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Abstract

Within the context of social balance theory, much attention has been paid to the attainment

and stability of unipolar or bipolar societies. However, multipolar societies are commonplace in

the real world, despite the fact that the mechanism of their emergence is much less explored. Here,

we investigate the evolution of a society of interacting agents with friendly (positive) and enmity

(negative) relations into a final stable multipolar state. Triads are assigned energy according to the

degree of tension they impose on the network. Agents update their connections in order to decrease

the total energy (tension) of the system, on average. Our approach is to consider a variable energy

ǫ ∈ [0, 1] for triads which are entirely made of negative relations. We show that the final state of the

system depends on the initial density of the friendly links ρ0. For initial densities greater than an ǫ

dependent threshold ρc0(ǫ) unipolar (paradise) state is reached. However, for ρ0 ≤ ρc0(ǫ) multi-polar

and bipolar states can emerge. We observe that the number of stable final poles increases with

decreasing ǫ where the first transition from bipolar to multipolar society occurs at ǫ∗ ≈ 0.67. We

end the paper by providing a mean-field calculation that provides an estimate for the critical (ǫ

dependent) initial positive link density, which is consistent with our simulations.

I. INTRODUCTION

Societies experience unipolar, bipolar and multipolar phases over time [1, 2]. A pole can

be considered as a sub-community of friendly individuals that cooperate with each other or

are in the same opinion on some issue. The social polarization is a key concept in sociology,

and as a collective phenomenon, it emerges from complex interactions among individuals

due to income inequality, economical or political thoughts, globalization, migration, ethno-

cultural diversity, modern communication technologies, and the integration of states into

trans-national entities, such as the European Union [3, 4]. But, how do such stable polarized

phases arises from rearrangement of local social interactions? In a series of seminal works, it

was assumed that avoiding distress and conflict is the natural mechanism of creating such a

stability [5–7]. Although polarization is a common phenomenon in socio-politico-economic

settings, the number of competing poles is also an important relevant issue, For example,

in the realm of politics, United States is dominated by two major political parties while
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Italy, on the other hand, has many equally strong political parties. Building consensus and

coalitions is crucial in multi-polar society, while unilateral action is a possiblity in a bipolar

society.

One of the basic concepts in sociology is the structural balance which is based on the

observational intuition that in society dynamics, triadic interactions are more fundamental

than the pairwise ones. In this respect, Heider’s theory, known as the balance theory consid-

ers the relationship between three elements includes Person (P), and Other person (O) with

an object (X), known as the POX pattern [5]. Heider postulated that the POX is “balance”

if P and O are friends, and they agree in their opinion of X. In an unbalanced triad, to

reduce the stress and reach some sort of stability, the individuals alter their opinions so that

the triad becomes balanced. Empirical examples of Heider’s balance theory have been found

in human and other animal societies [8–13]. Cartwright and Harary demonstrated that a

society with two possible interactions between their individuals can be viewed as a signed

graph with positive (agree) and negative (disagree) links [6, 7]. They found that the society

is balanced, if and only if it can be decomposed into two fully positive-link poles that are

joined by negative links, i.e., a bipolar state. Dynamical evolution of how such stable states

can reach from an initially unbalanced ones is another important aspects of research studies

[14–23]. In such dynamical models, the individuals rearrange their connections in order to

reduce the local or global stress in the society, for example, continuous-valued links models

[16, 18], balance theory in asymmetric networks [19], disease spreading on sign networks

[24], memory effects on the evolution of the links [25], and phase transition in societies with

stochastic individual behaviors [23, 26], to name a few.

Antal et. al. proposed a dynamical model, called Constrained Triad Dynamics (CTD)

[14, 15]. In CTD, a triad with odd number of positive links is balanced. If ∆k represents a

triad of type k which consists of k negative links; then triads of ∆0 and ∆2 are balanced, while

triads of ∆1 and ∆3 are unbalanced. They assumed that the total number of unbalanced

triads Nunb cannot increase in an update event. In each update step, a randomly chosen link

changes its sign, if Nunb decreases. If Nunb remains constant, then the chosen link changes

its sign with probability 1/2, and otherwise, sign of the chosen link does not change. Thus,

in each time step, the system goes into a state that is more balanced than the previous

state, and the system eventually approaches into a final bipolar state. Indeed, for ρ0 < 0.65,

where ρ0 is the initial density of the positive links the society divides into two equal-size poles
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and for ρ0 ≥ 0.65, one pole becomes dominant and we have a unipolar society (paradise).

However, a possible outcome of CTD dynamics is a jammed state, where the system is

trapped into an unbalanced state, forever. They showed that in spite of the higher number

of such states in comparison with the balanced ones, the probability of reaching a jammed

state vanishes for large systems. By introducing an energy landscape, the properties of such

jammed states have been studied, extensively [27, 28]. Shojaei et. al. proposed in [23]

a natural mechanism to escape from such states by introducing a dynamical model with

an intrinsic randomness, similar to Glauber dynamics in statistical mechanics [29]. They

also showed that in finite networks, the system approaches into a balanced state, if the

randomness is lower than a critical value.

The structural balance theory, applied in all above mentioned models, implies that indi-

viduals always tend to polarize into at most two communities. This is due to the way that

unbalanced triads are defined, i.e., all triadic relationships with odd number of negative links

(∆1 and ∆3) are considered to be unbalanced. Such conditions for balanced/unbalanced tri-

ads assert that a friend of my friend or an enemy of my enemy is my friend, and vice versa.

However, it has been observed in social and political societies that the two types of unbal-

anced triads of ∆1 and ∆3 are not equally unbalanced and have also a different incidence

rate, i.e., ∆3 triads are more frequent than ∆1 [30, 31]. On the other hand, in order to

reach multipolar states, we need to have triads of type ∆3 survived in the final state of

the dynamics. In 1967, Davis introduced the clustering theory [32] which generalizes social

balance theory by stating that in many situations an enemy of one’s enemy can indeed act

as an enemy. This means that only triads with two positive links (∆1) are unlikely in real

stable networks and all other types of triads (∆0, ∆2 and ∆3) can be present. This is indeed

in agreement with empirical studies in human social networks [33, 34]. This form of struc-

tural stability is called weak structural balance, in comparison with the (strong) structural

balance theory defined by Heider [5].

The dynamical models result in the unipolarity or bipolarity have been studied exten-

sively, however, the notion of multipolarity are greatly unexplored in the literature. In this

article, by including the stochasticity of individual’s behavior similar to our previous work

[23], we study the evolution of a society with interacting individuals, seeking to reduce the

tension in the system, based on an energy minimization formalism. Accordingly, we include

the role of triads of type ∆3 in the system dynamics by assigning different energy ǫ ∈ [0, 1]
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to them. We observe that the system quickly approaches into a final stable balanced state.

The final fate of the system can be either a unipolar, a bipolar or a multipolar state based

on different values of energy ǫ and initial link density ρ0. We find that the system transi-

tions from a unipolar state into a multi-bipolar one when the initial positive link density ρ0

crosses a critical value ρc0 from above. Indeed, the system approaches a unipolar state for

any arbitrary values of ǫ when ρ0 > ρc0. On the other hand, when ρ0 ≤ ρc0 the system reaches

a multi-bipolar state, in which the number of poles increases as ǫ decreases from the value

of ǫ∗ ≈ 0.67. We end the paper by providing a mean-field calculation for our model which

provides a bifurcation diagram and is in line with our numerical simulations.

II. MODEL DEFINITION

We consider a network of sizeN , and use a symmetric adjacency matrix A, such that Aij =

±1. The positive sign represents friendship, and the negative one represents enmity between

two arbitrary nodes i and j. For simplicity, we assume that everyone knows everyone else,

i.e., the dynamics occurs on a fully connected graph, which is appropriate for small real-world

networks. For simplicity and without loss of generality, we assign energies {u0, u1, u2, u3} =

{0, 1, 0, ǫ} to triads of type {∆0,∆1,∆2,∆3}, respectively, where ǫ ∈ [0, 1]. This means

that triads ∆0 and ∆2 have the minimum possible energy corresponding to their minimum

tension they impose on the system and triad ∆1 has the maximum possible energy which

indicates its maximum tension. Triads of type ∆3 can have any energies in the range of 0

to 1, which implies that they can have different degrees of tension based on different values

of ǫ. By this definition, we take into account the role of triads of type ∆3 in the system

dynamics, which is in line with empirical observations [30, 31]. We note here that this model

is indeed a generalization of the special case of ǫ = 1 that has been studied extensively in

our previous work [23]. The total energy of the system is defined as:

U =
∑

i

ui
∆/Ntri (1)

where the sum is over all triads and u∆ ∈ {u0, u1, u2, u3} and the normalization factor of

Ntri = N(N −1)(N −2)/6 is the total number of triads in the system. It is also appropriate

to work with quantity ni which is the density of triads of type ∆i, i.e., ni = Ni/Ntri, where

Ni is the number of such triads. With this definition, the number of positive links and the
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density of such links become L+ = (3N0 + 2N1 +N2)/(N − 2), and ρ = L+/L, respectively,

where L =
(

N

2

)

is the total number of links and L+ is the number of positive links in the

system. In this respect, the positive link density and the system energy can be written as

ρ = n0+2n1/3+n2/3 and U = n1+ǫn3, respectively. At every time step, we flip a randomly

chosen link with probability [23]

p =
1

1 + eβ∆U(t)
(2)

where β can be considered as the inverse of the stochasticity in the individual behavior.

Also, ∆U(t) represents the total energy change due to the link flipping in every time step

t. This model resembles the Glauber dynamics used in simulations of kinetic Ising models

at a given temperature T = 1/kβ [29]. In fact, this provides a more pragmatic situation in

which the tension in the system can either decrease or increase at any given time step, while

for finite β the tension decreases on average [23]. Thus, the system can escape from jammed

states, which are local minima in the energy landscape of the system [27]. We investigate

the dynamics of the above model for various initial configurations ρ0 and energies ǫ.

III. NUMERICAL RESULTS

Initially, we randomly distribute positive and negative links among all nodes so that the

initial positive link density ρ0 is obtained. Then, we start the dynamics by choosing an

arbitrary link, randomly. To check the dependency of the final state of the system on the

stochasticity in the individual’s behavior, β, in Fig. 1(a), we plotted the final values of triads

of n1 versus different β and for different ǫ. By taking into account the density n1 as the

inverse of order parameter (ordered state = a state without any unfavorable triadic relations,

i.e., n1 = 0), we find that for a given ǫ, the system undergoes a phase transition from an

unbalanced phase of n1 6= 0 into a stable weak balanced state with n1 = 0 as β crosses a

critical value βc from bellow. As can be seen in Fig. 1(b), this critical value βc is dependent

on the value of the energy ǫ. In fact, as ǫ decreases, βc increases. We note here that the

value of βc is also dependent on the system size, and diverges for N → ∞. This behavior

is consistent with our previous work [23, 26], which can be considered as the special case of

ǫ = 1 in the present work. This indicates that balanced states (weak or strong) are hardly

reached in large systems as well as systems with ǫ → 0.

To show how the system evolves into a stationary (and stable) state, in Fig. 2, we plot the
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FIG. 1. (a) The β dependency of large time behavior of final densities n1, as the inverse of order

parameter in the system, for ρ0 = 0.4. Different energies of ǫ are shown with different symbols.

The system transitions to an ordered state, at some values of β = βc. The system size in all plots

is N = 256. (b) The critical values of βc versus ǫ and for different system sizes N . As can be seen,

βc goes to infinity for large networks or small ǫ.

dynamics of triad densities n0, n1, n2, n3 and positive link density ρ for ǫ = 0.2 with initial

conditions of ρ0 = 0.4 and 0.8 at β > βc (here β = 1.2βc). The system size here is N = 256.

As can be seen, triads of type ∆1 disappear in all plots, i.e., n1(∞) = 0. Thus, the final fate

of the system can be three possible states due to the final values of other triad densities:

unipolar (n2, n3 = 0), bipolar (n2 6= 0, n3 = 0) and mulipolar (n3 6= 0). For example,

the system approaches into a multipolar state in Fig. 2(a) and a unipolar state emerges in

Fig. 2(b). Also, the dot-dashed lines in both plots represent the corresponding final positive

link density ρ for both initial densities of ρ0 = 0.4 and 0.8. To better understand the final

states in the system, we present in Fig. 3(a) the final positive link density ρ∞ versus ρ0 for

different values of ǫ. As can be seen, if ρ0 is greater than a critical value of ρc0, the final phase
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FIG. 2. The time evolution of triad densities, ni, with ǫ = 0.2 and for initial positive link densities

of (a) ρ0 = 0.4 and (b) ρ0 = 0.8. The triad density n1 vanishes and thus the system approaches into

a stable (weak) balanced state. The dot-dashed lines in both figures indicate the corresponding

time evolution of positive link density ρ. For all plots, β > βc (see Fig. 1) and the system size is

N = 256.

is a unipolar state for all values of ǫ. On the other hand, for ρ0 ≤ ρc0, multipolar (n3 6= 0)

and bipolar (n3 = 0) states can emerge for small and large ǫ, respectively as observed in

Fig. 3(b) which represents the final densities of n3. We note here that this critical value of

ρc0 is dependent on ǫ and we will show later that it is indeed an unstable branch in the phase

space of the system.

To better check ǫ dependency of the final state of the system, we also plot in Fig. 4(a),

the final density ρ∞ versus ǫ for different initial densities ρ0. We find again that for ρ0 above

or bellow the critical value ρc0, the system can reach a unipolar or a multi-bipolar state,

respectively. For the case of ρ0 ≤ ρc0, the fate of the system can be either a bipolar or a

multipolar state if the energy ǫ is larger or smaller than a critical value of ǫ∗ ≈ 0.67, as
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FIG. 3. (a) The final positive link density ρ and (b) the final triad density n3 versus ρ0 for different

ǫ. As can be seen, the final fate of the system is a unipolar phase for any arbitrary ǫ when ρ0 > ρc0.

For ρ0 ≤ ρc0, n-polar states with n ≥ 2 emerge. Other parameters are the same as in Fig. 2.

observed in Fig. 4(b). In fact, for ǫ ≥ ǫ∗ the degree of tension associated to triads of type ∆3

is high enough that they cannot survive in the final state of the network. On the other hand,

for ǫ < ǫ∗ we find that multipolar states with different sizes emerge. We are also interested

in the properties of these emerging multipolar states. For example, Fig. 4(c) demonstrates

the mean number of poles 〈Npole〉 for different values of initial densities ρ0 and energies ǫ,

where 〈...〉 represents an average over 500 different realizations of the system. We see that

when ρ0 ≤ ρc0, the mean number of poles decreases as a power law form 〈Npole〉 ∼ ǫ−0.8 when

ǫ < ǫ∗ and remains constant (〈Npole〉 = 2) if ǫ ≥ ǫ∗. Also, for ρ0 > ρc0, we have 〈Npole〉 → 1

which indicates the unipolarity independent of ǫ. It is noteworthy to mention here that the

observed number of poles in real-world systems usually is not large and our results show

that this can occur for a reasonable values of energies ǫ around 0.5. Finally, in Fig. 5 we

present six examples of possible network configurations corresponding to final states of the
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system for different values of ǫ and ρ0. Indeed, Figs. 5(a) to (d) represent four examples

of multipolar states with different pole sizes and Fig. 5(e) indicates a bipolar state. As we

mentioned above, a unipolar state emerges for any values of ǫ when ρ0 > ρc0 as indicated in

Fig. 5(f). Note that for all Fig. 5(a) to (e), ρ0 ≤ ρc0 and for Fig. 5(f) ρ0 > ρc0.

IV. MEAN-FIELD APPROACH

Since the system possesses large number of degrees of freedom, its exact time dependent

dynamical equations are hard to obtain. In this respect, we search for a mean-field approx-

imation for the rate equations, using the notations used in [15, 23]. As we discussed before,

it is appropriate to work with quantity ni which is the density of triads of type ∆i. Another

useful quantity is the triad density n+
i (n−

i ) of type ∆i that are connected to a positive

(negative) link. (3 − i)Ni is the total number of positive links connected to triads of type

∆i, and thus the average number of such triads can be obtained as N+
i = (3 − i)Ni/L+.

Since, each link is connected to N − 2 triads of any types, thus one can simply find that

n+
i = N+

i /(N − 2). Similarly, we can write n−

i = N−

i /(N − 2) for a negative link. Conse-

quently, we have

n+
i = (3− i)ni/(3n0 + 2n1 + n2)

n−

i = ini/(n1 + 2n2 + 3n3)
(3)

By considering that ρ is the probability of finding a positive link, the probability of

flipping a positive link is π+ = p+ρ, with

p+ =
1

1 + eβ∆U+−

(4)

and of flipping a negative link is π− = p−(1− ρ), with

p− =
1

1 + eβ∆U
−+

(5)

where ∆U+− and ∆U−+ are the energy difference due to the flipping a positive and a

negative link, respectively. In fact, the transition probabilities p+ and p− are the two pivotal

parameters that drive the system dynamics.

For an each update at step j, we have

L+(j + 1)− L+(j) = −π+ + π− (6)
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Since each time step equals L updates, the rate equation for (average) ρ can be written as

dρ

dt
= −π+ + π− (7)

The energy difference due to the flipping of a positive and negative link in each update

step equals to (N+
0 −N+

1 + ǫN+
2 )/Ntri and −(N−

1 −N−

2 + ǫN−

3 )/Ntri, respectively. Thus we

obtain

U(j + 1)− U(j) =π+(N+
0 −N+

1

+ ǫN+
2 )/Ntri

− π−(N−

1 −N−

2

+ ǫN−

3 )/Ntri

(8)

Therefore, we find the rate equation of the total energy as

dU

dt
= π+∆U+− + π−∆U−+ (9)

where

∆U+− = +3(n+
0 − n+

1 + ǫn+
2 )

∆U−+ = −3(n−

1 − n−

2 + ǫn−

3 )
(10)

Also, the rate equations for all triad densities, ni, can be obtained in a similar way which

are as follows:

dn0

dt
= −3π+n+

0 + 3π−n−

1

dn1

dt
= −3π+n+

1 − 3π−n−

1 + 3π+n+
0 + 3π−n−

2

dn2

dt
= −3π+n+

2 − 3π−n−

2 + 3π+n+
1 + 3π−n−

3

dn3

dt
= −3π−n−

3 + 3π+n+
2

(11)

As we mentioned before, the system dynamics are governed by the two transition prob-

abilities of p+ and p−. In this respect, p+ = p− means that the probability of transition

of a positive link into a negative one is equal to the transition probability in the reverse

direction. For example, if β → 0, we have p+ = p− = 1/2, and one can simply find from

Eq. 7 that dρ/dt = 1/2− ρ which yields

ρ(t) = 1/2 + (ρ0 − 1/2)e−t (12)
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This demonstrates that for large t, ρ tends to 1/2 as expected in such a fully random

situation. However, to find an exact solution for finite β is not straightforward, and we will

present a qualitative explanation. At first, note that for a finite β, the relation ∆U+− =

∆U−+ satisfies the condition p+ = p−. On the other hand, by assuming that the system

remains uncorrelated during its early stages of the evolution, the triad densities become

n0 = ρ3, n1 = 3ρ2(1 − ρ), n2 = 3ρ(1 − ρ)2, and n3 = (1 − ρ)3. By substituting these values

into Eqs. 3 and 10, we find

∆U+− = −∆U−+ = +3{(3 + ǫ)ρ2 − (2 + 2ǫ)ρ+ ǫ} (13)

This relation along with the previous relation of ∆U+− = ∆U−+, indicates that whenever

the positive link density ρ satisfies ∆U+− = 0 (or ∆U−+ = 0), the condition p+ = p− is

reached. Based on Eq.13, the two solutions of ∆U+− = 0 can be obtained as

ρ′ = ((1 + ǫ)−
√
1− ǫ)/(3 + ǫ)

ρ′′ = ((1 + ǫ) +
√
1− ǫ)/(3 + ǫ)

(14)

We plotted in Fig. 6, these two solutions for different values of ǫ. Indeed, for ρ < ρ′′, we

have ∆U+− > 0 (or ∆U−+ < 0) which means that p+ < p−. This indicates that negative

links will be flipped into positive ones with higher probability, which on average increases

ρ until it reaches to ρ′′ where p+ = p−. By similar mechanism, if ρ > ρ′′ then p+ > p−,

i.e., positive links will change to negative ones with higher probability, and this decreases

ρ until it again reaches ρ′′. However, ρ = ρ′ is an unstable solution, since for ρ > ρ′, we

have p+ < p− which increases the number of positive links until ρ reaches its maximum

value ρ = ρ′′′ = 1, where ρ′′′ is the stable unipolar state. For ρ < ρ′, we have p+ > p−

which decreases the number of positive links until ρ = ρ′′. Briefly, our mean-field analysis

shows that a bifurcation occurs for ǫ < 1, with a stable branch, ρ′′, for ρ ≤ 1/2 and an

unstable branch, ρ′, for ρ > 1/2. Filled symbols in Fig. 6 represent our simulation results.

In fact, filled diamonds represent values of transition points ρc0 as observed in Fig. 3(a).

Filled squares and filled circles also show respectively two final possible states of unipolar

and n-polar phases with n ≥ 2 represented in Fig. 3(a) and Fig. 4(a). This demonstrates

that our mean-field approximation is mostly in agreement with our numerical simulations,

and can well explain the phase space behavior of the system.
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V. CONCLUSION

In social balance theory, triads with various interactions are typically grouped into bal-

anced and unbalanced states. Such binary identification may lead to a globally balanced

situation which are either uniform or bipolar. On the other hand, many real world situations

exhibit multipolarity which have gained much less attention in the literature. In this work,

we showed how considering a triad which contains all negative links as less unbalanced than

a triad with only one negative link, can lead to an eventual state which contain multipolar

communities. Our stochastic dynamics was chosen in accordance with Glauber dynamics

in the presence of randomness β. We described the transition to the multipolar state as a

function of ǫ and ρ0 and showed various phase diagrams. The number of final poles crucially

depends on the value of ǫ and can grow very large as ǫ is reduced considerably. We also

provided a mean field calculation which showed how decreasing ǫ from its standard value

leads to a bifurcation with a stable and an unstable branch which was mostly consistent with

our numerical simulations. We observed that our model typically leads to multipolar states

with roughly homogenous pole size distribution. An interesting question to investigate is

the conditions under which a heterogenous size distribution may emerge in a multi-polar

society.
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FIG. 4. (a) The final positive link density ρ and (b) the final triad density n3 versus ǫ for different

ρ0. A phase transition from bipolar states into multipolar ones occurs at ǫc ≈ 0.67 when ρ0 ≤ ρc0.

(c) The log-log plot of the mean number of poles versus ǫ for different values of ρ0. For ρ0 ≤ ρc0,

the number of poles decreases as a power law form of ∼ ǫ−0.8. Other parameters are the same as

in Fig. 2.
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FIG. 5. Examples of six final states of the system: (a) to (d) represent multipolarity with different

size of the poles. A bipolar and unipolar state are indicated in (e) and (f), respectively. Note that

in (a) to (e) ρ0 ≤ ρc0 and in (f) ρ0 > ρc0. The system size is N = 64 for all graphs. Note that only

friendly links are displayed.
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FIG. 6. Our analytical solutions obtained by using mean-field approximation. Blue unfilled dia-

monds, ρ′, indicates the unstable solution, above and bellow which the system tends to another

stable solutions of a unipolar (ρ′′′) and a multi-bipolar (ρ′′) state, respectively. The filled symbols

represent our simulation results: Diamonds denote the values of phase transition points (ρc0) ob-

tained from Fig. 3(a). Squares and Circles also represent final values of ρ as indicated in Fig. 4(a).
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