,(py, dy) is
continuous by Lemma [0.1} we can conclude the result in the same way as in the proof of Theorem

(see the last paragraph of Section .

9.2. Proof of Theorem As Proposition 8.3[implies that measures {15} 77 satisfy with 0’
arbitrarily close to 6, the first assertion of Theorem follows from Theorem |3.2, For the absolute
continuity part, fix e > 0 and & > 0 and let i) be as in Proposition By Theorem we have
dimg((IT"),fiy) > 1 for Lebesgue almost every A with Z”Ti > 1+ ¢e. As any measure on R with
Sobolev dimension greater than 1 is absolutely continuous (with L? density), passing with ¢’ and e
to zero finishes the proof.

10. APPLICATIONS

10.1. Place-dependent Bernoulli convolutions. Our first application is the place-dependent
Bernoulli convolution studied in [I]. Let 0 < p < % and 0.5 < A < 1 and let us consider the following
dynamical system f :[—1,1] x [0,1] — [—1,1] x [0, 1], where

' 14+2px

()\:z:—(l—)\) 2y) if0<y<i+pn
(Ax#—(l—)\),w) if L +pr<y<l.

f(x,y) =

1-2px

For the action of f on the rectangle [—1,1] x [0, 1] see Figure [10.1}
Let vy, be the place-dependent invariant measure of the IFS on [—1,1]

Uy = {Ud(@) = Az = (1= ), 93 (@) = Az + (1= )}

with probabilities {pg(:(;) = % + px,p1(z) = % — pm}. That is, vy , is the unique probability measure
of the dual operator L*, where

Lote) = (5 + 2 ) 00 = (0= W)+ (5 = pe ) g0+ (1= W),
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FIGURE 10.1. The map f acting on the rectangle [—1,1] x [0, 1].

for any continuous test function g¢: [0,1] — R. In fact, by [12, Theorem 1.1],

(10.1) nh_)rrolo L"g(x) = /gdi/,\,p uniformly on [0, 1].

Applying and the bounded convergence theorem, simple calculations show that
1 n—1 B .
- kZ:OEQ o f7F = vy, x L1 weakly,

where L5 is the normalized Lebesgue measure on the rectangle. Hence, by the results of Schmeling
and Troubetzkoy [38, Section 2, 3|, the measure vy, X £ is the unique SBR-measure of the map
f. Therefore, the property vsgr < L2 is equivalent to vy, < L1 and moreover dimygvspr =
1+ dimH Vxp-

Clearly, the IFS W, satisfies the conditions for A\ in an arbitrary compact subinterval
of (0,1). Moreover, it is easy to see that vy , is a push-forward measure of a parameter-dependent
Gibbs measure jy ,. More precisely, let Q = {—1, 1} and

o0
N w) = Zwk)\k_l,
k=1
and let ¢*(w) = log (pa,, (I*(ow))). It is easy to see that ¢* satisfies (B.1) and (3.2) for every fixed
p € 10,1/2). Moreover,

Xy, = —logA;
hun,, = = Jp (5 + px) log (5 + px) + (5 — pz) log (3 — pz) v p(x).

Shmerkin and Solomyak [41, Theorem 2.6] showed that W) satisfies the transversality condition
on the interval A € (0,0.6684755). Hence we can apply Theorem and verify the claim [
Theorem 4.1].

Theorem 10.1. For every 0 < p < 0.5 and Lebesgue almost every A € (0.5,0.6684755),

dimyg v :min{l hm’p}
H A0 " —log A

Moreover, vy , is absolutely continuous for Lebesgue almost every

A€ {\ € (0.5,0.6684755) : hy, , > —log A} .
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FIGURE 10.2. The singularity and absolute continuity region of the measure py ,.

In particular, the region contains the quadrilateral formed by the points (0,0.5), (0.45,0.55), (0.45,0.668),
(0,0.668).

It follows from the calculations in [1], that for every N > 1,

(10.2)
N N
(2p)2n (2p)N+1 (2p)2n
log 2 _;—%(Qn_ 1)Fn ~ BN TDEN T DI @) < By, < log?2 —;—%(2”_ 1)Fn.

where F, = [ $2”d,u>\,p(a:). The quantities F;, can be expressed inductively by

- (1 o )\)Qn
1+ AT (4np(1 — A) — A)

"Z‘:l 2m(1 = N2 (o (A 20(1-0)
L+ A2 1(dnp(1 - X)) =N \2m/) \2m 2n—2m+1/) "™

F, +

m=1

Using the estimates ((10.2)), we can approximate the region in Theorem see Figure m

10.2. Blackwell measure for binary channel. Our second application is the absolute continuity
of the Blackwell measure for a binary symmetric channel with a noise. Let us first introduce the
basic notations, following Barany, Pollicott and Simon [3] and Béarany and Kolossvary [2]. Let

X :={X;};2_., be a binary, symmetric, stationary, ergodic Markov chain source X; € {0, 1}, with
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a probability transition matrix
II .= [ p 1=p ] .
l—=p p
By adding to X a binary independent and identically distributed (i.i.d.) noise E = {E;}
independent of X with

[eS)
1=—00

P(Ei:()):l—z’f, P(Ei:1):€,
we get a Markov chain Y := {Y;}:° Y; = (X, E;) with states {(0,0), (0,1), (1,0),

(1,1)} and transition probabilitie;::_oo’
p(l—e) pe (I-p)(1-¢) (1-pe
v | rd—e e (1-p)(1-¢) (1-p)
| A=pl-¢) (A-pe p(l-¢) pe
(1-p)(1—-¢) (I-pe  p(l-¢) pe
Let ¥ : {(0,0),(0,1),(1,0),(1,1)} — {0,1} be a surjective map such that

U(0,0) = W(1,1) =0 and ¥(0,1) = ¥(1,0) = 1.

o0

We consider the ergodic stationary process Z = {Z; = ¥(Y;)};2_ ., which is the corrupted output
of the channel. Equivalently, Z is the stationary stochastic process Z; = X; @ F;, where @ denotes
the binary addition.

According to [14, Example 4.1| and [3, Example 1], the entropy of Z can be expressed as follows.
Consider the 3-dimensional simplex

W::{MGR4:w¢ZO, Z wizl}

1<i<4
and define Wy, W7 C W by
Wy ={weW :wy=w3=0}, Wiy:={weW:w =wy=0}.

Consider two matrices

p(l—¢) 0 0 (1-pe 0  pe (1-p)(1—-¢) 0

. p(l—¢) 0 0 (1-p)e |0 pe (I-p)(1—¢) O
M=l apa-—ea 00 pe wmd ME=1 0 g pi-e) 0|

(I-p)(1—¢) 0 0  pe 0 1-pe pl—e) O

and let (ro(w),r1(w)) be the place-dependent probability vector of the form
ri(w) = [lw" M1,

where ||.||; denotes the {; norm and w € W. Introduce two functions fo : W — Wy and f1 : W — W)

such that .
w* M;
(W) = ————.
filw) = oAy

Then the entropy of Z can be expressed as follows:
HZ) = [ [ro(w)logrow) + i (w)logr (w)]dQLw),
WouWy

where the Blackwell measure @ is the unique measure with supp(Q) C Wy U W1, such that for every
continuous function h: Wy U W7 — R,

/ h(w)dQ(w) = / ro(w)h(fo(w)) + r1 (w)h(fi (1)) dQ(w).
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It was shown in [3, Section 3.1, 3.2| that for the binary symmetric channel, the measure @ on
Wo U W) is conjugated to the place-dependent invariant probability measure v, , on [0,1] for the
IFS W, , = {Sg7, S{7}:

S37(@) = - - —

1
€,p ._ b
o () := T

and the place-dependent probability vector (py? (), p7* (z)):

)
pof(x) ==z [p(l—e)+ (1 —p)-ef+ (1 —-2)- [(1L-p)(l—¢)+p-e],
pif(@)=z-[pe+(1-p)-(L-gl+(1-2)-[1-pe+p-(1-2)].

In particular, Q@ < L1|w,uw, if and only if v, , < L;.

Observe that for e = 1/2, Sg*(z) = S7?(x) = (2p — 1)z + 1 — p and so v, is the Dirac mass on
the point 1/2. Hence, we may assume that ¢ # 1/2.

For every fixed ¢ € (0,1) \ {1/2}, the IFS W., satisfies the conditions for p in an
arbitrary compact subinterval of (0,1); and v, is a push-forward measure of the Gibbs measure
pe p With respect to the potential ¢=F(w) = log (pif (I (ow))) satisfying and (3.2)), where II*?
is the natural projection of the IFS W_,,.

Béarany and Kolossvary [2] showed that for every fixed € # 1/2 the IFS W, ), satisfies the transver-

. . ) 5
sality condition |(T)| with respect to the parameter p and has XZ &P

> 1 on every interval I for which

&,p
{e} x I is contained in the red region in Figure m Thus, the main theorem of the present paper
applies and |2, Theorem 1.1]| remains correct:

Theorem 10.2. For every fizede € (0,1)\{1/2} and for Lebesgue-almost every p such that (¢,p) € R
1s in the red region of Figure the measure v=P is absolutely continuous. For instance, the red
region contains two quadrilaterals formed by (0.5,0.75), (0.37,0.775), (0.5,0.795), (0.63,0.775) and
(0.5,0.25), (0.37,0.225), (0.5,0.205), (0.63, 0.225).

It was shown by Barany, Pollicott and Simon [3] that s, is singular in the blue region of Fig-
ure [10.3

10.3. Absolute continuity of equilibrium measures for hyperbolic IFS with overlaps.
First we recall briefly the notion of equilibrium measure in the setting of IFS. Let A = {1,...,m}
and suppose we have an IFS ¥ = {f;};c4 of the class Ct% on a compact interval X ¢ R. We
assume that that the system {f;};c4 is uniformly hyperbolic and contractive:

(10.3) 0<m <|fi(x)| <2 <1 forallje A zecX.

As before, Q = AN and o denotes the left shift on . We write IT :  — R for the natural projection
map associated with the IFS. Consider the pressure function, defined by

_ 1 —1 /1t
(10.4) m@wagyl%Qmm

It is well-known that this limit exists, ¢ — P4(t) is continuous and strictly decreasing. According to
the general theory of thermodynamical formalism (see e.g., [35]),

P\I!(t) = P(Uv t(;ﬁ),
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FIGURE 10.3. The singularity (blue) and transversality region with )’EZ =2 1 (red)
&,p

of the measure v, p, [2, Figure 1].

where ¢(w) = log| f., (II(ow))| is the potential associated with the IFS and P(o, -) is the topological
pressure. The equilibrium state for the potential ¢¢ is a Borel probability measure p on €2 satisfying

Pult) =+t [ odn

where h, = h,(c), see |35, 3.5]. Observe that [ ¢dp = —x, by the definition of the Lyapunov
exponent. Denote by s = s(¥) the solution of the Bowen’s equation:

(10.5) s=s(¥): Pg(s)=0.

It is well-known that s(¥) is the upper bound for the Hausdorff dimension of the attractor. We say
that p is an equilibrium measure for the IFS W if it is the equilibrium state for the potential s(¥) - ¢.
Thus, by definition,

h

p is an equilibrium measure = s(¥) = = .

X
The equilibrium measure is the dimension-mazimizing measure for the IFS in the symbolic space.
Under our assumptions, the equilibrium measure p is the unique Gibbs measure for the potential
s¢ = s(¥) - ¢, which implies that

p([u]) = diam([u])®,
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for any cylinder set [u] in Q. Here diam([u]) is the diameter in the metric associated with the IFS:
d(w,7) = |Xwar|- It follows that p has local dimension s at every point in ; in particular, the
correlation dimension dimee (1) = .

Given a family of hyperbolic IFS WA (with overlaps) depending on a parameter A € U, with equi-
librium measure ), we expect that typically, in the sense of almost every parameter, the projection of
the equilibrium measure (IT*),py has Hausdorff dimension min{1, s(¥*)}, and is absolutely contin-
uous when s(¥*) > 1. This is what we prove under the assumptions of regularity and transversality.
It is a simple consequence of Theorem but we state it as a theorem because of its importance.

Theorem 10.3. Let U = {f]f\}jeA be a parametrized IF'S satisfying smoothness assumptions
- and the transversality condition on U. Let py be the equilibrium measure for U and
s(TN) the solution of the Bowen’s equation (10.5). Then dimg((TT*).uy) = min{1, s(TM)} for a.e.
A € U and (I1*),uy is absolutely continuous with a density in L? for Lebesgue almost every X in the
set {\ € U :s(¥) > 1}.

Proof. As noted above, the equilibrium measure p satisfies dimeo, (1)) = s(¥?). By Theorem
and Theorem it is enough to show that the equillibrium measure u) satisfies By Proposi-
tion it is enough to show that potential ¢*(w) = s(¥*)log ‘(f{f,‘l)’(HA(aw))’ satisfies and
B2

The condition is straightforward, since by assumption 1 < |(f2, ) (II*(ow))| < 72 on U and

trivially s(¥?) < Jcl’gg”%. On the other hand,

0 (w) = &7 (@) = [s(¥) log | (12, (I (o)) log | (£2,)' (1 (0)) | = s(¥7) log | (2, (I (o))

< —log 7 s(8) = s(07)| + =B log (72, (1T o)) | — log (12,1 ) |
< —logs(8) = s(07) + — 0 |(2, Y (W ow)) — (73, (I (o))

By the assumptions |(A1)|-[(A4)| simple manipulation shows that A — (f2 )/ (II*(ow)) is a Lipschitz
map with Lipschitz constant independent of w. Hence, it is enough to show that \ — s(¥?) is

Lipschitz. But clearly,
—log72|s =t < [Py (t) — Par(s)] < —logmls — 1,
and so
|5(¥7) = s(U7)] < (—1ogy2) ! Por(s(TY)) — Poxr (s(¥7))]
(—logy2) ™! [Ppr(s(¥7)) — Por (s(¥7))|
(—logy2) " 'e|A =,

where the last inequality follows by Lemma [8.2]since A — s(¥7)log |(f2 ) (II*(ow))| satisfies (3-2)).
U

IN

10.4. Natural measures for non-homogeneous self-similar IFS. Consider a self-similar IF'S
on the line 7 = {fj(x) = rjx + a;}jca, where r; € (0,1) and a; € R. Recall that the similarity
dimension is the number s = s(F), such that ;. 477 = 1. Assume that the IFS is non-degenerate,
in the sense that the fixed points of f; are all distinct. In this case the equilibrium measure is the
Bernoulli product measure (pY) on Q, where p = (r{,...,73,) is the vector of probability weights
associated with the similarity dimension. We focus on the question of absolute continuity for the

natural self-similar measure vx = IL,(p"). (For the Hausdorff dimension dimg () Hochman [I5]
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obtained results that are much sharper than what we get with our method, so we don’t discuss
the latter.) For non-homogeneous self-similar measures results on absolute continuity for a typical
parameter in a “transversality region” were obtained by Neunh&userer [26] and Ngai and Wang [27]
independently. However, in their results the probabilities in the definition of self-similar measure
are fixed, and so nothing can be claimed for the natural measure for a.e. parameter. More recently,
Saglietti, Shmerkin, and Solomyak [37] proved absolute continuity for a.e. parameter in the entire
“super-critical region” (i.e., where h,/x, > 1), however, there also, probabilities are fixed, and an
application of Fubini’s Theorem doesn’t yield anything for the natural measure. The following is an
immediate consequence of Theorem [10.3]

Corollary 10.4. Let Fy = {rj(A\)z + a;(\)}jea be a family of non-degenerate self-similar IFS
satisfying smoothness assumptions - and the transversality condition on U. Then the
natural self-similar measure vy is absolutely continuous with a density in L? for a.e. X € U such that
the similarity dimension is strictly greater than 1.

Specific regions where the transversality condition holds were found in [26, 27]. In particular, we
have the following for the family of the IFS {\1z, A2 + 2}, where the 1-parameter family is obtained
by assuming A = A;, Ay = ¢ for a fixed ¢ > 0.

Corollary 10.5. Let vy, », be the natural self-similar measure for the IFS {A\iz, Aoz + 1}. Then
Unihe 45 absolutely continuous with a density in L? for a.e. (A1, \2) such that Ay + Ao > 1 and
max{)\l, )\2} S 0.668.

10.5. Some random continued fractions. Consider the IFS F,, 5 = {f1, fo} =: {3555, zféﬁl}

on the real line, for 0 < a < . Applying the maps randomly (not necessarily independently), we

obtain a random continued fraction [1,Y7,1,Y¥2,1,Y3,...] where Y; € {«, 3} and we are using the
notation
1
[a1,a2,as,...] = i
ay +
az + ———
2 as+ ...

In the case o = 0 the IFS is parabolic; it was first studied by Lyons [23]|, motivated by a problem
from the theory of Galton-Watson trees. In [44] it was shown that the invariant measure for the
IFS corresponding to Y; applied i.i.d., with probabilities (%, %) is absolutely continuous for a.e.
B € (0.215, B.), where 3. € (0.2688,0.2689) is the “critical value”, such that
log2
XBe

where x3, is the Lyapunov exponent of the measure (

L,

%, %)N. Note that the IFS Fq g is overlapping,

i.e., its two cylinder intervals have non-trivial intersection, for g € (0,0.5).

In this paper we restrict ourselves to smooth hyperbolic IFS, so we need to take o > 0. However,
we can take a very small positive o and expect somewhat similar behavior. The convex hull of the
attractor for F, g is the closed interval having the attracting fixed points of f1, f2 as its endpoints; it

is Xo 5 = [ v 0‘2240‘_0‘, Y 52;4'87’8} . It is easy to check that the condition for the IF'S to be overlapping,
ie., Ll (f1 (Xa“g) N fQ(Xaﬂ)) >01is
B+a+4>3(VB2+48+Va? +4a).

It is satisfied, e.g., when a € (0,107%] and 8 € (a, 0.485).
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Example 10.6. Denote by I the natural projection from Q = {1,2}N to the attractor and
consider the equilibrium Gibbs measure p, g for the IFS. Fix a € (0, 1074 and B = V2 -1 =
0.41421 ... Denote 1,3 1= Hf’ﬂ Ha,3- Then 1, g4 is absolutely continuous with a density in L? for
a.e. A € U =(0,0.485 — B) ~ (0,0.077). |

In order to derive this claim from Theorem [10.3] we need to check transversality and that
Py, 5/ Xpas > 1 holds. (The regularity assumptions are obviously satisfied.) It is well-known that
as soon as there is an overlap, the condition s(¥y5) = hy, ;/Xu., > 1 is satisfied, but for the
reader’s convenience we provide a short proof in Appendix D] see Corollary [D.3] Checking transver-
sality is non-trivial; we indicate it in the next subsection. (In fact, we could get a larger interval of
transversality (=~ 0.215,0.485) for a € (0,107%] with the method of [44, Section 6], which is more
delicate.)

10.6. Checking transversality. Sometimes slightly different forms of the transversality conditions
are used. Here they are:

In>0: Yu,v e, uy#v, N\eU

(10.6)
() ~ ()| <7 = [T W) ~ T W)] =
In>0: Yu,v e, ug #v, N\eU
(10.7) . R
T (u) = (v) = |1 () = IMv)| =
dCr >0: YVu,v e, u #vy, r>0
(10.8)

! {A U : |IMu) — I (v)] < r} <Cr-r
Lemma 10.7. Under reqularity assumptions - all three conditions (10.6|) - (10.8) are

equivalent.

Proof. The implication ((10.6)) = (10.7)) is trivial.
The implication = is the usual transversality argument, see [43, Lemma 7.3].
Let us prove ((10.8) = . We argue by contradiction. If does not hold, we can use
compactness of Q and U and find u, v € Q with uy # vy, and \g € U such that F(\) = II*(u) —IT*(v)
satisfies

F(X\o) = %F()\g) =0.
Using that IT* € C'19 (Proposition , we can write
[F(ho+1)| = [F(Xo+1t) —F(X) = F'(Xo)t|
|F' (Mo + 7)t — F'(\o)t| for some 7 € (0,t) by the Lagrange Theorem
= [t [F' (o +7) = F'(M)| < [t] - Calrl* < Cslt|'°,
which clearly contradicts for r sufficiently small.

It remains to show (10.7) = ([10.6]), but this again follows by compactness of Q and U and
continuity of A\ — IT* and \ — %H’\. O

Next we consider two 1-parameter families of IF'S for which it is possible to verify the transversality
condition, under appropriate assumptions. They are variants and modifications of the parametrized

families of IF'S from [43], 44].
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Proof of transversality in Example[10.6, Let f(z) = ;% so that FA={fx+a),flx+B+ N},
and let TI* be the corresponding natural projection map. We can consider this IFS on X = [0,0.5]
for all these parameters. Here it is more convenient to verify the transversality condition in the form
. Let u,v € Q with u; # v1. Without loss of generality we can assume that u; = 2 and v; = 1.
Then we have by the Lagrange Theorem,

Mu) —Mv) = f(B+X+ H/\(Uu)) — fla+ H/\(UU))

= F10)-[8—a+ A+ (o) ~I(ov)|

— PO W),
Since f’(¢) > 1 > 0, we obtain that

{A U : |IMu) - I (v)] < r} c {)\ ceU: W (u,v)| < r/%} .
In order to verify , it suffices to show that %\I/)‘(u, v) >0 > 0. We have
(10.9) %\I’/\(u, v) =1+ %H)‘(au) - %HA(UU) >1-— %HA(GU),
using monotonicity. We can write
M\(ov) = [ BB
for some i, > 0, where we write f1 = f{ = f(z + ) and f3 = f(z + 8+ \), so that
M (ov) = f°F(B+ A+ [IF(B+ A+ [12..0).

Then simply using that || f][lcc < 1 and the maximum of the derivative is attained at the left endpoint

by concavity, yields

P00 < G+ (14 G0+ G40+ ) = LD

It remains to note that f'(8+ \) < f/(8) = 1/2, hence £I1*(0v) < 1, which implies the desired
claim, in view of ((10.9). O

10.7. “Vertical” translation family. Next we consider a class of 1-parameter families of IF'S for
which it is possible to verify the transversality condition, under appropriate assumptions. This is
also a modification of the parametrized families of IFS from [43] [44].

Let {fj}jea be a C't% TFS on X and consider a “translation perturbation” {fj\}jeA, satisfying
(A4)] of the following form: assume that

(M) = fi(@) + a;(N)}jea

and assume that it is well-defined on X for A € U. We call it “vertical” because the graphs are
translated vertically. Sometimes it is useful to consider IFS consisting of “horizontal” shifts of the
same function, that is, IFS of the form {f(x + ¢;) 71, like Example Such families may be
treated in a way similar to the “vertical” translation families with a few modifications, see [43] Section
7] and [44], Section 6]. Instead of treating this case in full generality, we focused on a specific example
of random continued fractions above.

Denote for 7 # j in A:

(10.10) Xij = {:1: € X: 3)NeU, Jyc X such that f)z) = ])‘(y)}
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Note that X;; is empty if the corresponding 1st order cylinders never overlap. We further define, for
i # j in A such that X;; # 0:

(10.11) 17y = A0l = min] g as(h) — a;(0)]|
Let
| aill
10.12 Diax = max(ioo .
(1012) (2 7)

Proposition 10.8. (i) If
(10.13) Mij — (Hfz/”XU + Hfg/”Xﬂ) * Dinax >0 for all i # j such that X;; # 0,

then the transversality condition holds on U.
(ii) Assume, in addition, that fj/(:r:) >0 and %aj >0 forallje A If

(10.14) Nij — 1 fillx;; - Dmax >0 for all i # j such that X;; # 0,
then the transversality condition holds on U.

Before the proof we present a more familiar special case. Let {fj}\}jEA be a C'*9 IFS on X,
satisfying |(A4)l Consider the translation family

{fi@) = fi(@) + A, f} (@) = fix), §> 1},
and assume that it is well-defined on X for A € U. Note that only ff‘ changes with A. Moreover,
we assume that only the cylinder f{(X) can intersect other 1-st order cylinders, that is

i#J, Li(X)N f(X) #0 = 1€ {ij}.
Corollary 10.9. (i) If
2 filloe + 15l <1 forall 1<j<m,

then the transversality condition holds on U.
(i) Assume, in addition, that fi(x) >0 for all j € A. If

/ !/ .
1filloe + 1 fjlly,, <1 forall 1<j<m,
then the transversality condition holds on U.

The derivation of the corollary from the proposition is immediate, since in this case we have
mj =1for j >1and Dyax = (1 — || f1ll.) "%

Proof of Proposition[10.8 Consider the symbolic cylinder sets [i] C Q and let

My = maXH%H’\(u)H ;M= max,¢p) %HA(U)H , 1€ A
u€e) 9] 0

We have
u€ i) = MMNu) = a;(\) + fi(IT1ou)),
hence
d d , d .
(10.15) aﬂ)‘(u) = ﬁai()\) + (1M ow)) - aﬂ)‘(au) for w € [i].

It follows that
M; < || )|+ 1 - Moc,
and since My, = max; M;, we obtain from (|10.12)) that

(10.16) Moo < Diax.
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Now we verify the transversality condition in the form (10.7). If II*(u) = IT*(v) and u; # vy,
then u € [i] and v € [j] for some 7 # j such that X;; # (. Without loss of generality we can assume
that % [ai(A) — a;(A)] > 0 in the definition of 7;;, otherwise, exchange ¢ and j. Then (10.15)) yields

(10.17) % (HA(U) - H)‘(v)) = % [ai(N)—a;(\)] —Ffi,(H)\(O"LL))'%HA(UU)—fJ/-(HA(o'U))-%HA(O"U).

Note that
I (u) = f;(IIN(ow)) = f;(I1* (o)) = I*(v),
hence 1T (ou) € X;; and IT*(ov) € Xj;. Therefore, (10.17) yields
d
- () - H%))\ > mig = (11, + I171,.) - Dinax > 0,

assuming (10.13)). This proves part (i) of the proposition.
In order to verify part (ii), note that if all f; and A — a;(\) are monotone increasing, we also get

that %H’\ (u) >0 for all u € Q, hence (10.17)) implies
d (o A
- () - W)

which is bounded away from zero under the assumption ((10.13]). This concludes the proof of ((10.7)
O

> Tij — ”fluxz 'DmaX > 07
J J

Example 10.10. Let ¥ := {f;}!", be a C1*9 IFS on X. We assume that there exists a partition
A =7 1 UZ; such that for very i,j € 7, we have

(10.18) HX)Nf;(X) =0, i#j, i,j€Te,k=-1,1
Recall the definition of 5 from |(A4)l Besides (10.18)), our second assumption is as follows:
1

We define x(i) = k if i € I, k = —1,1. Then we introduce the family ¥* = {f{\}gl with a
parameter interval A € U, where

(10.20) A (x) = fi(x) + (i) - A

Together with , this yields

(10.21) %(ai()\) _ aj(/\))' _ { (2) ” 28 ’ 283 and Dy < 12— <2

The parameter interval U is an open interval centered at 0, and U is so small that

(10.22) NX) cint(X), and fH(X)NFNX) =0, i#j, i, j€Tp, k=-1,1, AeT.

The (first level) cylinder intervals are X := f}(X), i € A and A € U. Observe that

(10.23) Xij#0<=3IMeU, X}nX}#0.

Using this and we obtain

(10.24) Xij#0 = either 1€Z_1 &jeTy) or (jeI1&iel))= nj;=2.

Putting together this and the second part of we obtain that holds and consequently
the transversality condition holds on U. |
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Remark 10.11. The partition A = Z_1 UZ; satisfying ([10.18]) exists, for example, if every point in
X is covered by at most two level-1 cylinder intervals. That is

(10.25) D g <2
i=1

In fact, let [aj,b;] := X; := f;(X). Without loss of generality, we may assume that the cylinder
intervals X; are ordered in such a way that the left endpoints are in increasing order. If two level-1
cylinder intervals share the same left endpoint, that is, a; = a;41, then we set | X;| > | X;41]. Define
71 inductively, as follows: 1 € Z;. If the set Z; already contains 1 =n; < no < --- < ny, then we let
net1 :=min{j € A: by < a;}, if such a; exists; otherwise, we stop and set Z_; := A\ Z;. It is easy

to see that (|10.18]) holds.

Remark 10.12. If we consider an IFS like in Example but allow that every point is covered
by at most 2¢ + 1 cylinder intervals for £ > 1 and assume that v < ﬁ, then we get that the
transversality condition holds in the same way. Namely, we can partition A into 2¢ 4+ 1 families
Z_y,...Zp in such a way that there are no intersections between distinct cylinder intervals from the

same family. For all functions corresponding to the family Z; the translation is defined to be k- .

Then tile minimal value of 7;; is equal to 1 and Dpax < ﬁ. This implies that (10.13]) holds if
72 < 3757

Definition 1. We say that 2l is a transversality-typical property of sufficiently smooth IFSs if the
following holds: Whenever {\IIA} \ey 18 @ one-parameter family of sufficiently smooth IFSs for which
the transversality condition holds then for £1 almost all A € U the IFS ¥ has property 2.

We use the notation of Example In particular, we are given a compact interval X C R and
a C™ IFS {f;}I", on X such that

(10.26) X := fi(X) C int(X) for all i € A.
Below we consider a translation perturbation family of W. That is,
(10.27) U= {fH0 L fH@) = filx) + b, t € B(0,60),

where Jp > 0 is so small that (10.26]) holds if we replace f; with ff and X; with X} := f#(X) for all
ic A
Claim. Assume that

(a) all points of X are covered by at most two of the cylinder intervals Xj and

(b) T2 <1 / 2.

Let 2 be a transversality-typical property. Then there exists 0 < d, < g such that for L™-a.e.
t € B(0,0,), the translated IFS {\Ilt}:il (defined in (10.27))) has property 2.

Proof. Using Remark [10.11] we can find a partition A = Z_; UZ; such that f;(X) N f;(X) = 0 for
distinct 4,7 € Zy, k = —1,1. Let 61 > 0 be so small that 0 < 45; < dg and

(10.28) XinX;=0= X;NX;=0 forallteB(0,45)
Hence
(10.29) X;NXF=0, i#j, i,j€Dy, k=-1,1, t € B(0,46y).
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Let U := (_ﬁél’ ﬁ&) and for a A € U we define a(\) := (k(1)A,...,k(m)A), where we recall
that k(i) = k if i € Z,. Finally, for a t € B(0,07) let

ag(A) ==t +a(N).
Then |lat(M)|| < 2601, t € B(0,d1), A € U. Hence
(10.30) XV e x and XPVnxN =9 i ije, k=-11 1eU.
Example shows that
(10.31)  the transversality condition holds for the family {\Ilat()‘)})\eU for all t € B(0,d1).

Let

H := {'r €EB <0, 2\5/17”) : UT does not have property Ql} .

We need to prove that L™(H) = 0. To get a contradiction assume that £™(H) > 0. Then

H has a Lebesque density point 7 € B(0, 2%). Let V be the intersection of B (O, 2%)
with the (m — 1)-dimensional hyperplane which goes through the origin and is orthogonal to
the vector (k(1),...,x(m)). Then by the Fubini theorem there exists a point t € V such that
LY{NeU:ag(\) € H} > 0. But this contradicts and the fact that 2 is a transversality-

typical property. O

11. OPEN QUESTIONS AND FURTHER DIRECTIONS

As Theorem guarantees more refined properties of (II*),py than mere absolute continuity,
it is natural to ask whether a weaker condition than [(M)|is sufficient for an almost sure absolute

continuity in the supercritical region {)\ : ﬁ > 1. In particular, is |(MO)| sufficient? In our case,
condition is needed to guarantee regularity of the error term e;(wi,ws, A) from 7 allowing
us to follow the approach of Peres and Schlag [29].

Another natural direction of further research is to generalise the main result for multivariable

parameters. Peres and Schlag in [29, Section 7| were handling this case for fixed (parameter inde-
pendent) measures. In the case of parameter-dependent measures with one-dimensional family of
parameters, we were using in the proof of Proposition 7.2 the Property of the family of measures
to provide proper estimates of the energy. The main issue in the case of multiparameter-dependent
measures comes from the behaviour of the error term e;(wq, w2, A). Namely, is it possible to follow
[29] Lemma 7.10] and use the Property to deduce similar estimates for the energy or higher
regularity assumptions shall be made for the measures?

An application of the multiparameter case would be the natural equilibrium measure for self-
conformal systems with translation parameters. Furthermore, one could study the absolute continu-
ity of the Furstenberg measure induced by the Kédenméki measure (that is, the natural equilibrium
measure for self-affine IFS, see [21]). For self-affine systems whose linear parts are strictly positive
matrices the Kdenméki measure is a Gibbs measure which smoothly depends on the matrix elements,
see Barany and Rams [7] and Jurga and Morris [20]. The absolute continuity and the dimension of
the Furstenberg measure induced by the Kdenméki measure plays a central role in the calculation
of the dimension of the Kdenméki measure, see [7].

Another possible direction of further research is to study the absolute continuity of the SBR-
measures of parametrized dynamical systems. Persson [32] considered a class of piecewise affine
hyperbolic maps on a set K C R?, with one contracting and one expanding direction, which contains

the class of the Belykh maps, as well as the fat baker’s transformations. The Belykh map, first
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introduced by Belykh [4] and later considered by Schmeling and Troubetzkoy [38] for a wider range
of parameters, which contains the fat baker’s transformations as a special case.

For a parametrized family of Belykh maps, to prove the absolute continuity of an SBR-measure,
one needs to show that the family of conditional measures over the stable foliation are absolutely
continuous almost surely. Unlike the system defined in Subsection the SBR-measure does not
have a product structure, so the conditional measures of the stable directions depend not only on
the parameters but also on the foliation itself. Persson [32] studied such systems, however, according
to a personal communication [33], the proof contains a crucial error, similar to Barany [I].

Extending our main results to the case of parabolic (and possibly infinite) iterated functions
systems (as in [43], 44 25]) is yet another possible research direction. It seems well motivated in the
context of continued fractions expansion and would allow extending the results of Section [I0.5] to
their natural generality.

APPENDIX A. PROOF OF LEMMA (.1l

For u = (uy,...,uy) € Q* we have
d “d
(A1) R@ =T (50) o
k=1

hence

2 a n (G SD) (@) L (@)
A2 —fN=z) = ( e > .
( ) def ( ) dCCf ( ) ; (%fuk) (f?ku(x))
Applying and We obtain

qu( ) Ml = ‘ Ml M1
A. dx?Ju\"/ L A
(A.3) &) S%; A Zv S i

This proves (4.1)). For the proof of (4.2]), note first that differentiating (A.1)) with respect to A gives

by i)\w ni}\(( )f;\u )))
d)\da}f () <d$fU( )); (di )(f;\u( )) ’

& () wen)].
By [[AT] and [[A3]] we have

s ((En) )| = | g+ () Buo)|| () @

(A.5) M + Mi|hi (M),
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Applying [(A4)| as before we get

d)\d:ch( )
(@)

(A.4)

3

gt
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—

where hi(\) = %fi‘ku(:c) By [(A2)[ we have L = sup sup H%f;‘” < 00. Moreover, by |(A4), we
[ee)

JjEANEU

havefor 1 <k<n-1
O = |5 (R (7))

_ ‘( ) (o) + () (Reon@) - (500000

(A.6) < L+ylhei(V],
with |h,(A)] = | d)\ld ‘ = 0. Therefore, iterating (A.6) yields
(A7) (A Zo .
Combining (A.4), (A.5), (A.6) and gives
B fa(@)| _ M+ 120
&h@ |7

This concludes the proof of Lemma [£.1]

APPENDIX B. SOME MORE REGULARITY LEMMAS

Lemma B.1. There exists a constant C71 > 0 such that

d d
ﬁfﬁ“(:p) - ﬁf#(l‘) < Crih — Agf°

holds for all My, A2 € U, z € X, u € Q*.

Proof. We will prove the claim inductively with respect to n = |u|. More precisely, let us assume
that

n—1

< Cr2 Zk7§|)\l — A’
k=0

d d
(B.1) TN @) = )

holds for all u € A", A\, Ay € U and x € X with some large enough constant C7 (its value will be
specified later). We shall prove that (B.1]) holds also for n 4+ 1. Fix v = (ug,...,uns1) € A" and
let v = (uy,...,u,). We have

- o] < () () - () (o)
(o) () (G )
() (r2.00)) (o)

=: A;+ As.
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Let L = sup sup ||dAf lloo- Assumption |(A2)|implies that L is finite. By (B.1)), |(A2)} |(A3)} |[(A4)

ge
and we obtaln
d d
< e N 2.0
A< |() (@) = (G0 (@) |+
d ., d .,
() (@) - (50) (rn. @)
n—1
e e e M RN
k=0
n—1 d
S C72 kz_o k:’yé\)\l — /\2’(S + LC527”L %fé\Q . ’)\1 — )\2‘
n—1
(B.Q) S C7QZ/€’)/§‘/\1 — /\2’6+LC5QTL’}/§‘)\1 —>\2‘.
k=0
Therefore, application of |[(A2)[and |(A4)| gives
d .y, 7 d .,

A < ‘(;; 2) (£ @)t @) - e @)+
@] () (Raw) - () (R2.0))

d d
B CaA — Ao’ + L ‘ <d$f31) (£, (@) - <dxf$2> (12 >)\
(B3) =: ’}/303|)\1 — )\2|5 + LA;3

Furthermore, by Lemma and
an< |(G) (@) = () (R @)+
() (@) = (520 (£2.@)

d2
| @ - s | (o) (R2a@)| -l

o0

IN

IN

IN

|A1 — Ao

d A
’dva

d .,
%fv -

< (LCs1 + Cson) y3 | A1 — A2l

L|/\1 — )\2’ + Cson sup
reU

o0

Combining the above inequality with (B.2)) and (B.3]) yields

< Cr Zk7§|>\1 — o’
k=0

d A1 _i A1

provided Cro is large enough. As (B.1) holds for n = 1 by |(A2)| this concludes the inductive proof

o
of (B.1]) for n > 1. As Y kv5 < oo, the proof of the lemma is completed. O
k=0
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Lemma B.2. There exist constants C75 > 0, Cr¢ > 0 such that

d2
(B.4) f Hz) — <5 fa2 ()] < Crslul| M — Xo|®  sup fu
dl‘2 d$2 AEP\h/\ﬂ d$
and
(B.5) ‘ (@) - fAQ( < Crglul* M — Ao’ sup || f2
d\dz ( Cl)\dl' ) ’ ’ )\E[)\L)\Q] dx .

hold for all My, Ay € U, x € X, u € QF.

Proof. We shall prove (B.4)). The proof of (B.5) is similar and we omit it. Let n = |u|. By (A.2)) we
have

2, (e rar) (12, @) - 122, ()
G = gt s[pbw- Lo ‘kz (#52) (22,0

w | () (Dh@) - 0@ (F82) (B2, ££8,@
>\2
it ’Z (dx H) (A4, @) (e ri) (722,@)

k=1
)| - Z hi(x)
k=1

We will bound now the above terms. First, by (4.2]) and the mean value theorem, we have

+

_. d A2
(B.6) = A -As+ ’dx A2 (5

2

d\dz fi@)

— A2| < Csalu| |A1 — A2 sup f/\( )

AE[A1,A2]

A
1‘ dz

where £ € U is a point lying between \; and Ag. By (A.3)) (recall (A.2))

M,y
(1 —=72)

Reducing the expression defining hy(x) to a common denominator and applying [(A4)| gives

Ay <

1

S| () e () (20,00 20,0
() e (ERe) W) e
el o) eton - () ]| () ton - st
' (if@;)(fﬁéu(w))’ ](dﬂf )(f <>>.$f2;u<x>—(j;f3;) (2 gku(@')

1
=: ?(A3A4+A5A6)

IN
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By [(AT)] we have

d
ao< | (40) (szum)—(df3;)<f;su<x>>]+ (dfﬁ,i)(fj;?())—<d$f3;> (12, (a)
/\2 A1
< -l () ]+ ] - el
< Ma|Ap — Ao + Mi|A1 — Ag| sup d)\f?u( z)| < Mui[A — Aql,
AE[A1,A2]

for some constant Mp; > 0, as sup }%f;\ku(az)’ is bounded uniformly in v € Q*;1 < k < n and
AeU

€
x € X by Lemma Assumptions |(Al) and |(A4)| imply

Ay < Miyy™ and As < 7.
Applying [(A1)} [(A4), (4.2), Lemma gives

te < | (e ) )| [ 20— o) +

‘(da:?f >(f u(@) = (dxzf ><f L) jxfj,zu(x)‘
= M1|)\1—)\2|)\€S[)1\11p>\2] dacd)\f)\ ( )‘

n—=k
Y2

(szfsg)u;;u(m)) ( .o >(f @))'

< Miln— kS M = Aol + 957 A7

and again by [(Al)| and Lemma

te | () U0 - () (o] +

(o) o - (et ) (22,00)

Cilf (x) = 22 (2)|° + Ca| A1 — Xof
)
+ Cz|)\1 — )\2|5 < M12‘)\1 — )\2|6.

IN

< C1|)\1—)\2‘6 sup
)\G[)\l)\g}

d .\
ﬁfgku(x)

Combining the above with , bound on hj and estimates on Aj,..., Ay and recalling that

n oo
S n— k8% < 37 kyk < oo finishes the proof of (B.4)). O
k=1 k=0
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APPENDIX C. PROOF OF PROPOSITION [4.5]

We will write d(u,v) for dy,(u,v). Let n = |u A v|, so that u Av = wu;...uy,. Let us begin by
proving (4.8). We have

A (w) —IMv) = 4

Fiinw) (I
%fﬁ‘/\v (HA o"u)) [% (HA(U”U) H’\(U”v))] +
(£ ) (0™ 0)) — (2 £20) (P(0"0)] - 1 (o)
(C.1) = A;+ Ay + As.
Application of | ., Lemma, and yields
a5 [ ] im0 o) < G | ]| Doy
< CC(iQn'ygnﬁ/zld(u,v)lB < Cg’ld(u,v)lﬁ,

provided Cjg 1 is chosen large enough. Usmg Lemma 4together with the fact that d HA is bounded
on U x Q (following from Proposition , one obtains

C C
[Ag] < = d(u,0)' " < Rt (u,0)' 7,

if Cg1 is large enough. Boundedness of %H/\, (4.1) and Lemma imply

d? .
|A3] < H T o™u) — I o™0)| | L1 (0™0)| < Csy - 2 ‘d/\H)‘(a v)|

dl‘2 uAv

o0

C
< ()

once again for Cj ;1 large enough. This finishes the proof of (4.8)). For the proof of (4.9), let us write
a decomposition analogous to (C.1)):

ddA (11 () - 11 () - d‘; (2 () = 2 (0)) = (A = A7) + (4] - 437) + (4} - 4)?).

We have
M (o™ u) ) 1?2 (o™ u) )

ar-ad = | [ e [ Ry

! ! dzd\’""" dzd\’"""

A1(0"’7'1)) HA2(UW"U)
d? A d? A d? A d? N
9 1 _ 2 d 1 d 2 d
S S1 Sa
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where

S = [[MM(o™u), TN (c™)] N[22 (0™u), 12 (6™v)],
S = [ (0™w), T (0"0)] \ [P (o), TP (o),
Sy = [I2(c™u), 112 (c™)] \ [ (0™u), 112 (6™0)).

Set L = sup sup ‘d/\HA )’ We have then [T (0"u) — 1?2 (0™u)| < LI\ — Ao| and [T (0™v) —
AeU ue
I1*2(0™v)| < L|A1 — A2, hence

(C.3) 154, 12| < 2LIA1 — Aal.

Applying this together with (B.5)) and (4.2]) to (C.2)), followed by Lemma and |(A4)| as before,
yields

IN

A A
AT — AP

d
(076712\)\1 — Xa|° + 4LCsm| Ay — >\2!> sup = — fone
Ae

[A,A2]

o

IN

C
@;Léyx — Aof%d(u, v) P

if Cg 1, is large enough. Furthermore, applying Proposition (4.1), (4.2), Lemma and

we obtain
Ay =y < () (M emw) = (££22,) P w)]| - [ ([ (") — T (070)) | +
[(dp220) (2(0™w)| - [ (I (07u) = TP (070)) = ok (TP (0") — TP2(0™0)) |
< 2L |(E k) M ") = (far) (T (") +
2L}< u/\v) (HAl (O’ U)) ( u/\v) H>\2 G ’LL ’+
sup d—fi‘/\v (|% (H’\l(anu) — H)‘Q(U”u))‘ + ‘% (H)‘l (c™v) — HAQ(a”v)) D
AE[ALA2] | QT o0
d2
S ( P Wfﬁm A1 — A2l +  sup fu/\v ’HAI(UHU) - H/\Q(Unu)\) +
A€ 1,A2] € 00 PYSPY LY
d
2 sup chsM Cs|h — Xof°
A€ | T 0o
d
< 2L sup dif’li\/\v (05271‘)\1 — )\2| + C51L|)\1 - )\2|) +
AEN ] (| AT oo
d C _
2 sup chQM Cslh — Aof? < BT’MW — No|Pd(u,v) P
AE[A1,A2] & 0o
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for Cg 1 s large enough. By (4.2) and Proposition we have

1M (o™ u) 172 (o™ u)
A Ao . 5, A
Ap-apl < | [ e [ RG] [T ) +
A1 (o) 1?2 (omw)
H)‘2(0'”u)
[ [ rnm)a | [ e - o)
22 (0mv)
™M (o™u) 122 (6" u)
d? N d? Ay
A (o) 1?2 (onv)
Cs2Csn|A — Xo|® sup  ||——fne
AE[A1,A2] dux 0o
Let intervals S, S1, So be defined as before. Then by (B.4]), (4.1) and (C.3])
A A n
II*M (o™ u) P I1*2 (o™ u) P
/ fu/\v( ) / fu/\v( )
’\I(U”v) HAQ(O""’U)
d? d?
S / ﬁ 1?/1\1)(?/) d u/\v dy—"/‘ u/\v ’d +/‘ u/\v ‘
S
< 07577,‘)\1 —/\2’(S sup — 1?/\11 +4LC51’/\1 —)\2’ sup — 2/\”
AE[A1,)2] dx 00 AE[A1,A2] dx 0o
< Csenlh — Xo® sup || fine
| | AE[A1,A2] da " 00

for some constant Cgg > 0. Combining this with (C.4) and applying Lemma and |(A4)| gives

C
|43 — A?| < (C52C5 4 Cg)nAs — Ag|®  sup < %
AE[A1,A2] 0o

AL — Ao|d(u, v) P

d A
%fu/\v

if Cg,1,5 is large enough. Finally, putting together bounds on ]A;‘l — A;‘2| finishes the proof of (4.9).

APPENDIX D. DROP OF THE PRESSURE

Let A = {1,...,m} and suppose we have an IFS ¥ = {f;};c4 of the class C'*9 on a compact
interval X C R. We assume that that the system {f;};c4 is uniformly hyperbolic and contractive:

(D.1) 0<m <|fi(x)| <y <1 forallje A zeX.
Let © = AY and let o denote the left shift on Q. Let A* = |J A" and let |u| = n for u € A",

n>0
For v = (uy,...u,) € A* denote

fu = fulun = fu1 0...0 fun

(with f, = id if w is an empty word).
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Consider the pressure function, defined by
— — 1 -1 1t
(D:2) Palt) = Polt) = Jim n~"log 3 A1

It is well-known that this limit exists, ¢ — P4(t) is continuous and strictly decreasing (it is also
convex, but we will not need this).

Lemma D.1. Suppose that B = A\ {m}. Then Pp(t) < P4(t) for allt > 0. (The functions of the
IFS are assumed to be the same. The claim can be expressed in words by saying that if we drop one
of the functions of the IFS, then the pressure drops strictly.)

Proof. For t = 0 the claim is trivial, so let us fix t > 0. Observe that the pressure can be expressed
in the following alternative way:

T —1 . / t
(D.3) Pa(t) = lim n loggn;gyfu(xw

Indeed, by the Bounded Distortion Property, there exists K > 1 such that |f] (z)| < K|f] (y)| for
all u € A* and x,y € X, and (D.3)) follows. Denote

Zn(At) =) inf|fi(@)]"

ueA™

We claim that

n 71
‘ > . = —F .
(D.4) Zu( A1) 2 Zu(B, ) - (14 0)", where & = o5y

This will immediately imply that Pg(t) < Pa(t), as desired. We have

Zl(Aat) = Z1(87t) +xlg§( ‘fh(‘r)’t > Zl(B7t) ’ (1 + 6t)a

by [(A4)l Since inf,ex ]f;u(x)]t > infyex ]fj’(x)|t infeex | f1 ()|, we have
ZTH—l(A:t) > Zl('A7 t) ’ Zn(Av t)a
and (D.4]) follows by induction. O

Consequences. Under the assumptions and notation of Section let s(¥) be the unique zero
of the pressure function Py(t):

Py (s(¥)) =0.
Corollary D.2. Suppose that ® is a proper subset of . Then s(¥) > s(P).

This is immediate from Lemma [D.11

Corollary D.3. Suppose that the attractor of U is the entire interval X and the IFS is overlapping
i the sense that

(D.5) D IX5] > X, where Xj = f;(X).
jeEA

Then s(¥) > 1.



Proof. We have X = iea X by assumption. Then implies that there exist ¢ # j in X such
that X; N X, is a non-empty interval. We can find £ € N and w € A¥ such that X, ¢ X; N X;. It
follows easily that

U x.=x

ue AR\ {w}
Denote U* = {f, : u € A*}, the IFS of k-th iterates. It follows from the existence of the limit in

(D-2) that Py« (t) = kPy(t), hence s(¥*) = s(¥). By Corollary we have s(U*\ {f,}) < s(TF).
It suffices to show that for an IF'S ® whose attractor is an interval X we have s(®) > 1. But this
follows from the inequality 1 = dimpgy(Ag) < s(®), where Ag is the attractor of ®. O
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