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Abstract 

We study the ion acoustic solitary waves in the four-component complex plasma consisting of 
cold inertial ions, positrons, cold and hot (two-temperature) electrons, where the electrons and 
positrons are the Cairns-Tsallis distribution and have different nonthermal and nonextensive 
parameters. Base on the plasma hydrodynamic equations and Sagdeev pseudo-potential theory, we 
derive the conditions of the solitary waves to exist in the plasma, such as the Sagdeev pseudo- 
potential, the normalized electrostatic potential, the lower and upper limits of Mach number, and 
the compressive/rarefactive solitary wave. We show that, according to the present study, the 
solitary wave solutions exist only if the positrons are a Maxwellian distribution and the 
two-temperature electrons have the same nonextensive and nonthermal parameters. Numerical 
analyses are made for the conditions of solitary waves depending on the nonextensive and 
nonthermal parameters in the Cairns-Tsallis distribution.  
 

1. Introduction 

Ion acoustic wave is a low-frequency longitudinal plasma density oscillation in which 
electrons and ions propagate in phase space [1,2]. Theoretical and experimental investigations for 
the dynamic process of ion acoustic waves have been conducted for several decades [3-6]. A large 
number of studies have revealed that ion acoustic solitary waves and double layers are ubiquitous 
in various of plasmas, no matter in laboratory plasmas, Earth’s magnetosphere, dusty plasmas or 
in quantum plasmas, where the double layers can accelerate, decelerate or reflect plasma particles 
[7]. In 2012, Dubinov et al. found a super-soliton wave in very special plasma consisting of five 
components, and they declared that the wave might also exist in four-component plasmas [8]. 

The solitary wave theory was developed between the 1960s and 1970s. Theoretical 
calculations and experimental observations for shallow water waves show that after collisions, the 
solitary waves retain their original shapes and speeds and the conservation of momentum and 
energy, which just like the elastic collisions of matter particles. This kind of solitary wave with 
particle characteristics is called as soliton [1-3]. By a combination of experiments and analytical 
methods, it has been found that many nonlinear differential equations have the soliton solutions. 
These results are quickly verified from the fields such as fluid physics, solid-state physics, plasma 
physics and optical experiments, and they found many practical applications. For example, the 
low-intensity light pulses used in optical fiber communication are deformed due to dispersion [6], 
which has low information transmission volume and poor quality, but also adds waveform 
repeaters at regular intervals on the line. After the "optical soliton" was discovered, these 
difficulties have been resolved, and the efficiency of information transmission has been improved 
greatly. 

Research on large-scale solitary waves usually employs the Sagdeev pseudo-potential model, 
which has been widely concerned in the plasma with two-temperature electrons in the early years 
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[9-13]. Two-temperature electron distributions are very common both in the laboratory [11] and in 
space plasmas [14]. Bharuthram and Shukla inspected the large-amplitude ion acoustic double 
layers in the unmagnetized three-component plasma with cold ions and two-temperature electrons 
[12]. Berthomier et al. evaluated the ion acoustic solitary waves and double layers in the 
unmagnetized three-component plasma with the two-temperature electrons following a 
Maxwellian distribution [13], and the results were verified by the Viking satellite observation. 
Baboolal et al. investigated influence of various parameters on the double-layer structure in the 
plasma with two-temperature electrons and multi-ions [15]. Kaurakis and Shukla studied the 
enveloping solitary wave in the plasma with two-temperature electrons and cold inertial ions in the 
magnetosphere [16]. In the study of the ion acoustic double layer with small amplitude, Mishra et 
al. found that there are two critical concentrations of positrons in the electron-positron-ion plasma 
with a two-temperature electron distribution [17], which determines the ion acoustic double layer. 
Verheest and Pillay discussed effects of negatively charged cold dusts and nonthermally 
distributed ions/electrons on the large-amplitude dust acoustic solitary waves [18], and then they 
used the hydrodynamic equations to analyze the ion acoustic solitary waves and double layers in 
the plasma with nonthermal electrons [19]. 

In recent decades, it has been observed that the velocity distributions of high-energy particles 
often deviate from the Maxwellian distribution in astrophysical and space plasma environments 
[20-23]. Spacecraft missions confirmed that existence of excessive high-energy particles can cause 
enhancement of the high-energy tail [24,25]. Subsequently, different models were developed to 
describe the non-equilibrium effects in the plasmas. Early in 1968, Vasyliunas introduced the 
kappa-distribution to simulate the velocity distributions in the space plasmas [26]. In 1995, Cairns 
et al. introduced a modified velocity distribution function to study the solitary wave structure of 
nonthermal plasma, [27], where a parameter α (0 < α < 1) described the number of super-thermal 
particles, and the Maxwellian distribution function is recovered only when one takes α=0. This 
model has been applied to study many properties of nonthermal and non-equilibrium space 
plasmas [4,18,19,28-30].  

In recent years, nonextensive statistical theory has been applied to study the nonequilibrium 
complex plasmas with the power-law velocity distributions [31-42]. And we found that the 
kappa-distribution observed in space plasmas is actually equivalent to the q-distribution in 
nonextensive statistics as long as we make the parameter translations [41]. A hybrid Cairns-Tsallis 
distribution was also used to investigate the ion acoustic solitary structures in the complex plasmas 
[43-45]. Amour et al. studied the electron acoustic soliton structure in the plasma with the 
nonthermal nonextensive distribution [46]. Williams et al. [47] discussed properties of the plasma 
media containing excess super-thermal particles. Although multi-component complex plasmas 
may have power-law velocity distributions, however different component does not have the same 
nonextensive parameter and the same nonthermal parameter. In this work, based on the Sagdeev 
pseudo-potential theory, we study the ion acoustic solitary waves in the four-component plasma 
with ions, positrons and two-temperature electrons which follow the Cairns-Tsallis distributions 
but have different nonextensive and nonthermal parameters.  

In Sec. 2, we give the basic theoretical model and hydrodynamic equations of the plasma and 
then derive the related physical quantities of the ion acoustic solitary waves. In Sec. 3, we 
numerically analyze the effects of the nonthermal parameter α and the nonextensive parameter q 
on the ion acoustic solitary waves. In Sec. 4, we study the small amplitude theory. And in Sec. 5, 
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we give the conclusions. In addition, some complicated mathematical calculations in this paper are 
given in the Appendix. 

2. Theoretical Model and Basic Equations  

We consider the unmagnetized and nonthermal complex plasma consisting the four 
components, fluid ions, positrons, cold electrons and hot electrons (i.e. the two-temperature 
electrons), where the two-temperature electrons and positrons may follow the Cairns-Tsallis 
distributions in general. We now denote the number densities nc and nh, the temperatures Tc and Th 
of the cold and hot electrons, respectively. The inertia of electrons and positrons in the ion 
acoustic waves can be ignored. Therefore, the hydrodynamic equations of one-dimensional ion 
acoustic oscillations can be governed by the normalized dimensionless equations [7,17,48,49],

                     ( ) 0i
i i

n
n u

t x
∂ ∂

+ =
∂ ∂

,                            (1) 

                      i i
i

u u
u

t x
∂ ∂

x
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+ = −
∂ ∂ ∂

,                            (2) 

                         ( )
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2 1h c pn n n n
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η η∂ Ψ
= + − − −

∂ i ,                       (3) 

where, Eq. (1) is the continuity equation, Eq. (2) is the equation of fluid motion, and Eq. (3) is the 

Poisson equation of the plasma; u  is the velocity of ions, n  and n  are the number density of ions 

and positrons, respectively; 

i i p

Ψ = -eφ /kTeff is the normalized electrostatic potential, where T is the 

effective temperature of 

eff 

two-electron components in the plasma, k is Boltzmann constant. If ne0，

nc0，nh0，n and n  are the equilibrium density of total electrons, cold electrons, hot electrons, 

positrons and ions, respectively, and η = n  / n  is the equilibrium density ratio of positrons to 

electrons, then

p0 i0

p0 e0

 in Eqs. (1)-(3) the densities n , n  and n  can be normalized by n , the ion fluid 

velocity u  can be normalized by the effective ion acoustic speed 

c h p e0

i ( )1/ 2
/s eff ic kT m= , and x and t can 

be normalized by the Debye length ( )1/ 22
0/ 4De eff ekT n eλ π= and the ion plasma period 

( 1/ 21 2
04 /i e in e mϖ π

−− = ) , where mi is mass of the ion and e is charge of electron. 

In the four-component complex plasma, positrons and two-temperature electrons are assumed 
to follow the Cairns-Tsallis distributions but they may have different nonextensive and nonthermal 
parameters, so they can play different roles in the ion acoustic solitary waves. In the framework of 
nonextensive statistics based on the probabilistically independent postulate, the entropy and 
energy are both nonextensive [31]. Therefore when we introduce a potential energy φ(r) to the 
velocity q-distribution function, the Tsallis distribution is written [50,51] by 

,
2

)1(1)()1(1~),(
)1/(12)1/(1 −−
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kT
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rqvrf ϕ

              (4) 

Combined with the way introducing a potential to the velocity α-distribution in the non-thermal 
plasma by Cairns et al [27], for the present four-component plasma, the one-dimensional 
Cairns-Tasllis (C-T) distribution of the jth component can be written as 
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with a normalization coefficient,     
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where the subscript j represents the plasma component, i.e., j = c, h and p are respectively cold 
electrons, hot electrons and positrons; mj, vj and Tj are the mass, velocity and temperature, Qj is the 
charge, e.g., Qp = e, Qc = Qh = -e .  

The nonthermal parameter αj > 0 is the nonthermal properties of electrons, e.g., the number 
of nonthermal electrons in the plasma [27]. The nonextensive parameter qj > 0 can be determined 
in the nonequilibrium complex plasma by the equation [32],  

     .0)1( =−+
dx
dQq

dx
dT

k jj
j φ                                  (6) 

Obviously, in the limit of q → 1, the C-T distribution (5) becomes the non-thermal α-distribution 
by Cairns et al. [27], and if α = 0, it becomes the Tsallis q-distribution in nonextensive statistics 
[50,51].

j 

j 

 If we take q → 1 and α = 0, (5) becomes a Maxwellian-Boltzmann distribution. Also for j j 

qj > 1, there is a thermal cutoff allowed for the maximum velocity of particles in the function (5), 
namely, 
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But for 3/5 < qj < 1, there is no velocity limit.  
The number density of the j-th component can be obtained by integrating the distribution 

function (5) over velocity space [45-47],
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where coefficients Aj and BBj are 
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When we take αj = 0, (8) becomes the number density in the q-distributed plasma [50], 
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When we take qj → 1, (8) becomes the number density in the nonthermal distributed plasma [27],  
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For the nonthermal complex plasma with the two-temperature electrons, if nc , nh and Tc , Th 
are the number density and the temperature of the cold electrons and the hot electrons, respectively, 
μc = nc0 / ne0 and μh = nh0 / ne0 are the density ratios of the cold and hot electrons respectively to the 
total electrons at φ = 0 (so we have μc + μh = 1), β = Tc / Th is the temperature ratio of the cold 
electrons to the hot electrons, and Teff = Tc /(μc + μhβ) is the effective temperature of cold and hot 
electrons in the plasma, then using the normalized electrostatic potential Ψ = -eφ /kTeff, we can 
write the number densities of cold electrons and hot electrons as 
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Let γ = Teff / Tp be the ratio of the effective temperature to the positron temperature, we write the 
number density of positrons as 
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In order to study the nonlinear properties of the ion acoustic solitary waves, we consider that 
all variables ni, ui and Ψ depend only on a simple variable ξ = x − Mt, where ξ is normalized by 
λDe and M is the Mach number (M = the solitary wave speed / cs) [15,29,45,49], and then, Eqs. 
(1)-(3) can be transformed into the following forms, 
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We assume that the perturbation only exists in a finite range. At ξ → ±∞ , the appropriate 

boundary conditions are given [46] by 

                   , 0Ψ → 0d
dξ
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Using these boundary conditions to integrate Eq. (15) and Eq.(16), we obtain the number density 
of ions as 
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where Ψ < M2 / 2. Substituting Eq. (19) and Eqs. (12)-(14) into Eq. (17), we get that 
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Multiplying both sides of Eq. (20) by dΨ/dξ, and then integrating it for ξ, we can derive the 

differential equation of Ψ (see Appendix), 
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where V (Ψ, M) is the Sagdeev pseudo-potential [9-13], expressed by 
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(22)                 
where the abbreviations are 

( ) 22 2 3 2 7 6j j j j jD B A q q= + − − − + jq ,                     (23) 

( )2 32 2 9 13 6 3 2j j j j j j jE B q q q A q= − − + − + + − ,                 (24) 

( )22 5 3j j j j jF B A q q= + − + .                         (25) 

Eq. (20) can be treated as an “energy integral” of the oscillating particle with an unit mass 
and the velocity dΨ/dξ at the position Ψ and in the potential V(Ψ, M). According to the Sagdeev 
pseudo-potential theory, the solitary wave solutions of Eq. (21) exist if the following four 
conditions [7] are satisfied,  

(i)  At Ψ = 0, V (Ψ = 0, M) = 0 and ( ) 0, /dV M d Ψ= 0Ψ Ψ = . 

(ii) ( )( )2 2

0
, /d V M d

Ψ=
Ψ Ψ 0< , so that the fixed point at the origin is unstable. 

(iii) There is a nonzero Ψm at which V(Ψm) = 0. 

(iv) V(Ψ) < 0 when Ψ is between 0 and Ψm.  
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And further, if ( )( ) ( )3 3

0
, /d V M d

Ψ=
0Ψ Ψ > < , the solitary wave is compressive (rarefactive) [28]. 

The condition (iii) implies that quasiparticles with zero total energy will be reflected at the 
position Ψ = Ψm. The condition (iv) indicates that V must be a potential trough which the 
quasi-particles can be trapped and experience oscillations. 

From the above condition (i) and Eq. (22), we find that only when qp →1 and αp = 0 (i.e., the 
positrons are the Maxwellian distribution), qc = qh and αc = αh (i.e., the nonextensive parameter 
and the nonthermal parameter of the cold and hot electrons are the same), the equation has the 
solitary wave solutions. In this case, we no longer distinguish the subscripts of the nonextensive 
parameter q and the nonthermal parameter α for the cold and hot electrons, and then the Sagdeev 
pseudo-potential (22) can be reduced to that, 
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It is obvious that when we take limit of qj → 1 and αj = 0, (26) becomes the Sagdeev 
pseudo-potential for the plasma with a Maxwellian distribution [7], namely, 

( ) ( ) ( )

( ) ( )

1
2

2
1, 0 2

2, 1 exp 1 1 1

1 exp 1 exp .

q

h
c c h c h

c h c h

V M M
Mα

η γ η
γ

μ βμ μ μ β μ μ β
μ μ β β μ μ β

→ =

⎡ ⎤Ψ⎛ ⎞Ψ = − − Ψ + − − −⎡ ⎤ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞Ψ Ψ

+ + − + + −⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟+ +⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

⎤
⎥
⎥⎦

        (27) 

When the condition (ii) is applied to Eq. (26), it is easy to find the existence condition for the 
solitary wave local structure, which requires the Mach number to satisfy 

( )( )( )
( ) ( )( )

2 2 1 3 2 1
2 2 2 2 1 3 2

q q q
M

D q E qF q q q
η

ηγ
− − −

>
− − − − − −

.                (28) 

So we have that 

( )( )( )
( ) ( )( )min

2 1 3 2 1
2 2 2 2 1 3 2

q q q
M M

D q E qF q q q
η

ηγ
− − −

> =
− − − − − −

,               (29) 

where Mmin is the minimum limit of M , below which there is no the solitary wave. Amplitude of 
the solitary waves tends to zero as the Mach number M tends to Mmin. In the case of α = 0 and q → 
1, the Mmin becomes that in the plasma with a Maxwellian distribution [52,53], 

                               min
1

1
M η

ηγ
−

=
+

.                            (30) 

The maxmum limit Mmax of Mach number M can be found by imposing the condition 

[7,46,47], where Ψ( )max,mV MΨ 0≥ m =  is the maximum value that makes the cold ion 

density real. Therefore, from Eq. (26) we get that 

2/2
maxM

( ) ( ) ( )
( )( )

2
2max

max max, 1 exp 1
2 2 1 3 2

c h h
m c

DMV M M
q q q

μ μ βγ μη η μ
γ β

⎡ ⎤ +⎛ ⎞ ⎛ ⎞
Ψ = − − + − + +⎢ ⎥⎜ ⎟ ⎜ ⎟− − ⎝ ⎠⎝ ⎠⎣ ⎦
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( )
( )

( ) ( ) ( ) ( )
( )

1/( 1)2
max

2 4 2 6
1 max max max

2

1
1

2 ( ) ( )1 0
3 2 2 1 2 4(2 1) 8

q

c h h c h c
c h

c h

q M
M FM MD E B q

q q q q

β
μ μ β μ μ μ β μμ β μ

μ μ β

−

−

⎡ ⎤−
+⎢ ⎥ ⎧+ ⎡ ⎤+ +⎢ ⎥ ⎪⎣ ⎦− + + + + −⎨ ⎢ ⎥− − − +⎣ ⎦⎪⎩

.
⎫⎪ ≥⎬
⎪⎭

  (31) 

The allowable range of the Mach number for the solitary waves is determined by Eq. (28) and Eq. 
(31). From Eq. (26), we can further find the condition for the compressive or rarefactive solitary 
waves, namely, 

( ) ( )
( )( )

( ) ( )
( )

( )
( )( )

( )
( )

23

03 2

2
4

, 366 1
2 1 2 1 2 13 2

3 1 0,  for compressive waves.
                           

0,  for rarefactive waves.  

c h

c h

d V M E q D q qFB q
q q q q qd q

M

μ μ β

μ μ β

η
ηγ

Ψ =

+ 2 2 3 2⎡ ⎤Ψ −
= − − + + +

− −
⎢ ⎥

− − −Ψ − + ⎢ ⎥⎣ ⎦
− >⎧

+ + ⎨<⎩

 (32) 

3. Numerical Analyses and Discussions  

From the hydrodynamic equations (1)-(3), we have derived the differential equation (21) for 
the normalized electrostatic potential Ψ and its Sagdeev pseudo-potential (26) with solitary waves 
in the four-component plasma with the two-temperature electrons which follow the CT 
distribution. And based on the Sagdeev pseudo-potential theory, we have derived the existence 
condition for the solitary wave solutions in Eq. (21). The condition equals to that the Mach 
number satisfy the inequality, Mmin < M < Mmax, where Mmin and Mmax can be determined by Eq. 
(29) and Eq. (31) respectively. Further we have found the conditions (32) for the solitary waves to 
be compressive or rarefactive ones. 

In order to see more clearly the properties of the Sagdeev pseudo-potential, the solitary wave 
solutions, the existence condition for the solitary waves and the condition for the solitary waves to 
be compressive or rarefactive, now we make the numerical analyses. For this purpose, we first 
choose some appropriate physical parameters in the plasma, such as η = 0.34, μc = 0.1, μh = 0.9, γ 
= 0.04, β = 0.05 and M = 0.82. 

In Fig.1, (a)-(c), we show the Sagdeev pseudo-potential V(Ψ, M) in Eq. (26) as a function of 
the normalized electrostatic potential Ψ for different nonextensive parameter q and the nonthermal 
parameter α. Fig.1(a) is V(Ψ, M = 0.82) as a function of Ψ for a fixed α = 0.25 and four different q, 
which show that with the increase of negative Ψ (the absolute value of Ψ decreases), V(Ψ) will 
decrease monotonously. As the positive Ψ increases, V(Ψ) shows its maximum value and then 
gradually decreases. When q < 1, increasing q will cause the more obvious change of V(Ψ) with Ψ. 
But when q > 1, increasing q will make the change of V(Ψ) with Ψ less obvious. 

Fig.1(b) and (c) are V(Ψ, M = 0.82) as a function of Ψ for a fixed q and three different α, 
where (b) is for the case of 3/5 < q < 1 and (c) is for the case of q > 1, showing the significant 
differences between the cases of q > 1 and 3/5 < q < 1. It is shown that with the increase of α, V(Ψ) 
increases basically for 3/5 < q < 1, but it firstly increases and then decreases for q > 1. And V(Ψ) 
as a function of Ψ is significantly different from the case in the plasma with a Maxwellian 
distribution. 

If we give the initial condition as Ψ(ξ = 0) = 0, the stationary normalized electrostatic 
potential Ψ(ξ) can be calculated by making numerical integration for Eq. (21). The numerical 
results are shown in Figs. 2(a)-(b). It is clear that the potential Ψ(ξ) depends significantly on the 
parameters q and α, and so it is different from that in the plasma with a Maxwellian distribution. 

Fig. 2(a) is Ψ(ξ) as a function of ξ for a fixed α = 0.06 and four different q in the plasma, 
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where two values of q are taken less than 1 and the other two values of q are taken greater than 1. 
It reveals that the present plasma supports both compressive (Ψ > 0) and rarefactive (Ψ < 0) 
solitary waves. For the case of 3/5 < q < 1, the amplitude of the solitary waves increases with the 
increase of q. But for the case of q > 1, the amplitude of the solitary waves decreases with the 
increase of q. 

for Maxwellian distribution

0.25,q 0.62

0.25,q 0.90

0.25,q 1.32

0.25,q 1.52

0.2 0.1 0.0 0.1 0.2
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V  

(a) 
 

for Maxwellian distribution
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q 0.80, 0.24
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0.000
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V

(b)  
 

for Maxwellian distribution

q 1.2, 0.06

q 1.2, 0.15

q 1.2, 0.25

0.3 0.2 0.1 0.0 0.1 0.2 0.3

0.04
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0.06

0.08

V  

(c) 
Fig. 1. Dependence of Sagdeev pseudo-potential V(Ψ) on the parameters q and α.  

 

Fig. 2(b) is Ψ(ξ) as a function of ξ for a fixed q  and two different values of α in the plasma, 
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where the fixed q = 0.81 is taken for the case of 3/5 < q < 1 and the fixed q = 1.205 is taken for the 
case of q > 1. It is shown that for the case of q = 0.81, both the compressive (Ψ > 0) and 
rarefactive (Ψ < 0) solitary wave coexist in the present plasma, and  the amplitude of the waves 
decreases with the increase of α, but for the case of q = 1.205, only the rarefactive solitary wave 
(Ψ < 0) exists in the plasma and the amplitude of the waves also decreases with the increase of α. 

 

 

 

Fig. 2(a). Dependence of Ψ(ξ) as a function of ξ on parameters q for a fixed α. 

 

 

Fig. 2(b). Dependence of Ψ(ξ) as a function of ξ on the parameter α for a fixed q. 

 

The existence condition for the solitary wave solutions in Eq. (21) equals to that the Mach 
number satisfy Mmin < M < Mmax, where the minimum Mach number Mmin and the maximum Mach 
number Mmax is determined by Eq. (29) and Eq. (31) respectively. Based on Eq. (29), we can 
analyze numerically the dependence of the minimum Mach number Mmin on the nonextensive 
parameter q and the nonthermal parameter α in the plasma. In Fig. 3, we give Mmin as a function of 
q for three different α. It is shown that when q is small, Mmin increases rapidly to reach a peak with 
the increase of q, and then with the increase of q, Mmin decreases gradually. It is also shown that 
when q is small (viz, q < 0.81), Mmin hardly varies with the increase of α, but when q is large (viz, 
q > 0.81), Mmin increases rapidly with the increase of α.  

Based on Eq. (31), we can analyze numerically the dependence of the Sagdeev pseudo- 
potential V(Ψm, Mmax) on the maximum Mach number Mmax for certain nonextensive parameter q 
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> 3/5 and certain nonthermal parameter α > 0 in the plasma.  
Fig.4 is V(Ψm, Mmax) as a function of  for α = 0.35, q = 0.8 and q = 1.2 respectively. 

It is shown that V(Ψ
2/2

maxM
m, Mmax) is always negative for any Mmax = 0 ~ ∞, so there is no any restriction 

on Mmax for the existence of the solitary waves in the present plasma.  
 

0.3

0.4

0.5

0 1 2 3 4 5 6

0.5

1.0
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2.0

q

M
m
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Fig. 3. Mmin as a function of q for three different α. 

 

for Maxwellian distribution

0.35,q 0.8

0.35,q 1.2
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5
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3
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1

0

Mmax
2 2

V
m

,M
m
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Fig. 4. V(Ψm, Mmax) as a function of  for certain α and q. 2/2
maxM

 

We have numerically analyzed (d3V/∂Ψ3)Ψ=0 in Eq. (32) so as to show whether the solitary 
waves are compressive or rarefactive for different nonextensive parameter q and nonthermal 
parameter α. Fig. 5 is (d3V/∂Ψ3)Ψ=0 based on Eq. (32) as a function of q four three different values 
of α. It is shown that for 3/5 < q < 1, (d3V/∂Ψ3)Ψ=0 < 0, so there are only rarefactive solitary waves 
in the present plasma, and it is basically independent of α, but for q > 1, (d3V/∂Ψ3)Ψ=0 can be either 
greater than zero or less than zero, so there can be both compressive and rarefactive solitary 
waves.  

Furthermore, we observe that the critical value of the transition from rarefactive to 
compressive solitary waves significantly depends on q and α. As q and α increase, the critical 
value gradually increases. This indicates that when the values of q and α are less than the critical 
value, there are only rarefactive solitary waves in the system, and when the value is greater than 
the critical value, there are only compressive solitary waves. 

The black dotted line in Fig. 5 represents the case when the nonthermal property of the 
electrons vanishes (i.e., α = 0). It shows that the present system supports the existence of 
rarefactive solitary waves for 3/5 < q < 1, and for q > 1, it almost only supports the existence of 
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compressive solitary waves. If we take the limits q → 1 and α = 0, it will return to Maxwellian 
olitary wave. As shown in Fig. 5, it is a rarefactive wave. s
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d
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0

Fig.5 The condition for compressive or rarefactive solitary waves  

as a function of q for three different α.  

4.  Small amplitude analysis  

The properties of large amplitude solitons have been presented above. In this section, we discuss 
more characteristics of solitons with the small amplitude limit Ψ << 1. It is useful to expand the 
Sagdeev potential represented by Eq. (26). Retaining only to the third order in Ψ, we get 

( ) ( )2 3
1 2 3+ + +V P P P οΨ Ψ Ψ Ψ Ψ 4 ,                      (33) 

where 

1 0P = ,  
( )

( )
2

2 22

3 36 14 15 40 1
22 3 14 15 12

q q MP
Mq q

α α η ηγ
α

− − + − + − +
= −

− + +
,                (34) 

( ) ( )( ) ( ) ( )
( )( )

2 2

2
3 2 42

3 2 2 2 3 6 3 2 1 1
626 2 7 6

c h

c h

E q D q q q B F Bq Bq
P

Mq q q

μ μ β η ηγ
μ μ β

⎡ ⎤− − + − − + + − + + −⎣ ⎦= − + +
− + +

. (35) 

Applying the soliton solution in Eq. (33), Eq. (21) is evolved into:  

( 2

2
2

3
1
2

d P
d

P
ξ

⎛ ⎞Ψ )= −Ψ + Ψ⎜ ⎟
⎝ ⎠

.                        (36) 

It can be seen that Ψ has real function requiring 2 3 0P P+ Ψ < . Assuming P2 is positive, Eq. (36) is 
integrated and a solitary wave solution is obtained: 

( ) 22

3 2

Sech
2 /

P
P P

ξξ
⎛ ⎞

Ψ = − ⎜⎜
⎝ ⎠

⎟⎟ .                        (37) 

From the solitary solution (37), we find that the amplitude and width of the solitary waves are  
Ψm = –P2 / P3 and , respectively. Therefore, the solitary wave is compressive or 
rarefactive depends on the signs of P

( )1/ 2
22 / PΔ =

2 and P3. On the one hand, if P2 > 0, the type of solitary 
waves depends only on P3. When P3 > 0, it is a rarefactive solitary wave, otherwise it is a 
compressive wave, and the width of the solitary waves is . On the other hand, if 

P

( )1/ 2
22 / PΔ =

2 < 0, the width  is valid. At this time, if P( )1/ 2
22 / PΔ = − 3 > 0, it is a compressive solitary 

wave, otherwise it is a rarefactive solitary wave [7]. 
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5.  Summary and Conclusions 

In summary, we have studied the ion acoustic solitary waves in a general four-component plasma 
consisting of the cold fluid ions, positrons, cold electrons and hot electrons (the two -temperature 
electrons), where the two-temperature electrons and positrons both follow the Cairns-Tsallis 
distribution and have different nonextensive and nonthermal parameters. 

Based on the continuity equation (1), the equation (2) of fluid motion and the Poisson 
equation (3) in the plasma, we have derived differential equation (21) for the normalized 
electrostatic potential Ψ and its related Sagdeev pseudo-potential (22). According to the existence 
conditions of solitary waves, we have found that solitary waves exist only when the positrons 
reduce to the Maxwellian distribution, i.e. qp →1, αp = 0, and the nonextensive parameter q and 
the nonthermal parameter α of cold electrons and hot electrons are the same, i.e. qc = qh, αc = αh.  

And based on the Sagdeev pseudo-potential (26) with solitary waves, we have further derived 
the condition for the solitary wave solutions to exist in Eq. (21). The condition is equivalent to a 
restriction on the Mach number M, i.e. the inequality, Mmin < M < Mmax, where the maximum 
Mach number Mmin and the minimum Mach number Mmax depend strongly on the nonextensive 
parameter q and nonthermal parameter α, and they can be determined by Eq. (29) and Eq. (31) 
respectively. Further we have found the condition (32) for the solitary waves to be compressive or 
rarefactive ones. 

In order to study the ion acoustic solitary waves in the plasma more clearly, the numerical 
analyses of the above quantities have been made. The numerical results are given by Figs.1(a)-(c), 
Figs.2(a)-(b), Fig.3, Fig.4 and Fig.5, respectively. From these figures we have shown that all the 
properties of ion acoustic solitary waves are significantly dependent on the nonextensive 
parameter q and nonthermal parameter α of the Cairns-Tsallis distribution in the plasma, and 
therefore they are generally different from those in the same plasma following a Maxwellian 
distribution. In addition, we find that there is no any restriction on Mmax for the existence of the 
solitary waves in the present plasma. 

Finally, we discussed a small amplitude ion acoustic wave through the Sagdeev 
pseudopotential analysis. With the small amplitude limit Ψ << 1, the normalized electrostatic 
potential of ion acoustic waves is theoretically solved and given in Eq. (39). It further clears that 
our plasma model can admit compressive as well as rarefactive ion acoustic solitons. 

This research has great scientific research and application value in revealing the law of wave 
propagation, accurately revealing natural phenomena and determining the properties of physical 
materials. 
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Appendix 

The derivation of Sagdeev pseudo-potential (22): 
Multiplying both sides of Eq. (20) by dΨ/dξ and integrating it, we have that the left side of 

(22) is  

         
22

2

1
2

d d dd
d dd

ξ
ξ ξξ

⎛ ⎞Ψ Ψ
= ⎜ ⎟

⎝ ⎠
∫

Ψ ,                       (A.1) 
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and the right side of (22) is   

( )

( ) ( ) ( )

( )

( )

1
21

2

1
2

1

1
1

1

1 1 1 1
1 2 /

1
1 1

1
1 1

p

h

c

h c p i

q
p p p

q
h h

h h
c h c h c h

q
c c

c c
c h c h c h

dn n n n d
d

dq A B d
M

q A
B d

q A
B

η η ξ
ξ

η γ γ γ η

β β βμ
μ μ β μ μ β μ μ β

μ
μ μ β μ μ β μ μ β

−

−

−

Ψ⎡ ⎤+ − − −⎣ ⎦

Ψ⎡ ⎤⎡ ⎤= − − − Ψ − Ψ + Ψ Ψ − −⎣ ⎦ ⎣ ⎦ − Ψ

⎡ ⎤− Ψ⎡ ⎤ ⎛ ⎞Ψ Ψ⎢ ⎥+ + + + Ψ⎜ ⎟⎢ ⎥+ + +⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦

− Ψ⎡ ⎤ ⎛ ⎞Ψ Ψ
+ + + + ⎜⎢ ⎥+ + +⎝⎣ ⎦

∫

∫ ∫

∫

2

.d
⎡ ⎤
⎢ ⎥ Ψ⎟
⎢ ⎥⎠⎣ ⎦

∫

        (A.2) 

On the right side of Eq. (A.2), the four integrals are calculated, respectively, as 

( ) ( ) ( )( )

( )
( )( ) ( ){ }

1
21

1
2 2

1 1 1
2 1 3 2

1 1
2 3 2 2 1

2 1 3 2

p

p

p

pq
p p p

p p p

q
q

p
p p p p p p p p

p p p

D
q A B d

q q q

q
D B A q q B q q

q q q

η
η γ γ γ

γ

η γ
γ γ

γ

−

−

⎡ ⎤⎡ ⎤− − − Ψ − Ψ + Ψ Ψ = −⎣ ⎦ ⎣ ⎦ − −

⎡ ⎤− − Ψ⎣ ⎦ ⎡ ⎤ ⎡ ⎤+ + − − Ψ + ⎣ ⎦⎣ ⎦− −

∫

,− Ψ

           (A.3)  
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2 21 1 1 1d M
M

η η
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2 1
M
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⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∫ ;                       (A.4) 
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⎦

 

                                                                   (A.5) 
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q⎤ − Ψ
⎥
⎥⎦

 

 (A.6) 

where ( ) 22 2 3 2 7 6j j j j j jqD B A q q= + − − − + ( )2 32 2 9 13 6 3 2j j j j j j jE B q q q A q, − − + − + + − , =

and ( )22 5 3j j j j jF B A q q= + − + . 

Substituting Eqs. (A.3)-(A.6) into Eq. (A.2), we obtain Eq. (21). 
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