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Abstract

In this thesis I present most of the results obtained during my PhD, where I
worked on different subjects regarding jamming in systems of frictionless spheres.
In particular, I focused on microscopic properties of jammed packings, such as the
distribution of contact forces and interparticle gaps, as well as the single particle
dynamics that occur near the jamming point. Several of these results have already
been presented in Refs. [1, 2], but here I include a more detailed analysis of some
of them. Besides, all the results of the second chapter are new, even if related to
such works.

The thesis is structured as follows. Chapter 1 provides a quick introduction
to the phenomenology of glassy systems, with an entire section dedicated to hard
spheres (HS) as a minimalistic model of a glass former. I also include a brief survey
of a recently developed mean-field theory, capable of providing an exact description
of liquids, glasses and jammed systems in infinite dimensions. This theory serves
as a framework for explaining many of the features of real glasses as “blurred” or
imperfect analogies of the sharp transitions predicted in d = ∞. Moreover, its
predictions about the distributions of contact forces and gaps seem to remain valid
in low dimensions, i.e. d = 2, 3. Given that here I only consider tridimensional
system, its relevance is obvious. But not only, the physical picture based on the
meta-basin structure of the free energy landscape will be a guiding principle for
many of the topics in later chapters. The final section of this first chapter is devoted
to a general discussion about the jamming transition. Naturally, special attention
is given to the microscopic features of jammed packings. Thus, I explain in detail
some of the most important results derived in previous works. In particular, I give
a careful description of the network of contact forces, showing that it is entirely
determined by the particles’ position, and that it contains important information
about the packings stability. Similarly, I reproduce the proof that the exponents
of the distribution of forces and gaps are connected through stability inequalities.
Because such bounds are saturated, critical jammed packings are only marginally
stable. This last feature is rationalized in terms of the constant density of states
for vanishingly small frequencies. I hope readers will benefit from having all this
material gathered in a single source.

Chapter 2 contains a detailed description of the iterative Linear Programming
(iLP) algorithm we developed to generate jammed packings. This method has been
previously introduced in Refs. [1, 3], but here I present a complete explanation and
proofs of several of its features. Moreover, I carry out a detailed characterization
of it, although restricted to 3d systems. Additionally, in this chapter I review
the Lubachevsky–Stillinger compression protocol, based on event-driven molecular
dynamics simulations. This method is able to efficiently compress configurations of
HS up to very high pressures, and at the same time allows to probe their glassy
phase. Complementing our iLP crunching algorithm with this procedure results in a
reliable and reasonably fast method to generate jammed packings of HS. Even more,
I show that we can apply the same technique to produce jammed configurations of
the Mari–Kurchan (MK) model.

The dynamics of particles near the jamming point is explored in Chapter 3.
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Given that few works have addressed this issue before us, the first step was to
characterise the statistical properties of the trajectories of individual particles in
this dynamical regime. Then, the idea was to investigate if the information of
the network of contacts can be used to make statistical inferences of the particles’
motion close to their jamming point. We found that by considering only the contact
vectors (i.e. ignoring the magnitude of the forces) we were able to construct a
couple of structural variables that correlate well with the dynamical features of the
particles. More precisely, the vectorial sum of contact vectors is a good descriptor
of the preferential directions in single-particle trajectories; while the sum of dot
products between such vectors can be used as a predictor of a particle’s mobility.
The correlations thus obtained are significantly high, although rather short-lived.
Importantly, our method proved to be superior than a normal modes approach,
which fails to capture these dynamical features at the level of individual particles. I
should also mention that most of the results discussed in this chapter have appeared
in Ref. [1].

Finally, Chapter 4 deals with a thorough analysis of the critical distributions of
contact forces and interparticle gaps in configurations of HS, soft spheres, as well
as in the MK model in d = 3. The main results can also be found in Ref. [2],
where polydisperse disks and near crystals with an FCC structure were also con-
sidered. The purpose is to verify the expected power-laws using an analysis based
on the finite size effects of such critical distributions. As mentioned above, current
numerical estimations of the power-law exponents suggest that jammed packings
saturate the stability criteria, so carefully validating their value is clearly impor-
tant. Moreover, theoretical predictions of these exponents imply that jamming
defines an universality class, to which a broad range of constraint-satisfaction prob-
lems belong. However, the calculations involved, being based on mean-field theory,
are only exact in the d → ∞ limit. And yet, available numerical results indicate
that such universal criticality holds in low dimensions as well. Proving that the
same scalings occur in finite dimensions is thus of major theoretical interest, as it
would represent the most precise prediction of the so called replica method in real-
istic materials models. Our approach uses the scaling collapse of the distributions
obtained from systems of different sizes and it amply confirms the predicted values
in both models. However, it also reveals a striking difference in the size effects on
the distribution of forces and gaps, namely, that such effects are negligible in the
former but very pronounced in the latter. We rationalize this feature in terms of
two correlation lengths that determine how fast the thermodynamic limit behaviour
is reached.

I would be very glad if new graduate students entering the intriguing (and
complex) world of jamming should find this thesis useful. With this in mind, I took
advantage of the fact that after Chap. 1 all chapters are independent from each
other, and thus I tried to make them as self-contained as possible. (Or, in any case,
I refer to the relevant sections that provide the necessary context for the topics
discussed.) For the same reasons, I decided to give independent conclusions in each
chapter, rather than providing general ones at the end. However, I hope that it is
sufficiently clear that the unifying thread of all the results presented here are the
peculiar properties in the microscopic structure of jammed systems.
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Chapter 1

Introduction: Why do we care
about jammed systems?

Broadly speaking, a system is said to be jammed when all its degrees of freedom are
blocked (see Fig. 1.1 and Figs. 2.3, 3.1 below). In particular, in disordered systems
such as glasses and amorphous solids, this is usually caused by geometric frustration.
But in contrast to their lack of dynamics, research on jammed systems has been
far from still. In this introductory chapter, I will give a general, and definitely
non-exhaustive, overview of the myriad of fascinating phenomena that occur when
a system approaches and reaches its jamming point. Yet, an early warning is in
place: the results presented in this thesis were obtained by working on configurations
of frictionless spherical particles and, therefore, most of what will be discussed is
restricted to this kind of systems. Despite such simplification, I will argue that
these packings present features that are far from trivial. I will be mainly concerned
with the microscopic structural properties of jammed configurations, specifically (i)
the small gaps formed between particles in near contact, and (ii) the network of
contact forces. As I will explain below, it has been known for some time now that,
among other things, their distributions exhibit non-trivial scalings at the jamming
point. The main goal of this thesis is to investigate what other information they
contain. It should be clear that such investigation is far from over, but I hope that
the next chapters will contribute to expand our knowledge in that direction; or at
least to better demarcate our (my) ignorance.

Let me now sketch the path I will follow. In this first chapter I will discuss
many of the ideas needed to better understand the main results of this work. Thus,
Sec. 1.1 is a very quick and superficial description of the phenomenology of super-
cooled liquids and glasses. This might seem unnecessary given that jamming is not
exclusive of glasses. However, it will prove useful for appreciating that the glass
and the jamming transitions are different transitions. We now understand their
differences clearly enough, but few years ago the situation was much blurrier. Fur-
thermore, in the algorithm described in Chp. 2 we mimic the process of taking a
liquid deep in its glass phase, and only then compress it further until the jamming
point is reached. Having a clear idea of the physics that takes place in these regimes
is thus important. Additionally, the discussion of Sec. 1.1.1 contains many of the
necessary background to the results of Chp. 3. In Sec. 1.2 I will show that many of
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(a) Colloids (toothpaste).
Taken from [4].

(b) Foams (shaving foam).
Taken from [4]. (c) Granular matter (fertil-

izer). Taken from [5].

(d) Emulsions (oil and
vinegar)

(e) Ordered packings (FCC
structure); usually hy-
per-static. Taken from
[6].

(f) Ellipsoids (M&M’s);
usually hypo-static.
Taken from [7].

Figure 1.1. Some examples of systems that exhibit a jammed regime. However, the results
in this thesis do not concern the last two, mainly due to their ordering and shape, but
also because I will only focus on isostatic systems; see Sec. 1.4.

the peculiar features of glass formers can be reproduced using a very simple model:
a hard-sphere (HS) fluid. The resemblance in their behaviour then justifies the us-
age of this minimal model for studying glassy and jammed systems. Hence, in this
second section, after a very basic introduction to the statistical mechanics of liquids,
I analyse the equations of state for HS in liquid and glass phase, as well as other
important phenomena, like the Gardner transition. Moreover, a recently developed
mean-field theory –exact, in the infinite dimensional limit– uses both HS and soft
spheres (SS) as archetypical models. The theory is powerful enough to consistently
describe the behaviour of glass-forming systems from the point they fall out of equi-
librium all the way down to jamming. A brief outline of this theory and some of its
many predictions are given in of Sec. 1.3. Finally, in Sec. 1.4 I discuss in detail the
jamming transition. From the approach I follow, jamming is an (out of equilibrium)
phase transition that marks the end of the glass in HS and SS systems. Surprisingly,
this phase transition is shared by several other systems (Sec. 1.4.1) such as grains,
foams, and colloids as depicted in Fig. 1.1. All of them present common properties
and can thus be studied using similar tools (Secs. 1.4.2 and 1.4.3). The last parts
of the chapter (Secs. 1.4.4 and 1.4.5) are devoted to analyse the properties of the



1.1 Phenomenology of glassy systems 3

contact forces and interparticle gaps. These microscopic structural variables have
a central role for the results of this work.

1.1 Phenomenology of glassy systems: the departure
point towards jamming

Glasses are very common in our daily lives and, yet, incredibly hard to explain
satisfactorily from a physical point of view. And every year that passes by without
a complete theory of the glass transition (defined soon below), helps to proof the
now famous quote by Philip W. Anderson[8], “The deepest and most interesting
unsolved problem in solid state theory is probably the theory of the nature of glass
and the glass transition.” As with any other interesting problem, the lack of a
complete theory of the glass phase is not caused by a shortage of efforts. Indeed,
the current literature on glassy systems is immense, as a (very personally biased)
sample can show: [5, 9–22]. The contents of this section strongly follows Refs. [5,
9, 10], which provide very amenable reviews of the topic of glasses and supercooled
liquids.

In very simple terms, what makes glasses so hard to understand is that they
behave, in many aspects, just as (non-crystallized) solids, but structurally they
are much more similar to liquids. In fact, it is “relatively simple” to produce a
glass by cooling a liquid fast enough in order to avoid crystallization. (See however
[9, Sec. 2] for a detailed account of the obstacles that can occur in practice when
cooling a liquid.) As temperature decreases below the liquid’s melting point (Tm),
the viscosity (η) increases drastically and, at some point, the liquid simply stops
flowing and behaves, mechanically, as a solid. For instance, it develops a finite shear
modulus that does not decay on time. Such point identifies the glass transition of
the liquid, and the temperature at which this happens is the so called glass transition
temperature, Tg. Pragmatically, a rule of thumb to define Tg is the temperature such
that[9,11]

η(Tg) ∼ 1013 Poise = 1012 Pa s . (1.1)
In comparison, the viscosity of water at room temperature is minute: ηwater ≈
10−3 Pa s.

Yet, analysing the microscopic structure of the systems slightly above and
slightly below Tg reveals that little, if anything, has changed: glasses are, essentially,
solidified non-crystalline liquids. This process is depicted in the volume-temperature
plane of Fig. 1.2. We can see that at for T > Tm the liquid is the only stable phase,
but for temperatures lower than Tm the crystal becomes the equilibrium branch.
Nevertheless, by applying a cooling rate fast enough to avoid crystal nucleation,
but small enough to let the system relax, the liquid phase can be sustained in the
so called supercooled phase, identified by the shaded region. In other words, we
have to cool the system in such a way that it remains in metastable equilibrium. As
shown in the insets, there is a clear difference in the structure (i.e. the arrangement
of particles) between the crystalline and liquid phase. However, when reaching Tg
there does not seem to be any structural change in the configuration, but the phys-
ical properties become very different. This figure also shows a very peculiar feature
of the glass transition: the exact location of Tg actually depends on the protocol
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Figure 1.2. Main: Glass – supercooled liquid phase diagram. For temperatures above
(resp. below) the melting temperature (Tm), the liquid (resp. crystal) is the equilib-
rium state. When the temperature is not too small compared to Tm, crystallization
can be avoided by fast cooling, allowing the liquid to remain in a metastable state: the
supercooled liquid. In such metastable phase (shaded region) the relaxation time grows
drastically. If T is further decreased, the supercooled liquid is bound to become a glass,
characterized by an “immense” relaxation time and viscosity, at the glass transition
temperature (Tg). Interestingly, different cooling protocols locate Tg at different values
(curves labelled as “1” and “2”); see text for a discussion. Insets: Snapshots of the
configurations obtained through molecular dynamics simulations of a crystal (right),
supercooled liquid (centre), and glass (left). Notably, there is little structural differ-
ence between the supercooled liquid and glass configurations, but dynamically they are
completely different as discussed throughout this section. Figure taken from Ref. [23].

used to reach the glass state. That is, if a given cooling rate results in the glass state
identified by the branch “1”, a slower protocol would result in the branch identified
by “2”. Such behaviour immediately begs the question: what kind of transition does
Tg signals, if its value depends on the protocol employed? Even more, the definition
of Tg in the expression (1.1) is arbitrary. Could we have chosen a different value for
the threshold of η instead of 1013 Poise?

From these considerations it should be clear that the glass transition is not a
usual thermodynamic transition, while it is also true that the definition of Tg entails
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a certain degree of arbitrariness. To better understand the physics of supercooled
liquids and glasses, it is useful to recall the relation between the viscosity and
relaxation time τα. For instance, from the Maxwell model of elasticity, we have
that[5,9] η = G∞τα, where G∞ is the instantaneous shear modulus. τα determines
the typical time scale on which density fluctuations in a system relax. Hence, it
is natural that as the system becomes more viscous, fluctuations take longer to
relax in the system. In several systems it has been found empirically that as Tg
is approached, the increase in relaxation time follows an exponential behaviour,
captured by the so call Arrhenius relation:

τα = τ0 exp
(

E

kBT

)
, (1.2)

where E is an activation energy, and kB is the Boltzmann constant, which from now
on I will assume equal to 1. Even more, there are various other materials whose
viscosity increases at an even faster rate. Their sluggish behaviour is well captured
by the Vogel–Fulcher–Tamman (VFT) law:

τα = τ0 exp
(

D

T/T0 − 1

)
. (1.3)

These two different types of growth are used to classify glass formers as strong
or fragile, depending on whether they follow Eq. (1.2) or (1.3), respectively. It is
a rather unfortunate terminology, since it is not related to the rigidity of glasses
themselves. In any case, plotting[24] the logarithm of relaxation time as a function
of Tg/T results in the curves shown in Fig. 1.3 for several materials. Strong glass
formers (such as SiO2) follow straight lines, while fragile ones (e.g. o-terphenyl)
first exhibit a relatively slow increase of τα, followed by a sharp super-exponential
growth as T → Tg. Note that data in Fig. 1.3a correspond to experiments where
η was measured, while Fig. 1.3b contains data of τα both from experiments and
from simulations. Thus, putting together these two figures validates the relation
η ∝ τα mentioned above. In fact, an alternative definition for Tg is such that
τα(Tg) ∼ 102 − 103 s.

This last statement seems to reinforce the idea that Tg is a very arbitrary def-
inition, because setting 100 s as the limit for τα apparently indicates that we are
not patient enough to perform longer experiments. However, if considered carefully,
the exponential and super-exponential growths shown in Fig. 1.3 indicate that any
reasonable change in the threshold value of τα or η would have a very small ef-
fect in Tg

1. In specific, at the melting point typical values of the viscosity are[9]
η(Tm) ∼ 10−2 − 10−3 Poise, which means that η increases by 15 orders of magni-
tude in the range Tm & T & Tg. Importantly, usual values of the glass transition
temperature are around[10] Tg ≈ 2Tm/3. Therefore, it is clear that even if Tg is not
a unique nor precise temperature, it identifies the region where characteristic time
scales change dramatically.

To continue, let me address the physical meaning of the different terms that
appear in the VFT law (1.3). In general, D and T0 can be used just as fitting pa-
rameters. So, for instance, the smaller the value of D the more fragile the respective

1Indeed, it can be shown[9] that if we increase the threshold by a certain factor, its effect in
shifting Tg to lower values is exponentially damped, at least.
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(a) Angell plot of the logarithm of the viscos-
ity as a function of (inverse) temperature,
using experimental data from several ma-
terials. Taken from [25].

(b) Angell plot of the relaxation time as a
function of (inverse) temperature. Points
show both experimental and numerical
data. Taken from [5].

Figure 1.3. The so called Angell (or sometimes Arrhenius) plots obtained by analysing the
dependence of log η or log τα as a function of Tg/T . They allow to determine whether a
given material is a strong or fragile glass former if its corresponding curve is a straight
line or not, respectively.

glass. Similarly, T0 indicates a temperature at which a divergence in the relaxation
time is expected. Despite the fact that it plays the role of a fitting parameter, sev-
eral studies suggest that it might be a relevant thermodynamic quantity[25]. This
connection stems from the fact that its value is very close[5,26] to the Kauzmann
temperature, TK , which identifies a temperature at which the entropy of the glass
(i.e. a state with a liquid-like structure) becomes smaller than the one of the crys-
tal. A very counter-intuitive feature! Theoretically, the (supercooled) liquid’s excess
entropy with respect to the crystal, Sexc(T ) = Sliq(T )− Scrys(T ) is considered and
values of TK are obtained by extrapolating the excess entropy until it vanishes,
i.e. the condition Sexc(TK) = 0 identifies TK . In practice however, this point can
never be reached since TK < Tg, implying that the glass transition always inter-
venes, making it impossible for the system to equilibrate and thus to measure Sexc.
Nonetheless, the excess entropy is a very important quantity because it is closely
related with the configurational entropy, which serves as a measure of the amount of
local minima present in energy landscape of the system; see Fig. 1.6. The so-called
“Kauzmann paradox”[27] and the configurational entropy are very interesting topics
that would deserve a section of their own, but length considerations dictate that I
should omit them in this thesis. Fortunately, a good review is available in Ref. [28].

Now, given that the glass transition also marks an increase in the relaxation
times of the system, it is only natural to investigate the effects on dynamical prop-
erties, instead of the static ones, as a system approaches Tg. For instance, Fig. 1.4
depicts the structure factor, S(q), of a Lennard–Jones (LJ) fluid at different tem-
peratures. S(q) is defined in Eq. (1.18) below, but essentially it is the Fourier
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transform of the radial distribution function, g(r) (see Eq. (1.17)) and thus it pro-
vides information about spatial ordering present in the configuration. Data of the
relaxation time (denoted in Fig. 1.4 by τ) at each temperatures are also included.
Note that S(q) is practically unchanged while τ increases by more than 3 orders
of magnitude. This demonstrates quantitatively that, structurally, glasses are very
similar to liquids.

Figure 1.4. (Partial) structure factor (S) of a Lennard-Jones mixture as a function of
the wave-vectors, q, and for different temperatures. S(q) is defined in Eq. (1.18) below.
The relaxation time at each temperature (τ) is also indicated. Taken from [29].

In contrast, let us consider the mean square displacement (MSD),

〈∆(t)〉 =
〈

1
N

N∑
i=1
|ri(t)− ri(0)|2

〉
, (1.4)

where 〈•〉 denotes thermal average. This variable will prove to be essential for
many of the topics considered here, as shown later. In any case, in Fig. 1.5a the
behaviour of the MSD is reported, considering again a LJ mixture at different
temperatures. We can see that at high temperatures (curves to the left), the initial
ballistic behaviour –characterized by ∆(t) ' t2– quickly leads to a diffusive one
–where ∆(t) ' t. This latter regime is characteristic of a liquid in equilibrium, or
even metastable equilibrium, as in the supercooled phase. On the other hand, as
T decreases a plateau begins to form, separating these two different regimes of ∆.
Importantly this figure also shows that the lower the temperature the longer the
plateau, but its height remains roughly constant. Other dynamical variables present
very similar features. An important case are dynamical correlation functions, such
as the intermediate scattering function F (q, t). Just as S(q) provides information
about the static density correlations at a length scale ∼ 1/q, F (q, t) measures the
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correlations of two points separated by the same length, but at different times. Its
temperature dependence is shown in Fig. 1.5b, once again for a LJ mixture. Note
the marked slow down in the relaxation towards the (metastable) equilibrium state,
identified by the lack of correlations. In fact, what these curves suggest is that as
T → Tg relaxation bifurcates into two different processes, each of which has its own
time scale.

(a) Time dependence of the MSD at different
temperatures. Taken from [5].

(b) Self-intermediate scattering function at
different temperatures. Taken from [30].
Cf. with Fig. 1.4.

Figure 1.5. As T → Tg, dynamical variables develop a plateau that separates their char-
acteristic behaviours. Both plots show that the plateau lengthens as the temperature
decreases. These curves are characteristic of the two-steps relaxation process, as dis-
cussed in the main text.

The potential energy landscape[21] (PEL) picture, first introduced by Gold-
stein[31], provides a fruitful scheme to understand these and several other properties
of glassy systems. As sketched in Fig. 1.6, the PEL is a very rough surface in the
configuration space and its several local minima identify possible metastable states
in which a liquid can be trapped forming a glass if the temperature decreases below
Tg. From this perspective, when the system’s temperature is high enough, it is able
to explore the full landscape and therefore equilibrium can always be attained. As
T decreases, the system remains trapped for some relatively short time in a basin
before it can escape and thus explore a larger region of the phase space. Then, as T
is further decreased the time spent trapped in a basin increases exponentially until,
at T . Tg, the system remains trapped in one of these local minima. At this point,
ergodicity is broken and thus equilibration is impossible. Several clarifications are in
place. First, in all this argument I blatantly ignored the crystalline state. So staying
in equilibrium should be understood with respect to the supercooled liquid state.
It is equally important to stress that the mechanism by which a system escapes
one basin and jumps into another, when T > Tg, is by very localized rearrange-
ments of particles. In other words, transitions between different local minima are
accomplished by changing a sub-extensive number of coordinates[9]. Hence, what in
configuration space looks as jumping an energy barrier, in real space corresponds to
small displacements of few nearby particles. Consequently, the vast majority of the
system is virtually unaffected by the rearrangement of such cluster, and serves as a
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rather constant background. Therefore, changing T does not impact the structure
of the PEL itself, but instead influences how the system samples it [10].

Figure 1.6. Sketch of the potential energy landscape of a glass former. Different basins
define metastable states in which the system can remain trapped for sufficiently low
temperatures. Its very rough structure implies that a vast amount of (nearby) minima
exist, separated by relatively small energy barriers. Of course, the global minimum
corresponds to a crystalline state, and yet, the sampling is dominated by the local
minima due to their abundance. The transition to an ideal glass state is not discussed
in this work. Taken from [10].

With this in mind, let us see how the PEL helps to explain the plateaus of the
MSD and F (q, t) in Fig. 1.5. The idea is that the initial and fast process (corre-
sponding to the length of the plateaus) can be identified with relaxation within a
basin, as the system gets temporarily trapped, while the second and slower relax-
ation corresponds to the system escaping such basin and exploring the rest of the
configuration space. These two different processes are customarily called β and α
relaxations, respectively. From this stand point we can better understand that the
lower the T the longer the plateau –since the system takes longer to escape– but
its height is roughly constant –because the process leading to a basin trapping is
unaltered by T . Thus, the behaviour of ∆ shown in Fig. 1.5a can be explained in
the following manner. After the initial ballistic regime has ended, the system has
reached a minimum and remains trapped in a situation where the main source of
relaxation are vibrations around such minimum, identified with the β process. This
coincides with the point where particles are caged by their neighbours and remain
mostly arrested, leading to the constant value of ∆ in the plateau. And recall that
because T does not change the structure of the landscape, different minima are
reached at roughly the same value of ∆. Then, when enough time has passed, the
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system is able to leave the basin, with a concomitant relaxation process mostly
driven by kinetic contributions, characteristic of the α branch. As expected, this
also signals the point where ∆ detaches from its plateau value and the diffusive
regime takes over2. Naturally, when T < Tg the α relaxation never takes place and
∆ saturates at its constant plateau value even for very long times. See a similar de-
scription of the different regimes of F (q, t) in [29, Fig. 3]. Therefore, the PEL offers
a very intuitive and powerful perspective for the study of glassy systems: several of
its predictions have been verified experimentally[10], while it also provides crucial
information of the decorrelation rate of F (q, t).

Another important theoretical framework is the so called Mode Coupling Theory
(MCT). It is a very interesting and powerful scheme, but it certainly lies beyond
the scope of this thesis. However, many good accounts are available, for instance:
[13, 18, 20, 29]. Most of the phenomenology it predicts resembles closely the one
obtained through the mean-field theory discussed in Sec. 1.3.2. Here, I will only
mention that, a major success of MCT is being able to identify a “transition tem-
perature”, TMCT , at which the relaxation time diverges. Moreover, it successfully
predicts the two steps relaxation of F (q, t) by showing that its form is given by[18]

F (q, t) ∼ f +At−a ; and F (q, t) ∼ f −Bt−b . (1.5)

Where the first relation holds as F (q, t) approaches its plateau, and the second one
as F (q, t) decays from it. Sufficiently close to (but above) TMCT , the two exponents
a and b are related through

Γ(1− a)2

Γ(1− 2a) = Γ(1 + b)2

Γ(1 + 2b) . (1.6)

This is an important relation to which I will return in a later section. The character-
istic behaviour for F (q, t) is sketched in Fig. 1.7. It also illustrates the connection of
F (q, t) with several important dynamical regimes discussed throughout this section.
Notice the close resemblance with the intermediate scattering function of Fig. 1.5b
obtained through simulations.

A final feature I would like to consider are the dynamical heterogeneities[17]
present in supercooled liquids and glasses alike. As the name suggests, it has been
found that the dynamics in glassy systems are non-homogenous in space nor time.
The first case is illustrated in Fig. 1.8a, where particles are coloured according to
their displacement at a given time, in such a way that highly mobile (mostly fixed)
ones are shown in red (blue) tones. Heterogeneity is visually clear from the fig-
ure: particles able to travel a (relatively) large distance form clusters –wherein all
particles have similar mobility– that are surrounded by large portions of mostly
immobile particles. Nevertheless, at later times the picture can be very different
because arrested particles can become mobile. Conversely, those whose motion was
initially rather unimpeded can afterwards remain blocked by their neighbours. In-
tuitively, this is the main component of the temporal heterogeneity in particles’
dynamics. Fig. 1.8b illustrates this idea more clearly by plotting the square dis-
placement of individual particles. We can see that the particles’ trajectories consist

2It should be mention that the last part of the β relaxation can coincide with the initial part of
the α one, so there is no clear cut distinction between these two processes[29].
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Figure 1.7. Typical form of the intermediate scattering function, Eq. (1.5), as derived from
MCT. Each regime is identified with a characteristic dynamical regime, as illustrated
by the insets. See also Figs. 1.5 and 1.9. Taken from [18].

mostly of vibrational motion for long intervals, interrupted by large, spontaneous
jumps. Moreover, not all the jumps occur at the same time, signalling the tempo-
rally heterogeneous character of the dynamics. This also means that the appearance
and disappearance of domains of particles with similar mobility is not a synchro-
nized process, but occurs randomly. It is worth noting that the abrupt jumps are
not reflected in the MSD, as shown by the smooth straight red line in the same
figure.

As peculiar as dynamical heterogeneity can be, its relevance is mainly due to its
role in the study of dynamical correlation functions and dynamical susceptibilities.
To understand the connection, consider a set of particles separated by a distance
r that are part of a high mobility cluster. If at later times the cluster transforms
into a domain of mostly blocked particles, then the fluctuations of their mobilities
would be correlated in time, and on a scale ∼ r. However, to properly identify this
sort of correlations four point correlation functions (G4(r, t)) and susceptibilities
(χ4(t)) are required. From the (very important) relation χ4(t) =

∫
drG4(r, t), it is

easy to see that a high value of the susceptibility signals mobility correlations on
a long scale. The typical behaviour of χ4(t) at different temperatures (indicated
by different curves) in a supercooled LJ mixture is shown in Fig. 1.9. For a fixed
temperature, χ4 increases monotonically until it reaches a maximum χ?4 at t =
t?, and then decays. This behaviour actually makes sense: considering that the
initial regime of the dynamics is ballistic, the whole system lacks correlation, leading
to small values of the susceptibility. As time passes, clusters of particles with
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(a) Spatial heterogeneity in the dynam-
ics of particles. Colours differentiate
mostly fixed particles (in blue) from the
ones that have displaced at least one
particle diameter (red). The time con-
sidered for computing the displacement
is indicated, and is about a tenth of
the relaxation time. Taken from [32];
see this reference for a very illustrative
video.

(b) Square displacement of individual particles,
and MSD (solid red straight line). Most of
the time, particles vibrate around a fixed
position, but eventually this behaviour is in-
terrupted by long, quick jumps. Temporal
heterogeneity is manifested by the fact that
such jumps occur randomly and indepen-
dently for each particle. Taken from [33].

Figure 1.8. Dynamical heterogeneity in glassy systems. Glass formers usually show both
spatial (panel a) and temporal (panel b) heterogeneity. It is a salient feature of this
type of systems, but its connection with local structure is far from understood. See
Sec. 1.1.1.

similar mobility start to form and thus correlations begin to appear; the larger
the clusters the higher the correlation. Yet, these clusters cannot be maintained
forever, since the system, being in the supercooled phase, is bound to eventually
relax to equilibrium. When this happens, the correlations are lost and consequently
χ4 decreases. From this argument, it is natural to expect that t? should be similar
to the relaxation time, and this is indeed what happens[5,9]. Moreover, as the
temperature decreases, both t? and χ?4 constantly increase, signalling the presence
of higher, longer lived cluster correlations. Interestingly, Mode Coupling Theory
predicts that χ4 should actually diverge at TMCT . Unfortunately, this temperature
is rather high[9,18] when compared to Tg. At any rate, χ4 plays the role of the usual
“two point“ susceptibility of critical phenomena, with its characteristic divergent
behaviour at a phase transition. Within this framework, we are also able to identify
the corresponding order parameter: the dynamical correlation function3! What is
more, a very similar scenario is found in a famous spin glass mean-field model: the
p-spin model[34–38]. There, the corresponding χ4 diverges as the system approaches
its dynamical transition at Td, the model’s analogue of TMCT .

3Actually, a more precise statement is that the order parameter should be the long time limit
of such correlation function, see [9, Sec. 7.8]
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Figure 1.9. Four point susceptibility as a function of time in a LJ supercooled liquid. It
is a very useful for studying dynamical heterogeneities in supercooled liquids. Different
curves show that as temperature decreases (from left to right), mobility fluctuations
grow in the system, as indicated by the larger values of χ4. In particular, its maximum,
closely related to the relaxation time τα, is shifted to larger times. The connection with
the two steps relaxation, depicted in Fig. 1.7, is also indicated. Taken from [5].

These results support the hypothesis that by studying the behaviour of χ4 it is
possible to detect the onset of “glassy behaviour”, characterized by the non-trivial
dynamical correlations, whose length scales increase as the temperature is lowered.
However, the analogies have to be taken with care since no phase transition occurs
in real systems, as evinced by the fact that χ?4 just keeps on growing even below
TMCT . Nevertheless, these theoretical considerations suggest that TMCT might be a
temperature more physically meaningful than Tg, and that the putative divergence
of χ4 is avoided possibly due to barrier crossing[9]. Furthermore, just as in the usual
case of critical phenomena, a correlation length[39] (ξ4) can be found that is expected
to diverge at TMCT , but that in supercooled liquids indicates the length scale of
mobility correlations; thus it is essentially a measure of the size of the clusters of
particles’ with the same mobility. Moreover, as discussed in Sec. 1.3.2, mean-field
theory provides an exact description that resembles closely the phenomenology of
MCT and qualitatively agrees with the results observed empirically.

1.1.1 Local structure and its connection with dynamics

Now that we have a clearer picture of the intriguing dynamical phenomena that
ensue near the glass transition, it is worth bringing back the main obstacle for
a complete physical description of it: finding a connection between the complex
dynamical features of supercooled liquids and glasses and their local structure. In
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other words, so far I have described the peculiar dynamical properties of supercooled
liquids as well as some tools to unveil and analyse them. Yet, I have not mention
how such properties can be explained in terms of structural (and hence static)
information of the system. The problem is notably intricate, so an entire sub-section
seemed (just) enough to give an account of such pressing question. Nevertheless, I
should anticipate that, maybe unsurprisingly, there is a lack of consensus on which
are the correct variables to consider nor on their relative degree of success.

Ever since the discovery of dynamical heterogeneities people have been look-
ing for connections with different structural variables[5,17,40,41]. Most of the works
proceed in a similar fashion: the mobility of individual particles is measured by
their squared displacement (|δri(t)|2 = |ri(t)− ri(0)|2), and then interactions with
their local environment are used to construct physical observables, expecting to find
significant correlations between them. Of course, the crux of these studies consists
in where such locality ends and which are the relevant physical quantities. In any
case, with this approach, the influence of thermal fluctuations, shear deformations,
etc. on particles rearrangements and plastic dislocations are studied. The numerous
set of structural quantities that have been proposed is a proof of how difficult the
problem is. Relevant (and personally biased) examples include: point-to-set correla-
tions[42–45] (where a length scale over which particles are pinned by their neighbours
is identified; see Fig. 1.10a), local thermal energy[46] (where the thermal energy of
each interacting pair is used to predict plastic instabilities related to anharmonic-
ity; see Fig. 1.10b), or plain geometrical parameters like bond orientations between
nearby particles[47–49] (Fig. 1.10c). This list is far from exhaustive, but an insightful
review can be found in [50]. A fruitful approach uses the vibrational modes of the
system[51–54], and relates the density of states (DOS) with the collective dynamics
of the system. This link is justified because the Fourier transform of the velocity
autocorrelation function is closely related to the DOS[52]. This relation, however,
relies on the validity of an harmonic approximation for the interaction energy of
the system, a scenario that in several cases might not be true. Furthermore, the
vibrational spectra is also a relevant property of jammed and nearly jammed sys-
tems[55–61], so it will have an important role in this thesis; see Secs. 1.4.3, 1.4.5.1
and Sec. 3.7 in Chapter 3.

An alternative and rather more intuitive approach to the same problem can
be adopted by using the so called “isoconfigurational ensemble”[62–65] (ICE) where
the dynamics of a system is studied by simulating several trajectories, departing
from the same initial configuration (hence the name). For instance, if molecular
dynamics (MD) simulations are employed, the particles’ initial position is fixed,
while the velocities are randomly assigned at each run according to the Maxwell-
Boltzmann distribution with a given temperature. Clearly, this method provides
a way of sampling the space of all possible trajectories of the configuration and,
in doing so, it allows to identify how the local environment of a particle influences
its average mobility. Its only basic assumptions are that (i) the thermal noise is
washed out when a large enough number of MD realizations are used; and (ii) that
trajectories are self-averaging. The main advantage of the ICE is that regions where
clusters of particles undergo major rearrangements during their dynamics can be
easily identified. Moreover, such regions can be related to structural properties such
as the Debye–Waller factor or the local energy density[66,67]; see Fig. 1.11. Recently,



1.1 Phenomenology of glassy systems 15

(a) Correlation between the point-
to-set correlation length ξ,
and the relaxation time in
different glass former mod-
els: LJ binary mixture (black
squares), same mixture but
truncated according to the
Weeks-Chandler-Andersen
model (blue diamonds), and
inverse power law potential (red
circles). Taken from [43].

(b) Left: Local thermal energy (LTE) in a 2D
inverse power law glass former. Lines’ thick-
ness represent the magnitude of the LTE,
with black (red) indicating a positive (nega-
tive) value. LTE incorporates anharmonic ef-
fects by construction. Right: Coarse-grained
LTE field and its correlation with plastic rear-
rangements (identified by the numbered cir-
cles) caused by shear deformations. Taken
from [46].

(c) Left: Inverse relaxation time, at single particle level. Centre: Map of the ordered
parameter obtained by measuring the deviation of the contact angles with respect to a
locally favoured structure. Right: Map of the coarse-grained version of the same order
parameter; notice the high correlation with the left-most panel. The system is a mixture
of harmonic particles. Taken from [49].

Figure 1.10. Different methods for connecting the local structure with dynamical features
or plastic rearrangements in a variety of models.

information-theoretic methods have been used to assess more accurately the role of
these and other structural quantities[65], as well as how reproducible the observed
trajectories are. However, it has also been pointed out that providing a link between
dynamical and static properties using exclusively the particles’ mobility might be
inadequate[68]. Moreover, the main problem of the ICE approach is that even if a
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structural variable shows a high correlation with the dynamics in a given system, it
may lead to poor predictions in a different model[69]. In other words, sampling from
the ICE leads to structure-based inferences whose quality might be very sensitive to
type of glass former model employed. These features will be discussed in more detail
in Chp. 3, where I will show that the ICE can also be used to study the dynamics
of amorphous solids near their jamming point and, notably, overcome several of the
issues just mentioned.

(a) Colour map of the particles’ mobility,
showing in red (blue) the most (least)
mobile particles, of four independent con-
figurations. The filled circles are the par-
ticles with the highest Debye–Waller fac-
tor. Note however that this quantity is
not exactly a structural one. Taken from
[67].

(b) Histograms of the mobility of individ-
ual particles (µi) as a function of the
number of locally preferred structures
(left column) and single particle energy
(right). The upper row presents the re-
sults of a Kob–Andersen system, while
the lower one is a binary mixture of har-
monic spheres. On the top right of each
panel the corresponding (Spearman) cor-
relation is reported. Notice that its value
is highly system dependent (see text).
Taken from [69].

Figure 1.11. The usual approach in the isoconfigurational ensemble is to compute the
particles’ propensity, defined as the mobility averaged over several trajectories, and test
whether it is correlated with physically sound (but arbitrary) structural variables.

On the other hand, a major step forward has been recently achieved by employ-
ing Machine Learning methods[70,71]. In these works, the information of a particle’s
local structure is encoded in a new variable termed “softness” that is then related
to the displacement of such particle in a given time interval. A Support Vector
Machine is used to find a hyperplane (in features space) dividing the mostly mov-
able particles from the mostly arrested ones. Then, the softness is computed as
the signed distance of each particle’s features to such an hyperplane, thus “soft”
particles are prone to be displaced by a significant amount while “hard” ones will
remain mostly fixed (see Fig. 1.12a). It has been shown that softness is strongly
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correlated with physical quantities such as local energy and coordination number[72],
as well as being a useful variable for modelling the Arrhenius behaviour observed in
supercooled liquids[71,73,74]. Yet, it performs better at identifying mobile particles
than these other structural variables. Furthermore, new results using Graph Neu-
ral Networks[75] have shown to outperform several physically motivated variables
in inferring (and predicting) dynamical properties of glassy systems (Fig. 1.12b).
However, these methods are based on parametrizing a particle’s local environment
in terms of (artificial) feature functions, yielding a synthetic representation of the
structure. Therefore, even though Machine or Deep Learning techniques yield high
quality predictions about which particles are the likeliest to be highly mobile, their
associated structural variables lack a clear physical meaning. In short, even if
Machine Learning methods can be used to construct good predictors of particles’
mobility, they fail to provide an answer about which are the real physical variables
that determine such mobility.

(a) A LJ sheared system, where par-
ticles are coloured from grey to
red according to their displacement,
with the latter being the ones mov-
ing the most. The particles identi-
fied by the SVM algorithm as most
prone to move are highlighted in
black. Taken from [70].

(b) Colour map of the particles’ mobility and its
comparison with the top 10% most mobile par-
ticles (black circles) as predicted by a graph
neural network. Taken from [75].

Figure 1.12. Machine Learning methods yield high quality predictions of particles rear-
rangements, but they rely on artificial representations of the particles’ local environ-
ment.

As a final remark, note that for several of the methods described here, addition-
ally to the structural variable considered, a coarse-graining procedure is needed to
obtain better inferences; e.g. Figs. 1.10b, 1.10c, 1.11a, 1.12b. Likewise, in the case of
the SVM, even though predictions for individual particles can be obtained, the fea-
tures functions are constructed essentially as weighted radial distribution functions.
Hence, structural information of a small region is compressed into a single number,
and can thus be consider as another instance of coarse-graining. In contrast, in
Chp. 3 I will show that the method we developed for inferring the statistics of the
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particles’ dynamics works using only information of individual and well identified
particles.

To close this introductory section I should emphasise that there are many
interesting topics that I have left completely uncover such as: ageing[19], spin
glasses[76–78], complexity and configurational entropy[28], the ideal glass transition[79],
kinetically constrained models[80], and a long etcetera.

1.2 Hard sphere systems: From liquid to jamming with
a glassy interlude

In this section, I will quickly review some of the basic properties of simple hard
sphere (HS) fluids, based mostly on Refs. [16, 81, 82]. That is, systems composed of
frictionless and infinitely rigid spherical particles. Hence, no interaction is present
between the spheres except when they come into contact with one another and an
elastic collision occurs. Notwithstanding its simplicity, HS liquids display a non-
trivial behaviour giving rise to a liquid-solid phase transition. This is summarized
in Fig. 1.13 in the pressure-density plane for a monodisperse configuration. The
solid line represents the stable equilibrium branch, showing that the liquid freezes
at a density4 ϕf ≈ 0.494, while the solid melts at ϕm ≈ 0.545. In other words,
for densities larger than ϕm an equilibrated HS system is in a crystalline phase,
which ends when the spheres occupy the maximum possible volume. As conjectured
by Kepler and proved much later[83], this happens when the spheres are packed
following a face-centred cubic (FCC) structure and each particle is in contact with
its closest neighbours. The associated density is ϕFCC = π

3
√

2 ≈ 0.740, which thus
acts as an upper limit for the density in monodisperse HS systems. Fig. 1.13 also
shows (dashed curve) the metastable liquid branch, which has been found to finish at
the so called “random close packing” density, ϕRCP ≈ 0.64. I will discuss at length
what happens near and at this point in the following sections and chapters, but for
the time being let me just mention that configurations with ϕFCC and ϕRCP are two
examples of jammed packings. On the other hand, the presence of the metastable
branch for ϕ > ϕf suggests that HS liquids could also be used as glass-formers.
And indeed a glass transition, taking place around[82,84] 0.58 . ϕg . 0.62, has been
found. Here, two points are worth considering. First, note that for HS fluids the
melting, glass, and other transitions are specified in terms of the density instead of
the temperature, in contrast with the systems considered in the previous section.
The reason is that in HS systems, the interaction energy is either zero or infinity,
and therefore the temperature only acts as a scaling parameter of the different
thermodynamic variables; see e.g. Eqs. (1.25), (1.26), (1.30) below. I will argue in
the rest of this section that HS liquids exhibit many of the complex phenomenology
described above for usual supercooled liquids and glasses. But to make a proper
comparison, it is useful to map the role of specific volume and temperature (in
standard glass formers) to the pressure and density (in HS systems).

The second point worth mentioning is the rather unexpected crystallization at
high densities in HS liquids. Indeed, how come there is a phase transition if no

4Throughout this thesis, the terms density and packing fraction will be used interchangeably
and will be denoted by ϕ.
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Figure 1.13. Phase diagram of monodisperse HS fluids. The solid black line is the
equilibrium branch, while the dashed one indicates the metastable liquid (and glass)
phase, beyond the freezing point (first dotted vertical line). The second vertical line
marks the melting point, while the last two indicate the maximal possible density of the
glass and solid phases, respectively. As discussed in the text, the former is associated
to the so called random close packing, and the latter to an FCC crystal. Taken from
[84].

attractive force is present? Moreover, because the potential energy of HS fluids is
always zero, the energetic contribution to their free energy is only due to a trivial
kinetic term. This means that for large packing fractions the entropy of the crystal
becomes larger than the liquid’s one. This very counterintuitive result brings us
back to the Kauzmann paradox mentioned above. But, mainly, it shows that there
is no reason a priori to assume that the ordered, crystalline phase has a lower en-
tropy than the inherently disordered liquid[5]. This sort of “entropic ordering” can
be understood by considering that the entropy has a contribution associated with
the (logarithm of the) accessible volume per particle[85]. The idea is that, while ar-
ranging the particles following a regular structure certainly reduces the entropy due
to orientational degrees of freedom, it may also increase the part related to transla-
tional degrees of freedom. For high enough densities, the gain in the latter exceeds
the loss caused by a reduced number of possible orientations and therefore (at least
partial) crystallization occurs. In other words, the only way in which particles can
benefit from a larger accessible volume, and thus allow the system to further in-
crease its density, is by forming crystalline domains. Historically, the case of HS is
very important because the first “empirical” signature of the freezing transition was
obtained in the debut of molecular dynamics[86] and Monte Carlo[87] simulations
as computational techniques to study the thermodynamics of many body systems.
The case of hard disks followed soon afterwards[88]. As will be discussed in Chapter
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2, the simple potential of HS systems makes their dynamics trivial, rendering them
specially amenable for the computational capabilities available in the late 1950’s.
The details of the story are fascinating –see e.g. [89–91]– starring an episode where
several scientific personalities pondered about the freezing phase transition and “de-
cided” by voting whether it really occurred or not. I cannot help finding Sisyphean
that, so many years later, we are still studying HS systems, with ever faster and
more powerful computers and techniques, and yet marvelling by the many striking
physics hiding underneath.

1.2.1 Basic Statistical Mechanics of liquids

Before proceeding in the analysis of HS systems, it is convenient to develop some
general results of liquids theory, which is that I will do next. Later, in Sec. 1.2.2, I
will particularize such results to HS liquids and show that many simplifications are
possible due to their peculiar potential, see Eq. (1.23). Additionally, this section is
important because I will introduce some notation that will be used throughout this
work. First of all, N will denote the number of particles (or system’s size), ri will be
used to indicate the centre’s position of the i-th particle, while ~r = {ri}Ni=1 will be
the 3N -dimensional vector that specifies the location of the system in configuration
space. Analogously, let mi and pi be the mass and momentum vector of the i-th
particle and ~p the 3N -dimensional vector of momenta. Clearly, the same notation
is applicable when dealing with systems in dimensions higher than d = 3, and I will
do so when needed. Hence, the state of the system in phase space is specified in
general by ~z ≡ (~r, ~p).

To continue, I will assume that particles interact via a (sufficiently well-behaved)5
potential function, u(r), that only depends on the distance between pairs of parti-
cles, rij ≡ |ri − rj |. We can thus define the Hamiltonian as

H(~z) =
N∑
i=1

|pi|2

2mi
+ U(~r) =

N∑
i=1

|pi|2

2mi
+ 1

2

1,N∑
i 6=j

u(rij) . (1.7)

I will focus on deriving the equation of state (EOS) of the fluid in the canonical
ensemble, at a fixed temperature T = 1/β and volume V . The partition function is
given by

QN (β, V ) = 1
N ! h3N

∫
d~z e−βH(~z) = ZN (β, V )

N !Λ3N , (1.8)

where h is the Planck’s constant and Λ =
√
βh2/m is the De Broglie wavelength,

that appears when the Gaussian integral of each component of ~p is performed. On
the other hand, ZN defines the configurational integral

ZN (β, V ) =
∫

d~r exp(−βU(~r)) . (1.9)

Note that the dependence of ZN on V is implicitly contained in the integration
limits of

∫
d~r.

5What is meant by “sufficiently well behaved”, of course depends on which properties we are
interested in. For instance, it is clear that the HS interaction, Eq. (1.23), defines a potential that
is not continuous, yet it is suitable to model the properties of HS systems in the thermodynamic
limit. For a more detailed discussion see [16, Sec. 2.1.1] and references therein.
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From the partition function (1.8), we obtain the Helmholtz free energy:

F (N,V, T ) = −T logQN (T, V ) = 3TN log Λ− T log
(
ZN (β, V )

N !

)
. (1.10)

Obviously, if for a given potential u(r) we were able to compute the integral (1.9)
exactly and thus obtain a close form for F , all the thermodynamic variables would
follow easily. For instance, the average energy and pressure are obtained simply by
differentiating the free energy:

〈E〉 = ∂(βF )
∂β

, (1.11a)

P = −∂F
∂V

. (1.11b)

Unfortunately, no closed expression is known for ZN for the HS potential, let alone
a general one as I am considering for the moment. Nevertheless, it is still possible
to obtain some important results and thus gain some insight of the physical prop-
erties such as the variables just introduced. To do so, let us first note that in the
thermodynamic limit, N → ∞ and V → ∞, the (intensive) free energy becomes a
function of the temperature and the number density, ρ ≡ N/V . Thus, letting

f(ρ, T ) ≡ lim
N,V→∞

F (N,V, T )
N

,

the free energy can be conveniently decomposed into two independent parts: (i) a
term related to the energy of the system as if it was an ideal gas; and (ii) an “excess”
contribution taking into account the interaction between particles. That is[16,81],

f(ρ, T ) = f(id)(ρ, T ) + f(ex)(ρ, T ) (1.12a)

where

f(id)(ρ, T ) = 3T log Λ− T (1− log ρ) (1.12b)

f(ex)(ρ, T ) = −T lim
N,V→∞,ρ=N/V

1
N

log
(
ZN
N

)
. (1.12c)

Note that this implies that in the thermodynamic limit the pressure is simply given
by[16]

P = ρ2∂f(ρ, T )
∂ρ

. (1.13)

This seems a rather unimpressive rewriting of Eq. (1.11b), but it makes clear that,
for a constant T value, the pressure can be written only in terms of ρ, for instance,
as a power series:

βP = ρ+
N∑
n=2

Bn(T )ρn . (1.14)

This is the famous Virial Expansion. The first term is easily obtained from the
contribution of f(id) to the total free energy. Therefore, terms of order 2 and higher
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in ρ are due to “deviations” from the ideal gas caused by the interaction between
particles.

As I will argue next, working in terms of densities brings several other advan-
tages; see also Sec. 1.3.2. So let me spend some time working out some of the most
important results. First of all, given the Hamiltonian of Eq. (1.7), we can compute
the probability of finding a given configuration ~r as

%(~r) = 1
N !h3NQN

∫
d~p e−βH(~r,~p) = 1

ZN
e−βU(~r) .

From this distribution and the indistinguishability of particles it follows that the so
called n-particle density, is given by

%
(n)
N

(
~r(n)

)
= N !

(N − n)!ZN

∫
d~r(N−n) exp(−βU(~r)), (1.15)

where ~r(n) is the 3n-dimensional vector obtained from considering the components
of {ri}ni=1, while the integral of d~r(N−n) is performed over the remaining coordinates,
i.e. {ri}Ni=n+1. This type of functions determine the probability of finding n particles
in the volume element d~r(n) independently of the positions of the rest of the particles
and the configuration’s momenta. From the definition of ZN , Eq. (1.9), it is easy
to obtain that ∫

d~r(n) %
(n)
N

(
~r(n)

)
= N !

(N − n)! ,

and therefore, for n = 1, ∫
dr %(1)

N (r) = N .

It then follows that, for a uniform system the single-particle density coincides with
the number density, %(1)

N (r) = ρ.
A closely related set of functions are the n-particle distributions, g(n)

N

(
~r(n)

)
,

defined in terms of the n-particle density as

g(n)
N

(
~r(n)

)
=

%
(n)
N

(
~r(n)

)
∏n
i=1 %

(1)
N (ri)

. (1.16)

I will only be interested in homogeneous systems and thus, this last equation re-
duces to ρng(n)

N

(
~r(n)

)
= %

(n)
N

(
~r(n)

)
. By far, the most important of these functions is

the pair distribution function, g(2)
N (r1, r2). It is amply used to distinguish between

gas, liquid and solid phases, but it provides a lot of information about the struc-
ture of a system as I will show next. For isotropic systems, as I will consider here,
g(2)
N (r1, r2) = g(2)

N (r1 − r2), and it is called radial distribution function (RDF). Fur-
thermore, for central potentials the RDF only depends on the norm of its argument
and will be simply denoted g(r). From the identity,

〈δ(r− r1)〉 = 1
ZN

∫
d~r δ(r− r1)e−βU(~r) = 1

ZN

∫
d~r(N−1) exp(−βU(r, r2, . . . , rN ))
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it follows easily[81] that %(1)
N (r) = 〈δ(r− ri)〉. An analogous relation for %(2)

N (r1, r2)
leads to a convenient representation for g(r) in homogeneous systems:

g(r) = 1
Nρ

〈1,N∑
i 6=j

δ(r− rj + ri)
〉

=⇒ g(r) = 1
4πNr2ρ

〈1,N∑
i 6=j

δ(r − rij)
〉

; (1.17)

where the rightmost equation follows if the system is isotropic.
The RDF allows to compute several structural properties of interest. For in-

stance, defining the total correlation function, h(r) = g(r)− 1, the static structure
factor can be obtained by computing its Fourier transform:

S(q) ≡ 1 + ρ

∫
drh(r)e−iq·r = 1 + ρh(q) . (1.18)

As mentioned in the previous section, S(q) measures the density fluctuation in
a scale of order ∼ 1/|q| and is a very relevant quantity since it can be measured
accurately in experiments. Moreover, it can be directly linked to response functions,
such as the isothermal compressibility, κ ≡

(
−V ∂P

∂V

)−1[82]:

ρκ

β
= 1 + 4πρ

∫
dr r2h(r) = S(0). (1.19)

Even more importantly for our purposes, g(r) is related to the average energy and
pressure through the following equations:

〈E〉 = 3
2NT + 2πNρ

∫
dr u(r)g(r), (1.20a)

βP

ρ
= 1− 2πβρ

3

∫
dr r3u′(r)g(r) . (1.20b)

Comparing expression (1.20b) with the virial expansion, Eq. (1.14), suggests at a
first sight that only the ρ2 term is needed in order to compute the pressure of the
liquid. Unfortunately, this is not the case because g(r) itself depends on the density
and on %N (2). Thus, ρ is implicitly contained in the integrand of Eq. (1.20b).

Finally, another important quantity is the direct correlation function, c(r), de-
fined implicitly through the integral equation[81,82]

h(r) = c(r) + ρ

∫
dr′ c(

∣∣r− r′
∣∣)h(r′) , (1.21)

called Ornstein–Zernike relation. Intuitively, it states that the total correlation
between a pair of particles is made of two contributions: first, the direct correlation
between both particles; and, in second place, an indirect contribution caused by
correlations with the rest of the particles as intermediaries. Note however that, even
though this equation defines c(r), it is not possible to obtain a closed expression for
it. Nevertheless, the Fourier transforms of h(r) and c(r) are related through simple,
algebraic expressions:

ĥ(q) = ĉ(q)
1− ρĉ(q) .
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Whence another expression for the compressibility is readily obtained,

ρκ

β
= 1

1− ĉ(0) . (1.22)

The set of equations (1.19), (1.20), (1.22), together with the Ornstein–Zernike
relation Eq. 1.21, are important because they provide direct routes to compute the
EOS, provided we knew the exact form of g(r) –or h(r), c(r) or even their Fourier
transforms for that matter. Unfortunately, except for the ideal gas, this is never the
case and several approximations are needed to make any progress. Nevertheless, in
HS systems the situation is more tractable and many important results are readily
available as discussed next.

1.2.2 Equation of state of HS liquids

The HS interaction is modelled through a contact, pair-wise potential of the follow-
ing form:

uHS(x; a) =
{

0 x > a,

∞ x ≤ a .
(1.23)

Naturally, if ~σ = {σi}Ni=1 is the set of diameters, a = σi+σj
2 is a parameter equal

to the sum of a pair’s radii. However, throughout this part I will assume that all
particles are identical (thus σi = σ) and henceforth omit reference to the parameter
a unless it is necessary. Next, given that a particle’s volume is equal to v = πσ3/6
and that spheres never overlap, the system’s density or packing fraction is simply

ϕ = Nv/V = ρv, (1.24)

where V is the system’s volume (usually a cubic box of size L), while ρ is the number
density as above.

Next, notice that for uHS the integral of Eq. (1.20a) identically vanishes, whence
〈E〉 = 3

2NT . This makes sense since HS liquids do not have any potential energy
and therefore 〈E〉 is purely kinetic. Similarly, Eq. (1.20b) can be considerably
simplified. Introducing the cavity distribution function[81] y(r) = g(r)eβuHS(r), and
a function w(r) = e−βuHS(r) the integrand can be written as

u′HS(r)g(r) = − 1
β
w′(r)y(r) = − 1

β
y(r)δ(r − σ) .

The last equation follows from the fact that w(r) = 1 when r > σ and vanishes
otherwise; i.e. it is the step function w(r) = Θ(r − σ). It is important to mention
that y(r) is a continuous function even if the potential is not[81,82], and therefore the
integral is well defined. The δ-function makes the integration trivial thus obtaining

βP

ρ
= 1 + 4ϕg+ ; g+ ≡ lim

r→σ+
g(r) . (1.25)

This means that the full equation of state for HS systems can be derived solely
from the value of g(r) at the contact distance. Although such value is not known
exactly, many good approximations have been devised[82] with ever greater accuracy.
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Before continuing, it is worth recalling that in HS liquids temperature only acts as
a scale parameter, fixing the average kinetic energy. For instance, consider the
configurational integral:

ZN =
∫

d~r e−βUHS(~r) =
∫

d~r
1,N∏
i<j

w(rij) =
∫

d~r
1,N∏
i<j

Θ(rij − σ) .

This last expression clearly shows that its value is independent of T . For convenience
I will henceforth adopt a “temperature free” description for HS systems. Therefore,
many of the quantities I will describe next are assumed to be scaled by T and ρ
in order to make them dimensionless. The most relevant example is the reduced
pressure,

p ≡ βP

ρ
, (1.26)

which will appear often.
Now, as mentioned above, were we to know exactly either g(r) or c(r)6 the EOS

would follow easily. But these two correlation functions are actually coupled through
the Ornstein–Zernike relation. To overcome this additional obstacle and obtain a
closed integral equation approximations are unavoidable. The idea is to write c(r)
as a functional of h(r), C[h(r)]. One of the most famous of such expressions is the
Percus–Yevick (PY) closure relation[82],

C[h(r)] = (1− h(r))
(
1− eβv(r)

)
. (1.27)

Importantly, for HS systems the integral equation derived from the PY closure can
be solved exactly and, for instance, obtained a simple expression for g+:

g+ =
1 + 1

2ϕ

(1− ϕ)2 .

Plugging it into Eq. (1.25) we obtain a (long sought) EOS:

pPY = 1 + 2ϕ+ 3ϕ3

(1− ϕ)2 . (1.28)

Unfortunately, if we proceeded by first computing the compressibility, say, via
Eq. (1.19) or (1.22) , a different EOS is obtained[82]:

pPY,κ = 1 + ϕ+ ϕ2

(1− ϕ)3 . (1.29)

This rather disappointing result is termed thermodynamic consistency problem. It
is related to the different routes[82] in which an EOS can be obtained. In general,
Eqs. (1.20) are called the energy and virial routes, while Eq. (1.19) corresponds

6The path I have been following in fact suggests that c(r) is a secondary function, defined in
terms of h(r) = g(r)−1, and therefore implying that the RDF is fundamental function to consider.
However, as argued in [81, Chp. 3] c(r) is more properly defined as a functional derivative of F
with respect of %(1)

N (r), and thus independent of g(r). Similarly, it can also be shown that the RDF
is obtained from the functional derivative of F with respect to v.
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to the compressibility route. Even when there are other types, these are the most
common ones. What causes the thermodynamic consistency problem is that once a
given approximation for the RDF (or the other related quantities such as S(q)) is
chosen, the free energy obtained when tracing back each of these routes is different.
This is evinced, for instance, by noting that according to Eq. (1.13) we can recover
f by integrating with respect to ϕ the EOS for the pressure. But given that the
available EOS’s are different (cf. Eqs. (1.28), (1.29), or (1.31) below), we would
obtain a different expression for the free energy depending on which expression for
p we choose.

On the other hand, let us consider the EOS resulting from the virial expansion,
Eq. (1.14). As with other quantities in HS systems, the virial coefficients {Bn}∞n=2
are independent of the temperature. Moreover, values of B2, B3, and B4 are known
exactly in d = 3 and higher dimensions[16], while numerical estimates are known
up to B12 for spherical particles[82]. When the first few terms are included, the
following series is obtained for the reduced pressure[81]:

p = 1 + 4ϕ+ 10ϕ2 + 18.365ϕ3 + 28.224ϕ4 + 39.82ϕ5 + 53.34ϕ6 . . . (1.30)

Surprisingly, a very good approximation is obtained if the virial coefficients are
restricted to integer values. This was first proposed by Carnahan and Starling (CS)
in [92], by noting that the first 2 coefficients are integers, while the next few ones
can be well approximated by Bn = n3 +3n. Plugging this expression into Eq. (1.14)
results in a power series of ϕ that can be easily summed, resulting in a fairly simple
formula:

pCS = 1 + ϕ+ ϕ2 − ϕ3

(1− ϕ)3 . (1.31)

Although pCS can also be obtained from a combination of pPY and pPY,κ, its merit
relies on its notable accuracy (compared with numerical simulations) in a wide range
of densities. Although it tends to underestimate the pressure, it does so by a small
amount (about 3%)[81]. And while some other rather simple approximations for
the EOS exist[93], the CS expression is accurate enough for the topics that I will
consider.

Once an EOS for HS systems is available, we can explore how the liquid branch
continues beyond the freezing and melting points, thus forming a “super-compressed”
liquid. In Fig. 1.14 I present numerical results of such experiment, in the (ϕ, 1/p)
plane. The simulations were done using an event-driven molecular dynamics al-
gorithm[94] with a Lubachevsky–Stillinger compression protocol7. Different curves
correspond to different compression rates (κ) and the CS EOS is also included for
comparison (black dashed line). First of all, note that the curve corresponding
to the fastest compression is always off the EOS line, indicating that the system
is never allowed to relax and remains out of equilibrium. However, by reducing
the compression rate the configuration is able to remain in the liquid branch well
beyond the freezing density, until at higher densities it eventually falls out of equi-
librium. In turn, when κ is further decreased the pressure follows very closely the
EOS until, around ϕm, the configuration suddenly crystallizes (partially). This is
signalled by a sudden decrease in p (seen as a “jump” in the pink and brown curves

7This algorithm will be discussed in much more detail in the next chapter.
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of Fig. 1.14), caused by the particles rearranging themselves in a regular structure,
increasing their free volume as discussed above.
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Figure 1.14. Main: Inverse (reduced) pressure as a function the packing fraction. Markers
correspond to estimations of p through molecular dynamics simulations[94] with different
compression rates (κ), as indicated by the labels. The system closely follows the liquid
CS EOS (black, dashed line) even beyond the freezing point, ϕf . Inset: Accuracy of
the CS EOS. It also shows that the system is unable to remain in the liquid branch
much beyond the melting density ϕm. The region identified with the glass transition is
shaded in light blue. See text for a more detailed discussion.

The most salient feature of these results is that they qualitatively reproduce the
phenomenology discussed in Sec. 1.1 for other glass-former models. For instance,
compare Figs. 1.2 and 1.14: it is clear that by rotating the former by 90◦ the curves
of both figures have the same qualitative behaviour. Moreover, notice that in all the
cases where the system is able to remain in the liquid phase, all curves approach the
p → ∞ limit around the same packing fraction, namely, ϕRCP ' 0.64. Such value
is evidently different from the one attained by systems with partial crystallization
in the same high p limit, as can be seen from the gap in the two groups of curves
as 1/p→ 0. This gap also mimics the analogous volume difference between a glass
and a crystal in the cases mentioned in the previous section.

Results of Fig. 1.14 also show that monodisperse HS systems in 3d have a high
propensity to crystallize. That is the reason why it is very hard to extend the
liquid branch beyond ϕm, even by small amount. Although the same happens
with other types of algorithms[95], in this case it is essentially due to the fact that
I have employed a linear compression protocol. Consider, for instance, the inset
of Fig. 1.14, which shows the difference between the pressures obtained according
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to the EOS from Eq. (1.31) and the numerically from molecular dynamics. We
can observer that even if κ is chosen so that crystallization is avoided, the liquid
surpasses coexistence region [ϕf , ϕm] just slightly. This is, in fact, a general feature
of protocols with constant compression (or cooling). As explained in detail in [9,
Sec. 3], using constant cooling rates it is impossible to avoid both the formation
of crystals and prolonging the metastable liquid phase until the glass transition
is reached. Analogously for HS systems, by using a constant compression rate the
liquid is bound either to form crystalline domains or fall out of equilibrium soon after
ϕm, and certainly before the glass transition density. To overcome this difficulty, a
common technique is to use a polydisperse mixture (so crystallization is suppressed)
and thus allow the liquid to continue for considerably higher densities8. As we will
see next, polydispersity and a clever type of Monte Carlo algorithms can be used to
explore what happens deep in the super-compressed and glassy phases. But in any
case, all the considerations so far show that HS systems can be used as a minimal
model to study the physics of glassy systems.

Let me close this subsection with a remark about the validity of the extrapola-
tions of the liquid’s EOS. Note that the EOS we considered here, Eqs. (1.28)-(1.31),
does not contain any singularity when ϕ < 1. Such singularity would identify
the end of the liquid branch, so this property is obviously unphysical, given that
all the region ϕ > ϕFCC ' 0.74 is inaccessible. More realistic relations can be
obtained from approximated EOS’s that are constructed explicitly to match the
observed behaviour in the high density regime. A myriad of proposals haven been
put forward[96], with different degrees of success, and with p developing a singular-
ity at some density ϕ ∈ [ϕRCP , ϕFCC ]. It is widely believed that such divergence
is reached at either of the interval’s extremes, but it has not been established if
p = ∞ at the random close packing or FCC densities[82,96]. However, in a recent
work[97] the authors showed that polydisperse liquids can be thermalised even when
ϕ & ϕRCP .

1.2.3 Glass phase and Gardner transition in HS systems

Let us now analyse the deeply compressed regime of HS systems. From now on, I
will assume that no order is present in the configuration, and therefore the p→∞
divergence occurs at ϕRCP ≈ 0.64, or equivalently, that the accessible jammed states
correspond to randomly arranged configurations. In other words, I will henceforth
assume that the only possible jamming density is ϕJ = ϕRCP .

To begin this part, let us consider the glass EOS[94,98,99] in d dimensions:

p(ϕ;ϕJ) = d

1− ϕ/ϕJ
. (1.32)

This equation can be derived from the free-volume approximation of the partition
function for HS, which becomes exact in the N → ∞ limit, and the condition of
forming a stable packing when particles are in contact[98]. Importantly, this EOS
depends explicitly on the jamming packing fraction. But this is natural given that

8In higher dimensions such a trick is unnecessary because the crystalline state can be effec-
tively avoided with particles of the same size, despite ordered configurations having a smaller free
energy[16].
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ϕJ marks the point where the free volume per particle vanishes. However, I want
to stress that Eq. (1.32) is not a thermodynamic EOS, i.e. it has no free energy
associated with it, nor does it incorporate any reference to the equilibrium liquid
state. Yet, it describes quite accurately the values of p and ϕ found in numerical
simulations as I will show here. I should also mention that no exact thermodynamic
EOS is known for HS in any finite d, but in Sec. 1.3.3 I will describe how such relation
is constructed within mean-field theory.
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Figure 1.15. Main: Liquid (black, dashed) and glass (red) EOS in a HS system and
its comparison with molecular dynamics simulations. Numerical results are obtained
using two different compression protocols as indicated by the legend in the plot. Inset:
Divergence of pressure, as expected from the glass EOS of Eq. 1.32. Note however that
this equation does not inform us how to obtain the density at the singularity, ϕJ .

In any case, a relevant property that is readily derived from Eq. (1.32) is that
p ∼ (ϕJ − ϕ)−1; this is an important scaling that will show up again in Secs. 1.4.2
and 2.2. The accuracy of Eq. (1.32) is put to test in Fig. 1.15, where the pressure
is computed numerically using the same protocol[94] than in the previous figure. In
order to closely follow the equilibrium branch for each value of ϕ, I used two different
compression rates. The system is initialized as a low density liquid and is compressed
relatively fast up to p = 500. In this way, a glass is formed by suppressing eventual
relaxation to the crystalline phase. Then, to simulate a well thermalised glass, a
small value of κ is used to further compressed the system, approaching the p→∞
limit. The excellent agreement between numerical estimations of p and the those
from Eq. (1.32) is outstanding, specially considering its simple form. Nonetheless,
it is important to mention that the value of ϕJ was obtained after bringing the
configuration to its jamming point using the iterative Linear Programming (iLP)



30 1. Introduction: Why do we care about jammed systems?

algorithm described in Chapter 2. It should also be considered that although these
MD simulations allow to attain very high pressures, extrapolations to 1/p = 0 might
yield a different jammed state than the one obtained using iLP. This feature will
also be analysed in Chapter 2.

On the other hand, the simple aspect of Fig. 1.15 can be misleading, given
that a very rich phenomenology is “hidden” deep in the glass phase. However, to
properly investigate this regime numerically, a special type of Monte Carlo (MC)
algorithms[97,100,101] must be used that, rather unfortunately, only work in poly-
disperse systems. The idea is that simulations are performed using the standard
MC dynamics but, after a fixed number of steps a swap between two particles is
performed with a given probability. Impressively, this type of SWAP algorithms
are able to equilibrate liquids well beyond the glass transition of various systems.
To explore the glass phase in HS configurations, once an equilibrated liquid has
been generated at ϕ > ϕg

9 an annealing compression is performed, e.g. using the
same MD protocol as above. This results in the phase diagram of Fig. 1.16, taken
from Ref. [99]. A lot of information is contained in this picture, so let us analyse
it carefully. First of all, the (estimated) glass transition density is indicated with
the star at ϕd, while the equilibrated liquid states are the green squares on top of
the liquid EOS. Each of them is then compressed into the glass region until the
jamming density is reached; notice that they follow the glass free-volume EOS, i.e.
the analogous of Eq. (1.32) but for configurations with polydispersity. However, the
most salient feature is that the glassy phase is divided in two by another transition
(red line) that takes place within such phase. This corresponds to a Gardner transi-
tion[102] –named after Elizabeth Gardner, who in [103] discovered the corresponding
phenomenon in the p-spin– that divides a region of stable glasses from one where
stability is only marginal.

Many interesting features come about inside the marginal, Gardner phase, with
the phase diagram further complexified by considering different types of potentials
and the effects of shear[104–107]. Once again however, space-time limitations dictate
that I should omit giving a detailed description and thus I only refer to the very
illuminating accounts [102] and [108]. Suffice it to say that a peculiar characteristic
of glasses in their Gardner phase is the formation of hierarchical basins in their free
energy landscapes. Off course, detecting such structure is no trivial task[109–111] and,
as explained in Ref. [99], the best signature of the Gardner transition is the appear-
ance of a peak in the fluctuations of dynamical variables. Specifically, the variance
and skewness of overlap between the displacement of two clones of a configurations.
The difference of such fluctuations is illustrated in the insets of Fig. 1.16, where
at the centre of the i-th particle a sphere is drawn, with a radius proportional to∣∣∣r(A)
i − r(B)

i

∣∣∣, i.e. the difference in displacement between two clones of the system.
The snapshot that belongs to the stable glass phase does not show any peculiar
structure. In contrast, beyond the Gardner line signatures of spatial heterogeneity
are clearly present.

Importantly, jammed states are always located within the Gardner phase. This
is not exclusive of HS system, but instead a general property of several models.

9Note that the value of ϕg depends on the amount and type of polydispersity employed. Nev-
ertheless, ϕg and ϕJ are generally larger compared to those of monodisperse configurations.
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Figure 1.16. Phase diagram of d = 3 HS polydisperse mixture. The liquid and equilibrated
glass EOS are shown in green, while the line where the Gardner Transition ensues is
shown in red. Note that this line separates the glass phase in two regions: above the
GT glasses are stable, but below they are only marginally so. This latter phase ends in
the jamming line (in blue). Markers corresponds to values obtained through numerical
simulations. See text for a more detailed discussion. Taken from Ref. [99].

Moreover, given that jammed configurations are identified with minima of the free
energy landscape, understanding its structure is a fundamental step towards build-
ing a complete theory of jamming. In the d→∞ limit of mean-field, the situation
has been carefully analysed[16,112] and theory predicts a sharp transition in the Gard-
ner line[111]. Yet, in d ≤ 3 systems the situation is less clear due to the possibility of
a crossover or an avoided transition[113,114] and is further muddled by the absence of
the marginal phase in some exemplary glass-former models[115]. Nevertheless, very
near the jamming point numerical studies are promising[3,111,116] and suggest that
the fractal, ultrametric structure of the energy landscape, predicted by mean-field
theory, remains valid.

1.3 Mean-field theory: The d→∞ limit
In this section, I will go through the main results of a recently developed mean-
field (MF) theory for glasses and jammed systems. The theory itself is a tour de
force –see e.g. Refs. [84, 111, 112, 117, 118] among others– that provides an exact
description of the transition from a liquid to a glass, as well as the physics that
ensues near and at the jamming point. In other words, it is an exact theory of the
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glass and jamming transitions. Furthermore, it also provides an accurate account
of what happens as a system goes across such transitions, through its glassy phase.
Naturally, the Gardner transition (GT), introduced in the end of the last section,
is the most important feature that a glass stumbles upon in such path. Actually,
the GT was first predicted and verified in MF models[110,112] and later discovered
in other glass formers.

Yet, the cost paid for exactness is that systems are assumed to have very high
dimensionality. It is undoubtedly intriguing that the d → ∞ limit renders a given
scheme more tractable and makes possible an analytical treatment. Hence, in this
section I will try to give a very summarized account of why this is so. Happily for
the curious reader, this MF theory has been recently put together in a coherent, self-
contained, and pedagogical form in Ref. [16]. A short and very nice review is also
available in Ref. [104], which conveniently focuses on HS systems in large dimensions,
and therefore I will follow it in the rest of this section (except in Sec. 1.3.1 which
is based on Ref. [16]). Besides, adhering to its spirit (and further shortening the
theory) I will not present any details of the calculations involved, but will mostly
restrict myself to showing how many of the phenomena that have been described in
this chapter are the “low dimensional reminiscence“ of the MF predictions.

1.3.1 Liquids in high dimensions

In my opinion, the first thing that needs to be explained is why the high d regime
simplifies the analysis of liquids and glasses. However, this is not an exclusive
property of this kind of systems. For instance, consider N Ising spins, ~S = {Si}Ni=1
with Si = ±1, whose Hamiltonian is given by

H
(
~S
)

= −1
2

1,N∑
i,j

JijSiSj −
N∑
i=1

BiSi, (1.33)

where Bi is a local field acting on the i-th spin. Jij = Jji are the exchange couplings
between spins i and j, and naturally Jii = 0. Eq. (1.33) is very general, since
it can describe many spins systems with pairwise interactions by the appropriate
choice of couplings. For instance, fully connected models are such that Jij 6= 0
for all i 6= j, while the a graph or lattice structure can be easily included by
setting Jij 6= 0 if an edge connects spins i and j, and Jij = 0 otherwise. An
important case is the d-dimensional cubic lattice, where each spin interacts with its
2d nearest neighbours. It is a well known result from statistical mechanics that the
free energy of the system, F , can be expressed, in principle, as a function of the
configuration’s local magnetizations, ~m = {mi}Ni=1, with mi = 〈Si〉. This means
that, thermodynamically, the configurations observed in such spin system are the
ones that produce a given ~m? such that the free energy is minimized. That is,
~m plays the role of an order parameter and the configurations that dominate the
statistics are the ones satisfying

∂F (~m)
∂mi

∣∣∣∣
~m?

= 0, ∀i = 1, . . . , N . (1.34)

Of course, finding a closed expression for F (~m) is extremely difficult, if not im-
possible, even in simple cases, making the equation above unusable. Resorting to
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approximations is thus unavoidable. Among the several possibilities, high temper-
ature (small β) expansions are quite fruitful. For instance, considering terms up to
order β3 it can be shown[119] that

−βF (~m) = −
∑
i

[1 +mi

2 log 1 +mi

2 + 1−mi

2 log 1−mi

2

]

+ β

1
2
∑
i,j

Jijmimj +
∑
i

Bimi

+ β2

4
∑
i,j

J2
ij(1−m2

i )(1−m2
j )

+ β3

6

2
∑
ij

J3
ijmi(1−m2

i )(1−m2
j ) +

∑
i,j,k

Ji,jJikJjk(1−m2
i )(1−m2

j )(1−m2
k)

 .
(1.35)

In the case a cubic lattice of dimension d, with an uniform external field, and
setting10 Jij = 1

2d , the situation is considerably simplified: translational invariance
indicates that mi = m ∀i. The expression above then reads

F

N
= − 1

β
s0(m)− 1

2m
2 −Bm− β

8d(1−m2)2 − β2

12d2m
2(1−m2)2 . (1.36)

I have introduced s0(m) = −
[

1+m
2 log

(
1+m

2

)
+ 1−m

2 log
(

1−m
2

)]
to denote the en-

tropy associated to a single spin. Comparing Eqs. (1.35) and (1.36) it is easy to
conclude that the d→∞ limit is equivalent to the β → 0 one. Moreover, the series
in powers of 1/d maps precisely to the high temperature expansion. And given that
for high T the phenomenology is usually much simpler, this analogy suggests that
by considering large values of d theory might end up being more tractable.

In the case of liquids the advantages of a large d are even clearer. To see why,
let first us consider the virial expansion of the free energy. Combining Eqs. (1.12)
and (1.14) we have that

− βf(ρ, T ) = −βf(id)(ρ, T )−
∞∑
n=2

Bn
n− 1ρ

n−1 . (1.37)

Of course, some clarification is in order to ease the (reasonable) doubts as to why
we can use a set of 3d equations to describe large dimensional systems. First of
all, we should consider that just as in the spin systems the free energy can be
written in terms of ~m, in liquids theory F can be expressed as a functional of the
systems density, F [%(~r)]. The formalism thus obtained, termed density functional
theory, is very powerful and actually easily generalizable to an arbitrary number
of dimensions[16,81]. The analogies with spin systems are indeed deep, since the
equilibrium thermodynamic state can also be found as the density profile %(~r)? that
makes the (functional) derivative of F vanish, i.e.

δF [%(~r)]
δ%(~r)

∣∣∣∣
%(~r)?

= 0 .

10This choice guarantees that the interaction energy remains extensive in the thermodynamic
limit, and of the same magnitude as the external potential.
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Moreover, if we impose that solutions to the equation above should be uniform and
isotropic, crystalline states can be readily discarded. And indeed it can be shown
that F [%(~r)] is minimized by %(~r) = ρ, that is, by a system with uniform density[16].
Notice that this is just mimicking the homogenous solution mi = m ∀i discussed
above by enforcing an uniform external magnetic field.

Hence, once that we know that F can be expressed, for any d, as a function of
the system’s density, it is natural to write it as the series expansion of Eq. (1.37).
Clearly, the values of the virial coefficients Bn depend, in general, on the dimension-
ality of the system and the interaction potential. But nevertheless, for sufficiently
low densities and high temperatures, such virial expansion should be reasonably
accurate.

The charm of the high dimensional limit is that it allows to truncate the series
just after the first virial term. More precisely, if the density of the system does
not scales exponentially with d, it can be shown that B2 dominates the whole se-
ries. Therefore, under these conditions it is possible to only consider the ideal gas
contribution and the first virial coefficient to obtain the free energy, and concomi-
tantly the EOS. Besides, the value of B2 is known exactly for HS systems in any
dimensions:

B2 = 1
22dVd ; Vd = πd/2σd

2dΓ(1 + d/2) . (1.38)

In this last expression, Vd is the volume of a d-dimensional hypersphere of diameter
σ and Γ is the Gamma function. Introducing the rescaled packing fraction,

ϕ̃ = 2dϕ = 2dρVd,

we have that, for any d, the free energy and (reduced) pressure are, to leading order,

−βf(ρ, T ) = −βf(id)(ρ, T )− ϕ̃

2 , (1.39a)

p(ρ) = 1 + ϕ̃

2 . (1.39b)

The proof[16] of this result involves (i) identifying the different terms of the
virial expansion as (irreducible) Mayer diagrams; (ii) showing that ring diagrams
dominate at each order; and (iii) that their contribution to the n order of the free
energy is such that

|fn| ∼ ϕ̃n−1
(

nn−2

(n− 1)n−1

)d/2
.

Now, because for n ≥ 3 the term in parenthesis is smaller than 1, |fn| → 0 as
d → ∞. This means that Eqs. (1.39) are actually exact if conditions (ii) and (iii)
can be met. Or, in other words, if the series (1.37) is convergent. Currently, a lower
bound of its convergence radius is known: ϕ̃(conv) ≥ 0.145. Within the interval
ϕ̃(conv) ≤ ϕ̃ < 1 the series is conjectured to be convergent, while if 1 < ϕ̃ < eγd

with γ < (1− log 2)/2 the series is divergent, but this would imply that the packing
fractions grows exponentially with d. Nonetheless, even in this case resuming the
virial expansion results in a series that to leading order also agrees with Eqs. (1.39).



1.3 Mean-field theory: The d→∞ limit 35

Importantly, very similar results hold for several other potentials, like LJ and SS
whose interaction is a power-law of the overlap between them. See [16, Sec. 2.3] for
details.

1.3.2 Dynamics and the glass transition

We have seen that the thermodynamics of liquids in high d can be solved ex-
actly. But another important feature of the MF theory is that also the dynamics
is amenable to an exact treatment[120]. As a major outcome, the glass transition
comes about within this perspective as a sharp dynamical transition. As we will see,
in finite d systems such transition is blurred due to the finite lifetime of metastable
states. Nevertheless, many of the phenomena described in Sec. 1.1 can be under-
stood as the manifestation of the (avoided) large d transition.

The solution begins by considering that particles follow a Langevin dynamics,
with a friction term ζ and white noise ξ with zero mean and variance

〈
ξµi (t)ξµ

′

j (t′)
〉

=
2Tζδijδµµ′δ(t − t′). Whenever equilibrium can be reached an important result fol-
lows: the long time limit of the MSD (∆) can be used as the order parameter
relevant to the dynamic transition. Let me briefly describe the argument. First,
the equilibrium assumption is important to guarantee that both time translational
invariance and the fluctuation-dissipation theorem hold. If this is the case, it can
be shown[104,120] that the dynamics of the MSD is given by

m̂∆̈(t) + ζ̂∆̇(t) = T − β
∫ t

0
duM(t− u)∆̇(u) . (1.40)

Here m̂ = σ2m/(2d2) and ζ̂ = σ2ζ/(2d2) are the scaled mass and drag coefficients.
Such rescaling with d is important in order to keep the variables finite as d → ∞.
For later use, let me now introduce the scaled packing fraction

ϕ̂ = 2dϕ/d = ϕ̃

d
. (1.41)

On the other hand, M(t) is a memory kernel that is determined self-consistently by
solving the following equations:

m̂ÿ(t) + ζ̂ ẏ(t) = T − ṽ′[y(t)]− β
∫ t

0
duM(t− u)ẏ(u) + Ξ(t) (1.42a)

M(t− t′) = ϕ̂

2

∫
dy0 exp(y0 − βṽ[y0])

〈
ṽ′[y(t)]ṽ′[y(t′)]

〉
Ξ ; (1.42b)

where ṽ(d(x− σ)) = v(x) is the rescaled potential and ṽ′ its derivative. Additionally,
the effective noise is correlated as 〈Ξ(t)Ξ(t′)〉 = 2ζ̂T δ(t− t′) +M(t− t′). Note that
in this way, instead of dealing with dN degrees of freedom, a single one is needed:
y(t). Its dynamics is driven by an effective potential ṽ[y(t)]−Ty(t) and is influenced
by the presence of coloured noise, whose memory kernel M is determined by the
force-force correlation[104].

From these equations a series of far-reaching predictions arise. First, there is
a density ϕ̂d at which a dynamical glass transition occurs. This is characterized
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by the fact that the t → ∞ limit value of the MSD remains finite. Thus, let11
∆EA ≡ limt→∞∆(t) < ∞. Importantly, MF theory is able to predict both ϕ̂d and
∆EA. In fact, it is found that ϕ̂d = 4.807. Because ϕ̂ = ϕ̃/d, for sufficiently large
d this packing fraction is clearly within the interval where Eqs. (1.39) are exact.
Besides, the fact that the long time limit of the MSD remains finite implies that
a given configuration can never escape the a region whence it departed, and thus
remains out of equilibrium. The size of that region is measured by ∆EA.

Second, from the scaled diffusion constant D̂ = 2d2

σ2 D and viscosity η̂ = 2dVd
d2 η

an expression resembling the Stokes–Einstein relation can be obtained:

D̂ = T

ζ̂ + β
∫∞
0 duM(u)

η̂ = βϕ̂
∫∞

0 duM(u)

 =⇒ D̂ = T

ζ̂ + η̂/ϕ̂
. (1.43)

In the glass state, the configuration keeps memory of its initial state for arbitrarily
long times. In other words, MEA ≡ limt→∞M(t) > 0. When this happens, the in-
tegral of the expressions above clearly diverges and therefore diffusion is suppressed
and the viscosity becomes infinite. This is a sharpened analogy of the drastic in-
crease in the viscosity discussed in Sec. 1.1. Interestingly, notice that even in this
case, a sort of Stokes–Einstein relation remains valid, D̂η̂ ∼ T ϕ̂.

Another important outcome is that, for ϕ . ϕd, the way the MSD approaches
and leaves its plateau value is different, namely,

∆(t) ' ∆EA −At−a, (1.44a)
∆(t) ' ∆EA +Btb . (1.44b)

Note the very close resemblance with Eq. (1.5) for the intermediate scattering func-
tion, F (q, t), derived from MCT. Eq. (1.44) also captures the two steps relaxation
discussed above, and illustrated in Fig. 1.5a. Moreover, the two dynamical critical
exponents a and b are related through Eq. (1.6), the same equation as in MCT.
Importantly, for HS systems the ratio of Gamma functions defining the dynamical
critical exponents can be compute exactly[112]. It equals 0.707, whence it follows
that a = 0.324 . . . and b = 0.629 . . . .

Another signature of the transition is obtained by analysing the behaviour of
the four-point susceptibility

χ4(t) = N
[
∆2(t)−∆(t)2]

,

near ϕd. Theory shows that χ4 diverges as ϕd is approached from either the glass
phase (as (ϕ − ϕd)−1/2) or from the liquid. In this latter scenario, however, it
happens that χ4 is peaked at τα, which also diverges as ϕ → ϕ−d . (Compare with
Fig. 1.9.) The form of this divergence can also be deduced analytically, τα ∼ η̂ ∼
(ϕ̂d − ϕ̂)−γ , with γ = 1/(2a) + 1/(2b).

In finite d however, no real transition comes about. This is caused by the fact
that activation processes help to overcome dynamical arrest and, therefore, a config-
uration eventually escapes the basin whence it departed. That is, metastable states

11The notation, now somewhat spread, honours Sam Edwards and Philip W. Anderson who in
1975 discovered an analogous order parameter in the theory of spin glasses; see [121].
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can only persist indefinitely in a large d description, where energy barriers are al-
ways high enough to prevent relaxation towards equilibrium. Fortunately, many of
the MF predictions remain qualitatively valid in low dimensional systems, due to
the fact that activation processes are exponentially suppressed when increasing d.
Furthermore, several of them have already been put to test in finite d systems since
they coincide, or at least mimic, the predictions of MCT, which precedes MF theory.
Some of the most important findings of this latter approach are: (i) as d increases,
the range of validity of the power-law divergence of τα is extended; (ii) estimations of
λ constantly approach the predicted value as systems increase their dimensionality;
(iii) the product D̂η̂ seemingly converges to the modified Stokes-Einstein relation
for higher d. See [104, Fig. 1] for a summary in d = 3− 8.

1.3.3 Thermodynamics of mean-field glasses

Let us now describe what happens beyond ϕ̂d. Because diffusion is absent, there is
no need to explicitly solve the dynamics and a statistical mechanical approach can
be used instead. Once again, the relevant order parameter will be the long time limit
of the MSD. As we will shortly see, the thermodynamic analysis is based on the fact
that equilibrium configurations can be used to define, and follow, glassy states. The
emphasis should warn about the fact that this is a strong assumption because, by
definition, configurations cannot be equilibrated in the glass phase. Indeed, we just
discussed that beyond ϕ̂d the relaxation time diverges. Nevertheless, as a purely
theoretical resource we can assume that equilibrated glasses exist (because they
were prepare in such state since the beginning of time) and that we are fortunate
enough to have some of them at hand for us to study. More realistically, as long as
d <∞, τα will never be infinite and thus equilibration beyond ϕ̂d can be realized. As
discussed in Sec. 1.2.3, one way of doing so is through MC-swap type of algorithms,
which exploit an extended phase space to equilibrate systems at densities that would
be otherwise unreachable. An even more important step in the “realism ladder” is
accomplished via the ultra-stable glasses generated experimentally through vapour
deposition[122]. Finally, see Sec. 2.2.2 for an example of a MF model in which
equilibration can be reached by a technique called planting. Hence, we can say that
using equilibrated glass configuration is a strong, but plausible assumption.

So, let ~s be one of such equilibrated glasses, with a density ϕ̂g > ϕ̂d and pressure
pg

12. We want to argue that~s can be used to precisely identify metastable states and
to study their thermodynamics. In a first scenario, it will be the initial condition
for a trajectory, ~r(t), with ~r(0) = ~s and the same packing fraction, that evolves
according to the Langevin dynamics of the liquid, as mentioned above. Given that
beyond ϕ̂d the dynamics is arrested, the distance of ~r from such reference state will
be finite, even for long times; i.e. lim

t→∞
|~r(t)−~s|2 = ∆r < ∞. In other words, this

means that the glass is unable to escape the region of phase space around~s. Now as a
second scenario, let once again ~r(0) = ~s but of a configuration with different density
ϕ′ 6= ϕg and pressure p′ 6= pg. Then the long time limit of the distance between
such compressed (or decompressed) configurations can be shown to be finite, ∆′ ≡

12Note that because it is an equilibrium state, once ϕ̂g is given, the corresponding pressure is
automatically determined through the EOS. Thus, I will avoid making explicit reference to pg.
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lim
τ→∞

(
lim
t→∞

∆[~r(t+ τ),~r(t)]
)
< ∞, where ∆[~r1,~r2] = d2

Nσ2
∑N
i=1 |x1,i − x2,i|2 is the

mean squared distance between configurations ~r1 and ~r2. That is, ∆r measures
the change in the configurations with respect to a reference one, while ∆′ measures
the change between configurations compressed up to ϕ̂′. Therefore, a glass state
is determined by the values of (∆′,∆r) because they specify the set of (isolated13)
configurations whose mutual distance is ∆′, and are ∆r apart from the reference
state.

Once we have seen how to identify glass states by specifying ~s and ϕ̂g, as well
as the characteristic distances ∆r and ∆′, we can define a probability density con-
strained by the values of these variables. This density will thus determine how
configurations ~r with a density ϕ̂′, and a distance ∆r away from ~s, are sampled.
More precisely,

P (~r, ϕ̂′|~s, ϕ̂g) = e−βH(~r;ϕ̂′)

Z[∆r, ϕ̂′|~s, ϕ̂g]
δ(∆r −∆[~r,~s]) ;

Z
[
∆r, ϕ̂

′|~s, ϕ̂g
]

=
∫

d~r e−βH(~r;ϕ̂′) δ(∆r −∆[~r,~s])
(1.45)

We can then compute the free energy associated to the metastable state selected by
~s from

f[∆r, ϕ̂
′|~s, ϕ̂g] = − 1

Nβ
logZ[∆r, ϕ̂

′|~s, ϕ̂g] . (1.46)

Certainly, there is nothing special about ~s since there are many possible equilib-
rium configurations with the same density ϕ̂g. Hence, the real thermodynamic free
energy is given by averaging Eq. (1.46) over all such possible initial configurations,
conditioned by the values of ϕ̂g and ∆r. Performing such average we obtain the so
called Franz–Parisi (FP) potential[16,35]:

VFP(∆r, ϕ̂
′|ϕ̂g) = f[∆r, ϕ̂′|~s, ϕ̂g]

~s = − 1
Nβ

∫
d~s e

−βH(~s,ϕ̂g)

Z[ϕ̂g]
logZ[∆r, ϕ̂

′|~s, ϕ̂g],

(1.47)
where Z[ϕ̂g] =

∫
d~s e−βH(~s,ϕ̂g) is the equilibrium partition function. Despite its

rather abstract construction, the FP potential can actually be computed explicitly
through the replica method[78] and thus employed to analyse the stability of the
states selected by ~s. In fact, it is this latter step what introduces the dependence
on ∆′ as distances between replicas are considered. Once such computation has
been carried out, the thermodynamics follows in the usual manner. That is, if
VFP(∆r, ϕ̂

′|ϕ̂g) has a minimum at ∆r, then it is very likely that some metastable
states are found within a distance ∆r from ~s. In contrast, if VFP has no minimum,
then states are not trapped around ~s for long times, i.e. the system is a liquid.

Another advantage of the FP potential is that the EOS in the glass phase can be
obtained via the relation p = ϕ̂′ ∂(βVFP)

∂ϕ̂′ . The first important instance is clearly ϕ̂′ =
ϕ̂g, in which case the resulting EOS corresponds to the pressure of the equilibrated
glass, i.e. a liquid in equilibrium beyond ϕ̂d. In other words, the pressure in this

13They are isolated because glassy states belonging to difference reference states cannot approach
each other. That is, (ϕ̂g, pg) define a basin –since it is an equilibrium state– isolated from basins
with different densities and pressures.
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situation corresponds to the continuation of the liquid’s EOS beyond ϕ̂d. This
means that, thermodynamically, the liquid is replaced by a set of glassy metastable
states, all with density ϕ̂g. The surprising result is that each of such metastable
states has a pressure that equals the one the liquid would have at that density.
The second relevant scenario is the behaviour of p upon adiabatic compression,
for a fixed reference state ϕ̂g. That is, we want to explore what happens as ϕ̂′
changes infinitely slowly, from a fixed reference density ϕ̂g. In contrast to the free-
volume EOS of a introduced in Eq. (1.32), the MF approach allows to obtain the
true thermodynamic EOS. Conceptually, this is evinced by the fact that the FP
potential depends explicitly on equilibrium quantities (through ϕ̂g), and on “how
faraway from equilibrium” we have driven the system (through ∆r and ϕ̂′). As
mentioned above, no such information is contained in Eq. (1.32). Another relevant
difference is that, while for finite d systems the curves finish at the equilibrium
EOS, the construction obtained through the FP potential shows that the metastable
glassy states can be decompressed beyond such equilibrium line. In other words,
the system presents hysteresis. Each of these (out of equilibrium) glassy EOS ends
at an spinodal point. The behaviour of the EOS is depicted in Fig. 1.17. Note that
the reference glass states (grey squares) fall on the continuation of the liquid EOS.
On the other hand, the dashed lines, above (resp. below) the solid one, correspond
to the glass EOS obtained by adiabatic compression (resp. decompression) or,
analytically, through the FP potential. The glass phase is delimited on one side by
the jamming line at p =∞, but before this boundary is met, the Gardner transition
ensues as we will discuss in the next part. Before concluding, note the very close
resemblance of this figure with its d = 3 counterpart, Fig. 1.16.

To recap, what we have seen in this part is that a glass prepared in equilibrium
at a given density ϕ̂g > ϕ̂d and pressure pg, can be used to follow the evolution of
glass states up to a target (ϕ̂′, p′). These two states are connected through (i) the
typical distance (∆r) between the reference configurations at (ϕ̂g, pg) and the target
one; and (ii) the typical distance (∆′) between different states with the same target
(ϕ̂′, p′) . Such distance is necessarily finite, because diffusion is suppressed in the
glass phase, and consequently states can never get too far from their departing point.
In other words, metastable glasses remain stuck near the equilibrium state used as
reference. This is important because the t→∞ limit of dynamical observables, as
well as thermodynamical variables, can thus be computed by defining a probability
density in phase space, conditioned on the values of ϕ̂g, pg, and ∆r. This procedure
is what the Franz–Parisi construction is about[16].

1.3.4 Gardner Transition and fractal free energy landscape

I have just mentioned that the FP potential is computed through the replica method.
More precisely, a 1-step Replica Symmetry Breaking (RSB) solution is found near
the equilibrium line of glassy states. This solution always exists but, as the systems
is further compressed to ϕ̂G > ϕ̂g, it becomes unstable and is replaced by a fullRSB
one. This scenario is akin to the Gardner transition (GT) found in the mean-field p-
spin model[103,124] and constraint satisfaction problems[125]. Very loosely speaking,
a k-step RSB implies that there are k order parameters involved in the computation
of the free energy. In turn, in a fullRSB scheme there is a continuum set of order
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Figure 1.17. Phase diagram of HS systems in the d → ∞ limit. Liquid and equilibrated
glassy states fall on top of the black solid line. Glasses in equilibrium can be compressed
or decompressed beyond the equilibrium line through state following (dashed lines).
Deep in the glass phase, a Gardner Transition takes place (blue line), rendering the
glasses marginally stable. Such marginal phase ends in the jamming line (red). See the
close resemblance with Fig. 1.16. Taken from [104]; see also [123].

parameters. For the cases of glasses in particular, this feature applies to the MSD,
which still acts as the order parameter. Importantly, this also determines how the
states are organized within a basin, as I will explain next.

Let me first consider the case of the FP potential when the 1RSB solution is
stable. In such situation, an equilibrium configuration corresponds to a minimum
of the energy landscape and thus can be used to identify a basin. Metastable glassy
states associated to it are then recognized as the configurations within a typical
distance of ∆r = ∆1 from the equilibrium state. Let me now assume that the
transition is such that, beyond a certain density, the new stable solution corresponds
to a 2-step RSB. In this scenario, the equilibrium configuration would still define
a basin, although one with richer structure, since smaller sub-basins would appear
within it. Glassy states would now be determined by two order parameters –i.e.
values of the MSD–, namely ∆1,2 with ∆2 < ∆1. This means that if two metastable
states are part of the same sub-basin, then their typical distance would be ∆2, while
if they belong to different sub-basins they will be apart ∆1. This process can clearly
be generalized to a k-step RSB solution, and is illustrated in Fig. 1.18 for the case
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of k = 4. So, for a given level k of RSB, basins are divided into a hierarchy of k
sub-basins and glassy states are specified according to the set of order parameters
{∆k,∆k−1, . . . ,∆1} as possible values for the MSD. Because these values are such
that ∆m < ∆m−1, glassy states are said to be ordered hierarchically. These means
that if two configurations, ~r1 and ~r2, belong to a common n-level sub-basin, then
∆[~r1,~r2] = ∆n < ∆n−1 < . . .∆1. Hence, if another configuration ~r3 is such that
∆[~r1,~r3] = ∆m, i.e. shares with ~r1 a m-level sub-basin, with m < n, then it most
also happen that ∆m > ∆n. Importantly, note that because of the hierarchical
structure, it follows that ∆[~r2,~r3] = ∆m. In general, we can therefore conclude that
for any triplet of configurations, ~r1,~r2,~r3, the following relation holds,

∆[~r1,~r3] ≤ max (∆[~r1,~r2],∆[~r2,~r3]) . (1.48)

In other words, the metastable glassy states have an ultrametric structure.

Figure 1.18. MF picture of the fragmentation of the phase space at different densities.
In the stable glass phase, i.e. for ϕ̂d < ϕ̂ < ϕ̂G, the phase space is clustered into
disconnected basins, each of which defines a (metastable) glass. For ϕ̂ > ϕ̂G, i.e. in
the Gardner, marginal phase, each basin is decomposed into a meta-basin. This means
that a hierarchy of sub-basins appears (only 4 levels shown), furnishing an ultrametric
structure to the phase space. Taken from [104].

A fullRSB scheme is the k → ∞ generalization of the processes just described.
Hence, basins that appeared featureless under the 1RSB solution are transformed,
as the GT takes places, into meta-basins; i.e. a hierarchy of sub-basins within sub-
basins. Such meta-basins are not only hierarchical, but also ultrametric according
to Eq. (1.48). Even more, the free energy landscape acquires a fractal structure[111]
as a consequence of the infinite sequence of decomposition of a single basin into ever
smaller sub-basins.

Naturally, the precise value of ϕ̂G depends on the density ϕ̂g at which the equili-
brated glass was driven away from equilibrium. This is clear from the (conditional)
dependence of VFP on ϕ̂g in Eq. (1.47). However, any equilibrium glass that is suf-
ficiently compressed will undergo a GT sooner or later, independently of its initial
value of ϕ̂g 14. This is seen in Fig. 1.17 as the blue line running across the full glass
phase. Now, as if all the intriguing features described in the previous paragraphs
were not enough, there are a couple of extra properties that come about in the Gard-
ner phase: dynamical heterogeneity and marginal stability. The first one is related
to the fact that, beyond ϕ̂G, particles vibrate around non-fixed positions, although

14At least in the case of HS systems, although the situation can be much more complicated for
other potentials or in presence of shear; see Refs. [123, 126, 127].
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their displacement is very slow. The amplitudes of such vibrations show correlation
over large regions and these glasses are considerably more heterogeneous than when
the density is such that ϕ̂g < ϕ̂ < ϕ̂G. This is an important finding because the
standard picture of a featureless basin is unable to explain the short timescales of
inter-basin relaxation observed deep in the glass phase[111]. Consider also the insets
of Fig. 1.16 where the contrast in the mobility fluctuations below and above the
Gardner line is shown.

On the other hand, the marginality of glasses in the Gardner phase is a direct
consequence of the fact that at least one eigenvalue of the stability matrix, obtained
by computing the replicated entropy, is zero[118]. Physically, this is revealed by
the fact that χ4 = ∞ throughout this phase: a result that, by the way, is also
inconsistent with the simple basin picture[111]. A diverging four-point susceptibility
thus signals the marginal stability of glasses because it implies that they respond
abruptly even to infinitesimal perturbations. As we will see next, this have deep
consequences for the jamming transition. The criticality of this last transition is
characterized by three non-trivial exponents (θ, γ, κ) and is caused by the fact that
jammed states are always situated in the marginal phase. It has been a major success
of MF theory to be able to predict all three exponents. The role of the first two
will be thoroughly discussed in the next section. For the third one, suffice it to say
that it equals κ = 1.4157 and that it controls the rate at which the innermost basin
shrinks, as the system is compressed towards its jamming point[104,111], ∆ ∼ p−κ
15. Its value also determines the fractal dimension of the free energy landscape, it
is[111] 2/κ ≈ 1.413.

1.4 The jamming transition

We thus finally arrive at the jamming transition. I would like to begin by stressing
that the glass and jamming transitions are different. I hope that, by comparing
the material from the previous sections to the current one, it becomes clear that
the physics of both phenomena markedly differ. When discussing the glass transi-
tion above, much emphasis was put on dynamical variables, relaxation times, etc.
At jamming, such properties make no sense because there is no dynamics what-
soever16. Moreover, not even in the vicinity of the jamming transition should the
same features arise, if only, because jammed states are contained in the marginal
glass phase. That is, the Garner transition (see Secs. 1.2.3 and 1.3.4) separates
glasses and jammed configurations. Naturally, also the variables of interest will
be different. For instance, I will discuss about the critical scalings of the energy,
pressure, bulk and shear moduli, etc. in Sec. 1.4.2, while in Secs. 1.4.4 and 1.4.5
microscopic structural variables such as contact forces and interparticle gaps will
be considered. As I will show in Sec. 1.4.3, these latter quantities are perfectly well
defined at jamming and their value is obviously fixed. But how could the analogous
structural variables, with the same precise definition, be defined in a glass? In any

15Note that this scaling contrasts with the ones expected for a normal glass, ∆ ∼ p−1, or a
crystal, ∆ ∼ p−2.

16This is not strictly true if a finite temperature is present. However, I will only consider jammed
packings at T = 0 or as T → 0.
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case, before beginning, I want to explicitly state that many of the critical properties
I discuss next apply to what has been termed isostatic jamming point.

1.4.1 All the roads lead to jamming

Throughout this chapter, the path I have followed is clearly the one of HS glass for-
mers as they are compressed deep in their glass phase. Yet, the jamming transition
would also be a “stop” if the journey had proceeded instead by analysing SS. But
not only. As I will discuss next, the jamming transition is shared by a wide variety
of systems and under a broad range of circumstances; recall Fig. 1.1. What is more,
several of its peculiar critical properties are common to all these systems as well.
In other words, jamming is a critical point where physics from diverse systems and
models coalesces. In this section, I will consider configurations of both SS and HS,
favouring the first type because calculations are more transparent with such model.
But the next chapter will be entirely devoted to HS configurations. This should
not be taken as an example that jamming is only relevant for spheres. Quite the
opposite. But systems made out of spherical particles are a very convenient minimal
model to explore the non-trivial phenomenology that comes about near and at the
jamming transition. As expected, when more complicated shapes or scenarios are
considered, the phenomenology is even richer.

As a first standpoint, jamming can be considered as a purely mathematical
satisfiability problem[6,128,129], namely, that of finding possible packings of non-
overlapping identical spheres. As simple as it may sounds, it encompasses very hard
problems, such as, finding the densest possible packing (also called close packing)
in an arbitrary dimension d. The archetypical example is the d = 3 case, for
which Kepler conjectured four centuries ago that the maximum possible density
was, precisely, ϕmax,3d = ϕFCC = π/

√
18 ≈ 0.74. Yet, a complete proof was made

available less than 30 year ago by Hales[83]. Even the “much simpler“ analogous
problem for disks was completely solved not earlier than 1940[6]. In this case, the
largest packing fraction is attained by placing the disks in a triangular lattice; it
yields ϕmax,2d = π/

√
12 ≈ 0.907. Besides these two results, and the trivial one

ϕmax,1d = 1, the value of ϕmax is only known for d = 8 and d = 24[16]. Importantly,
in all these cases the optimal value of ϕmax is realized by using Bravais lattices.
In other dimensions the situation is identical: all the maximal density packings
known correspond to periodic arrays; see [16, Chp. 8] and references therein for a
detailed account. With this in mind, the question “what is the maximum density
that random packings can attain?” seems more than challenging. Of course, such
a question is not well posed until a proper definition of random is given. And once
again, this is no trivial task. See, e.g., [6] for an excellent review of the many
intricacies of defining “disorder metrics”, as well as many other properties that are
relevant for analysing jammed configurations, both of spherical and more complex
shapes.

On the other hand, the mathematical approach pays little attention to how
often a given possible packing is actually found empirically17. And while it is true

17I avoided making any reference to what is found in nature, because it is clear that packings
in d ≥ 4 would be thus irrelevant. However, considering dimensions other than 2 and 3 is very
relevant (and doable) in numerical experiments and in theoretical models. Thus, I will refer to
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that regular structures and crystals are common in our daily lives (e.g. salt), it
is also true that the most common structures are in fact disordered. Therefore,
from a physical point of view, analysing packings without any visible periodicity
or long-range order is very relevant. Besides, random packings thus produced can
also be thought of as instances of a satisfiability problem, in the mathematical
sense. It is nonetheless astonishing that many of the features of such random close
packings (RCP) are very robust and easily reproducible. Here, an intuitive notion of
randomness is actually enough. For instance, consider spheres placed via a Poisson
process in a fixed volume and at a density large enough that many of them initially
overlap. The position of each sphere is independent of the others, so obviously no
correlation is expected in their locations. If an interaction energy is introduced
between pairs of overlapping spheres, it is clear that by finding the ground state18 a
valid jammed packing is obtained. And because the initial condition was random,
so will be the final configuration with very high probability. Experimentally, the
situation is, in principle, straightforwardly feasible. Consider placing the spherical
beads in a large container and tapping or vibrating it until no rearrangements take
place. Clearly, no order is expected in the particles positions after such process. And
yet, experiments done with hundreds to tens of thousands particles[130,131], as well as
numerical simulations in several dimensions and with different protocols, show that,
on average, the properties of the packings thus produced are surprisingly similar.
The most important examples are the packing fraction and the average coordination
number z. In d = 3 for example, all the instances have approximately the same
value, ϕRCP ≈ 0.64 –recall Fig. 1.14 or the experimental results reported in [131]–
and z ≈ 6. These findings, as well as several others[6,84], motivate an ensemble
approach when considering jamming of RCP configurations. That is, the study of
jammed packings of configurations that are most likely to be observed empirically.
I will adopt such approach in this work since it is particularly useful for the type of
systems I will consider; see however Refs. [132, 133] for a more detailed discussion.
Furthermore, given that only disordered configurations will be considered, I will
implicitly assume that any jammed packing is an RCP instance of the ensemble
and, henceforth, use ϕJ instead of ϕRCP .

Additionally, the ensemble approach is well suited for studying athermal sys-
tems, such as grains, beads, sand, etc. The reason is that it allows to apply, in
theory, the full methodology of statistical mechanics. This approach was pioneered
by Sam F. Edwards19, and is nicely reviewed in Ref. [134]. The basic idea is that,
within such framework, all the relevant observables can be computed as ensemble
averages of an appropriately defined probability measure. As a result, it is possible
to define metastability of jammed states (by considering the changes in packing frac-
tion resulting from particle displacements); compute the configurational entropy of
packings; as well as to identify a hierarchy of basins connected through their degree
of constraint. Interestingly, this method shows a very close correspondence with
classifications relying mainly on mathematical aspects, such as the so called local,

both results coming from experiments and simulations as empirical.
18In practice, the situation is more complicated because besides an energy minimization, the

particles’ size should be simultaneously decreased. Nevertheless, several algorithms exist that can
accomplish such task in configurations of tens or even hundreds of thousands of spheres.

19Yes, the same Sam F. Edwards of the Edwards–Anderson order parameter of Sec. 1.3.2.
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collective, and strictly categories of jamming[6]. Even more, it can be shown that the
ground states of jammed granular materials are in an analogous fullRSB phase, just
like glass formers (see Sec. 1.3.4), thus demonstrating that what connects jamming
of these two type of systems is not just a mere analogy, but their underlying ther-
modynamical properties. Similarly, several of the scalings present at the jamming
transition (see Sec. 1.4.2) are also found in soft materials such as foams, colloids,
and emulsions[4].

Figure 1.19. Liu–Nagel phase diagram. It sketches that the jamming transition can be
identified with a critical point –common for several systems and reachable by tuning
different physical variables– the so called “J-point”. Note however that the distinction
between glasses and jammed states is not clear from this particular plot. Taken from
[4], after the proposal in [135, 136].

Jamming thus seems to be rather pervasive, on the one hand, while it consis-
tently exhibits the same features, on the other. This latter point will be discussed
in the following sections, but before doing so, it is worth asking why the jam-
ming phenomenology is so persistent in so many diverse systems. In their seminal
works[135–137], Liu, Nagel and co-workers provided an answer of far-reaching conse-
quences: jamming is ubiquitous because it is a common critical point (also termed
J-point) of all this kind of systems. This behaviour can be illustrated using the
so called Liu–Nagel plots, as the one shown in Fig. 1.19. From this perspective it
becomes clear that, although different systems reach jamming by tuning different
physical variables, several properties near and at the onset of jamming are shared by
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all of them. It is also worth mentioning that equivalent results can also be derived
from MF theory, as in, e.g, [126, 127].

To finish this part, let me mention that jamming also occurs outside the physics
realm. Two prominent examples are the perceptron[138–140] and the SAT-UNSAT
transition of continuous constraint satisfaction problems[141,142]. These problems
exhibit all the critical properties expected from a MF perspective and are thus im-
portant theoretical models to analyse. Likewise, the Mari–Kurchan (MK) model[143]
is another MF-type of model that is very useful as a reference for comparison. It
consists in particles interacting through a randomly shifted distance, D(ri, rj) =
|ri − rj + ζAij |, where Aij is a fixed random vector, different for each pair of par-
ticles. ζ is a parameter that allows to interpolate between fully MF (ζ → ∞) and
finite d (ζ = 0) behaviours. The MK model in d = 2 and d = 3 has been used
to validate several of the predictions of MG theory[109], in particular the GT[110].
Some other aspects about the liquid and glass phases of this model will be given in
Sec. 2.2, while in Chapter 4 I analyse in detail its microstructure at jamming, so for
the moment I just mention that it has also been used to test some of the jamming
criticality properties[144]. Finally, jamming is also present in other MF models[145],
neural networks[146–148], and statistical inference[149]. This shows the relevance of
jamming as a current and relevant research topic.

1.4.2 Criticality approaching the jamming transition

To analyse the critical behaviour of (isostatic) jammed configurations, I will first
consider the case of soft spheres that interact only when there is an overlap between
them. It is convenient to define the dimensionless gaps,

hij(~ri,~rj) = |ri − rj |
σij

− 1, (1.49)

where σij = 1
2(σi + σj) is the sum of the two particles’ radii. That is, for the time

being, I will consider the more general case of polydisperse configurations for reasons
that will become clear shortly. In this way, an overlap corresponds to a negative
gap. The contact potential modelling the interaction between particles can then
simply be expressed as a function of the gaps. Following the literature[16,137,150] I
will consider a contact potential of the form

v(h) = ε

α
|h|α Θ(−h), (1.50)

where Θ is the Heaviside step function, ε is a constant that fixes the energy scale,
while α is a parameter that can be used to vary the “softness“ of the spheres.

Once the potential has been defined, a valid jammed packing can be obtained
with a suitable energy minimization procedure. Recently, the FIRE algorithm[151]

has been extensively used for this purpose, although several options are possible.
Note however that, independently of the algorithm employed, jammed configura-
tions correspond to an energy minimum with T = 0. That is, in scenarios where
thermal noise is included to enhance the exploration of the configuration space
and thus find lower minima, it is important to have in mind that a proper critical
jammed configuration will only be achieved in the T → 0 limit20.

20At least in the sense that I will discuss here. But see Ref. [152] for a study with T > 0.
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At this point, I want to bring attention to a peculiar feature of the jamming
transition. So far, finding jammed packings seems only a minimization problem,
similar to others found in statistical physics. Consider for the sake of simplicity
the Ising model with no external field and equal couplings, Jij = J . Finding its
ground state in the T → 0 limit, will always result in well defined physical variables,
such as 〈|m|〉 = 1, and analogously for its energy, heat capacity, etc. In contrast,
for jammed packings the situation is very different, although this has been only
implicit in the discussion up to this point. To make the matters clearer, consider
the phase diagrams of Figs. 1.16 and 1.17. Note that in those figures, jammed
states are not concentrated around a point, but actually lie along a line. This
means that the jamming density can take any value within an interval21. In fact,
the value of ϕJ depends on both the protocol used and the configuration itself. In
the case of monodisperse systems, this effect is considerably suppressed, given that
particles are identical and consequently the J-line is shrunk to a narrow interval.
Nonetheless, the dependence of the protocol remains. This is evinced by the results
of Fig. 1.14, in which all the MD simulations departed from the same initial condition
and only the compression rate (κ) was varied. It is evident that although the
final packing fractions are similar, using a slower compression consistently produces
denser packings. Similarly, in the case of the polydisperse configurations, letting the
system remain longer in equilibrium allows to reach higher values of ϕJ . Fortunately,
these observations also provide the answer to understand the strange dispersion in
the values of ϕJ : that jamming is an out of equilibrium transition[153]. In other
words, the jammed state reached by whatever methods depends fundamentally on
both (i) the state at which the system abandons equilibrium and (ii) how it evolved
afterwards. Consequently, also some of the observables at jamming will show such
dependence. Now, in the thermodynamic limit and with an infinitesimally slow
compression or decompression protocol, ϕJ has a well defined value, that nonetheless
depends on the equilibrated glass state whence it departed (see previous section),
i.e. ϕJ = ϕJ(ϕg). When analysing jamming criticality, these considerations are
important because we are interested in how thermodynamical variables scale as a
function of (ϕ−ϕJ). So, in principle, we should use the thermodynamic limit value
of the jamming density, ϕJ(ϕg) , to properly observed the power-law scalings. In
practice, however, one should keep in mind that the value of ϕJ will be unique of
each configuration.

Now, jamming criticality can be intuitively justified as follows. If SS interact
through a potential like Eq. (1.50), then it is clear that for ϕ < ϕJ the energy is
identically zero, while for densities larger than ϕJ it is strictly positive. Thus, the
energy must be singular at ϕJ . The scaling of the energy and other thermodynamical

21Clearly, there is a lower bound for such interval, since at very low densities not even a glass
can be formed. In contrast, deriving an upper bound is not an easy task. However, it can be
shown that, the maximal density an amorphous packing can have is of order ∼ d log

(
d2−d

)
; see

[16, Chp. 8].
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variables are summarized in the following expressions[4,136,137]:

e(ϕ) ∼ (ϕ− ϕJ)α, (1.51a)

P (ϕ) = ρ2 de
dρ ∝ ϕ

2 de
dϕ ∼ (ϕ− ϕJ)α−1, (1.51b)

G(ϕ) ∼ (ϕ− ϕJ)α−3/2, (1.51c)
B(ϕ)−B0(α) ∼ (ϕ− ϕJ)α−2, (1.51d)

z(ϕ)− zc ∼ (ϕ− ϕJ)1/2 . (1.51e)

In the last equation, zc is the average number of contacts observed for a particular
configuration with ϕJ . Finite size effects causes this variable to exhibit small sample
to sample fluctuations. But in the thermodynamic limit its value is perfectly well
defined and independently of the jamming protocol; it is zc = 2d. In Sec. 1.4.3 I will
show that this value is a consequence of the mechanical stability of the packings.
On the other hand, the term B0(α) in Eq. (1.51d) is such that B0(α) > 0 if α ≤
2 and zero otherwise. Let me consider briefly the harmonic potential, α = 2.
Such potential is, quite reasonably, an important case and it is useful in modelling
emulsions, colloids, etc.[4] The scalings of Eqs. (1.51d) and (1.51c) imply that a
jammed packing of harmonic SS is unable to withstand shear forces (G → 0),
and yet remains rigid (B → B0 > 0, i.e. it supports compression). In fact, the
difference of the critical exponents of the shear and bulk moduli is a consequence
of G being more susceptible to non-affine effects. In contrast, B is determined
through the effective stiffness (k) of the spheres, which is usually determined by
affine deformations; see [4] for a detailed discussion. Moreover, if the rigidity of
a configuration is measured by normalizing with respect to k, then the behaviour
at ϕJ resembles a first order phase transition, given that B/k remains finite for
any ϕ > ϕJ but vanishes for smaller densities. The same jump is observed in the
coordination number since 〈z〉 = 0, for ϕ < ϕJ .

At any rate, the power-law scalings summarized in Eqs. (1.51) have been exten-
sively verified in several works[4,136,137,154,155] and, surprisingly, they are unaffected
by dimensionality or polydispersity of the configurations. Additionally, the finite
size effects expected from these relations have been confirmed[154] and a Widom-like
scaling ansatz has been derived for all of them[156]. Furthermore, various studies
have identified correlation lengths associated to the characteristic length scales of
vibrational response to perturbations[157,158], the fluctuations in the number of con-
tacts[144,159], and the fluctuations of particle mobility[51], all of which diverge at the
jamming point.

In the case of HS similar relations hold. However, because the interaction poten-
tial is always zero, the energy identically vanish for any ϕ < ϕJ . Likewise, before the
jamming point is reached, the configurations are not rigid[160] nor do they sustain
shears, hence both bulk and shear moduli vanish. Therefore, the relevant scaling
relations only concern the reduced pressure and the intensive entropy[84]:

p(ϕ) ∼ (ϕJ − ϕ)−1, (1.52a)
s(ϕ) ∼ log(ϕJ − ϕ) . (1.52b)

Indeed, the second of these expressions can easily be obtained from the first one
given that for HS (i) p = βρ ∂f∂ρ and (ii) f = −Ts. It is then straightforward to
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obtain p = −ϕ ∂s
∂ϕ whence (1.52b) follows by integration. It is also worth noting

that Eq. (1.52a) is the same as the free-volume of a HS glass, cf. Eq. (1.32) and
Fig. (1.15). This implies that the algebraic dependence of p on ϕJ − ϕ is valid
throughout the glass phase and not only near jamming.

Another important result is that effects of finite temperature can also be included
near jamming[51,152,161] and thus join the behaviours on both sides of ϕJ . For
instance, Eqs. (1.51b) and (1.52a) can be combined in a single scaling relation, that
depends on both ϕ and T :

p(ϕ, T ) = T−1/α P
(
T−1/α(ϕ− ϕJ)

)
, P(x) ∼

{
|x|−1 for x→ −∞,
xα−1 for x→∞ .

(1.53)

Scalings for other variables are listed in Ref. [152]. All of these results thus provide
some of the strongest evidence in support of the critical nature of the jamming
transition.

The picture that unfolds by putting together the exact MF description (Sec. 1.3),
the scalings of Eqs. (1.51)-(1.53), and the robustness of numerical experiments for
several dimensions and different protocols[84,94,136,137,153] suggests that the jamming
transition of spherical particles defines a universality class. Even more, it is a rather
broad class that encompasses all of the different systems mentioned at the end of
Sec. 1.4.1. Nevertheless, we also know that if inherent order is enforced – e.g. by
using minimally polydisperse crystals[162–164]– or particles are not spherical[165,166]
universality is broken. Properly demarcating such universality class is therefore an
open problem that falls outside the scope of this work. Nevertheless, I will briefly
come back to the subject in Chp. 4, which deals with a systematic assessment of
the jamming criticality of the microscopic variables introduced in Sec. 1.4.4.

1.4.3 Network of contacts and isostaticity

In this section, I will analyse the properties of the network of contacts (NC) formed
exactly at a jammed state. This is a fundamental section for several of the results
that will be presented in the following chapters. From the analysis of the NC the
most important properties that I will show are:

1. A jammed state reached with a given interaction potential is an equally valid
jammed configuration with any other potential.

2. In the case of spherical particles, the minimal requirement for a jammed pack-
ing to be stable is that it has a single state of self stress. This means that
the number of contacts (Nc) is equal to the number of degrees of freedom plus
one; i.e. Nc = Ndof + 1.

3. Under such conditions, the forces exerted by pairs of particles in contact are
determined solely by the particles positions.

4. The structure of the NC determines the Hessian of the system at jamming,
and vice-versa.
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Several of these results have been developed in a series of important works, e.g. [56,
57, 167–169]. While in [150] they have been put together and generalized. Thus, I
will mostly follow the discussion presented there, as well as in [16, Sec. 9.2].

To show the properties mentioned above, let me begin by analysing the Hessian,
H of a configuration above jamming, i.e. I will study a configuration of SS with
ϕ > ϕJ . To do so, I will use the following notation: [ij] with i < j will denote the
contact between particles i and j and it will also be used as a contact index, i.e.
[ij] ∈ {1, . . . .Nc}; nij = ri − rj

|ri − rj |
is a unity vector pointing from particle j towards

particle i (clearly nij = −nji); fij = fji is the magnitude of the force of contact
[ij]. Additionally, let C = {[ij]c}

Nc
c=1 be the set of contacts. With this notation, the

total potential energy can be expressed as

V (~r) =
∑
c∈C

v(hc(~r)),

where, for the time being, I am assuming that the gap function can depend on the
full configurational vector ~r = {ri}Ni=1 and not just on the pair of particles involved
in the contact c. Assuming a general power-law contact potential like the one of
Eq. (1.50) we have that

∂V (~r)
∂rµi

=
∑
c∈C

v′(hc)
∂hc
∂rµi

= −ε
Nc∑
c=1
|hc|α−1 ∂hc

∂rµi
; µ = 1, . . . , d . (1.54)

The minus sign in the rightmost term comes from the assumption hc < 0, given that
ϕ > ϕJ , so the Θ function is consequently omitted. Physically, it represents the
fact that a force should increase in magnitude as the corresponding gap becomes
more negative. Similarly, the Hessian is a dN ×dN symmetric matrix ∂2V (~r)

∂δ~r2 whose
entries are given by

Hj,ν
i,µ ≡ ε

Nc∑
c=1

[
(α− 1)|hc|α−2 ∂hc

∂rµi

∂hc
∂rνj
− |hc|α−1 ∂2hc

∂rµi ∂r
ν
j

]
. (1.55)

Now, let ~r0 be an energy minimum, although not necessarily a jammed configu-
ration. In that case, Eq. (1.54) vanishes and the energy cost of a small perturbation
δ~r around ~r0 is well approximated by

δV (~r) = V (~r0 + δ~r)− V (~r0) ≈ 1
2δ~r ·H · δ~r

= ε

2

Nc∑
c=1

(α− 1)|hc|α−2
(
δ~r · ∂hc

∂δ~r

)2

︸ ︷︷ ︸
harmonic

− δ~r · ∂
2hc
∂δ~r2 · δ~r︸ ︷︷ ︸

prestress

|hc|α−1

 .
(1.56)

Note that the harmonic term is a stabilizing contribution to the perturbation, since
each contact suppresses perturbations along the direction of its gradient. Thus, of
the possible dN directions in which a perturbation could move away from r0, Nc

are blocked by the contacts. To proceed with this argument, I will restrict to the
case where the system is subject to periodic boundary conditions, which reduces
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in d the number of degrees of freedom, Ndof (see below a detailed argument), i.e.
Ndof = dN−d. This means thatNdof−Nc directions remain along which the system
could be perturbed at zero energy cost. In other words, there are max{Ndof−Nc, 0}
non-trivial soft or zero modes, and d trivial ones, related to uniform displacements
of the configuration.

Because I assumed that ~r0 is a minimum H must be a positive semi-definite
matrix and δV > 0. To ensure stability, some constraints most hold for the prestress
term. There are two possibilities, either ∂2hc

∂δ~r2 is a positive-definite matrix, or its
not. In the first case, it will have a destabilising effect in H. In particular, the
prestress term is negative[16] along the Ndof − Nc (possible) zero modes of the
harmonic contribution. Hence, it must be the case that Nc ≥ Ndof in order to
guarantee stability. Otherwise ~r0 would not be a minimum, in contradiction with
the initial assumption. The second possibility in which ∂2hc

∂δ~r2 is not positive-definite
is more complicated because it can happen that the prestress term can actually
stabilize some of the zero modes from the harmonic part. In this case, the situation
Nc < Ndof is in principle allowed, although it is system dependent. When this
happens, the system is said to be hypostatic, the condition Nc = Ndof corresponds
to an isostatic configuration, while if Nc > Ndof the system is called hyperstatic.

I will show now that for particles whose gaps are given by Eq. (1.49) the energy
minima can never by hypostatic. In particular, this is true for SS, because symmetry
constrains pairwise gaps to be only a function of the centres’ distance. Hence, letting
h[kl] be of form of Eq. (1.49), it is straightforward to derive that

∂h[kl]
∂rµi

= 1
σ

rµk − r
µ
l

|rk − rl|
(δik − δil),

∂2h[kl]
∂rνj ∂r

µ
i

= (δik − δil)(δjk − δjl)
σ

[
δµν

|rk − rl|
−

(rµk − r
µ
l )(rνk − rνl )

|rk − rl|3

]
.

And thus, plugging these expressions into Eq. (1.56) and performing the dot prod-
ucts gives,

δV (~r) ≈ ε

2σ
∑

[ij]∈C

[
(α− 1)
σ

∣∣∣h[ij]

∣∣∣α−2
(δrij · nij)2 −

∣∣∣h[ij]

∣∣∣α−1 |δrij |2 − (δrij · nij)2

rij

]

= ε

2σ
∑

[ij]∈C

(α− 1)
σ

∣∣∣h[ij]

∣∣∣α−2
(δrij · nij)2 −

∣∣∣h[ij]

∣∣∣α−1
∣∣∣δr⊥ij∣∣∣2
rij

,
(1.57)

where δrij = δri−δrj , rij = |ri,0 − rj,0|, and δr⊥ij is the component of δrij orthogonal
to nij . Because the second term inside the square brackets is the sum of non-
positive terms the prestress matrix is thus negative semi-definite. And according
to the discussion above, this implies that Nc ≥ Ndof . Therefore, energy minima of
spherical particles are at least isostatic.

Note that so far these results are valid for any type of interaction potential of
the form (1.50) and for any state that defines an energy minimum. If, besides being
an equilibrium point, ~r0 = ~rJ is also a jammed state, further important results can
be derived. First of all, note that at jamming the overlaps go to zero, and as long
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as α > 122, the prestress term vanishes, proportionally to the pressure, and quicker
than the harmonic one. We can thus define the contact forces at jamming as,

fij = fji = lim
h[ij]→0−

−
∣∣∣∣∣∂v′(h[ij])

∂rij

∣∣∣∣∣ = lim
h[ij]→0−

ε

σ
|hij |α−1 > 0 . (1.58)

The last inequality follows from the fact that at the jamming transitions configu-
rations are rigid, which means that there is a non-zero force between particles in
contact. This a subtle issue, so let me analyse it more carefully. Recall that in the
previous section I mentioned that the value of the bulk modulus at jamming is, in
general, finite. This was a consequence of the spheres’ stiffness, k, remaining finite
at jamming. Now, k is proportional to the curvature of the energy minimum at
~rJ , which must also be positive due to stability. Explicitly, k = ε

σ |h|
α−2 > 0, or

equivalently, fij = k
α−1
α−2
ij > 0. Moreover, the finiteness of the contact forces can be

deduced from mechanical stability considerations as I will now show. A very impor-
tant outcome of the proof is that contact forces can indeed be obtained only from
the particles’ position ~r, without making any reference to the form of the interaction
potential.

By definition, the jammed state corresponds to a state of mechanical equilibrium,
and therefore the total force acting on particle i is given by

Fi +
∑
j∈∂i

nijfij = 0

where ∂i is the set of particles in contact with i and F is any possible external force.
If we denote by f = {f[ij]}[ij]∈C the Nc-dimensional vector of contact forces, the
equilibrium condition can be expressed for the complete configuration as ~F+STf =
0, where S is the Nc × dN contact matrix, whose entries read

Si,µ[jk] = (δij − δik)nµjk, or Si[jk] = (δij − δik)njk . (1.59)

Note that the same expression, except for a proportionality faction of εσ , would follow
by plugging in the expression given for ∂hjk

∂rµi
into Eq. (1.54), with the definition of

fij according to Eq. (1.58).
From now on, I will focus on systems with periodic boundaries and with no

external forces acting on them, but see Ref. [150, 167] for the general analysis.
The second of these conditions makes the mechanical equilibrium to be succinctly
expressed as

STf = 0 ⇐⇒
∑
[jk]

Si,µ[jk]fjk = 0, ∀i = 1, . . . , N and ∀µ = 1, . . . d . (1.60)

The last expression corresponds to a system of dN homogeneous linear equations
in Nc unknowns. But not all of them are independent because the total force in

22The case α = 1 is very interesting, since it corresponds to a singular potential. It can be shown
however, that all the results derived so far also apply. See Refs. [139, 170].
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the system must be zero, due to absence of external forces. Because this condition
holds independently for each spatial dimension we have that,

N∑
i=1

∑
[jk]

Si,µ[jk]fjk = 0, ∀µ = 1 . . . d .

Hence, there are only d(N − 1) independent equations. But this is precisely the
number of (relevant) degrees of freedom! To see why, we just need to consider that
the periodic boundary conditions make the system invariant under translations, so
d degrees of freedom should be subtracted from the configurational dimension, thus
leading to

Ndof = d(N − 1) . (1.61)

Equivalently, the same conclusion is obtained by noting that a uniform translation
δ~r = ~a implies that δrij = 0, in which case Eq. (1.57) vanishes identically. This
means that uniform translations are zero modes of the Hessian, thus effectively
reducing the degrees of freedom as in Eq. (1.61). On the other hand, we already
know that a condition valid for all energy minima is that Nc ≥ Ndof . In particular,
for a jammed state the mechanical equilibrium condition, Eq. (1.60), defines a set of
homogeneous equations that therefore has max{Nc−d(N−1), 0} non-zero solutions.
But experience teaches us that jammed packings do exist, so there is least one non-
trivial solution to Eq. (1.60). Therefore the number of contacts must be, at least,

N1SS ≡ Ndof + 1 = d(N − 1) + 1 . (1.62)

This condition corresponds to the so called single state of self-stress (1SS), although
in literature it is more commonly termed isostaticity. Nevertheless, I will use the
former name and reserve the latter for the case Nc = Ndof . This shows that,
whenever Nc ≥ N1SS it necessarily happens that fij > 0 ∀[ij] ∈ C.

Before moving forward, I would like to mention that a precise enumeration of
the degrees of freedom is of utmost important to correctly analyse jamming criti-
cal properties, because several of them manifest when Nc = N1SS . In fact, at the
beginning of this section I mentioned that the results discussed here were valid for
isostatic configurations, but there I implicitly assumed that N =∞. However, the
correct statement is that the number of constraints should be 1 above isostatic-
ity. (Of course, in the thermodynamic limit such distinction is irrelevant.) At any
rate, to properly count the degrees of freedom it is mandatory to consider the sym-
metries as extra constraints of the system, which begs the question: should central
potentials not further reduce Ndof? The answer is: it depends on the boundary con-
ditions. In fact, for closed systems, Ndof is further reduced by d(d−1)

2 . However, in
systems with periodic boundary conditions angular momentum is not conserved[171],
and such extra symmetries need not to be included. I am of the mind that these
considerations are commonly overlooked, or simply stated without further thought,
sometimes leading to apparently different criteria for N1ss, e.g. [56, 154, 172–174].
(However, once the inherent symmetries of each case are accounted for, the criteria
are consistent.) So I wanted to spend some time addressing this issue, at least for
the case of periodic boundaries, for which Eq. (1.62) provides the correct value. A
careful discussion in other scenarios can be found in Refs. [154, 172].
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Now, despite its simplicity, Eq. (1.62) is an important result. So let me discuss
it further. First, because each contact involves two particles, the average number
of contacts is

zJ = 2N1SS
N

= 2d+ 1− d
N

−→
N→∞

2d = zc . (1.63)

The critical value of the average coordination number in Eq. (1.51e) is thus re-
covered. As discussed above, this is the smallest number of contacts required for
a configuration to be stable. This type of counting argument was first derived
by Maxwell, and applies to the stability analysis of a large class of problems, like
networks of harmonic springs[174]. Second, mechanical stability also dictates that
each particle must have d + 1 contacts, otherwise at least one degree of freedom
remains unconstrained. Particles that do not fulfil this bound are called rattlers
and their contribution to the NC should be removed since they do not contribute to
the rigidity of the packing. Nevertheless, they are scarce in the vast majority of the
configurations, and their quantity decreases with dimensionality. Along these lines,
it is an interesting fact that the coordination number is a self-averaging quantity,
which means that at jamming, each particle very likely has 2d contacts. Moreover,
the fluctuations around this value are suppressed rapidly as d increases[150]. As a
final remark, I should mention that these last expressions make clear that in the
thermodynamic limit there is no distinction between isostaticity and 1SS. Never-
theless, such difference will be relevant for the results of Chp. 4, in which the effects
of finite size in jammed packings are studied. At any rate, the role of the additional
contact of 1SS configurations, with respect to isostaticity, cannot be overstated
because it implies that f is the unique zero mode of S, which only depends on
~rJ . Consequently, the forces magnitudes are entirely determined by the particles’
position.

Notice that in deriving these results I have not made any assumption about
the potential between spheres, thus showing that once a jammed configuration is
reached, it is a valid jammed state for any potential. Nevertheless, a direct con-
nection with the energetic approach is possible by noticing that the Hessian can be
expressed in terms of a rescaled contact matrix. For instance, in the most usual
case of an harmonic interaction, from Eq. (1.55) and the expression for ∂2h[kl]

∂rνj ∂r
µ
i
, it

readily follows that

Hj,ν
i,µ = δij

∑
k∈∂i

nµikn
ν
ik − n

µ
ijn

µ
ijδ([ij]) = (STS)j,νi,µ

In this last expression, I have used δ([ij]) to denote a function that is 1 if particles
i and j are in contact, and 0 otherwise. Even more, for a jammed configuration ~rJ
obtained with a general potential, we can construct S and then solve Eq. (1.60) for
f . Concomitantly, we can compute the effective stiffness kij = (α−1)ε

σ f
α−2
α−1
ij and thus

define
S̃i,µ[jk] = k

1/2
jk (δij − δik)nµjk = k

1/2
jk S

i,µ
[jk] . (1.64)

Then, the relation
H = S̃T S̃ (1.65)
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for expressing the Hessian in terms of the (rescaled) contact matrix is still fulfilled.
Notice that once the Hessian is obtained, we can obtain all the normal modes and
the spectrum of the system; see Sec. 1.4.5.1. This result will be used in Chp. 3.

As a final comment, it should be mentioned that the contact matrix, the Hessian,
and the closely related symmetric matrix

N = SST , (1.66)

are very useful to analyse the mechanical properties of jammed configurations. It
is easy to show that H and N have the same spectra. Besides, because N and S
have the same zero modes, another way to calculate f is to extract the eigenvector
associated with the zero eigenvalue of N . Numerically, this is often more conve-
nient[150]. Moreover, all these matrices provide information about the floppy modes,
response to a dipolar force opening a contact, etc. A very complete discussion can
be found in [150, 167–169].

1.4.4 Criticality of the microscopic structure at the jamming point

Jamming exhibits another, rather peculiar, type of criticality. It involves the con-
tact forces of the NC and the gaps between near contacts. Both of these variables
also exhibit a power law scaling once the configuration has reached its jamming
point. Importantly, MF theory predicts the exponents of such scalings to be univer-
sal. Note that this is different from the criticality discussed in Sec. 1.4.2, because
in that case, the scaling relations (1.51) and (1.52) were derived as the jammed
state is approached. In other words, the usual type of scalings studied in critical
phenomena[175,176]. In contrast, the results of this part concerns the situation where
ϕ = ϕJ and a jammed configuration ~rJ has already been realized. In this situation,
it has been found that the distributions of interparticle gaps and contact forces are
power-laws with non-trivial critical exponents.

I begin with the gaps, defined according to Eq. (1.49). At variance with the
previous section, only positive gaps will be considered because the aforementioned
scaling pertains particles that are almost touching. Now, gaps values are randomly
distributed because packings are disordered, but theoretical predictions[111] state
that the distribution of small enough gaps should scale as

g(h) ∼ h−γ , with γ = 0.41269 . . . (1.67)

(The distribution g just introduced should not be confused with the radial distri-
bution function, g(r), defined in Eq. (1.17), although they are closely related; see
Eq. (2.21) in the next chapter.) Current numerical evidence supports the univer-
sality hypothesis of γ, since the probability density function (pdf) of Eq. (1.67) has
been verified in different dimensions and using different protocols[94,111,153].

Similarly, the distribution of small contact forces is predicted to scale as, p(f) ∼
fθ, but a strong dependence of θ on dimensionality and jamming protocol was
initially reported, in apparent contradiction with the theoretical expectation. This
paradox was resolved by recognizing that two different types of forces contribute
in this regime[150,169]. This is a consequence of the two distinct responses that
can occur when opening the contact between a pair of particles: (i) a localized



56 1. Introduction: Why do we care about jammed systems?

rearrangement of neighbouring particles; or (ii) a displacement field that extends
over the whole configuration, without decaying with distance; see Fig. 1.20. The
former is associated with a buckling motion, and hence remains localized. The
latter is associated with a correlation length of the same order as the system size,
and hence is a clear example of the criticality of jammed packings. Considering
these two types of forces separately yields two power laws with different exponents,

p`(f) ∼ fθ` , with θ` ' 0.17, (1.68a)
pe(f) ∼ fθe , with θe = 0.42311 . . . ; (1.68b)

for localized and extended excitations, respectively.
The ability of MF theory[16,104,111] to predict the non-trivial values of γ and θe is

a major success. No MF prediction, however, exists for θ`, because bucklers are an
intrinsically low-dimensional feature[150], and are therefore subdominant in the d→
∞ description. In any case, the MF prediction for θe and γ is based on the solutions
of the fullRSB differential equations, in the limit of ∆→ 0. The calculations are far
from trivial, but when an scaling ansatz is proposed for the form of the solutions, it
can be shown that conditions leading to g and pe are indeed universal. The details
of the calculations are presented in [118, 123, 141] and in abbreviated manner in
[16, Secs. 9.2-9.3]. On the other hand, besides the theoretical predictions several
works provide numerical results supporting the relations of Eqs. (1.67) and (1.68)
in several dimensions and in different scenarios; see [94, 118, 138–141, 150, 153, 167,
169, 170].

1.4.5 Marginal stability

The last aspect I would like to discuss concerns the marginal stability of jammed
packings. The mathematical derivation follows mostly Ref. [168], which offers a
more general result than the one presented in a previous, very nice work[177]. Ad-
ditionally, the role of marginal stability in jammed packings and in other common
disordered systems has been reviewed recently in [178].

The argument goes as follows. Let us focus on a given contact λ ≡ [kl] and open
it an amount s. We are interested in analysing the response of the system to such
contact opening, while leaving the rest of them unchanged. The rearrangement of
particles caused by opening λ is called a floppy mode. Notice that if the floppy mode
associated to λ leads to a denser packing, then the original configuration would be
unstable. Denoting the displacement experienced by particle i after opening λ as
δr(λ)
i , and δr(λ)

ij = δr(λ)
i −δr

(λ)
j being the relative displacements, it can be shown that

the equation such displacements must obey, up to the leading nonlinear contribution,
reads:

δr(λ)
ij · nij +

(
δr(λ)
ij · n⊥ij

)2

2rij
+O

(
s3
)

= sδ[ij],λ, (1.69)

where n⊥ij is a vector orthogonal to nij . Multiplying this last expression by fij and
summing over all the contacts we obtain the virtual work theorem:

p δV (λ) ≈ sfλ −N
cλ 〈f〉
σ

s2 . (1.70)
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In this equation δV (λ) is the volume change caused by the force unbalance when
the contact λ was opened, while cλ is a dimensionless number, containing the total
contribution of the

(
δr(λ)
ij · n⊥ij

)2
terms, in the limit s→ 0. Physically, it is related

to the magnitude of the displacement field averaged over the whole system and, as
argued in Ref. [177], its value is determined by average force in the system, and is
of order s2.

Notice that the nonlinear term is important, otherwise Eq. (1.70) would imply
that any floppy mode would increase the volume and therefore packings would be
inherently stable. In contrast, when such term is taken into account it is easy to
see that there exists s∗ such that for

s < s∗ ≡ σfλ
Ncλ 〈f〉

, (1.71)

no packing with smaller volume can be formed. To prevent such situation, a new
contact must be formed elsewhere in the configuration before λ is opened as much as
s∗. Denoting by s† the distance at which such new contact is formed, a configuration
will be stable as long as s† < s∗. Otherwise, a denser packing could be formed before
another contact is closed, signalling that the configuration was initially unstable.
The conditions for stability are thus derived by (i) estimating s† using the gaps
distribution, and (ii) computing s∗ from the distributions of the contact forces. It
is convenient to consider a stability index

Σλ ≡ s∗/s† = σfλ
Ns†cλ 〈f〉

, (1.72)

so that Σλ greater (smaller) than 1 corresponds to a stable (unstable) packing. It
is then reasonable that we centre our analysis on the smallest forces, since they are
likeliest to produce destabilising floppy modes.

As argued in Ref. [167], there are two (approximately independent) possibilities
for having a small force; whence let us write fλ ∼ bλWλ, where the meaning of these
two factors will be explain next. The first possibility is that a contact force between
a pair of particles is weakly coupled to the rest of the forces exerted on them by the
rest of their neighbours. For instance, if all but one contacts of a particle are nearly
coplanar, in which case the remaining force should be orthogonal to that plane and
very small. This would lead to a bucking motion, whose displacement field thus
remains mostly localized, as mentioned in the previous part; see also the analysis of
Ref. [150]. If we let bλ measure the median of the displacements, then it is clear that
for these forces bλ � 1. More precisely, it can be shown[167] that a localized floppy
mode is such that bλ � 1/

√
N . I should emphasize that localized modes produce

displacements of considerable magnitude, but only near the originating contact. It
is farther away that the displacement field is negligible. This justifies using the
median and not the mean for properly identifying them, given that it would be
dominated by the large displacements near the opened contact. In contrast, it
could also happen that a contact force is small because it is weakly coupled to
the bulk –not just forces of other neighbour contacts– and thus produces a very
small, but uniform and non-decaying, floppy mode. Wλ is thus a measure of the
bulk coupling to contact λ. Calculating it is not straightforward, and its definition
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even depends on the boundary conditions of the system. But in any case, it can
be estimated through the response of the full configuration to an extended floppy
mode; the details are given in [167]. The two type of floppy modes are illustrated
in Fig. 1.20, for a configuration of 1024 disks with periodic boundary conditions.
Note that both values of fλ (lower panels) are similar, but the displacement fields
they produce are very different.

Localized floppy mode Extended floppy mode

0 250 500 750 1000

Particle index
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10−2
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|δr
(λ

)
i
|

fλ1
= 0.018
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Particle index

fλ2
= 0.052

Figure 1.20. Upper panels: Localized (left) and extended (right) floppy modes obtained by
opening the contact involving highlighted particles. The displacement field is obtained
following the methods developed in Ref. [150]. Lower panels: Norm of each particle’s
displacement in the floppy mode. The data of the particles involved in the contact
openings are similarly highlighted. Notice that both forces have a similar magnitude,
but their corresponding floppy modes are clearly different.

Another important assumption for {bλ}λ∈C and {Wλ}λ∈C is that, besides being
statistically independent, they are power-law distributed as

p(b) ∼ bθ` ,
p(W ) ∼W θe .

(1.73)

So the same distributions as the bucklers and extended forces in Eq. (1.68). In fact,
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if MF theory is not considered, the distributions of contact forces can only be found
empirically and the factorization fλ ∼ bλWλ is thus justified a posteriori. Besides,
given that MF calculations[118] make no prediction for localized modes, in practice
the effects of {bλ}λ∈C should be checked after the full NC is known. In any case,
the factorization assumed for the forces also allows to split c into two contributions
as

cλ ∼ b2λ + 1
N
,

in such a way that for localized modes b � 1/
√
N we have c ∼ 1/N , while for

extended modes cλ ∼ b2λ.
Let us now estimate the maximal displacement s† from the distribution of gaps.

If hmin is the smallest gap in the configuration and gaps are distributed according
to Eq. (1.67), then

1
σ1−γ

∫ hmin

0
dhh−γ =

(
hmin
σ

)1−γ
∼ 1
N

=⇒ hmin ∼ σN−
1

1−γ .

On the other hand, from the arguments above we have that s† ∼ hmin/bλ ∼
σ
bλ
N
− 1

1−γ . The last step needed to estimate the stability index, defined in Eq. (1.72),
is to compute fλ/ 〈f〉. To do so, let me first consider that opening fλ causes an
extended response in the system, so (1) the smallness of fλ is caused by a small
value of Wλ and (2) cλ ∼ b2λ Assuming the extreme case of which fλ is of the order
of the smallest force in the system we have that∫ fmin

0

df fθe

〈f〉1+θe ∼
∫ Wmin

0

dW W θe

〈W 〉1+θe ∼ 1/N =⇒ Wmin

〈W 〉
∼ fλ
〈f〉
∼ N−

1
1+θe ,

where the 〈•〉 terms are introduced for normalization purposes. Plugging these
results into Eq. (1.72) we obtain

Σλ ∼
fmin
Nhmin

∼ N
γ

1−γ

N
1

1+θe
.

Analogously for a localized mode, if fλ is small due to a very small value of bλ, a
worst case scenario analysis leads in this case to

Σλ ∼
f2
min

1
N hmin

∼ N
1

1−γ

N
2

1+θ`

.

From these two last expressions, it is easy to verify that if we require Σλ > 1 to
guarantee stability, then the following pair of inequalities must hold:

γ ≥ 1
2 + θe

, (1.74a)

γ ≥ 1− θ`
2 . (1.74b)

Values derived from MF theory, reported in Eqs. (1.67) and (1.68b), as well
as estimations from simulations suggest that Eq. (1.74a) is actually an equality.
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The same is valid for (1.74b), although in this case the value of θ` ≈ 0.17 is ob-
tained directly from numerical results. Therefore, given that both inequalities are
saturated, we conclude that jammed packings are marginally stable; see [178] for
a detailed discussion. Importantly, this result is consistent with the MF picture
mentioned above, which always locate the jamming line within the Gardner phase.
Recall that, as discussed in Sec. 1.3.4, the meta-basin structure acquired by the free
energy landscape is a consequence of the (fullRSB) decomposition of a basin into an
infinite hierarchy of smaller sub-basins, where each minimum identifies a marginal
state. Marginality is observed, for example, in the divergence of χ4 throughout the
Gardner phase. Jammed states thus inherits the marginality property, but it is not
longer visible through a correlation of dynamical variables, since no dynamics takes
place whatsoever. In turn, it is a feature exhibited by the microscopic structure
of the network of contacts, as I have just argued. More precisely, a mathematical
analysis of the fullRSB equations that fix the values of the exponents (θe, γ, κ) show
that they are equivalent to the marginal stability condition; see [111, 118].

1.4.5.1 Density of states at jamming

As a final topic, I will briefly consider the vibrational density of states (DOS),
D(ω). In amorphous solids, the DOS has been extensively studied (see Refs. [53,
55–59, 179–184] for a partial selection) because the normal modes and their spec-
trum control several physical quantities of interest, such as specific heat, transport
properties, response to shear on compression. For a well defined Hamiltonian, the
normal modes are obtained easily by diagonalizing the corresponding Hessian. The
spectrum (i.e. the set of frequencies {ω}dNi=1) is simply related to the corresponding
eigenvalues ({λi}dNi=1) of the Hessian by ωi =

√
λi. Whenever ωi = 0, the corre-

sponding mode is termed soft mode to emphasize that particles can be perturbed
at no energy cost.

It has been known for some time now that in glasses and amorphous solids D(ω)
differs from the expected behaviour of a crystal, namely, the Debye scaling at low
frequencies, Dcrystal ∼ ωd−1, with d the dimensionality of the system. However,
the actual from of D(ω) has been amply debated. For instance, MF analytical
calculations[53] (in the perceptron) and effective medium theory[183] predict that the
DOS present different behaviours parametrized by three characteristic frequencies,
(ω0, ωmax ω?), and has approximately the following form[16]:

D(ω) =


0, ω /∈ [ω0, ωmax],(
ω

ω?

)2
, ω0 � ω � ω?,

constant, ω? � ω � ωmax .

(1.75)

The role of ω0 and ωmax is thus to define the domain of the DOS, while ω? determines
a characteristic frequency at which the distribution detaches from the constant value
plateau. Now, a fullRSB calculation shows that ω0 = 0, implying a gapless spec-
trum. Moreover, numerical studies[56,58,179] in both the over- and under-jammed[59]
phases have shown that ω? ∼ (ϕ − ϕJ)1/2. Therefore, at jamming, D(ω) does not
decay to zero, even as ω → 0.
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Such behaviour is actually another manifestation of the marginal stability of
jammed packings, because a non-vanishing DOS as ω → 0 implies that excita-
tions of arbitrary low frequencies are always present –apart from the trivial d zero
modes from uniform translations. Hence, jammed configurations have an exten-
sive response to external perturbations. See Ref. [53] for a detailed calculation of
D(ω) and how marginal mechanical stability –derived from the 1SS criterion– and
marginal landscape stability –characterized by the soft modes of D(ω)– are related.

For completeness, I should also mention that another regime, proportional to(
ω
ω?
)4 has been identified far away from jamming, and related to localized modes.

However, the extent of this additional regime has not been fully established due
to its dependence on d[59,181]. On the other hand, no theoretical argument has
been found to account for such behaviour, given that it mainly is a low dimensional
feature, and thus out of the scope of MF theory.
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Chapter 2

Linear Programming algorithm
to generate jammed
configurations

In this chapter I will describe in detail a method we developed to reach the jamming
point of a system through an iteration of Linear Programming (LP) optimizations.
LP-based algorithms have been used before to generate jammed packings (see for
instance [185, 186], or [187] for an iterative approach similar to ours). Nonetheless,
our implementation provides a simple and robust mechanism to reach the jamming
point, as well as accessing the critical structural variables, i.e. the network of contact
forces and of interparticle gaps. It has been described briefly in Refs. [1, 3], but here
I will present a more careful analysis, putting special attention in demonstrating
that it produces stable packings. The code with the algorithmic implementation
will be made publicly available shortly.

I should anticipate that the applicability of LP algorithms is limited by the sys-
tem’s size, given that each particle introduces several constraints to be considered
for the optimization. Nonetheless, we were able to generate configurations of more
than 104 particles with a generic optimization software. Despite such disadvantage,
LP jamming algorithms are a reliable way of producing packings of hard spheres
(HS) because the non-overlapping constraints are explicitly introduced in the opti-
mization problem. Carefully exploring HS systems as jamming ensues is important
because, as discussed in the previous chapter, most of the numerical studies have
focused on soft sphere systems. Therefore, developing algorithms capable of pre-
cisely probing the jamming criticality as approached from the unjammed phase is
still relevant.

This chapter is structured as follows. First, in Sec. 2.1 I discuss the connections
of jamming with (linear) optimization theory and I show that jammed packings can
be produced by iteratively maximising the density of a configuration, which acts as
the objective function. To continue, I enumerate few results from Convex optimiza-
tion theory (Sec. 2.1.1) to show afterwards that, upon convergence, our iterative
LP algorithm (iLP) generates well defined and mechanically stable jammed pack-
ings (2.1.2). With the explicit algorithmic description of our method, this section
contains the main theoretical results of this chapter. As exemplified by Figs. 2.3
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and 3.1, our algorithm is able to inflate a configuration from a low density phase
all the way to its jamming point. However, using a configuration with a very high
pressure –and thus closer to jamming– as initial condition drastically enhances its
performance. Sec. 2.2 is devoted to describing an efficient molecular dynamics (MD)
compression protocol that allows to produce such high p configurations. In this sec-
tion I also present some results of the glassy phase of the Mari–Kurchan model,
for which I developed the corresponding MD code to implement the compression.
By complementing our iLP algorithm with the MD compression, we are able to
obtain, rather quickly, typical jammed packings; that is, without any signatures of
partial ordering. Later, in Sec. 2.3 I present a recent characterization of our iLP
algorithm. I first consider the influence on the jammed state of the final pressure
and compression rate of the MD part (Sec. 2.3.1) and show that the results agree
with the fractal energy landscape framework[111] mentioned in Sec. 1.3.4; then I de-
scribe the phenomenology of the MD+iLP route to jamming (Sec. 2.3.2) ; and finish
by analysing the computational performance of our algorithm as a function of the
system’s size (Sec. 2.3.3). Sec. 2.4 closes the chapter presenting some conclusions
and topics to study in future works.

2.1 Jamming as a Linear Programming problem

The methodology I will present in this section has been previously described in
[1, 3, 188]. Nevertheless, here I will present a complete account of how the iLP
algorithm works and show that, upon convergence, it reproduces the conditions for
mechanical stability discussed in Sec. 1.4.3; specifically, see Eq. (1.60). As mentioned
in that section, jammed packings must have a single state of self-stress (1SS), or,
in other words, have an extra contact with respect to isostaticity. Naturally, this
property is also present in the packings produced with our iLP algorithm. The
idea behind it is fairly simple. Suppose that we begin with a given configuration
of N infinitely hard (hyper) spheres (HS) in d dimensions, whose positions1 ~r and
diameters ~σ are known. Because HS can never overlap, the configuration’s packing
fraction necessarily satisfies ϕ ≤ ϕJ , where ϕJ is the jamming density that will be
eventually reached. Without loss of generality I will assume the strict inequality,
otherwise the jammed state has already been realized.

One way to approach the jamming point is to inflate all the particles by a factor√
Γ > 1. (The reason for including the square root will be evident soon.) Because

particles cannot overlap, Γ is limited by the distance between the closest pair of
particles,

√
Γ = minij 1

σij
|ri − rj |. But such process would leave the vast majority

of particles without neighbours in contact. A more clever strategy would be to let
particles move in such a way that a larger value of

√
Γ was possible. Even more, we

could look for the optimal displacement ~s such that, when particles are rearranged
as ~r → ~r + ~s, Γ is maximal. (Because the square root is a monotonic increasing
function, if Γ reaches its maximum, so does

√
Γ.) Mathematically, this is equivalent

1I will follow the notation introduced in Sec. 1.2.1.
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to the following optimization problem (OP):

max Γ (2.1a)
|ri + si − (rj + sj)|2 ≥ Γσ2

ij ∀i 6= j = 1, . . . , N . (2.1b)

In this OP the design variables, i.e. the variables on which the objective function
and constraints depend, are ~s and Γ. Additionally, any vector ~s that satisfies all the
constraints is called feasible. Note that by including the square root in the inflating
factor, this OP depends on Γ only linearly. At this point, this is no big advantage,
but it will prove useful later. Expectedly, in such general setup this problem is
incredibly hard to solve. Moreover, even if we consider a simplified version where
all particles have the same size, we know from Sec. 1.4.1 that the optimal solution is,
very likely, a crystal. But this is a configuration we want to avoid in the jamming
configurations we are looking for2. To overcome both difficulties and be able to
obtain useful jammed packings from this OP some manipulations are needed.

The first thing to mention is that (2.1) effectively poses the generation of a
jammed packing as an instance of an OP. Its objective function, Γ, is trivial. So what
makes the problem hard to solve are the non-overlapping constraints, Eq. (2.1b),
because they are non-convex inequalities. To see why, let rij = ri−rj be the vector
pointing from rj towards ri, with an analogous definition for sij and σij = σi+σj

2
the sum of the radii. For a given pair of particles, inequality (2.1b) thus reads

|sij |2 + 2rij · sij − Γσ2
ij = ~s ·Q ·~s + 2~b ·~s− Γσ2

ij ≥ −|rij |
2 . (2.2)

Where ~b = (0, . . . , rij ,0, . . . ,−rij ,0, . . . ,0) is a dN dimensional vector whose only
non-zero entries are the d components associated to particles i and j. Similarly, Q
is a dN × dN symmetric matrix with entries

Ql,νk,µ =


δµ,ν if i = k or j = l,

−δµ,ν if j = k or i = l,

0 otherwise.

In other words, it is a matrix of N × N blocks, each of dimension d × d. The ith
and jth ones along the diagonal are Id (the identity matrix in d dimensions), while
the ones in the ith and jth rows and column are −Id. All the remaining entries are
zero. Now, linear terms are always convex, so what determines the convexity of the
constraints is the quadratic term, ~s ·Q ·~s. But Q is a positive semi-definite matrix,
since for any vector ~x ∈ RdN , ~x · Q · ~x = |xi − xj |2 ≥ 0. Therefore the right hand
of Eq. (2.2) is a convex function of the design variables. It is thus anticlimactic
that the non-convexity is rooted in the inequality sign. More precisely, the feasible
domain of the OP (2.1) is a non-convex set, as a consequence of the inequality sign
of its constraints. Fig. 2.1a illustrates this feature in the case of 4 fixed (coloured)
disks constraining the available location of another movable (black) particle, all
of different sizes. In this diagram, the set of constraints (2.2) corresponds to the

2This might not be the case in general. For instance, analysing jammed packings with some
inherent ordering is interesting; see [187, 189]. Nevertheless, for this thesis only amorphous systems
will be relevant.
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white space inside the four circles, and the feasible region –i.e. the space where the
centre of the black disk is allowed to be– is shaded in grey. It is clearly non-convex,
since there are many line segments that pass through the space excluded by the
constraints.

(a) Exact constraints of the OP (2.1).
The feasible region is non-convex.

(b) Linearised (solid) and exact (dashed)
constraints.

Figure 2.1. Exact (left) and linearised (right) non-overlapping constraints according to
Eqs. (2.1) and (2.3), respectively. Each particle induces on the black disk’s centre a
constraint identified by its colour, with the resulting feasible region shaded in grey.
Only in the second case it is convex. Coloured particles are assumed to be fixed, so only
the constraints affecting the black one are shown.

Fortunately, we can sidestep the difficulty of solving a non-convex OP by as-
suming that the given configuration ~r and its diameters ~σ are sufficiently close to
the jamming point (a method to achieve this will be discussed in Sec. 2.2 below).
In this situation, the quadratic term can be neglected and thus the original OP can
be transformed into a Linear Programming (LP) problem,

max Γ (2.3a)
2rij · sij − Γσ2

ij ≥ −|rij |
2, ∀i 6= j = 1, . . . , N . (2.3b)

As mentioned few lines above, OP’s involving only linear functions of the design
variables are always convex, for which many efficient solving algorithms exist; see,
e.g. [190–193]. Moreover, because we have neglected a non-negative term, any
feasible solution of (2.3) also satisfies the constraints of the original OP (2.1). Ge-
ometrically, each of the linear non-overlapping constraints defines the half-space of
an hyper-plane perpendicular to the segment joining the centres of the correspond-
ing pair of particles. Hence, the complete set of constraints forms a polytope as
sketched in Fig. 2.1b. Given that each bisection of space by a hyper-plane is itself
convex, and that the intersection of convex sets is also convex[190], the resulting
polytope is guaranteed to be convex.
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On the other hand, neglecting the quadratic term causes any solution of the
LP problem to be sub-optimal with respect to the original OP. In other words, an
optimal solution (~s?,Γ?) of (2.3) is (very likely) not a jammed configuration. Yet,
the new configuration thus produced ~r′ = ~r + ~s, with diameters ~σ′ =

√
Γ?~σ, is

definitely closer to the jamming point. Then, if this new configuration is used to
define another instance of the LP (2.3), the second optimal solution will be even
closer to jamming. If this process is repeated, and it converges, then the resulting
configuration will correspond to a proper jammed state. This is, essentially, the
method we developed to generate jammed packings. I mention in passing that if the
initial condition is random, then this algorithm is also able to overcome, in most of
the cases, the issue of possibly ending up with an ordered packing. This is so because
the linear constraints impose much tighter bounds to the possible displacements of
each particle, even at relatively low densities; cf. the feasible regions of both figures
in Fig. 2.1. This means that at each LP step, only local changes are performed,
which are consequently unable to rearrange a disordered configuration into a regular
one. For this to happen, major collective rearrangements are needed, which are
significantly disfavoured in our algorithm. Put it simply, it means that by linearising
the non-overlapping constraints, our algorithm suppresses jumps across (entropic)
barriers. The only exception we have found so far are configurations of monodisperse
disks, because they are particularly prone to partially crystallize. But it is widely
known that crystallization in monodisperse disks is very hard to avoid, so it is not
an issue specific to our algorithm. In contrast, in 3 ≤ d ≤ 5 we have verified that
with this method crystallization does not occur if a random initial condition is used.

In summary, our algorithm works as follows (see however Alg. 1 for more detailed
description):

1. Choose an initial random configuration ~r, and its set of diameters ~σ.

2. Use (~r, ~σ) to construct an instance of the LP problem (2.3).

3. Obtain the optimal solution of the LP problem (2.3), corresponding to dis-
placements ~s? and growing factor Γ?.

4. If ~s? = ~0 and Γ? = 1 break (convergence was reached).

5. else

(a) Update the particles position according to ~r→ ~r +~s? and ~σ →
√

Γ?~σ.
(b) Repeat steps 2-5.

However, the considerations of the previous paragraph hint that the solution thus
obtained is not globally optimal, since only a “local search” has been performed.
Nevertheless, from the discussion of the previous chapter, we know that jammed
states correspond to local minima of the free energy landscape (FEL), because they
are obtained from the metastable glass states. Even more, recall that because of
their abundance, local minima actually dominate the probability measure. So the
local optimality obtained through our method is an expected property from any
other technique and, moreover, it is a desired feature for sampling correctly the
FEL of HS. Note also that in our algorithm convergence is reached when the only
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solution to (2.3) is ~s? = 0 and Γ? = 1, and this implies that particles cannot be
further inflated because all the degrees of freedom are blocked. Heuristically, this
is precisely what defines a jammed state according to the discussion of Sec. 1.4.
Furthermore, upon convergence, the final configuration obtained from a sequence
of LP optimizations of (2.3) coincides with a (possibly local) optimal solution of
(2.1).

All of these arguments hint that our algorithm is capable of producing jammed
packings, although so far I have not shown that such packings are stable, nor that
they fulfil the mechanical equilibrium condition. To do so, I will introduce some
mathematical results of convex optimization theory. Then in Sec. 2.1.2 I will show
that from such results the full network of contacts can be obtained and the stability
of packings can be established (in the sense of the results of Sec. 1.4.3). Once again,
linear constraints will play a crucial role because their associated dual variables
correspond to the contact forces in the jammed configuration.

2.1.1 Some results of Convex Optimization

Here I will mention (without proving) some mathematical results needed to analyse
the solution obtain from the iLP algorithm described above. I will follow Ref. [190],
a very good reference on convex optimization problems, both from a theoretical and
practical point of view.

Let me first introduce some basic terminology. Consider the following general
OP:

min F0(~x) (2.4a)
subject to Fa(~x) ≤ 0, a = 1, . . . ,m ; (2.4b)

Ha(~x) = 0, a = 1, . . . , q ; (2.4c)

where ~x ∈ Rn. The function F0 is called the objective function, while Fa and Ha

are the constraint equations. The domain of the OP (2.4) is D = ∩ma=0dom Fa ∩
∩pa=1dom Ha ⊆ Rn. A point ~x ∈ D is said to be feasible if it satisfies the equality
and inequality constraints, while the OP is called feasible if there is at lease one
feasible point. The feasible set or feasible domain is the collection of all possible
feasible points. Additionally, the optimal value of the OP (2.4), denoted p?, is
defined as

p? = inf {F0(~x) | Fa(~x) ≤ 0, a = 1, . . . ,m ; Ha(~x) = 0, a = 1, . . . , q}. (2.5)

It is customary to assume that p? is within the closed interval p? ∈ [−∞,∞], because
p? = −∞ means that F0 is an unbounded objective function, while p? = ∞ for an
infeasible OP. Analogously, a point ~x? is termed optimal point if (i) ~x? is a feasible
point; and (ii) F0(~x?) = p?. Finally, given a feasible point ~x, each of the inequality
constraints {Fa}ma=1 can be classified as: active at ~x if Fa(~x) = 0, or inactive at ~x
if Fa(~x) < 0. A constraint is redundant if the feasible set is unchanged when it is
deleted.

All of this applies to any OP, but I will be interested only in Convex optimization
problems (COP). But first, some extra terminology. A set C is convex if for any
~x1, ~x2 ∈ C and 0 ≤ θ ≤ 1, then θ~x1 + (1 − θ)~x2 ∈ C. Similarly, a function
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F : Rn → R is said to be convex if its domain, dom F is convex and, if for all ~x,
~y ∈ dom F and 0 ≤ θ ≤ 1 we have that

F (θ~x + (1− θ)~y) ≤ θF (~X) + (1− θ)F (~x) . (2.6)

If only the inequality holds in this last expression F is strictly convex. On the other
hand, F is called (strictly) concave if −F is (strictly) convex. Now, COP’s have
the same form as Eq. (2.4) but the functions {Fa}ma=0 are required to be convex,
while the function of the equality constraints are required to be affine. That is,
Ha(~x) = ~ka · ~x−~ca, for constant vectors ~ka and ~ca. So, a COP in standard form is
stated as

min F0(~x) (2.7a)
subject to Fa(~x) ≤ 0, a = 1, . . . ,m ; (2.7b)

~ka · ~x = ~ca, a = 1, . . . , q . (2.7c)

Because the intersection of convex sets is convex, the domain of this COP is also
convex. This means that we are minimising a convex function over a convex set.
Note that this type of problem also includes trivially the case of maximising a
concave function F̃0, because it suffices to consider the objective function −F̃0 and
minimise it. One of the most important properties of COP’s is that any locally
optimal point is also globally optimal. Moreover, if F0(~x) is strictly convex, then
the optimal set of (2.7) contains at most one point.

LP problems are a particular kind of COP, for which some special results hold.
Yet, I will not deal here with such particular cases because the most important
result I will use is valid for COP’s in general. (But Refs. [191, 192] contain a detailed
account of LP problems and special methods for their solution.) So, to continue,
I will mention some results of (Lagrangian) Duality theory, where for the sake of
generality I first assume a general OP as (2.4). The idea of Lagrangian duality is
to incorporate the inequality and equality constraints into a new objective function
called the Lagrangian, L : Rn × Rm × Rq → R and defined as

L(~x,λ,ν) = F0(~x) +
m∑
a=1

λaFa(~x) +
q∑

a=1
νaHa(~x) . (2.8)

λ and ν are called dual variables. A closely related function is the (Lagrange) dual
function G : Rm × Rq → R defined as the infimum of L over ~x, i.e.

G(λ,ν) = inf
~x

{
F0(~x) +

m∑
a=1

λaFa(~x) +
q∑

a=1
νaHa(~x)

}
. (2.9)

It is very important to note that G is defined as a pointwise infimum of affine
functions of the dual variables. This implies that G is concave even if the OP (2.4)
is not convex. Additionally, the dual, G, is closely related to the original OP because
it satisfies that

G(λ,ν) ≤ p? ; ∀λ � 0, ∀ν.

(I will use � and � to denote the element wise inequalities ≥ and ≤, respectively.)
Hence, G(λ,ν) = −∞ if L is unbounded from below.
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From the concavity of G and the upper bound just given, it follows that by
maximising G we can “get close to” or obtain –in the best case– the optimal value
p? of the original OP. So we can define the dual OP of (2.4) as

max G(λ,ν) (2.10a)
subject to λ � 0 . (2.10b)

In analogy with the primal OP – i.e. (2.4)–, (λ,ν) are dual feasible if (i) λ � 0; (ii)
(λ,ν) ∈ dom G; and (iii) G(λ,ν) > −∞. Additionally, let d? and (λ?,ν?) denote
the optimal value and optimal solution, respectively, of (2.10). Whenever d? = p?

we say that we have strong duality.
Strong duality may occur even for non-convex problems, but in the case of COP

and when the inequality constraints {Fa}ma=1 are affine, it is possible to show that
strong duality holds. This is a corollary of Slater’s Theorem; see [190, Secs. 5.2-5.3].
But, in general strong duality yields a very useful relation between constraints and
dual variables:

p? = F0(~x?) = G(λ?,ν?) = d?

= inf
~x

{
F0(~x) +

m∑
a=1

λ?aFa(~x) +
q∑

a=1
ν?aHa(~x)

}

≤ F0(~x?) +
m∑
a=1

λ?aFa(~x?) +
q∑

a=1
ν?aHa(~x?)

≤ F0(~x?) = p?,

where the last line follows from the fact thatHa(~x) = 0, while λ? � 0 and Fa(~x) ≤ 0,
making

∑m
a=1 λ

?
aFa(~x?) a sum of non-positive terms. But from the first and last

lines, it is obvious that this sum equals zero. That is,

m∑
a=1

λ?aFa(~x?) = 0 =⇒ λ?aFa(~x?) = 0 =⇒
{
λ?a > 0 =⇒ Fa(~x?) = 0
Fa(~x?) < 0 =⇒ λ?a = 0

.

(2.11)
This property is called complementary slackness and it is essential for relating the
dual variables with the contact forces in the LP problem (2.3).

A final results that I will make use of are the so called Karush–Kuhn–Tucker
(KKT) optimality conditions. From them, the stability analysis of the packings
generated through our iLP algorithm follows easily. They are stated in the following

Theorem 2.1.1 (KKT optimality conditions) Assume {Fa}ma=0 and {Ha}qa=1
are differentiable, and let ~x? and (λ?,ν?) be any primal optimal and dual optimal
points, respectively, for which strong duality holds. We know that since ~x? minimizes
L(~x,λ?,ν?) its gradient vanishes

∇ L(~x,λ?,ν?)
∣∣∣∣
~x?

= ∇F0(~x?) +
m∑
a=1

λ?a∇Fa(~x?) +
∑
a

ν?a∇Ha(~x?) = 0 . (2.12)

Whence the KKT conditions follow

1. Fa(~x?)λ?a = 0, so either Fa(~x?) ≤ 0 or λ?a ≥ 0; for all a = 1, . . . ,m.
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2. Ha(~x?) = 0 for all a = 1, . . . , q.

3. ∇F0(~x?) +
∑m
a=1 λ

?
a∇Fa(~x?) +

∑
a ν

?
a∇Ha(~x?) = 0 .

The KKT conditions are necessary conditions to be fulfilled by ~x? and (λ?,ν?) in
any OP. However, in the case of a COP where the objective and inequality constraint
functions are differentiable, such conditions are also sufficient. These relations are
important, because in several cases, it is easier to solve the KKT conditions for ~x
and the dual variables than the original COP. Notice also that condition (2.1.1-1)
just restates the complementary slackness condition derived above. That property
as well as (2.1.1-3) lie at the basis of the proof of the stability of jammed packings
obtained through LP, as I will show next. However, their relevance for physical
applications is not limited to the problem discussed in this thesis, but actually is of
great generality. Indeed, if F0 is a potential function, while {Fa}ma=0 and {Ha}qa=1
are physical constraints, condition (2.1.1-3) is nothing but the force balance equation
for each degree of freedom and the dual variables play precisely the role of contact
forces. See [190, Sec. 5.5] for a more detailed discussion of the KKT conditions as
well as other applications to physical and other type of problems.

2.1.2 Stability and network of contacts from iLP

Using the KKT theorem (2.1.1), it is now easy to analyse the stability of packings
obtained upon convergence of the LP algorithm described above. In principle, this
means that we need to apply the KKT conditions (2.1.1-1) and (2.1.1-3) in the
limit ~s→ 0?, Γ? → 1. (Because the LP problem (2.3) does not contain equality
constraints, there is no need to consider the second condition of Theorem (2.1.1).)
Let me begin with the latter of these conditions, involving the gradient with respect
of the design variables, i.e.

∇ =
(
∂

∂s1
,

∂

∂s2
, . . . ,

∂

∂sN
,
∂

∂Γ

)
.

Notice that in order to convert the jamming LP problem (2.3) into a COP in
standard form, like (2.7), we need to minimise the objective function F0 = −Γ.
Hence,

∇F0 = (0, . . . , 0,−1) . (2.13)

Next, letting

F(i,j)(~s,Γ) = F(j,i)(~s,Γ) = −2rij · sij + Γσ2
ij − |rij |

2 ≤ 0, with i 6= j

be the linear constraints associated to (2.3b) in standard form, we have that

∇F(ij) =

0, . . . , 0, −2rij︸ ︷︷ ︸
ith entry

, 0 . . . , 2rij︸︷︷︸
jth entry

, 0, . . . , σ2
ij

 . (2.14)
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Plugging in Eqs. (2.13) and (2.14) into (2.1.1-3) and considering the ith compo-
nent of the gradient we have that3

0 =
1,N∑
j 6=i
−2λ?(i,j)rij = −2

∑
j∈∂i,
[ij]∈C

λ?(i,j)rij ,

where the last equality follows from the complementary slackness condition, (2.11).
In this case, such condition means that the sum over all active constraints –i.e. the
constraints whose dual variables are positive– is equivalent to a sum over all linear
contacts. Linear, because they saturate the linear non-overlapping constraints, F(i,j)
defined above. Nevertheless, at convergence ~s? = 0 and Γ?=1, so F(i,j)(~s?,Γ?) = 0
clearly implies |rij | = σij . In other words, in the final configuration of the iLP
algorithm, linear contacts are equivalent to real physical contacts. But the corre-
spondence is not only geometrical, but also mechanical. Rescaling the dual variables
as λ?(i,j) = fij

|rij | , where fij are yet unknown (although they clearly correspond to the
contact forces), the last expression reads

0 =
∑
j∈∂i

nijfij . (2.15)

And this is nothing but the mechanical equilibrium condition in the absence of exter-
nal forces. Moreover, when all the spatial components of

∑1,Nc
[ij] λ?(i,j)∇F(i,j)(~0, 1) = 0

are considered, the resulting expressions correspond precisely to the force balance
equations of the whole jammed configuration, i.e. Eq. (1.60)! This equation was
derived in Sec. 1.4.3, where I also showed that jammed packings are mechanically
stable provided that it has a non-zero solution. To verify that this is the case in
the output of our algorithm notice that the component of (2.1.1-3) corresponding
to ∂

∂Γ fixes the scale of the contact forces:

∑
[ij]∈C

σ2
ijfij

|rij |
− 1 = 0 =⇒

∑
[ij]∈C

fijσij = 1 , (2.16)

with the last equation being valid at jamming. But given that all dual variables
are non-negative, this last expression implies that at least one of them is positive.
Hence, the homogeneous solution to the force balance equation is never a solution
of the LP problem. From the arguments of Sec. 1.4.3 we can directly conclude that
jammed packings thus produced are mechanically stable because their number of
contacts satisfies Nc ≥ Ndof +1 = d(N−1)+1, where I assumed periodic boundary
conditions for the last relation.

Here, two remarks are in order. First, although it is possible that more contacts
are present, in practice we found that in the vast majority of cases this last inequal-
ity is saturated, just as with other algorithms. Hence, most of the configurations
have a single state of self-stress (1SS). Second, as a consequence of this feature the
packings thus obtained are, actually, predominantly isostatic, if the whole set of

3As in Sec. 1.4.3, ∂i denotes the set of particles in contact with i, while [ij], with i < j is the
index of the contact between particles i and j. The full network of contacts is denoted as C and
Nc = |C| is the number of contacts in a jammed configuration.
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design variables are considered, i.e. (~s,Γ). The reason is that Γ acts just as another
degree of freedom upon which the optimization is carried out. Physically, this is
equivalent to using the density as an extra variable of the configuration, whence the
need of the extra contact can be justified. Or, from another perspective, the extra
constraint comes from the requirement of jammed states to be rigid.

Incidentally, for monodisperse systems, or whenever σij ∼ σ –i.e. the distribu-
tion of radii is peaked around its mean– Eq. (2.16) also determines the typical scale
of contact forces. Because for a given configuration contained in a fixed volume its
packing fraction scales as ϕ ∼ Nσ3, Eq. (2.16) implies that

Nf ∼ 1
σ

=⇒ f ∼ N−2/3 . (2.17)

Therefore, the results of this part show that configurations obtained with our
method are well defined jammed states (i.e. determined by the same mechanical
equilibrium conditions introduced in Sec. 1.4.3 of the previous chapter), whose sta-
bility is guaranteed because they have, at least, 1SS. Moreover, the active dual
variables corresponding to the non-overlapping constraints provide direct access to
the contact forces between particles, whence the full network of contacts can be
easily constructed; see Fig. 2.3.

2.1.3 Details of the algorithm and some examples

Some additional remarks are in order to better understand the properties of our
algorithm. Adopting first a mathematical point of view, note that the LP problem
(2.3) satisfies the Slater’s condition given that its constraints are linear and thus
affine, so strong duality always holds. This is important because the solution of the
primal problem can be obtained simply by maximising its dual, which amounts to
solving the set of linear equations obtained from (2.1.1-3). Second, such equations
hold at each step of LP optimization, and not only at convergence. This is due to
the fact that neither ∇F0 nor ∇F(ij) depend on the design variables, and therefore
Eq. (2.15) is fulfilled even if ~s? 6= ~0 and Γ? > 1. Thus, at each step, configurations
are “mechanically stable” with respect to the linear constraints. Geometrically, this
feature represents the fact that linear constraints are always saturated, even if no
physical contact occurs between particles. In Fig. 2.2a this situation is illustrated
after one optimisation step of the LP problem of Fig. 2.1b. The initial feasible
set (defined by constraints with the initial positions and sizes) appears in grey;
the straight lines are the same linear constrains but using the optimal value of the
inflating factor, Γ?; and the dashed curves are initial the exact constraints, but also
evaluated with Γ? . The centre of the black disk has been translated according to
the optimal displacement vector obtained from the solution and is indicated by the
black dot. Notice that it saturates three of the linear constraints but none of the
exact ones, i.e. there is not a single real contact, but three “linear” ones. The
solution, nonetheless, satisfies “force balance” with respect to this latter type.

This last consideration evinces the importance of performing several steps of LP,
until linear contacts are equivalent to the physical ones. For this to happen, it is not
enough for the linear constraints to have “zero gap” with respect of the exact ones, as
the blue constraint of Fig. (2.2a) shows. Here, both type of constraints coincide at a
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(a) Optimal displacement after 1 LP step.
The grey shaded area is the original fea-
sible region, while the solid straight lines
(dashed curves) show the linearised (ex-
act) constraints using Γ?. The position of
the disk’s centre after one optimization is
indicated by the black dot. Clearly, the
optimal solution saturates (some of) the
linear constraints. See main text for a
more detailed discussion.

(b) New instance of the LP problem after up-
dating the black particle’s position (not
shown) and all the radii using the opti-
mal values of displacement and inflation
factor. Notice the considerable reduction
of the feasible region (cf. Fig. 2.1b) and
that most of the linear constraints (solid)
are tangent to the exact ones (dashed).
The constraint induced by the orange
disk is an example of a redundant con-
straint.

Figure 2.2. Optimal solution and new constraints after the first LP optimization of the
linear problem in Fig. 2.1b.

point, but the optimal solution is not on it, so neither in this case a physical contact
is realized. It is only when the optimal position coincides with the tangency points
of both type of constraints that real contacts take place. And for this to happen it
is necessary that ~s? = 0 and Γ? = 1. On the other hand, Fig. 2.2b shows that, if
particles initially have a lot of free volume, the initial inflation is so large that the
feasible region reduces rather quickly. Consequently, linear and exact constraints
are expected to match after few steps. However, one should also kept in mind that
these figures only consider one movable particle. In the real scenario where all of
them are allowed to move more steps are required to ensure real contacts. Fig. 2.2
also reveals that constraints that were initially relevant, might become redundant
closer to the jamming point (compare orange constraints in Figs. 2.1b and 2.2b).
Even more, the set of inequalities (2.3b) of the jamming LP problem establishes
a non-overlapping constraint for each pair of particles. But whenever particles
are far apart such constraints are obviously redundant and can be omitted so the
performance of the algorithm is improved. It is therefore convenient to define a
radius of influence for each particle, `i(ϕ), whose value (possibly) depends on the
system’s packing fraction. Such dependence is justified because for low densities,
most of the particles will be displaced by a large amount, and therefore even if a
given pair is not relatively close, it might overlap after such large displacement.
Conversely, for densities close to ϕJ , only the closest particles need to be considered
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because very small rearrangements are performed after each LP solution. Note
that, in principle, `i could be different for each particle, hence the subscript. This
might be useful, for instance, if a given particle is small enough to escape the cage
formed only by its closes neighbours. However, such situation never occurred in the
configurations considered here, so I will assume `i = ` ∀i. With this in mind, in what
follows the constraints (2.3b) are to be included only if |rij | < `(ϕ). This is the so
called “neighbours list” approach, in which a given particle i only interacts with the
set of neighbouring particles ∂̃i ≡ {j such that |rij | ≤ `(ϕ)}. A final remark: for
our periodic systems we used the nearest image convention[194] to compute distances
and thus identify the relevant constraints. After all these considerations, our iLP
method can be described algorithmically as follows:

Algorithm 2.1: iterative LP (iLP) algorithm to generate jammed packings
Input: Particles’ position ~r and diameters ~σ � 0
Result: Jammed configuration (~rJ , ~σJ) and network of contacts forces

C = {(fij ,nij)}Nc[ij]=1.

Compute initial density, ϕ, and radius of influence, `(ϕ);
Define convergence tolerance (tols, tolΓ);
Initialize displacements ~s and inflation factor Γ so they are outside
tolerance range;
while maxi |si| > tols or Γ− 1 > tolΓ do

/* Find relevant constraints according to `(ϕ) */
Constrs. for i = 1, . . . , N do

Construct ∂̃i, defined as the set particles j such that rij < `(ϕ) and
j > i ; /* So each potential contact is counted once. */
for j in ∂̃i do

Include the corresponding linearised non-overlapping constraint,
Eq. (2.3b);

end
end

LP step Solve LP problem (2.3) with the constraints defined in Constrs. and
obtain optimal displacements ~s? and inflation factor Γ? ;
Store the active dual variables λ?;
~s← ~s? and Γ← Γ?;
Update particles’ position ~r ← ~r +~s and diameters ~σ ←

√
Γ~σ;

Update system’s packing fraction using the new diameters;
Recompute `(ϕ);

end
/* Construct output variables from data at convergence */
(~rJ , ~σJ)← (~r, ~σ);
for [ij] in {λ?(i,j) such that λ?(i,j) > 0} do

nij ← rij
rij

;

fij ←
λ?ij
σij

end
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In this way, packings such as the one depicted in Figs. 2.3 and 3.1 can be
generated. On the other hand, notice that Alg. 1 does not mention anything about
the initial condition. I did it on purpose to stress that our algorithm is robust
enough to produce jammed packings even if the initial condition is not very close to
the jamming point. In fact, the configuration of Fig. 2.3 was produced with an initial
density of ϕ0 ≈ 0.4 (cf. ϕJ,2d ≈ 0.84), while in the one of monodisperse spheres
of Fig. 3.1 the initial packing fraction was ϕ0 ≈ 0.2 (ϕJ,3d ≈ 0.64). Naturally, the
closer the initial condition is to the jamming point the faster the iLP algorithm
converges. But besides being a matter of speed, we should also keep in mind the
physics simulated during the implementation of our method. Considering that all
particles’ displacements come from the series of LP solutions and not from any
thermal energy, our algorithm acts as an immediate quench to T = 0 and a very fast
compression of the input configuration. In other words, it is a crunching algorithm
that, accordingly, does not necessarily follows the glass EOS. And even though
the final configuration is a valid jammed state, if only the iLP method is used
it may happen that it is rather untypical. For instance, it could be one of the
highest minima of the fractal free energy landscape[3]. Therefore, if we want to
explore the typical properties of jammed packings it is convenient to use a glass
configuration as thermalised as possible. So I will next describe a method to obtain
such configurations.

2.2 Approaching jamming using molecular dynamics

In order to generate a sufficiently well thermalised glass HS configuration we used the
Molecular Dynamics (MD) algorithm described in Ref. [94]. Such algorithm works
in an event-driven fashion, taking advantage of the fact that particles only interact
when they collide with each other and the corresponding collision times can be easily
computed. I will first describe why event-driven MD methods are very efficient when
using the HS potential, Eq. (1.23), and then discuss how a compression protocol
can be implemented. Besides the standard HS configurations, I will also present
results of MD simulations in the Mari–Kurchan (MK) model[143] of HS with infinite
range random shifts. In this latter case, the simulations were performed from my
own implementation of the event-driven MD algorithm. Producing numerous MK
glasses near their jamming point was essential for the results of Chp. 4. Expanding
on what I mentioned in Sec. 1.4.1, in the MK model particles interact according to
a randomly shifted distance,

Dζ(ri, rj) = |ri − rj + ζAij |, (2.18)

where Aij is a quenched, uniformly distributed random vector and ζ is a parameter
that tunes the effect of the shift. Setting ζ = 0 the usual Euclidean distance is
recovered, while ζ → ∞ corresponds to the Mean-field (MF) limit. In this latter
case, an exact solution to its thermodynamics is available, whence a simple closed-
form of its equation of state (EOS) in the liquid phase can be derived[143]. This is
possible because by introducing the random shifts three body interactions (leading
to short range correlations) are avoided. Being explicit, if σ denotes the particles
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Figure 2.3. Jammed configuration and network of contact forces of N = 1024 bidisperse
disks and periodic boundary conditions. Rattlers, i.e. particles with less than d+ 1 = 3
contacts, are coloured in orange. The edges of the network are the contact forces, whose
thickness indicates the magnitude of the force. The configuration was produced using
the Algorithm 1 with particles’ initial position drawn uniformly from the box area,
initial density ϕ0 = 0.4, and keeping a big/small radii ratio of 1.4.

diameter4, in MK configurations even when D∞(ri, rj) ∼ σ and D∞(ri, rk) ∼ σ, it
is almost certain that D∞(rj , rk) � σ. So neighbours of a given particle are very
unlikely neighbours between themselves. MK configurations are very useful because
they allow to test many of the MF predictions in finite dimensional systems, while
being amenable for numerical simulations. I will henceforth assume that ζ = ∞
whenever referring to MK systems. As mentioned earlier, it has been shown that
MK configurations of HS display all the rich phenomenology of real glass formers[109]
as well as having a Gardner[110] and jamming transitions[144]. Along this section, I

4For simplicity, I will henceforth deal with monodisperse configurations. But the results can be
easily generalized to systems with polydispersity.
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will discuss few other properties of the MK model, as they become relevant to the
topics of the MD simulations.

2.2.1 Basics of event-driven MD

MD simulations are particularly well suited for studying the thermodynamics of
configurations of HS because their potential renders the dynamics trivial. More
precisely, given that particles only interact through elastic collisions, each particle
moves ballistically until it bounces off another particle. Compared with most of
other types of interaction potentials –for which integrating the equations of motion is
mandatory– in HS systems only the computation of collision times is required. Even
more, the collision time between a pair of particles is readily obtained by solving
a quadratic equation. Such equation is easy to derive considering the diagram of
Fig. 2.4, which depicts a (blue) particle colliding with another one (in red), that
can be used as reference. That is, let r be the vector from the reference particle to
the incident one, and v their relative velocity. I will also assume that both particles
have the same mass and diameter, σ.

Figure 2.4. A (blue) particle collides with another one (red). To determine the collision
time tc, only their relative position r and velocity v are needed. The collision (lighter
blue) occurs at the smaller of the solutions of Eq. (2.19), t−c . Although the second
solution t+c is valid mathematically, it lacks physical meaning (dashed).

The two particles will only collide (lighter blue) if the equation

|r + vt|2 = σ2 ⇐⇒ |r|2 + 2r · vt+ |v|2t2 − σ2 = 0 (2.19)

admits at least one real, positive solution for t. Using the general formula for
quadratic equations it is straightforward to show that this will only happen if: (i)
the discriminant is positive (otherwise they do not cross with each other); and (ii)



2.2 Approaching jamming using molecular dynamics 79

r · v < 0, which means that they are approaching each other. If only (ii) does not
hold, a collision “would have occurred in the past”, i.e. for t < 0. Because Eq. (2.19)
is a quadratic equation, two solutions exist, t±c , of which only the smaller (positive)
one, t−c , is physically relevant. As illustrated with the dashed particle, the other
solution also provides a geometrically valid collision, but physically unfeasible.

In this way, the collision times between each pair of particles are easily obtained,
and by selecting the smallest of such times, the next collision is identified. Hence, the
state of the full configuration can be advanced up to that instant and the collision
simulated by exchanging the component of the particles’ momenta parallel to rc at
that time. With the updated velocities, the next collision time is obtained. The
dynamics is thus evolved following successive collision events. Moreover, because
momentum and energy are conserved at each collision, and the number of particles
and system’s volume are fixed, the dynamics corresponds to trajectories sampling
the microcanonical ensemble (also called NV E ensemble in the MD jargon).

This is the basic idea of even-driven MD simulations. It is a very efficient
algorithm when dealing with HS systems and its performance can be improved
using the following two techniques. First, only potential collisions between particles
nearby need to be taken into account. This can be done using the “neighbours
list” approach described above for the LP jamming algorithm. However, a faster
program is obtained if the simulation volume is divided into cells of fixed size and
hence collisions can only occur between particles inside the same cell or the ones
next to it. The gain in efficiency is mainly due to the updates of the neighbours
lists in the first approach, which requires, every so often, recomputing the distances
between all the particle pairs. In turn, in the grid approach the cells remain fixed,
so there is only need of bookkeeping the cell to which each particle belongs to.
Transfers between cells can also be easily computed and handled as a second type
of event. The MD algorithm of Ref. [94] that I used for HS systems belongs to the
second class. However, the results of the MK configurations to be considered here
and in Chp. 4 were obtained with an implementation of event-driven MD using the
neighbours list method, following the algorithm described in [194]. Indeed, in this
model the grid method leads to a poorer performance because each particle would
need to have an independent grid, given that random shifts are different for each
pair. Moreover, a cell transfer for a given grid does not necessarily correspond to
a change of cell in the grid of another particle. Hence, every time a particle moves
one must check which of the remaining N − 1 cell assignments are still valid and
which ones need to be updated.

The second way to accelerate event-driven MD is to use asynchronous dynamics
(Refs. [194, 195] provide detailed and very clear descriptions). Actually, this is by far
the major performance improvement and the reason why event-driven approaches
are so useful. Asynchronous dynamics works by computing the impending event for
each particle independently and storing the respective times. Because a collision
involves only a pair of particles, each event can be processed by updating the state
of only those two particles, while leaving the rest of the configuration unaltered.
Note that after a collision has taken place, only the new events of the particles
involved need to be computed, so most of the remaining collision times previously
found remain valid. After the new times have been calculated, the next event on
the list is processed and the dynamics continues. Besides, storing and extraction of
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collision times can be done very efficiently employing a binary heap5. In this work,
all the MD simulations were carried out in this way.

In general, MD simulations can be used to compute many variables of interest
by averaging over time and/or different realizations. As discussed in Sec. 1.2, for HS
systems the relevant variables are the (reduced) pressure p, Eq. (1.26), and packing
fraction ϕ, because the temperature is just a scale parameter. In fact, its role is
restricted to assigning the initial velocities, which are sampled from a Maxwell–
Boltzmann distribution before the MD takes places. Because the kinetic energy
is6 K = d

2NT = 1
2Nm|~v|

2, for a fixed volume, the temperature of a HS system
simply determines the temporal scale according to t ∼ 1/

√
T . Now, computing

the packing fraction is straightforward, but the pressure requires some care when
the system is subject to periodic boundary conditions as I will assume throughout
this work. Under such conditions no walls are containing the system, so p cannot
be measured as the force (per unit area) exerted on them. Nevertheless, a kinetic
pressure, associated to the momentum exchange during collisions, can be computed.
In fact, from the Virial Theorem[81] we have that

p = 1 + β

dN

〈1,N∑
i<j

rij · Fij

〉
= 1 + 1

2K

〈∑
c

rc ·∆pc
∆tc

〉
t

. (2.20)

To transform the Virial relation into the last expression, the sum over interaction
forces has been converted into a sum of the momentum exchanged during each
collision, ∆pc, and divided by the time passed between successive the collisions,
∆tc. The vector rc is the contact vector at the collision time, illustrated in Fig. 2.4.
Note also that the average in the rightmost equation is taken over long times (or,
equivalently considering a large amount of collisions), while the one in the virial
equation is the usual ensemble average.

In Figs. 1.14 and 1.15 I showed that the MD algorithm of Ref. [94] correctly
reproduces the liquid and glass EOS, estimating the pressure according to Eq. (2.20),
and using as reference the Carnahan–Starling formula (1.31) for the liquid and
Eq. (1.32) for the glass7. Similarly, with the analogous algorithm for the MK systems
the liquid phase can be accurately simulated as illustrated in Fig. 2.5. In this case,
the respective EOS of an MK liquid is given, exactly, by the MF equation (1.39b)
in the d → ∞ limit. The excellent agreement between the simulations and the
closed expression confirms the MF nature of the model. In other words, random
shifts effectively suppress correlations between three or more particles, so only the
leading term of the virial expansion, associated to pairwise correlations, is non-zero.
For the same reasons. although in a different situation, within the MF theory this
is the only non-vanishing correction to the ideal gas pressure; see Sec. 1.3.1

5A heap is a data structure that allows to store, extract, and update ordered data more efficiently
than by using a sorted list. To compare, given a set of n data, implementations of both quick sorting
and a binary heap scale, on average, as O(n logn). However, once the objects are constructed the
time complexity of inserting and deleting elements in a sorted array scales as O(n), while using a
heap structure it is reduced to O(logn).

6Recall that throught the text I am using kB = 1.
7Although these figures were obtained from MD simulations with a compression protocol (as

described in the next subsection), the compression was very slow so a good estimate of p was
available for each density.
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Figure 2.5. Comparison of event-driven MD simulations (markers) and the EOS, Eq. 1.39b
(black curve). MD data corresponds to the average and standard deviation over 5
independent estimations of p for each ϕ. Note that because of the MF nature of the
MK configurations, truncating the virial series after the second term leads to the exact
EOS. Additionally, because of the random shifts, MK configurations can reach densities
that would be unphysical in standard HS systems, i.e. ϕ > ϕFCC in 3d or even ϕ > 1.
All of this while remaining in the liquid phase.

Fig. 2.5 also shows that, due to random shifts, MK configurations can attain
densities that are prohibitively high in usual models, e.g. ϕ > 1. Once again,
this is caused by the fact that neighbours of any given particle are not mutual
neighbours between themselves, so they can be overlapping from the point of view
of such particle. Consequently, a particle has much more neighbours than if random
shifts were absent. From an algorithmic point of view, this feature hinders the
MD simulations because neighbours lists are considerably larger than for usual HS
systems, so more potential collisions are to be considered when obtaining the set
of potential tc. I should also mention that for ϕ > 0.7, the initial configuration
of the MD simulations was generated via planting. That is, for a given value of
ϕ, the set of particles’ initial positions ~r0 is drawn from a random distribution,
uniform over all the volume. And only afterwards the shifts Aij are drawn and
assigned, but with the condition that no overlap occurs for any pair of particles,
so Aij is repeatedly drawn until such condition is met. With this trick, liquid MK
configurations of arbitrarily high densities[109] can be produced without altering the
equation of state. This method will be important for simulating correctly the glass
phase as I discuss next.
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2.2.2 Compression protocol

For compressing the liquid into a glass we used a Lubachevsky–Stillinger (LS) com-
pression protocol[196]. It consists in increasing the particles’ diameter at a given
rate σ̇(t) and it is therefore easy to implement in periodic systems as we consider
here. As shown from the results of Ref. [94], in HS systems a glass can be readily
obtained from a liquid using the simplest compression protocol, i.e. one with a
constant growing rate σ̇ = κ. In that work, MD simulations with the LS protocol
were tested in monodisperse systems in several dimensions, and latter, in [99], the
same methodology was used for 3d polydisperse configurations. Analogously, such
LS compression method has been used to study MK configurations in their glass
phase; see [109, 110]. Similarly, the implementation I developed of the LS proto-
col is able to reproduce the expected EOS of MK liquids and glasses, as shown in
Fig. 2.6. An important feature of the MK model is that it exhibits a dynamical
glass transition, just as the one described by MF theory in Sec. 1.3.2, at ϕd ≈ 1.776.
Notice that a slow compression, say κ = 10−4 (blue line in Fig. 2.6), yields an out of
equilibrium liquid at densities well below ϕd, and decreasing the growth rate by an
order of magnitude barely improves the situation[109]. This is a manifestation of the
true dynamical transition predicted by MF theory, and therefore no compression
protocol is able to produce an equilibrated state for ϕ > ϕd.

On the other hand, these results also show the importance of using planted
initial conditions in order to access the full glassy phase at high densities. When
such method is used with no compression (i.e. κ = 0), MD simulations correctly
estimates the pressure of the equilibrated glass (cyan diamond) for densities consid-
erably above ϕd (vertical dash-dotted line). Yet, independently of whether planting
is used or not, the LS protocol generates a dynamics that correctly reproduces the
metastable glass behaviour, as indicated by the excellent agreement with the red
dashed lines. These curves were obtained from a fit to Eq. (1.32), which describes
the glass EOS in HS systems. However, when fitting the data I treated d in this
equation as a free parameter, given the lack of inherent dimensionality in MK sys-
tems.

Before continuing, some clarification of the glass EOS is in order. In Figs. 1.15
and 2.6, I have used Eq. (1.32) as the expected theoretical behaviour of a glass, and
showed that it is nicely verified by numerical simulations. However, it is important
to stress that this equation is not derived from thermodynamic considerations, but
only from free volume (i.e. geometric) arguments; see Sec. 1.2 and [98]. (Calling it
“Equation of State” is actually an abuse of terminology.) As discussed in Sec. 1.3.2
and 1.3.4, the true EOS is obtained, at least for MF models, by the technique
of state following, and requires using the Franz–Parisi potential in a 1RSB and
fullRSB schemes. Restricting the discussion to the MK model, for which a full
MF treatment is possible[109,110,197], notice that the true thermodynamic EOS of a
glass depends on the values (p, ϕ) at equilibrium –for instance, the cyan diamond in
Fig. 2.6. In contrast, the glass pressure using the free volume EOS depends, quite
naturally, on the density at jamming. Consequently, it does not provide information
about any equilibrium properties, not even when crossing the liquid EOS line8. As

8Beyond ϕd, the “liquid” branch actually corresponds to an equilibrated glass. See Sec. 1.3 for
a more detailed discussion.
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Figure 2.6. Liquid (dotted, black) and glass (dashed, red) branches in the MK model. The
dynamical glass transition of this model, characterized by a divergent relaxation time,
occurs at φd (dash-dotted). If no planting is used, the liquid is unable to equilibrate
beyond ϕd using any compression protocol, including the LS one. However, planting
allows to obtain an equilibrated liquid (cyan diamond) at an arbitrarily high density,
which can then be used to probe the glass phase when compression is “switched on”
(cyan curve). The glass EOS curves were obtain from a fit of the numerical data to
Eq. (1.32).

expected, no trace of the Gardner transition is present in this latter EOS, while it
is a salient feature of the thermodynamic construction based on state-following; see
[110, 197, 198]. Even more, no other thermodynamic variables or free energies can
be obtained from Eq. (1.32). As a side note, I take the opportunity to mention that
planting is another type of method that allows to equilibrate some systems beyond
the dynamical glass transition; see the discussion at the beginning of Sec. 1.3.3.
Unfortunately, this is not true in general since the free energy of a planted system
usually differs from the real thermodynamic one. But in the case of the MK model,
planting is a very useful trick because the annealed (i.e. planted) and quenched free
energies of the liquid coincide[109].

Let me now briefly discuss the main implications of using a LS compression pro-
tocol in the event-driven MD algorithm discussed above. Given that the particles’
diameter is also a function of time, the most obvious consequence is that Eq. (2.19)
cannot be solve analytically for a general growth function σ̇(t). However, when a
constant compression is used, as in all the cases studied here, the diameter is simply
σ(t) = σt0 + κt, so Eq. (2.19) remains quadratic in time. In contrast, the effect of
particles’ growth on the momentum transfer due to collisions is not so obvious. If
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two particles i and j collide, the new velocity of particle i (resp. j) has an extra
contribution[94,196] equal to r̂ijκ (resp. r̂jiκ), where r̂ij = ri−rj

|ri−rj | is a unit vector
connecting the particles’ during the collision. This extra contribution can be un-
derstood by considering the case of two static particles, where clearly no collision
is expected. However, if their size is being increased, sooner or later they will come
into contact. When this happens, the only source of “impulse” they have is due to
the speed at which their radius is increasing, and the “collision” takes place along
the line connecting their centres. The same argument applies when particles are not
static, thus the extra contribution to their momenta is justified. Because r̂ij = −r̂ji,
momentum is still conserved, but the energy is not9. In fact, the difference in kinetic
energies before and after the collision scales as κ2. A simple solution is to rescale,
after a fixed number of events, all the particles velocities so that their kinetic energy
matches K = d

2NT . On the other hand, 2κ should be subtracted from ∆p in each
collision in order to avoid the extra velocity contribution to affect the estimation of
p in Eq. (2.20).

As a final verification that the compression algorithm described here is able to
produced well thermalised configurations for very high pressures, I will compare
the gaps distributions obtained from MD simulations with the radial distribution
function (RDF) at jamming[94]:

g(h) = zσ

ρs(σ)δ(h) + cg(h) . (2.21)

In this equation, z = 2d is the average coordination number, ρ = N/V is the
number density, s(σ) is the surface of a hypersphere of radius σ, c is a geometric
constant and g(h) is the critical gaps distribution defined in Eq. (1.67). (Notice
that this latter quantity is written in italic, while the RDF is in regular typeface.)
Additionally, instead of considering the RDF as a function of r, as I did when it
was introduced in Sec. 1.2, I am using h = r

σ − 1, which amounts to rescaling the
distances by σ and translating the plot of g(r) by the same value. Notice that this
is just the gap definition given in Eq. (1.49) and used to study jammed packings
in Sec. 1.4, but particularized for monodisperse systems. Now, Eq. (2.21) tells us
that, at jamming, the RDF is made of a δ singularity due to particles in contact
(r = σ) that decays following a non-trivial power-law: g(h) ∼ h−γ , with γ ≈ 0.41 as
discussed in Sec. 1.4.4. This is nothing but a consequence of g(r) being proportional
the probability of finding a pair of particles a distance r apart. Indeed, as I will
show next, when p is high enough, these characteristic properties of g are reflected
by the probability distribution function (pdf) of h.

To estimate the pdf of h, I obtained the histogram of interparticle gaps using
the compression method just described in 20 systems of N = 1024 HS, at different
final pressures and with different values of κ. The results are reported in Fig. 2.7,
where a comparison with the power-law of g(h) for 10−7 ≤ h ≤ 1 is also included.
The numerical results are in excellent agreement with the theoretical prediction
over a range that, naturally, extends as p increases. On the other hand, the effect of
changing κ, even by an order of magnitude is barely noticeable. This is an important

9Thus, strictly speaking the LS compression protocol modifies the sampling ensemble of the MD
simulations.
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Figure 2.7. Probability distribution function of interparticle gaps h = r
σ −1 obtained from

the MD based compression. The different values of the final pressure are indicated by
different colours, while the distinct line styles identify the values of the particles’ growth
rate. A comparison (in cyan) with the critical gaps distribution expected at jamming is
also included, while the predicted onset of the plateaus at h = 1/p is indicated by the
dash-dotted vertical lines. See main text for a discussion of why these two features are
important.

point to which I will come back later. A second relevant attribute is the formation
of plateaus whose height also increments with p. To understand this behaviour,
recall that Eq. (1.25) relates the pressure of a HS system with the value of the RDF
at r = σ, g+. This expression was obtained for a liquid, but the only underlying
assumption is that the pressure can be obtained via the Virial theorem and, as
argued few paragraphs above, this is the case in MD simulations, provided that κ
is small enough so that averaging p over a large number of collisions matches its
thermal average. Besides, note that when the final pressure of the MD simulations
is increased by, say, two orders of magnitude the respective plateau is raised by the
same amount. We can then conclude that, except for geometric factors, the height
of the left part of the histograms equals g+ ∼ p. The plateaus are thus caused by a
nascent singularity that gives rise to the δ function in Eq. (2.21). This means that
as p → ∞ the length of such plateaus should vanish, whence it is expected that
their onset is reduced with p. In fact, when substituting z and s(σ) by their value
in d = 3, some simple algebra leads to

lim
ε→0

∫ ε

0
g(h) dh = 1

4ϕ .

In turn, from the histograms obtained numerically, we have that the same integral is
approximately εg+. But from Eq. (1.25) we know that for p� 1, g+ = p

4ϕ , whence
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we obtain that ε ∼ 1/p. This result is confirmed by the dashed-dotted, vertical lines
of Fig. 2.7, all of which are drawn at 1/p and that are in excellent agreement with
the rightmost part of the plateaus.

To make an explicit connection with the inners of the MD simulations, let me
give an additional argument of why it is expected that the plateaus begin when
h ∼ 1/p. It goes as follows: according to Eq. (2.20), the value of p depends on
how often collisions occur in the system. Given that velocities follow a Maxwell–
Boltzmann distribution their variance is finite, so typical temporal intervals between
collisions are of order ∆t ∼ h

v ∼
h√
T/m

. Because p ∼ 1/∆t, it then follows that gaps
which contribute the most to the kinetic estimation of p are, at most O(1/p). These
considerations show that before jamming is reached, the δ singularity of Eq. (2.21)
is smoothed out as a plateau of increasing height but decreasing width, caused by
particles colliding with their nearest neighbours. These interactions define (some
of) the contacts that will form at ϕJ . Additionally, there are other set of very small
gaps (although several orders of magnitude larger than the former), that begin
to delineate the critical gaps distribution; see Eq. (1.67) in the previous chapter.
Fig. 2.7 shows that if jamming has not been reached, there is a crossover between
these two sets, where it is impossible to know if a given gap should be classified as
a contact or as a true gap. Moreover, this intermediate interval is not affected by
using different compression rates, so it is not caused by a lack of thermalisation of
the configurations.

Interestingly, this same argument also shows that the MD-based compression
identifies the p = ∞ point with the situation where ∆t = 0. But notice that this
situation does not necessarily correspond to a jammed state. For instance, there
could be a percolating chain of contacts, leading to a set of particles blocked by
the event-driven dynamics, and yet be an unjammed configuration. The case of
the contact forces is harder to solve: even if contacts could be perfectly identified
by the h ∼ 1/p criterion, the problem of defining the forces magnitude would
remain. Therefore, despite the similarities of the pdf of h at p � 1 but finite,
and the expected behaviour at jamming, the configurations obtained using MD are
detectably different from real jammed packings. Because all the results of this thesis
are based on a precise identification of gaps and forces, we needed to complement
the MD method with our iLP algorithm to guarantee that systems are at jamming.
On the other hand, as I have argued along this part, the compression protocol
considered here is a good approximation of the state-following scheme. Therefore,
using the configurations thus produced as initial conditions of the iLP algorithm is a
way to ensure that typical jammed states are obtained. Combining both algorithms
yields a robust and relatively fast method, as I will now describe.

2.3 Characterization of MD+iLP algorithm

As mentioned in the last part of the previous section, configurations compressed
employing the MD algorithm will be used as initial conditions of the iLP algorithm
described in Sec. 2.1. Figs. 1.15, 2.7 (for HS) and 2.6 (in the MK model) show that
when a small value of κ is used, configurations can be compressed very close to their
jamming point, identified by the 1/p = 0 line. Hence, such initial conditions will
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be parametrized by the target pressure ptar at which the LS compression protocol
stops, and by the diameter growth rate κ used in such protocol. We decided to
use the pressure instead of ϕ because the packing fraction at jamming is system
dependent, and might even be distributed within an unbounded interval (as in the
MK configurations). In turn, jamming of rigid particles always ensues when 1/p = 0.
Additionally, the required fine tuning in ϕ is much harder to achieve, since p can
increase by 4 or more orders of magnitude, while ϕ changes its value by less than
1%, see Fig. 1.15. Hence, fixing a threshold value of the packing fraction would
yield a sample with very heterogeneous pressures.

The results that I will present in this section are a detailed characterization of
the properties and performance of the MD and iLP algorithms combined. I will
only consider HS configurations, but the results should be qualitatively analogous
for the MK model. As I have mentioned before, in d = 3 monodisperse HS configu-
rations tend to crystallize if a very slow compression is utilized. To avoid it, all the
configurations I will consider were produced after an initial and fast (κ = 5× 10−3)
compression up to p(0)

tar = 500. From the results of Figs. 1.14 and 1.15, it is clear
that this value of κ is enough to suppress the formation of crystalline domains, while
p

(0)
tar is well into the glass phase. All the MD compressions were performed using the

implementation of Ref. [94], while each LP optimization step of our method was
carried out using Gurobi[199].

2.3.1 Influence of the initial condition’s parameters

Possibly the first thing to consider is how the jamming packing fraction ϕJ depends
on the parameters of the initial condition, (ptar, κ). The results obtained for ptar ∈
[103, 1011] and for several values κ are reported in the upper panels of Fig. 2.8.
Each point corresponds to the average value of ϕJ (and the standard error) over
20 (resp. 10) samples for N = 1024 (resp. N ≥ 2048); hence throughout this
section 〈·〉 denotes the average over samples. As anticipated, all the values are close
to 0.64, and changing the target pressure of the compression protocol has little or
negligible influence for ptar ≥ 106. In contrast, the effect of changing the growth
rate (left panel) and system size are notorious (right plot), albeit similarly small.
As expected, lowering κ yields a higher value of ϕJ because it amounts to a better
thermalised compression, so it can reach lower minima of the free energy landscape
(FEL). Likewise, the jamming density attains higher values as N augments. This
result is also unsurprising given that the larger the system, the less it is constrained
by border or periodic effects; hence it can better rearrange its particles to achieve
a higher ϕJ . Of course, ϕJ cannot grow indefinitely as N → ∞, and indeed the
data suggest a rather quick convergence to its thermodynamic limit value. I should
emphasize that no crystallization occurs in these configurations (see Fig. 2.10), so
for a fixed N , ϕJ is narrowly distributed around a well defined value[132,133,136]. If
this was not the case, a much broader distribution of values could be obtained; see
[187] for an example were also an LP-based jamming algorithm is used.

Let me discuss in greater detail the dependence of the final configurations on
ptar. Such analysis is relevant since it puts to test the hypothesis of the fractal
structure of the FEL. As explained in Ref. [111] a careful investigation is required
to explore such scenario, and while the results presented here are not intended for
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Figure 2.8. Upper panels: Dependence of the jamming density ϕJ on the target pressure
from the compression protocol, ptar. Lower panels: Statistics of the difference in packing
fractions, ∆ϕJ(ptar) ≡ ϕ(pmax)

J −ϕ(ptar)
J ; because for some samples such difference is not

monotonic, the absolute value of the difference is considered. Several growth rates
with N = 1024 are considered (left) and different system sizes with fixed κ = 10−4

are analysed (right). Markers denote the sample average, while the error bars are the
standard error.

those purposes, I will argue that they nevertheless support such hypothesis. To
do so, I will consider as a reference for comparison the configurations obtained
from the largest target pressure pmax ≡ 1011. First I will focus on the difference
∆ϕJ(ptar) ≡ ϕJ(pmax)− ϕJ(ptar) as a measure of how much the final configuration
changes if the iLP crunching begins at a different ptar. The lower panels of Fig. 2.8
depict the dependence of 〈|∆ϕJ(ptar)|〉 of the same samples considered before. The
absolute value is necessary because, unexpectedly, the difference is not monotonic.
That is, some samples attain a larger density when ptar < pmax, so in order to
avoid deviations to larger values cancelling the ones to smaller values the absolute
value is used. In any case, when N = 1024 and the value of κ is varied, our results
show (bottom left panel) that the difference of jamming packing fractions decreases
almost steadily as ptar grows. This behaviour is precisely the expected one from a
fractal FEL, because it implies that the minima –attained from different ptar and
that define the jammed states– are similar between themselves (because they all
belong to the same meta-basin), but their specific features are realized gradually
(because the configuration navigates the different sub-basins as ptar increases). Con-
versely, if the FEL possessed a simple basin structure, once ptar was high enough all
the configurations would end up in the same minimum, so the final packings would
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be identical. Second, for ptar ≤ 106 results are rather insensitive to the compression
rate. However, while ptar ≥ 108 is enough to suppress fluctuations if κ = 3× 10−4,
detectable differences are present even if ptar = 1010 when the slowest compression
is used. Our data thus suggest that the hierarchical structure of the FEL can only
be fully resolved with an infinitesimally slow compression. Similarly, when κ is
fixed and different system sizes are considered (bottom right panel), ∆ϕJ(ptar) is
monotonically decreasing up to ptar ∼ 107. For higher pressures, the difference with
respect to pmax seem to increase with N . This is, very likely, once again a mani-
festation of the finite value of κ, which determines the radius growth rate. Because
the volume of all the systems is fixed, configurations made of more particles have
smaller spheres and, consequently, using the same value of κ for all of them produces
different compression rates. Additionally, the discrepancy found for different N is
also possibly caused by finite size effects, given that the marginal fractal phase is
strictly valid only in the thermodynamic limit.
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Figure 2.9. Overlap (defined in the main text) of the networks of contacts using as
reference the one corresponding to pmax. The overlaps increase gradually as the con-
figurations go deeper in the FEL, suggesting that it has a fractal structure. The data
reported here correspond to the same configurations of Fig. 2.8.

As a second measure of the similarity between jammed configurations I will
consider the overlap of the network of contacts. Thus, let nij(ptar) = 1 if particles i
and j are in contact in the jammed configuration obtained from an initial condition
with ptar, and 0 if they are not in contact. Taking once again pmax as reference,
the overlap between two networks of contacts is then nij(ptar)nij(pmax), where the
overline denotes an average over all the contacts of the reference network. Notice
that this variable is more sensitive to variations in the jammed state, given that the
full microstructure of the packings is considered. In fact, this is the same quantity
analysed in Ref. [111] to investigate the fractal structure of the FEL. However, the
packings produced there were not precisely at jamming –but at a very high p– and
the authors were concerned with the overlap of different configurations at the same
pressure. Here I am instead considering the jamming point of the same system,
reached from different pressures. Fig. 2.9 shows the results of the similarity of the
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contact networks obtained from the configurations considered above. Also in this
case the data support the fractal FEL hypothesis, because as ptar increases the
network of contacts are more alike. Once again, this can be explained assuming
that the broad structure of the contacts network is shared by packings within a
given meta-basin, but the precise particle contacts are determined progressively as
a configuration goes down in the hierarchical structure of minima. It is worth
emphasizing that the discrepancies found when varying κ and N are in tune with
the explanation given above, namely: the need to use an adiabatic compression
and be in the thermodynamic limit in order to probe the fractal structure of the
FEL at all scales and for every value of p. In fact, when this is not the case, our
results show that for some values of κ and N , and at sufficiently high pressure, the
networks of contacts are identical in all the samples. At any rate, I should warn that
even if these results are very promising and complimentary to the ones of Ref. [111],
they are still preliminary given the few samples considered. Additionally, a more
systematic analysis of the influence of the compression protocol and system size is
needed to explain satisfactorily the dispersion of values found for ptar ≥ 108.

As a final feature, I will show that no crystalline domains are present in the
jammed packings produced by our MD+iLP method. To do so, I will resort to
the RDF computed using Eq. (1.17) and averaging over the 20 jammed packings
of N = 1024 particles. Fig. 2.10 contains several plots of g(r) obtained using
different values of ptar to generate the jammed packings, and fixing κ = 3 × 10−4.
However, changing the compression rate leaves the RDF unaltered, as evidenced by
the dashed, dash-dotted, and dotted black lines (corresponding to κ = 10−4, 3 ×
10−5, 10−5, respectively) superposed to the curves of the respective pressure. If
crystallization did occur, a peak would appear exactly at

√
2, due to the distance

between the pair of particles in the diagonal of a square[200,201]. Given that g(r) has
a minimum very close to r =

√
2σJ (red dashed line), such peak would be easily

noticeable. For instance, the inset shows the RDF of 10 configurations with a small
degree of crystallization, ϕ ∈ (0.65, 0.675), all of which show an evident peak at
the predicted position. Another signature of crystallization is the peak at

√
7 (pink

dashed, line), although its presence is less pronounced and it is only smoothed out in
amorphous packings. In any case, these configurations were not included in any of
the analyses I present here. On the other hand, the peaks at

√
3 and 2 are expected

in disordered configurations[94,172,200,201]. At r = 3σJ a discontinuity is expected,
although it is hardly visible at this scale. A detailed analysis of the behaviour of the
RDF in jammed packings can be found in [172, 200, 201], while a nice example of
how the peaks disappear as a configuration moves away from the crystal is presented
in Ref. [163], albeit using polydispersity as the source of disorder. At any rate, the
behaviour of g(r) obtained from our method agrees with previous results far from
contact – that is, for r/σJ − 1 � 1– confirming that the MD+iLP algorithm fully
suppresses crystallization.

2.3.2 The MD+iLP route to jamming

In this subsection I continue analysing some features of the jammed packings ob-
tained by combining the MD and iLP algorithms. But now, instead of considering
the properties of the final jammed configuration, I will focus on how such configu-
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Figure 2.10. Radial distribution function (with the distance scaled by the diameter at
jamming, σJ) and its dependence on the target pressure of the initial configuration.
Each curve is obtained by averaging 20 samples of N = 1024 particles. The curves have
been displaced vertically for clarity, because they overlap almost perfectly. All of them
were obtained using the largest value of κ in the MD compression, but changing the
compression rate leaves g(r) unaltered as shown by the dashed (κ = 10−4), dash-dotted
(κ = 3 × 10−5), and dotted (κ = 10−5) lines. Vertical lines at
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the position of expected peaks if crystallization occurs, while the grey dotted lines are
present also in amorphous systems; see text. Inset: Sample of 10 configurations (in
grey) and their average (cyan) where partial crystallization occurs. The presence of the
peak at

√
2 is a clear signature of partial ordering, while the one at

√
7 is only smoothed

out.

rations are reached. In other words, I will describe some of the physics underlying
the MD+iLP protocol. For this purpose, I begin by arguing that, based solely
on a (p, ϕ) parametrization of a jammed state, the packings obtained through the
two algorithms combined cannot be distinguished from the ones corresponding to
the p → ∞ limit using only the MD compression. To perform such comparison,
note first that the density value extrapolated to this limit, ϕ(MD)

J , can be read-
ily estimated by fitting the values of 1

p and ϕ obtained from MD simulations with
a given κ to Eq. (1.32). The results that I present next were obtained from the
20 configurations of N = 1024 particles and the data of p ∈ [105, 1011] for each
κ ∈ {3 × 10−4, 10−4, 3 × 10−5, 10−5}. Instead of fixing d = 3, I considered d as
a free parameter for the fit in order to account for the deviation with respect to
the EOS and thus better estimate of ϕ(MD)

J . Nonetheless, in all the fits I found
1 ≤ d/3 ≤ 1.07 and 0.999 ≤ R2, indicating that they are reliable enough. ϕ(MD)

J
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is then equal to d divided by the estimated slope. The average densities resulting
from such fits are reported in Table 2.1, as well as the analogous packing fractions
with target pressures ptar = 103 and ptar = 105. Results with larger target pressures
are the same, considering the standard error.

κ
〈
ϕ

(MD)
J

〉 〈
ϕJ(ptar = 103)

〉 〈
ϕJ(ptar = 105)

〉
3× 10−4 0.64223(19) 0.64212(17) 0.64223(19)

10−4 0.64255(21) 0.64252(21) 0.64255(21)
3× 10−5 0.64291(24) 0.64288(24) 0.64291(24)

10−5 0.64301(23) 0.64299(23) 0.64301(23)
Table 2.1. Average values of the jamming density of the MD compression protocol alone,

and complimented by iLP. Each row corresponds to a different growth rate. Packing
fractions in the p → ∞ limit are estimated through a fit, as described in the text.
The uncertainties reported are the standard errors, since these are larger than the ones
obtained from the error propagation of the fits estimates.

It is clear that when the standard error associated to the sample is considered,
jamming densities obtained from MD cannot be distinguished from the ones of
MD+iLP, even for the smallest ptar we considered here. Yet, because of sample to
sample fluctuations of the values of ϕJ and ϕ(MD)

J (although always within a small
range), it might be useless to compare their ensemble average. An alternative is
to consider the difference ϕJ(ptar)− ϕ(MD)

J from individual samples. However, the
errors associated to the fitted parameters, whence ϕ(MD)

J is calculated, lead to an
uncertainty several times bigger than such difference. These findings are depicted
in Fig. 2.11, where

∣∣∣ϕJ(ptar)− ϕ(MD)
J

∣∣∣ is plotted for each sample, all values of κ
used so far, and ptar ≥ 105. For comparison, the range where uncertainty values
of ϕ(MD)

J lie is indicated by the grey shaded region, showing that it is at least two
orders of magnitude larger than10

∣∣∣ϕJ(ptar)− ϕ(MD)
J

∣∣∣. This implies that the two
jammed states cannot be told apart macroscopically.

On the other hand, note that the average values of ∆ϕJ are several orders of
magnitude smaller than

∣∣∣ϕJ(ptar)− ϕ(MD)
J

∣∣∣; cf. with the black curves included in
Fig. 2.11. This means that even when there is a measurable difference in the iLP
packing fraction, it is impossible to discern it only through a comparison with the
values corresponding to MD. This would call for a microscopic comparison between
the two types of jammed states, if only the MD jammed packings were realizable.
Unfortunately, this is clearly not the case. But even if a p = ∞ configuration
could be produced through MD compression, there is no guarantee that it will
be strictly jammed. As I argued in Sec. 2.2.2, whenever κ > 0, a p = ∞ could
correspond to a configuration in which only few particles are in contact, leaving
several degrees of freedom unconstrained, and thus far from the 1SS requirement
for jamming criticality (see Sec. 1.4.2). In other words, although our simulations
do not show any inconsistency with the hypothesis that ϕJ and ϕ(MD)

J identify the
same jammed state, proving that this is the case is far from easy.

10I should mention that I have introduced the absolute value only because for ptar ≤ 105 some
samples have ϕJ < ϕ

(MD)
J , while for greater pressures the opposite is true in the vast majority of

cases. Hence, removing the absolute value makes no difference in our conclusions.
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Figure 2.11. Difference in jamming densities obtained from iLP, ϕJ , and fitting data of
MD simulations, ϕ(MD)

J . Markers are results obtained using 20 samples of N = 1024.
Each marker style identifies a value of the growth rate, with the corresponding data
horizontally displaced for clarity. To compare with the intrinsic variance of ϕJ data of
∆ϕJ(ptar) is also included. See text for more details.

Let me then analyse in detail the jammed states produced with iLP, for which
micro- and macroscopic data are readily accessible. Recall that results of the previ-
ous subsection reveal that, when using the two smallest values of κ in the N = 1024
systems, an increase in ptar is accompanied by a measurable change in the jammed
state reached through iLP. Such change is detectable both by the values of ϕJ and of
the similarity of contact networks (see Figs. 2.8 and 2.9). Nevertheless, when larger
values of κ were used, these differences persist up to a certain threshold pressure,
p

(th)
tar , above which all jammed states are virtually identical. That is, for p ≥ p

(th)
tar

it happens that φJ(p) = φJ(pmax) and nij(p) = nij(pmax) for all configurations, at
least within numerical precision. It is natural to assume that p(th)

tar = p
(th)
tar (κ,N),

with a larger threshold pressure associated to a smaller growth rate and larger N
because the hierarchical structure of the FEL should be realized in the thermody-
namic limit with an infinitely slow compression. For instance, our simulations indi-
cate that for N = 1024 systems p(th)

tar (κ = 3× 10−4) ' 108, p(th)
tar (κ = 10−4) ' 1010,

and p(th)
tar > pmax = 1011 for slower compressions. We can then conjecture that for

any finite κ, there should be a threshold pressure above which iLP jammed states
become identical, even using a microscopic characterization. This latter claim is
further supported by the results presented soon below in Figs. 2.13 and 2.14.
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The scenario that emerges from the discussion so far is that jammed states
potentially reached by pure MD compression as well as those generated using iLP are
different from the “thermodynamic” jammed state (ϕ?J) obtained via, say, adiabatic
compression. The full picture is outlined in Fig. 2.12 in the (1/p, ϕ) plane close to
jamming, e.g. p� 103. The thermodynamic EOS is shown in black, while the path
followed by MD compression is blue coloured. κ controls the relative slope between
these two curves, which end at ϕ?J and ϕ(MD)

J , respectively, with ϕ?J > ϕ
(MD)
J . Now,

we have already seen that if ptar is deep in the glass phase but not extremely high
(say ptar ≤ 105), different initial conditions in the iLP algorithm lead to different
packings; this is illustrated by the green paths, ending in ϕJ,1 and ϕJ,2. However,
when the initial pressure is very large (ptar ≥ p

(th)
tar ), different values of ptar lead to

the same final jammed state ϕJ,3 (red), even in its microscopic structure. Of course,
the value of such p(th)

tar depends on the value of κ; cf. the cyan and green curves in
Figs. 2.8 and 2.9. In most of the cases, ϕJ,1 < ϕJ,2 < ϕJ,3, while the uncertainty
in the estimation of ϕ(MD)

J does not allow to derive a similar relation with respect
to ϕJ,3. Nevertheless, it is likely that ϕJ,3 = ϕ

(MD)
J . Besides, given that the iLP

algorithm works by crunching a given configuration, and in doing so it necessarily
takes it out of equilibrium, it is also expected that ϕJ,3 < ϕ?J . That is, because
iLP functions by applying an immediate quench to T = 0 and then bringing the
configuration to a local minimum, essentially without going over barriers in the FEL
(see Sec. 2.1.3), it is reasonable that a smaller density is achieved, but given that
no precise calculation of ϕ?J is available for monodisperse HS, I could not verify this
explicitly. In any case, note that this picture mimics the very recent findings of
algorithmic memory formation in jammed packings reported in [202].

To proceed with the microscopic characterization of the iLP algorithm, it is
worth to analyse the particles rearrangements performed by the iLP algorithm as
the jamming point is reached. If the scenario of Fig. 2.12 is true, for sufficiently high
ptar we should observe that the particles displacements {si}Ni=1 become (roughly)
independent of the target pressure of the initial condition. To test such hypothesis, I
will consider the distribution of LP displacements, {|si|}N

′
i=1 (i.e. without including

rattlers) mainly during the first and last iterations. For later use, I will denote
as n the number of LP optimizations carried out to reach the jamming point of
a configuration. (The dependence of n on ptar and κ is postponed to Fig. 2.16 in
Sec. 2.3.3.) Given that 〈n〉 ≈ 3 for ptar ≥ 107 and κ ≤ 10−4, in practice only the first
and last LP steps can be consistently compared in all the samples. Now, we need to
distinguish between these two steps because, as argued in Sec. 2.1, our iLP algorithm
quickly reduces the free volume (i.e. the feasible region) of the configuration. It is
hence expected that the largest displacements take place during the initial steps. In
contrast, just before convergence iLP performs displacements that are, very likely,
employed to “fine tune” the contacts (for instance, by matching linear and real
contacts, identified by tangency of constraints; see Sec. 2.1.3), but not on relatively
large rearrangements. Furthermore, from the examples given in Sec. 2.1.3 about how
the feasible region is monotonically reduced, we can reasonably assume that during
the iLP process, configurations do not really jump over free energy (or actually,
entropic) barriers. With all this in mind, if initial displacements are similar for very
large ptar, while the last ones are minor “adjustments” (for all values of ptar), we can
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Figure 2.12. Sketch of iLP and MD paths to jammed states, identified by their density.
The equilibrium line obtained by adiabatic compression (solid black line) is followed
closely by the MD compression protocol (blue), but due to the finite growth rate, it
eventually detaches from the equilibrium line. Its p =∞ extrapolated value is identified
by ϕ(MD)

J (although it is possibly not a strictly jammed state; see text), using a big
circle to highlight the uncertainty in its estimation. When ptar is high, but not too
much, using the configurations from MD as seeds of the iLP algorithm leads to different
packings (green) with different packing fractions ϕ(1)

J < ϕ
(2)
J . However when ptar is very

large, different initial conditions lead to the same jammed state (red), ϕ(3)
J . Yet, an

accurate comparison of ϕ(MD)
J and ϕ(3)

J with the available data is impossible given the
uncertainty of the former. In any case, they are likely smaller than the jammed density
estimated of an adiabatic protocol, ϕ?J . The values of ptar included are representative
of the samples I consider here with κ > 10−4, and therefore are not universal.

conjecture that iLP works by crunching the configuration to the nearest minimum.
Happily, the histograms of |si| in the central and uppermost panels of Fig. 2.13 agree
precisely with this picture. Specifically, the effect of κ (central panel) is only visible
for the first LP step, while if ptar ≥ 107 a small to negligible effect is observed even
in such initial part (top panel). On the other hand, for the last LP iteration, there
is essentially no difference when κ or ptar are changed. The only visible effect is that
the amount of null displacements, which for convenience are drawn around 10−18,
increases monotonically with κ. This means that when the initial condition of iLP is
better equilibrated –i.e. when a smaller κ is used– more contacts can be fine tuned
simultaneously. In contrast, if a faster compression is employed a larger portion of
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Figure 2.13. Histograms of individual particle displacements, {|si|}N
′

i=1 (i.e. excluding
rattlers), at different steps of our iLP algorithm. Results changing the target pressure
(resp. growth rate) are shown in the top (resp. middle) panel, for the first (solid lines)
and last (dashed) LP steps. In order to also include the case of |si| = 0, such null
displacements are drawn approximately at 10−18. The bottom panel instead shows
the change in the distributions of |si| at different steps of the iLP crunching (with κ
and ptar as indicated on the left). These results show that our LP algorithm brings a
configuration to its closest minimum as discussed in the text.

the configuration remains fixed, while the final missing contacts are determined.
To further explore the mechanisms of the iLP algorithm during its convergence

process, we can consider the configurations obtained with κ = 3×10−4, given that in
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such case 〈n〉 ≈ 10 for the range of pressures ptar ≥ 107. The results are presented
in the bottom panel of Fig. 2.13, whence we conclude that during the first half
of iterations the displacements are practically of the same size, while it is only in
the second half that a significant fraction of particles remain rather fixed. Besides,
in the intermediate steps the distribution of |si| broadens across several decades,
while during the initial and final steps it is mostly peaked. This provides evidence
that the iLP algorithm works by first converging to a small region of a meta-basin
(by relatively large displacements) and then realizing progressively the network of
contacts (by small but broadly distributed displacements).
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Figure 2.14. MSD for the iLP algorithm (defined in the text), for different growth rates
and computed after the first, second, and last LP optimization step.

Finally, it is also interesting to keep track of the full configuration motion dur-
ing the iLP process, so let me now analyse the MSD at each iteration, that is
∆LP(k) := 1

N ′
∑N ′
i=1 |ri(k)− ri(ptar)|2, where k = 1, . . . , n and ~r(ptar) is the config-

uration obtained from MD at a given target pressure. The values of this quantity
for the different parameters considered here are reported in Fig. 2.14 for the first,
second and last iterations. The data confirm the discussion of the previous para-
graphs about the fact that for a given κ, there exists a target pressure above which
the rearrangements of the configurations are essentially unchanged. Moreover, even
for very small κ and very high ptar, the first and last iLP steps have different roles:
the former accommodates the particles, and the latter fixes the contacts. Put to-
gether, these two features suggest that for any finite growth rate and even in the
ptar →∞ limit of MD, some rearrangements are needed to obtain a proper jammed
1SS state. To recap: in combination with the results above, these findings further
support the claim that iLP states reached from p ≥ p(th)

tar are identical, both from a
macroscopic point of view (i.e. using ϕJ) or from a microscopic one (characterized
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through {|si|}N
′

i=1 or nij(ptar)nij(pmax)). It is also worth recalling that ϕ(MD)
J ap-

parently converges to the same limit value than iLP for sufficiently large pressure,
which strongly suggests that iLP crunching is an efficient way to reach the infinite
pressure limit; see Fig. 2.12. However, two sources of error should be kept in mind:
(1) fitting the glass EOS to MD data yields an estimation of ϕ(MD)

J with a rela-
tively large uncertainty; and (2) the configuration of the MD compression protocol
in p→∞ limit might not be strictly jammed. Therefore, although we cannot ensure
that both jammed states are equal, our findings suggest that they should be. In
any case, a more extensive study with even slower compressions and higher target
pressures should be useful to firmly confirm this picture.

As a last remark in this section, I would like to mention how iLP could be used in
a future work to carefully explore the landscape structure. First, we could analyse
if ∆LP bears any relation with the hierarchy of meta-basins of the fractal FEL, itself
characterized by the distribution of possible values of the MSD. A way to do this is
to apply the MD compression up to a determined ptar and then let the dynamics of
the system continue its evolution but without compression. After a fixed number of
collisions, the configurations are saved and crunched using iLP. By comparing the
MSD of the actual dynamics, with the “distance” between jammed states, and also
with ∆LP we could further explore how iLP navigates the FEL towards a minimum.
It should be interesting to find out if any of these quantities captures the jamming
critical exponents. For instance, in Sec. 1.3.4 I mentioned that the plateau value
of the MSD scales as ∆ ∼ p−κ. A similar relation could hold between ∆LP and Γ.
Nevertheless, note that the plateaus of ∆LP that form for a given value of κ might
indicate that configurations cannot probe the finer structure of a meta-basin, even
as they go down (i.e. as ptar increases) the landscape. So this proposal might not
be straightforward to implement.

2.3.3 Complexity of iLP: Scaling with size

A final property I will briefly analyse is the size scaling of the iLP algorithm. I will
mostly omit the MD compression part mainly because we used a well known proto-
col and did not implement any new features11. But also because the LS compression
and the iLP crunching benefit from two different and excluding computational ap-
proaches. In the former case, due to the deterministic dynamics and the serial nature
of asynchronous event-driven algorithms12, the MD compression of a single sample
is not accelerated if more processors are available. (Clearly, if several systems are
required, the LS compression can be trivially hastened by executing independent
MD simulations in separate threads.) In contrast, the opposite is true for the iLP
part, at least using the Gurobi solver[199] as we did here13. The reason being that

11Except possibly for the MD simulations of the MK model, but we will consider its full charac-
terization in a future work

12Although see [203] and references therein for clever parallelised implementations, some allowing
scaling of O(N).

13We decided to use Gurobi because a free academic license is available, which allows to
solve large-scale optimization problems (other free licensed software limits the number of vari-
ables+constraints to about 3000) and is definitely faster than other freely available libraries, like
GLPK or HiGHS; some benchmarks are available here. The obvious drawback is that, being a
proprietary software, it works as a “black-box” with few tunable parameters. That is, the user can

http://plato.asu.edu/ftp/lpsimp.html
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the optimization of each LP step in Algorithm 1 is done using a non-deterministic
algorithm that runs multiple instances of the interior-point method[190,191,193] with
different random initial conditions. The solution reported is the first that converges
within a user defined accuracy. Hence, the larger the amount of different initial
conditions the faster the algorithm, so the solver works by implementing as many
as available processors. (Unfortunately, however, the speed gain in increasing the
number of initial conditions is not substantial: doubling the threads is far from
halving the required computational time.) On the other hand, the alternative of
using a “single-thread” solution technique, such as the simplex method14, in order
to maintain the serial property in the full MD+iLP method, severely slows down
the LP optimization. We therefore decided to focus mostly on the iLP part (which
is the real novelty of our approach) and just consider briefly the execution times of
the full MD+iLP procedure as I now discuss.

In tune with the results of the two previous parts, I will also explore the de-
pendence of the running time (t) as a function of ptar, for different values of κ and
N . All the results that follow were obtained running the simulations in a 6 cores
computer, with processor Intel Core i7-8700 at 3.2 GHz. In the iLP part, each LP
optimization was solved using the barrier method as implemented in Gurobi version
8.1, with at most one initial condition per core. The statistics of t are summarized in
Fig. 2.15, where mean running times of the full MD+iLP are shown (circular mark-
ers) and compared with the average running time of the iLP part only (crosses,
dotted lines). The values reported correspond to the average over the same samples
as above, and the error bars are their standard deviation. Left panels show the
influence of the growth rate for fixed system size, N = 1024; while the graphs on
the right explore the effects of the system size for fixed κ = 10−4. Additionally, the
bottom panels plot the same quantities, but considering that several MD processes
can be executed simultaneously in a single computer. In particular, for these plots
I assumed that 10 configurations are produced in parallel, which corresponds to the
most common situation when these data were generated.

Let me begin by analysing the effects of the growth rate in the small systems.
As expected, changing κ mostly affects the duration of MD, while its impact on the
iLP times is very small, especially for κ < 10−4. This feature is also reflected in
the number of LP iterations (n) performed by our crunching algorithm as reported
in Fig. 2.16 below. Yet, the most notable effect is that the time needed by iLP
is roughly constant for ptar ≥ 107, as expected from the fact that n remains es-
sentially unchanged for such large pressures, and confirms the features summarized
above when discussing Fig. 2.12. Now, given that decreasing κ obviously length-
ens the MD simulations, a trade-off between a large (but not huge) value of ptar
and a small growth rate is expected. This would be clearly signalled by a convex
curve of the MD+iLP time, with the minimal value of t being rather unaltered by
changing κ. However, this is not the scenario observed for the N = 1024 –where t
increases monotonically with both ptar and κ. This is easily explained because the

specify the desired accuracy for the solution (within a given range), the solving method, etc. but
cannot access the real algorithmic implementation.

14Most accessible implementations of the simplex method –both in its primal or dual variants–
are serial, although some parallelised versions have been recently developed[204]. However, the most
performant ones are proprietary and non-free; see footnote 13.
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Figure 2.15. Execution times of the full MD+iLP process as a function of ptar using
N = 1024 and different growth rates (left panels) and for fixed κ = 10−4 and varying
system sizes (right). Upper panels show the total time of MD+iLP (solid lines), while
the lower plots show the same quantity, but assuming that 10 MD samples can be
generated simultaneously. In all cases, the iLP times have also been included (dotted,
cross markers) for comparison. The vertical grey lines indicate the value of ptar employed
for most of the results presented in this section. For relatively small systems and
ptar ≥ 106, it is clear that the most time consuming part is the MD compression. For
larger systems instead, iLP always takes a considerable portion of the time. See text
for more details.

iLP algorithm is very fast at crunching small systems, so extending the MD com-
pression in order to reach a larger ptar is in general a bad strategy. Of course, this
conclusion only applies to the target pressures considered here: if iLP is used from
a liquid configuration (e.g. using ptar ' 10) this would not be true and the value of
t would be significantly larger. Interestingly, for small systems iLP is fast enough
that even when considering the simultaneous MD compression of samples, only a
small dip in the curves of t can be appreciated. And it occurs at a relatively small
target pressure, ptar ' 105, and large values κ. Thus, moderate target pressures and
fast compressions are optimal when jamming small systems. In turn, when dealing
with large systems increasing ptar is more beneficial the higher N is. Once again,
however, the gain in speed of the iLP algorithm is capped for very large pressures,
ptar ≥ 109, at least for the sizes considered here. Moreover, in the scenario of big
configurations, it is clear that a significant amount of the computation time is caused
by iLP. This is specially important when considering the possibility of simultaneous
MD runs, as shown by the lower right panel of Fig. 2.15. This plot evinces that



2.3 Characterization of MD+iLP algorithm 101

for N ≥ 4096 the major contribution to t is precisely the iLP crunching. Note also
that, for fixed N , varying ptar across 8 orders of magnitude rarely increases t by
more than a decade. However, changing the system’s size can lead to an increase in
t (resp. tLP) of almost two (resp. more than two) orders of magnitude, which means
that reducing t of large samples should be favoured over small ones. Put it simply,
it is unfeasible to choose values of (κ, ptar) that are optimal for any given system
size. This is the reason why in our analysis of the complexity of the iLP algorithm
as a function of N we used a fixed value of ptar = 107 (grey vertical lines) and
just tred two different MD compression protocols as described below. This value of
ptar, although suboptimal for small samples, provides a good trade-off when using
several values of N .

I will henceforth restrict the analysis of t, iterations, etc. to the iLP algorithm
exclusively. From the considerations of the first paragraph of this subsection, it
would seem that the characterization I will present here heavily depends on the
specific solver we used. Fortunately, the situation I described there is rather general,
i.e. interior point methods are usually faster than simplex-based ones (see, however,
footnote 14). Additionally, the trend we found suggests that the complexity of the
iLP jamming algorithm has a well defined dependence with the system size. A
final technicality to consider when interpreting the results is that, when using an
interior point method, the convergence rate to a solution within a given accuracy
also depends on the system size[190,193]. Here, we set the (absolute) tolerance for
optimality and feasibility to 10−9, the most accurate option available with Gurobi.
It is also worth noticing that our algorithm is able to generate jammed packings
with such relatively low accuracy, given that other methods require quad-precision
to avoid over-shooting the jamming point[150,151]. All in all, this means that the
convergence times reported next and related quantities are good proxies of the real
algorithmic complexity of iLP, but the precise values should be taken with a grain
of salt.

The first feature to analyse is the number of LP steps (n) needed to reach the
jamming point and its dependence on ptar and κ. Analysing n complements the
results discussed above regarding Fig. 2.15, as well as those of Secs. 2.3.1-2.3.2. The
statistics of n are reported in Fig. 2.16, using data from the same configurations
considered above. In agreement with the results presented previously, there is a
negligible variation for ptar ≥ 107. In contrast, for fixed N = 1024, 〈n〉 barely
changes for κ ≤ 10−4, indicating that the growth rate has a smaller influence on n
than on other quantities. Instead, when different values of N are used, the results
confirm the expected outcome that 〈n〉 increases monotonically with the system size.
Note also that for sufficiently large ptar, the number of LP steps remains practically
constant and is never smaller than 3. When considered together with the results
of Figs. 2.13 and 2.14, these data suggest that, for any ptar < ∞ and finite κ, the
iLP method requires at least two steps in order to reach the jamming point. In the
first one, particles undergo relatively large displacements that define an inherent
structure, while in the second step they are minimally displaced in order to turn
linear (i.e. non tangent) contacts into physical ones (Sec. 2.1.3).

The next feature to consider is the size dependence of n and the convergence time
τ . The results that follow were obtained fixing ptar = 107 and testing two different
compression strategies. In the first one, a constant growth rate κ = 10−5 was used
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Figure 2.16. Number of LP optimization steps required by the Algorithm 1 as a function
of the target pressure, varying the compression rate (left panel; 20 samples per point)
and the system size (right panel; 10 samples for N ≥ 2048). Data obtained from the
same configurations of Sec. 2.3.1.

for all values of N = {28, 29, . . . , 214}. Notice however that such procedure keeps
the radius’ growth rate constant, but not the density one. For the latter, we must
keep in mind that ϕ̇ ∼ Nσ2σ̇ ∼ (Nϕ2)1/3κ. Hence, if for a given density ϕ we want
configurations of different size to have the same compression rate, we should scale
κN ∼ N−1/3. Thus, in the second strategy we used as referenceNmax = 214 and then
scaled κN = (Nmax/N)1/3 10−5 for smaller sizes. To perform an accurate analysis,
we generated M = 100 samples for each value of N and for each compression
strategy.

The average values of n (upper panel) and τ (bottom panel) are reported in
Fig. 2.17 for all the system sizes considered and both compression procedures. Error
bars correspond to the standard error, although for τ the logarithmic scale renders
them invisible. The first thing to notice is that both compression strategies produce
very similar results, although less iterations are obtained in general when κ is fixed
for all N , as expected. Such similarity is easy to understand because given the
values of N considered here, we have that κNmin/κNmax = (214/28)1/3 = 4. In
other words, the compression rate changes at most by a factor 4, which is not
enough to compensate the influence of changing the system size; recall results from
Fig. 2.16. Importantly, both series of results exhibit a well defined scaling with N ,
with 〈n〉 scaling as N0.59±0.02 (N0.58±0.01) for the fixed (scaled) compression rate,
while τ ∼ N2.75±0.08 in both cases. These exponents were found by least-squares
fits, which are also included in Fig. 2.17 (dashed lines). Such fits were obtained
only from data of N ≥ 1024, because finite size effects are likely to influence the
results for smaller N . The reason is that, given the particles’ diameter for N = 256
and 512, `(ϕ) is about 1/3 or more of the system’s length, and thus the ratio of
number of constraints/number of variables is considerably higher than for larger
N . Furthermore, current data are not enough to rule out a faster scaling, such as



2.3 Characterization of MD+iLP algorithm 103

5

10

15

20

〈n
〉

∝ N 0.58

∝ N 0.59

Scaling κN ∼ N−1/3

Constant κ = 10−5

102 103 104
N

100

101

102

103

104

〈τ
〉(
s) ∝ N 2.75

∝ N 3

Figure 2.17. Average number of LP optimizations (upper panel) and convergence time
(lower) as a function of the system size N . Results from a constant (resp. scaled)
compression rate are indicated by the blue (resp. green) markers, while dashed lines are
least-squares fits obtained from data with N ≥ 1024. Each marker corresponds to the
average over 100 samples, with the error bars being the associated standard error. The
orange dotted line suggests that if even larger systems were considered, a cubic scaling
with N is likely to result. For small N , the large proportion of constraints with respect
to the number of variables explains the deviation from the large N trend.

N3 (dotted, orange line) for N ≥ 2048. Nevertheless, it is expected that the real
exponent should be close to 3, although larger system sizes are needed to confirm
this conjecture.

As a final feature, I will consider only the time spent in solving each LP step
of the iLP algorithm, tLP. This is an important variable because it measures how
intrinsically complex the LP optimizations are, without taking into account the
computational costs of identifying the relevant constraints, incorporating periodic
effects, computing the force network, etc. Fig. 2.18 shows the results of 〈tLP〉
obtained using a constant κ, and distinguishing between tLP of the first and last



104 2. Linear Programming algorithm to generate jammed configurations

102 103 104
10−2

10−1

100

101

102
〈t L

P
〉(
s)

∝ N 2.3

First step
Last step
All steps

103 1040

1

2

F
ir

st
/l

as
t
〈t L

P
〉

Figure 2.18. Main: Average time of LP optimization steps. The first and last steps
are considered separately, since the corresponding displacements are very different; see
Fig. 2.13. The behaviour of intermediate steps is also considered by including all the
LP steps to estimate 〈tLP〉. The dashed, blue line corresponds to a least-squares fit and
shows that tLP of the three sets scales as N2.3±0.1. Inset: average ratio of tLP between
the first and last optimization. The dotted line signals that such ratio is roughly 1.5 for
all system sizes, confirming that essentially the same scaling with N holds throughout
the iLP algorithm

iterations, (circular and square markers, respectively). Recall that in Fig. 2.13 we
have already seen that the first LP steps are considerably different from the last
ones, therefore there is no reason a priori to assume that they scale equally with N
and considering them separately is thus important. Nevertheless, our simulations
demonstrate (inset) that their ratio is approximately constant for all sizes, implying
that they scale with the same power of N . This is further confirmed by the values of
exponents found by fitting the data of N ≥ 1024 as above. The analysis yields that
the time of the first (resp. last) scale as N2.22±0.05 (resp. N2.30±0.07). Moreover, if
all the iterations are considered, it is found that 〈tLP〉 ∼ N2.27±0.07, which closely
follows the other two cases. Hence, by simply assuming N2.3 all the data for N ≥
1024 can be nicely captured, as evinced by the blue, dashed line.

Putting together these results, the first important thing that emerges is that the
size scaling of τ is different from the one naively obtained by considering n × tLP,
although barely within the margin of error: cf. N2.9±0.1 and N2.75±0.08. This
implies that although the most costly part is the optimization itself, the additional
operations –like computing distances between particle pairs, assigning constraints,
and computing the structural variables– cannot be simply neglected. However, it
is likely that as bigger systems are considered, the dominant contribution will be
due to tLP, increasing the size scaling of τ slightly. On the other hand, I want to
emphasize the empirical character of the analysis I have presented here. That is, the



2.4 Conclusions and future work 105

scalings reported were obtained only through curve-fitting (although showing very
good agreement) and not from analysing the algorithmic complexity of each part of
our iLP method. Even performing a more detailed analysis of the optimization part
is not trivial, mainly, due to the proprietary code we used. But even the “turning
the knobs of the black-box” approach is challenging because of the several secondary
steps carried our by the solver, such as presolving, Cholesky factorization, barrier
cross-over15. It is thus unsurprising that when combined, the size dependence of
our iLP algorithm is not necessarily a rational power-law. A final remark is that the
role of dimensionality has been completely neglected in this characterization, and
although we tested our algorithm in up to 5 dimensions, we leave the corresponding
complexity analysis as a topic for future research. Nevertheless, some important
properties can be anticipated. First, the number of contacts increase linearly with
d, as stated in Eq. (1.62) and discussed in Sec. 2.1.2, which means that complexity
of LP optimizations is at least linear in d. However, not only touching particles
are considered when introducing in the Constrs. step of Algorithm 1, but any
potential contact within `(ϕ) must be included. Unfortunately, the contribution
of near contacts scales much faster with d, and results in d = 4 − 6 suggest that
their amount is close to the kissing number[6,94], which grows exponentially with
dimensionality. It is thus likely that LP-based methods become very time consuming
in higher dimensions.

2.4 Conclusions and future work

In this chapter I have presented in detail (Sec. 2.1) the iterative Linear Program-
ming algorithm we developed to produce jammed packings of hard spheres. In
contrast with other algorithms were an effective potential is introduced, or the im-
penetrability of particles is somewhat relaxed, our method does not use any of those
techniques while maintaining the non-overlapping constraint between particle pairs
at all times. I showed that upon convergence, the method always produces stable
packings (Sec. 2.1.2), and it is empirically found that the vast majority of configura-
tions have a single state of self-stress. It is a robust algorithm capable of producing
packings of polydisperse particles in different dimensions without any major change.
Besides, models with a modified distance function (like the MK one, Eq. (2.18)) can
be trivially incorporated.

Furthermore in Sec. 2.3 I showed that our iLP method can be readily compli-
mented by other compression protocols (such as the Lubachevsky–Stillinger pro-
tocol) that are faster for obtaining a very compressed glass, but fail in producing
a proper jammed state. Under this scenario, I studied the scale with size of our
algorithm (Sec. 2.3.3) and obtained that the time needed to generate a packing of
size N scales as O

(
N3) at most.

On the other hand, the results I have presented in this chapter motivate some in-
teresting topics to investigate further. In the first place, the discussion of Sec. 2.3.1

15Each of these subroutines is almost independent from the others, so analysing their complexity
is beyond the scope of this thesis, but an accessible exposition of each of them can be found in
[193]. See also this tutorial for a simple assessment of their computational costs specific to the
Gurobi solver.

https://www.gurobi.com/resource/parallelism-linear-mixed-integer-programming/
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about the fractal structure of the free energy landscape should be carried out in
a more systematic way, for instance, using more samples and with a more careful
evaluation of the effects of the compression rate. This analysis would be complimen-
tary to the one carried out in Ref. [111], with the benefit that our method allows
us to precisely define the full network of contacts. Recall that the peculiar struc-
ture of the landscape is one of the most important predictions of Mean-field theory
(Sec. 1.3.4), and recent results[3,116] support the same picture for finite dimensional
models. Hence, a thorough assessment of the energy landscape’s structure, as the
one I am proposing here, will serve to dispel any remaining doubts about the range
of validity of Mean-field theory.

Second, in Ref. [202] it was recently suggested the existence of a Gardner algo-
rithmic transition when the jamming point was approached. Similarly to the case
studied here, the authors also considered hard spheres models, but in several dimen-
sions. However, their algorithm relied on an effective potential and the associated
energy minimization. It would thus be interesting to explore if the same features
can be reproduced with our method, since this would imply that such transition is
an inherent property of hard spheres systems and not of the specific algorithm used.

Finally, using our algorithm we could also investigate the density of states
(Sec. 1.4.5.1) of glass formers in the under-compressed phase. As discussed above,
the spectrum of disordered solids is an important quantity because it is connected
with several properties of interest, and it is known to display a critical behaviour
as the jamming point is approached. However, current studies are restricted to the
over-compressed regime because they usually rely on computing the Hessian, which
in turn depends on the interaction potential. Because of the non-singular interaction
of hard spheres, these systems have not been studied with as much detail, except
possibly in [59], albeit also by introducing an effective potential. With our method
both difficulties can be overcome by considering the set of linear contacts at each
iteration of our algorithm. More precisely, recall that at each LP step we can obtain
the active dual variables, and that they always satisfy the “mechanical equilibrium”
condition (Sec. 2.1.2), implying that they act as “contact forces”. Strictly speaking,
only at jamming these variables correspond to the real forces, however for slightly
lower densities they can be used to construct a good approximation to the contact
matrix, S, whence an approximated Hessian can be obtain according to Eq. (1.65).
Moreover, because of the equilibrium condition, we can guarantee that such Hessian
corresponds to a minimum, and therefore its normal modes should be similar to the
real ones. Additionally, it could also be checked that such contact forces follow the
predicted critical distribution, Eq. (1.68). In this way, we could extend the analysis
of the density of states to real hard spheres systems.
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Chapter 3

Inferring the particle-wise
dynamics near the jamming
point

In this chapter I will address the issue of using the structural information contained
in the network of contact forces at jamming to analyse the dynamics that takes place
near such point. Most of the results have already appeared in Ref. [1]. As discussed
in Sec. 1.1.1, finding a structure-dynamics connection in glassy systems is still an
unsolved problem despite being a very active field of research. In fact, the intricacy
of the problem is well exemplified by the ample variety of proposals of methods and
structural variables, often producing results that are not consistent between one and
other[68,69]. In an attempt to get rid of several difficulties addressed in Sec. 1.1.1,
we opted for two complimentary strategies. First, we make use of a simple glass
former: a monodisperse system composed of frictionless, spherical particles. Second,
and more important, we restrict our analysis to the short-time dynamics occurring
very near the jamming point. It is worth mentioning that this is a regime that has
received little attention from a theoretical and numerical point of view, (Refs. [51,
205] are notable exceptions, albeit in a somewhat different scenario from the one we
will consider here). This fact is even more surprising considering that experimental
techniques allow to precisely probe this type of dynamics[206–212].

As discussed at length in the first chapter, at the jamming transition the dy-
namics is completely frozen due to geometric frustration. Unsurprisingly, it remains
very sluggish near such critical point. Nevertheless, a jammed state is uniquely
determined by the particles position1, so we expect that any possible connection
between structural properties and dynamics should be more noticeable in this sce-
nario. Hence our choice to analyse such a constrained regime. As I will show,
this approach allows us to obtain a particle-wise description, both of the relevant
structural quantities and of the statistics of the dynamics. Our method is rooted
on the network of contact forces that is formed at jamming, whereby we construct
structural variables that allow us to characterize, individually, the displacement of
particles. Our description identifies the most mobile particles but also if they ex-
hibit any preferential direction of motion, a point that has been rarely addressed.

1This is true, at least, for frictionless spheres which is the case I will focus on.
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Note that by using the network of contacts, we dispel many of the issues mentioned
in Sec. 1.1.1 because it is a well defined physical quantity. Moreover, the simplicity
of the structural variables we consider –see Eqs. (3.1) and (3.2) below– makes our
method versatile and robust enough to infer the particles motion in detail. For
instance, we are able to identify any inherent anisotropy in the particles trajectory
rather independently of the magnitude of their displacement.

Before concluding this introduction, I mention that our assumption that the
statics has some bearing with the dynamics is motivated by the picture of the fractal
free energy landscape (FEL) of structural glasses[111] mentioned in Sec. 1.3.4. Recall
that within this framework a jammed system can be thought of as being in one of
the many possible minima of the FEL, while the dynamics takes place as the system
explores the associated meta-basin and possibly the neighbouring ones. Hence, it is
reasonable to expect that if one of these minima is used as initial condition for the
dynamics, the trajectory of the configuration as it moves in phase space should be
influenced by the specific jammed stated from where it departed, at least for short
times.

For reading ease I summarise here the main results: the starting point is the
jammed configuration of spheres shown in Fig. 3.1 and the resulting network of
contact forces. With this information we construct, at the single particle level,
two quantities that are physically well defined –the sum of contact vectors (C, see
Eq. (3.1)) and sum of all pairs of dot products between them (S, see Eq. (3.2))–
and that will be shown to be related to the dynamics. Some of their properties
are analysed in Sec. 3.1.2 and later in Sec. 3.5. I then continue by analysing the
dynamical variables introduced in Sec. 3.2 and studying the statistical properties
of particles trajectories. I emphasize that this dynamical regime has been little
studied so far, specially from a particle-wise perspective (see however [211]), which
justifies the need of first finding a robust characterization of the particles motion.
From the results of our numerical simulations, we gather that the statistical distri-
bution of trajectories of each particle can be succinctly described by considering the
first moment of its displacement (as a vectorial quantity indicating some anisotropy
in the particles motion) and its norm squared (as a measure of its mobility). A
sample of these distributions is depicted in Fig. 3.6, whence we deduce, on the one
hand, that some particles have preferential directions of motion, while on the other
hand, there is a broad distribution of mobility values, signalling that even close to
jamming particles are constrained by their local environment in a heterogeneous
way. I then turn to show that there is a strong link between these dynamical fea-
tures and the aforementioned structural variables computed in terms of the contact
vectors; see Fig. 3.8 (resp. 3.12) for the relation with the preferential directions
in the Molecular Dynamics (resp. Monte Carlo) simulations, and Fig. 3.10 (resp.
3.14) for the connection with mobilities. To further test our approach, we verified
that we can also make statistical predictions of single particle trajectories in a wide
variety of systems by simply ranking the particles according to their value of C and
S (see Fig. 3.15). Interestingly, in Figs. 3.16 and 3.17 I provide evidence that the
structural information contained in the jammed configuration gets lost rather slowly
and independently of the dynamical protocols used for the simulations and the dif-
ferent parameters modelling their interactions. Some remarks about the physics
behind this set of results are given in Sec. 3.5, with special attention to the fact
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that ignoring the forces magnitude produces more informative structural variables.
I anticipate that our guiding model will be the fractal FEL picture introduced in
Sec. 1.3.4 and briefly studied numerically in Sec. 2.3.1. As a further benchmark, in
Sec. 3.7 we use the vibrational modes obtained from the Hessian (at jamming) as an
alternative scheme to analyse the short time dynamics, obtaining negligible correla-
tions between them. This indicates that, in contrast with our method, the normal
modes description fails to capture the statistics of the single-particle trajectories
in the dynamical regime we consider here. These results show that the formalism
we developed, based solely on exploiting the details of the network of contacts at
jamming, provides a more effective statistical inferential technique than previous
works. Finally, Sec. 3.8 includes our conclusions and gives some perspectives for
future research.

3.1 Statics: Physical quantities at the jamming point

In Sec.1.4 of the first chapter I explained that isostatic jammed packings are charac-
terized customarily by their packing fraction, ϕJ , given that such value shows a very
weak dependence on the (possibly random) initial condition, changes of the system’s
parameters, and even the specific algorithm used[84,94,136]. Hence, the most common
situation is that random packings exhibit very similar densities[133,136], although a
broad range of values of ϕJ can be accessed[132,173,187,189] by tuning properties such
as the average coordination number or by seeding some regularity in the particles
position[162,163,189]. In any case, in the unbiased scenario the value of ϕJ is mainly
determined by the dimensionality of the system[16,94,187] and the distribution of
the particles sizes. When d = 3 (the case I will be concerned with in this chap-
ter), one can safely state that typical monodisperse isostatic jammed packings have
ϕJ ≈ 0.64.

On the other hand, from a microscopic point of view, a jammed state is fully
determined by the particles positions and radii[150], (~r(J), ~RJ) :=

(
{r(J)
i , Ri,J}Ni=1

)
.

(Note that I am following the convention used so far where ~X denotes the set of
N values of quantity X and boldface variables are d dimensional vectors. But, in
contrast with such convention, I am parametrizing the particles’ size in terms of
the radius instead of the diameter because (i) the radius defines the units of time
in the molecular dynamics simulations; and (ii) σ will be used in this chapter to
denote the standard deviation of dynamical variables.) As explained in Sec. 1.4.3,
in mechanically stable configurations these quantities suffice to determine the Nc

contact forces, {f[ij]}Nc[ij]=1, where [ij] with i < j denotes an ordered pair and is used
as a contact’s index. In that same section I also mentioned that a requirement for
mechanical stability is that the number of contacts is greater than the number of
degrees of freedom2, Ndof . To calculate Ndof (Sec. 1.4.3) we should consider that we
are using a system with periodic boundary conditions, and that a small fraction of
rattlers –particles that do not contribute to the rigidity of the network of contacts–
are present. In d dimensions, this latter type of particles are characterised by having

2This requirement in the number of contacts is enough to guarantee that particles are in me-
chanical equilibrium, i.e.

∑
j∈∂i fij = 0, where ∂i is the set of all the neighbours of particle i.

fij = f[ij] if i < j, or fij = −f[ij] otherwise. See Secs. 1.4.3 and 2.1.2 for more details.
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less that d + 1 contacts. Hence, if N ′ . N is the number of non-rattlers, we have
that Ndof = d(N ′ − 1). In order to generate a stable jammed packing we used
the iterative Linear Programming (iLP) algorithm described in Chp. 2, but without
the Lubachevsky–Stillinger compression protocol3. As discussed in Sec. 2.1, our iLP
algorithm allows us to easily access the full network of contacts and always produces
a stable jammed state. Moreover, the vast majority of times, such state has a single
self-stress (1SS), implying that exactly N1SS := Ndof + 1 contacts are present.
Consequently, the configurations thus produced are marginally stable[102,104,178].
(Strictly speaking, this means that we are dealing with an hyperstatic configuration,
since there is an extra contact with respect to isostaticity; see Sec. 1.4.3 for a detailed
discussion.)

We thus produced several monodisperse configurations of N = 1024 spheres.
Fig. 3.1 illustrates[213] a typical realization that we employed afterwards in the
dynamical simulations. In the left panel, the spheres have been coloured according
to their value of Si, defined soon below in Eq. (3.2), while the right panel depicts
the resulting contact vectors between neighbouring spheres in a small region of the
same configuration. Importantly, our choice of using particles of the same size is
grounded on their convenience for the statistical inference we aimed to achieve.
Anticipating the features to be discussed in Secs. 3.2-3.4, notice that were we to use
spheres of different radii, the smallest ones would be, presumably, the most mobile
ones because they would experience less collisions with their neighbours. Yet, their
relatively unimpeded motion would be a consequence exclusively of their size, and
therefore independent any structural property of their vicinity. In order to avoid
this sort of trivial inference and to really isolate the contribution coming solely
from the structure, we restricted our analysis to monodisperse systems, for which I
will henceforth use RJ to denote the particles’ radius at jamming. The configuration
used here and depicted in Fig. 3.1 has a packing fraction of ϕJ = 4πNR3

J
3L3 = 0.635,

with RJ = 0.0529 being the spheres’ radius once the jamming point is reached. Only
1.3% of the N = 1024 particles are rattlers and none have any contact forces acting
on them. As we will see later, this lack of constraints causes that most rattlers are
able to move more freely than the rest of the particles.

3.1.1 Critical properties of the jammed configurations

As a security check, we verified that the packings obtained with our iLP algorithm
exhibit all the properties encountered before using other algorithms[167,169,174,177]
and predicted by the best current available theory based on mean field (MF)[16,104,150]:
the critical distributions of (i) forces and (ii) gaps; and (iii) a constant density of
states (DOS) for ω � 1. The importance of these properties has been introduced
in Secs. 1.4.4 and 1.4.5.1. Therefore, here I will only mention that MF theory
predicts, in the d → ∞ limit, that small contact forces and interparticle gaps
are distributed as fθe and h−γ , respectively. The respective exponents are highly
non-trivial: θe = 0.42311 . . . and γ = 0.41269 . . . . Similarly, marginal stability
considerations and numerical results indicate that D(ω)→ constant as ω → 0.

3The reason for not including the molecular dynamics part described in Sec. 2.2 is that at the
moment the characterization of the MD+iLP algorithms was not available.
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Figure 3.1. Top: Jammed configuration ofN = 1024 spheres used to perform the dynamics
simulations. Its packing fraction is ϕJ = 0.635 and each sphere is coloured according to
its value of Si, defined in Eq. (3.2), from light yellow (big values) to dark blue (small,
negative values); see also the colour scale in Fig. 3.6b. Bottom: Zoom in a region of the
same configuration (without colouring) showing the contact vectors obtained according
to the method described in the previous chapter.

Fig. 3.2 shows that our configurations indeed fulfil these properties, by compar-
ing the empirical cumulative distributions (markers) obtained from 20 independent
packings4 (to improve the sampling), with the theoretical predictions (solid lines in

4The configurations employed here, either to perform the simulations reported in the main text
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each panel). In the case of the forces, however, finite dimensional systems exhibit
two separate contributions, due to extended and buckling excitations; see Eq. 1.68.
Only the former follows the MF distribution, while no such prediction exists for the
latter. As explained in Secs. 1.4.4-1.4.5, the two types of excitations can be differ-
entiated by the number of contacts of their associated particles. Thus, bucklers are,
with very high probability, associated with particles having qi = d + 1 = 4 kissing
neighbours, i.e. the minimum number of contacts to guarantee stability5. Never-
theless, the associated distribution in the leftmost panel of Fig. 3.2 (identified by
the blue circles) was obtained computing instead the smallest contact force per par-
ticle. This distinction is not important –because bucklers are, in any case, usually
associated with small forces– but helped in our case to obtain a cleaner separation
of the two contributions6. At any rate, the agreement between theory and numeri-
cal results is remarkable, specially considering that our systems are rather far from
the limit of infinite dimensions. Moreover, several of the observed deviations from
the predicted power-laws are due to finite size corrections as analysed in detail in
Chapter 4.

3.1.2 Structural variables of interest

I now address one of the main goals of this chapter: how to use the network of
contacts formed at jamming to construct well defined physical quantities that can
be used as predictors of the dynamics that takes place close to such point. Yet,
before answering this question, I want to remark why this approach differs from
previous ones. Most importantly, note that by using a jammed sate as the initial
configuration for the dynamics our knowledge is augmented in comparison with the
scenario where the initial state is only close to a jammed configuration. In this
latter case we would be missing data about the true contacts between particles, and
thus our description would be limited to the usage of “coarse-grained” variables,
for instance, the local density or a pair correlation function defined within some
small vicinity of each particle, not unlike methods introduced in Sec. 1.1.1. In
contrast, here I will be considering a scenario where the dynamics departs from a
configuration in which we can identify the actual neighbours of each particle and,
consistently, only include such relevant particles in our description. This distinction
is crucial for uncovering preferential directions in the particles’ displacements, as we
investigate in the next sections. Moreover, because in our dynamical simulations we
only consider contact potentials between the spheres, a “coarse-grained” description
would presumably fail to provide a realistic picture of the main interactions driving
the particles trajectories. In other words, given that we explore the particles’ motion
in the vicinity of a jamming point, it is to be expected that the correlation between
structure and dynamics should be stronger than in other scenarios. Hence, if we

or the ones reported in the Appendix 3.A, are two independent systems selected at random from
this set.

5I mention in passing that although not all particles with qi = d+1 contacts are strictly bucklers,
with very high probability any buckler will have d+ 1 contacts; see Ref. [150]. I will thus abuse on
terminology and probability by simply referring to any particle with 4 contacts as a buckler.

6In the next chapter, where these critical distributions are studied in great detail I have used
the criterion in terms of the coordination number to identify the bucklers and show that they do
follow the previously known power-law. See Figs. 4.3 and 4.8.
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Figure 3.2. Cumulative distribution functions (cdf) of contact forces (left), interparticle
gaps (central), and frequencies (right). In all cases, the black lines are comparisons
with the power laws predicted theoretically or found in previous studies. For the data
of panel (a), I have split the forces in the ones associated to localized (blue) and extended
modes (red), using the smallest force per particle for the former type and the criterion
of Ref. [150] for the latter one. The green markers are all the forces put together and
the exponent of the associated fit was taken from the same reference. In panel (b) I
show the cdf of the dimensionless interparticle gaps (defined in Eq. (1.49)) and that it
closely follows the expected scaling, Eq. (1.67). Finally, in the last panel I used the fact
that the density of states is predicted to be constant for small values of ω and hence
its cdf (the integral of D(ω)) should be proportional to the frequency. The spectrum,
{ωi}dN

′

i=1 , was obtained by diagonalizing the Hessian at jamming, following Eq. (1.65)
with the harmonic contact matrix. Deviations in all of these cases are due to finite size
effects as studied in the next chapter.

have at hand more accurate information about the structure, we will be able to
achieve a better and longer lasting statistical inference of the dynamics.

With this in mind, I will use the network of contacts to introduce some quantities
that will be used in the rest of this chapter to describe the statistics of the particles’

trajectories. Following the notation from Sec. 1.4.3, nij = r(J)
i −r(J)

j∣∣∣r(J)
i −r(J)

j

∣∣∣ = r(J)
i −r(J)

j

2RJ will

denote the unit contact vector, pointing from particle j towards i (assumed to be in
contact). Clearly, the set of such vectors defines the edges of the network depicted
in the lower panel of Fig. 3.1. Using the contact vectors, we can easily construct
the following two quantities: (i) the vectorial sum of all the contact vectors acting
on the i-th particle,

Ci :=
∑
j∈∂i

nij , (3.1)

and, (ii) the sum of all pairs of scalar products of the contacts acting on the same
particle,

Si :=
∑

j<k∈∂i
nij · nik = 1

2
(
|Ci|2 − qi

)
, (3.2)
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where qi is the coordination number7 at jamming of particle i. The colours used in
the upper panel of Fig. 3.1 indicate the value of Si for each particle of the system,
with a bigger (smaller) value corresponding to a colour on the yellow (dark blue)
part of the scale reported in Fig. 3.6. The complex distribution of colours displayed
by the configuration resembles the ones found using other structural variables and
order parameters, which in turn have been linked with the heterogeneous dynamics
observed in glassy systems[42,44,46–49,74,205].

As I will argue in the next sections, it is the contact vectors and not the forces
(fij = fijnij) what actually convey more information about the dynamics of the
configuration near its jamming point. But before exploring such connection, it is
convenient to analyse their differences in the packings we produced. First, note that
the analogous of Eq. (3.1) for contact forces trivially vanishes – i.e.

∑
j∈∂i fij = 0–

given the mechanical equilibrium property of jammed states. That is, it cannot pro-
vide information about the dynamics because it has the same value for all particles.
The case of the scalar structural variable is different and a more careful analysis
should be carried out. In this part I will show that, despite being closely related
quantities, the dot products between pairs of contact forces and contact vectors have
strikingly different probability distributions (pdf). In later sections I will compare
their performance as predictors of the dynamics. The claim about their pdf’s is sum-
marized by Fig. 3.3, where the data of all 20 configurations is included. Left panels
depict distributions of quantities involving only contact vectors, while the right ones
show the distributions of the analogous quantities using contact vectors. On the
other hand, the upper panels show the distribution of all dot products between pairs
of particles in contact, and the lower ones their sum per particle (thus the lower
left panel is the distribution of Si). Additionally, the contributions of bucklers and
particles associated to an extended response (see Secs. 1.4.4-1.4.5) have been plotted
separately. Let me first consider the pdf’s in the upper panels, At a first glance, the
distribution of fij · fjk suggests that the vast majority of contact forces are nearly
orthogonal (notice the log-scale in the vertical axis). But when compared with pdf
of nij ·njk we see that the likeliest arrangement is the one consisting in three spheres
touching each other (hence the peak at cosπ/3 = 0.5), while any other arrangement
is roughly equally likely. This in turn implies that the noticeable peak at zero in
the first case is due to the existence of many small forces whose effect is to blur any
intrinsic geometrical feature of the configuration’s structure. Given the few amount
of bucklers (see inset in the upper left panel for the pdf of qi), the distributions of all
the particles and the ones associated to extended excitations are virtually identical.
Considering the distribution of nij ·njk restricted to bucklers we see a relative deficit
of three mutually touching spheres, and a slight excess of triplets spanning an angle
close to 2π

3 = arccos
(
−1

2

)
. In combination with the low fraction of particles almost

perfectly aligned (nij ·njk ' −1), these results support the hypothesis that bucklers
are very likely particles with d almost coplanar contacts. However, if this simplified
picture is entirely valid, there is a peak “missing” at nij · njk ' 0 corresponding to
the almost orthogonal force-balancing contact. The absence of such peak is likely
due to the fact that the remaining contact does not always bear a small force, and

7In other parts of this thesis I have used zi for the same purpose, but to avoid confusion with
the z component of a particle’s trajectory, in this chapter I will use qi.
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therefore is not necessarily orthogonal. See more details in [150, SI, Sec. II].
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Figure 3.3. Distribution of dot products of all contact vectors (upper left panel) and
contacts forces (upper right) acting on the particles and their respective sum per particle
(lower panels). Rattlers have been excluded, and the separate contributions of bucklers
(orange) and the rest of the particles (blue) have been also included. The inset in the
pdf of Si –defined in Eq. (3.2)– depicts the same distribution in a logarithmic scale
to show that the influence of the bound Si ≥ qi/2 (dotted lines) is persistent for all
possible values of qi; see text for more details. The pdf of qi is plotted in the inset of
the upper left panel.

Now, the sums of these dot products, i.e. Si and
∑

j<k∈∂i
fij · fik, are also dis-

tributed in a very different fashion, as shown in the lower panels of Fig. 3.3. For
instance, the pdf of Si displays an irregular shape because this structural variable
is lower bounded by − qi

2 , as can be easily derived from its definition. This causes
its value to change rather abruptly in regular intervals of 1/2 for Si ≤ −2 (because
the smallest number of neighbours is 4), as shown by the dotted lines. As the inset
shows, this feature is preserved all the way down to qi = 11, the largest connec-
tivity observed. Importantly, in Ref. [1] this distribution was incorrectly compared
to a Gaussian, because the lack of resolution (due to the small number of samples
considered) prevented the discontinuities at − qi

2 to be observed. In any case, the
analogous sum using contact forces clearly follows a different distribution, if only
by its monotonic form. This latter case shows that, not only there is an excess of
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very small forces, but there are particles whose full set of contact forces is given
by forces of minute magnitude. Even more, the probability of having a different
value for this variable decreases exponentially, p(x) ∼ e0.25x, as indicated by the red
dashed line. Finally, notice that the distribution being upper bounded at zero is a
straightforward consequence of the identity

∑
j<k∈∂i

fij · fik = 1
2

∑
j∈∂i

fij ·
∑
k∈∂i

fik −
∑
j∈∂i
|fij |2

 = −1
2
∑
j∈∂i
|fij |2 .

To close this section and to put into context the main results of this chapter, I
emphasize that both Ci and Si –introduced in Eqs. (3.1) and (3.2)– are well defined
physical variables for each particle and, consequently, our approach will provide a
description of the system’s dynamics at the single particle level. We thus extend
other techniques where the characterization of the particles’ displacement was done
in terms of clusters or mesoscopic regions within the system, as exemplified in
Sec. 1.1.1.

3.2 Dynamical variables of interest

Even though the jamming regime is by itself interesting and complicated enough,
many of the most salient physical properties of amorphous solids are linked with
the dynamical slowing down that takes place when, say, their density increases.
So I now turn to the main part of this chapter in which we first characterise the
dynamics of our configuration of spheres as it moves away from its jamming point,
e.g., by reducing the system’s packing fraction by a small amount and providing
the particles with momenta. Then, in a second stage, we establish a connection
between the sluggish motion of the configuration and its static properties computed
at the jamming point.

At first sight, it might seem that making such two-step division of the analysis is
somewhat redundant, since we could proceed instead by directly trying to construct
some quantity using the network of contact forces and then relate it with certain
dynamical features. This is the standard methodology in studies exploring the link
between the local environment of particles and their square displacement, where
this last quantity is always taken as a measure of the “mobility” of a particle. As
mentioned in Sec. 1.1.1, this technique has been used to relate structural features
of several model systems with their dynamics. Nevertheless, given that here we are
considering the dynamics in a different and rather unexplored regime, we opted for
first trying to answer the question of how particles move near the jamming point.
In particular, do they have any preferential direction of motion? And if they do,
how much do they move along it? To show that these attributes are not necessarily
determined by the mobility of a particle, consider the case in which its closest
neighbours are distributed uniformly around it forming a relatively large cage. It
is clear that the particle will be more mobile than if the cage was small, rendering
its motion very constrained. And yet, in neither of these two cases the particle’s
displacement would exhibit a preferred direction. Conversely, if the arrangement of
neighbours is quite irregular, the motion of the particle should be facilitated towards
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the direction where fewer obstacles are present, however, this favoured path will
only be discernible if the particle is also allowed to move enough, because otherwise
the preferred direction will be washed out, for example, by thermal noise. These
elementary examples illustrate that even a very simple study of the dynamics near
jamming should take into account these two properties in order to yield a sufficiently
comprehensive picture. Therefore, our approach is based on analysing the particles’
displacement both as a vectorial quantity (that is, component-wise) and as a scalar
one (using its norm squared, henceforth also termed “mobility”):

δri(t) = ri(t)− ri(0) = (δxi(t), δyi(t), δzi(t)) (3.3a)
|δri(t)|2 = δx2

i (t) + δy2
i (t) + δz2

i (t); (3.3b)

where ri(t) is the position of the i-th particle at time t. Expectedly, another variable
of interest will be the mean squared displacement (MSD), introduced previously but
whose expression I reproduce here for convenience:

∆(t) =
〈

1
N

N∑
i=1
|ri(t)− ri(0)|2

〉
. (3.4)

When it was considered in Sec. 1.1, the meaning of 〈•〉 was a thermal average.
In this chapter however, it will denote an average over the different trajectories
generated, as explained next.

We want to probe how the configuration evolves as it explores the phase space
close to the FEL minimum identified by the jammed state. It is then natural to use
the jammed configuration as initial condition, i.e. ~r(0) = ~r(J), and then generate
many independent trajectories. This approach is equivalent to sampling from the
isoconfigurational ensemble[62–67] (ICE), since the initial positions are kept fixed
while the configuration evolves according to some prescribed dynamical protocol,
following a different trajectory each time. Sampling from the ICE thus allows to
uncover the contribution of the network of contacts to the dynamics because any
stochastic contribution to the dynamics is expected to cancel out if the number of
trajectories is large enough. With this in mind, the meaning of 〈•〉 is simply the
ICE average, whose value we estimate through several independent simulations of
the dynamics.

In the next two sections I present the statistics of the particles trajectories in the
ICE, sampled using two different dynamical schemes, namely, Molecular Dynamics
(MD) and Monte Carlo (MC) simulations. In the former type, the infinitely hard
sphere (HS) model is kept and the system’s density is reduced with respect to
ϕJ . For the MC simulations we considered instead soft spheres (SS) with different
interaction potentials, but with keeping the system’s packing fraction constant at
ϕJ . The reason for using these two types of simulations is that we want to investigate
the applicability of our method as we change the model system and its parameters.
This is specially important because other studies[69] using the ICE have reported
that the level of correlation between local structure and dynamics is very sensitive
to the glass former model and the type of interaction.
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3.3 Results with MD simulations

I begin by showing the results obtained using MD simulations, for which the radius
of all spheres was reduced by the same factor in order to reach a new density
0.9 ≤ ϕ/ϕJ ≤ 0.999, that was kept constant afterwards. For each value of ϕ we
performed MMD = 5000 independent simulations of event-driven MD as described
in Sec. 2.2 and using the implementation of Ref. [94]. As mentioned above, the
initial conditions were set to~r(J) in all cases, while the initial velocities were assigned
randomly according to a Maxwell–Boltzmann distribution at inverse temperature
β = 10 (in the reduced units of the algorithm). As discussed in the previous chapter,
this MD code uses an event-driven scheme, which implies that the ballistic regime
will be mostly absent from all of our data. Additionally, in event-driven type of
algorithms the natural units for the time step of the dynamics are the number
of collisions per particle that have occurred. In order to make a clear distinction
between this time unit and the “physical time” t in Eqs. (3.3) and (3.4) above, I will
denote as τMD the number of events per particle. However, Fig. 3.4 in Sec. 3.3.1
shows that once we have fixed ϕ, there is a well defined relation between τMD and t.
This incoming part is devoted to further details of the MD simulations that are not
essential for the rest of the chapter, and can be skipped. Then, in Sec. 3.3.2 I show
the statistics of the particles trajectories and how they can be captured by their
moments. Finally, in Sec. 3.3.3 I show that these statistics are highly correlated
with the structural variables introduced in 3.1.2.

3.3.1 Further details of the MD simulations

In Sec. 2.2 I mentioned that event-driven MD algorithms are well suited for simu-
lating systems of HS given their trivial dynamics. With this method, the state of
the system is advanced until a collision takes place, where the particles exchange
momenta, and the next collision is predicted with the new velocities. In such a
way, the evolution of the system is updated each time a collision event occurs and
the global time t of the simulation is just the sum of the elapsed times between
events. Another consequence of using the HS potential is that the only character-
istic length of the system is the particles size, which in turn fixes the time units as√
βmR2, where m and R are the spheres mass and radius, respectively. Without

loss of generality, we set m = 1, β = 10, while R is determined by the value of ϕ
we chose when running the simulations. In Fig. 3.4 I show that for a fixed value
of the packing fraction, there is well defined relation between the t, averaged over
all the trajectories, and the value of τMD, which measures the number of collisions
that have taken place. The very small error bars suggest that the distribution of
times is considerably peaked around 〈t〉, so I will henceforth use t to the denote its
sample average.

To better characterize the dynamical regime studied here, we performed addi-
tional MD simulations (with respect to the ones used for our main results) letting
the configuration evolve for 100 times as many collision events, using configurations
of packing fractions ϕ/ϕJ = {0.96, 0.99, 0.98, 0.999} and a smaller number of tra-
jectories, namely Mlong = 1000. In Fig. 3.5 we present the results of the ∆ as a
function of time, for several packing fractions using the data of the main simulations
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Figure 3.4. Relation of the (average) global time of the MD simulations as a function of
the number of collision events, for different packing fractions (different colours). Each
marker correspond to an instant at which the particles positions where stored and the
solid lines are just a guide to the eye. Errorbars indicate the value of the standard
deviation of the values.

(circular markers) and from the longer ones (solid lines). For reference, I included
the expected trend from a purely ballistic growth (black dashed line). As explained
in Chapter 1, most of the unique features of glassy systems occur after the con-
figuration has abandoned such regime and its MSD has reached its characteristic
plateau. But as this figure shows, we are exploring the dynamical evolution well
before the MSD attain its asymptotic value. As a final remark, I want to stress
that the ballistic regime is, expectedly, almost entirely lost due to the event-driven
nature of our simulations.

3.3.2 Particle trajectories and their statistics

After generating MMD � 1 trajectories in the ICE for a fixed packing fraction, we
can access a statistical characterization of the particles’ motion. For instance, the
left panel of Fig. 3.6 shows the pdf of the ẑ component of the particles displacement
(the distributions of the other components are very similar) at τMD = 20 and using
ϕ = 0.995ϕJ . Keeping in mind that each curve is the pdf of a single particle, it is
clear that all the particles have a well defined mean displacement, many of which
are different from zero. This is the first of our main results, because it indicates
that some spheres indeed have a preferred direction of motion and that it can be
identified despite the statistical fluctuations coming from the thermal noise and
sample-to-sample variations. More importantly, we can infer such direction using
the sum of contact vectors defined in Eq. (3.1). This can be seen from the evident
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Figure 3.5. Temporal evolution of the MSD for different packing fractions (different
colours). The circular markers show the values of MSD obtained from the main sim-
ulations, while the solid lines correspond to simulations 100 times as longer, but for a
reduced number of values of ϕ. The black dashed line is included as a reference for
comparison with a ballistic behaviour. Note that all the results presented in the main
text correspond to the evolution of the configuration much before the MSD reaches its
plateau value, which is the regime that so far has received most attention.

division of colours to the left (right) corresponding to a negative (positive) value
C

(z)
i := Ci · ẑ, as indicated in the scale on top. Only 15% of the particles were

used to generate the main figure, and for clarity reasons they where chosen as
the 10% (5%) with the largest (smallest) absolute value of 〈δzi〉, but no structural
information nor other statistical property whatsoever was considered. Now, since all
the distributions shown are unimodal and rather narrow, we can expect the value of
〈δzi〉 to be descriptive enough. To test this idea, we compared the mean value and
the median of each particle in the configuration and obtained the results included in
the inset of the same figure, where data points of different colour correspond to the
different spatial components as indicated. The fact that all of them lie very close to
the identity line (black dotted curves) confirms that 〈δ~r〉 can be used to discern the
existence of preferential directions in the possible trajectories of the configuration.
I note in passing that the presence of anisotropy in the particles’ motion has only
been recently studied in few works, e.g. [54, 214–217].

Analogous results for the particles’ square displacement are shown in the right
panel of Fig. 3.6, also selecting 15% of the particles according to their mobility using
the same criterion as before. Correspondingly, the colour scale indicates the value
of Si defined in Eq. (3.2). Importantly, in this case the shape of the distributions is
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Figure 3.6. Main figures: Probability distributions (pdf) of the variables of Eqs. (3.3) at a
fixed time τMD = 20 and packing fraction ϕ/ϕJ = 0.995, obtained from MMD = 5000
independent trajectories sampled from the ICE. Each curve corresponds to the pdf of a
single particle, but only 15% of the configuration is shown as described in the main text.
Left panel: pdf of particles’ displacement along the ẑ direction (similar results hold for
the other directions). Right panel: pdf of their square displacement. Curves colours
correspond to the particles value of C(z)

i (left) or Si (right) as indicated in the colour
scales on top, while dashed lines are used to identify if the curve is associated with a
rattler. Insets: Correlation between mean and median of the distributions. In the left
one, the points of each set have been displaced vertically by a fixed amount for clarity
reasons and the identity lines (also displaced by the same amount) are shown in black
dotted, while in the right panel’s inset the red dotted line corresponds to f(x) = 0.75x.

notoriously different with respect to the ones of δ~r. This is exemplified by the fact
that the mean and median of the mobility do not coincide in this case (see the inset)
because the mean is a statistic more sensible to extreme events, such as trajecto-
ries where the mobility can be about 10 times larger than the most typical ones.
Nevertheless, there is a simple linear relation between both statistics, as illustrated
in the inset where the red dotted line indicates the curve f(x) = 3

4x. In summary,
the distributions of {δri}Ni=1 and {|δri|2}Ni=1 have clearly a different shape, with
unimodal, well peaked curves for the former, and broader, asymmetric probability
densities in the latter case. Such difference evinces that these two variables have
different behaviours and should therefore be studied separately as we do here. I also
remark that, by the same token, it is not obvious that the ICE mean of a particle’s
mobility, i.e.

〈
|δri|2

〉
, would be a good descriptor of its full distribution. Therefore,

to justify the usage of such average to characterize the statistics of |δri|2, I provide
the following reasons: i) the support of the distributions shown in the figure differs,
roughly, by an order of magnitude, which is enough to tell apart the least mobile
particle from the most mobile ones; ii) the inset shows that there is still a linear re-
lation between the median and the mean, implying that a higher value of the latter
is accompanied by a proportional translation of the full distribution also to higher
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values; iii) other studies using the ICE have found that several dynamical features
worth studying in glassy systems are indeed captured by

〈
|δri|2

〉
. Additionally, a

word of caution is in place to avoid possible confusions regarding how to interpret
the mobility distributions. First of all, the first moment of |δri|2 in general can be
different to its typical values, as has already been reported in [68]. Additionally,
the grouping of the curves depicted in the right panel of Fig. 3.6 in two different
sets should not be understood as if there were two limiting distributions of the mo-
bilities, but instead as a consequence of the fact that we selected only 15% of the
particles trajectories; that is, the remaining 85% of the curves fill the gap between
the apparently two different sets.
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Figure 3.7. Comparing the average displacement and its standard deviation along the ẑ
component of the full configuration, at four different times as indicated by the label
on the bottom of each panel. The colour of each point corresponds once again to the
scale of C(z)

i as in the previous figure, while rattlers are identified by crosses. In cyan I
have included the ± identity lines for a better comparison, so that whenever a point lies
beneath them it means that the mean dominates over sample-to-sample fluctuations.
These results also demonstrate the clear correlation between 〈〈δ~r〉〉 and ~C, but the lack
of it for σ[δ~r]. This is analysed in detail in later sections.
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It is worth analysing more closely the variation around the mean displacements
with the purpose of verifying that preferential directions can be identified despite
sample to sample fluctuations. To this end, in Fig. 3.7 I compare the expected
value of the displacements, 〈δ~r〉, to their standard deviation, σ[δ~r], at different times
(as indicated by the label of each panel). Without loss of generality, I once again
restrict the analysis to the ẑ component. These plots include the statistics of the full
configuration, with the rattlers identified by crosses. Anticipating the results of the
next section, the colour of each point is associated to its value of C(z)

i , using the same
scale as in Fig. 3.6. The first thing to notice is the very high correlation between
~C and 〈δ~r〉 at short times (upper panels). However, no such correlation is present
for σ[δ~r], as will be further analysed in the next part. More importantly for the
purposes of this part, except for the cases for which 〈δri〉 ≈ 0, the mean displacement
is of the same order (and sometimes even larger) than the corresponding σ[δri]; cf.
with the ± identity lines included in all the panels. This implies that if particles
move, on average, predominantly along a given direction, different realizations of
the dynamics will exhibit a bias for similar trajectories. These results also show
that for longer times (lower panels) preferential directions are better defined, as
evinced by the larger fraction of points below the ± identity lines. Unfortunately,
this temporal regime coincides with the one where the dynamics has lost most of
its initial structural information. This is exemplified by the mixture of colours, but
below I provide a more quantitative characterization.

The results of this part constitute our first main finding. Namely, that near the
jamming point, the trajectories of individual particles show preferential directions
of motion. During the very initial times, such preferred directions might be hard
to spot due sample to sample fluctuation as well as the small value of 〈δ~r〉. But as
time passes by, an increasing number of particles have a mean displacement such
that |〈δ~ri〉| > σ[δri], implying that the mean value becomes the dominant one and
most of the trajectories are similar to the preferred one. Similarly, statistics of the
particles’ mobility are well described by their mean and, actually, in this case it is
customary that

〈
|δri|2

〉
> σ[|δri|2] even for short times. Hence, the characteristic

mobility of particles is a persistent feature across different samples, despite the fact
that its average might not coincide precisely with a typical value.

3.3.3 Correlation with structure

I now turn to the question of finding how much information the jamming point con-
tains about the dynamics close to it. This means that the correspondence “similar
local environment leads to similar dynamics”, illustrated in Fig. 3.6 for few particles
(by the clustering of distributions of similar colours), must now be extended to the
full configuration. A convenient way to achieve this is to use just few statistics of
the distributions, instead of the complete pdf. As argued above, the first moment
comes across as a quantity descriptive enough, and the results of Fig. 3.7 support
this approach. However, to perform a more quantitative analysis and assess whether
there is an underlying connection between 〈δ~r〉 and ~C, Fig. 3.8 shows the scatter
plots of these two quantities for the N particles. Each of the three rows in the
figure corresponds to a single direction, while the different columns refer to the dif-
ferent times of the dynamics at which the mean displacement was calculated. Once
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Figure 3.8. Scatter plots of the particles’ mean displacement (scaled by the jamming
radius RJ) and the sum of contact vectors, Ci, defined in Eq. (3.1). The reported
values are the ICE averages with ϕ = 0.995ϕJ . Each row corresponds to one spatial
dimension, while each column depicts the values of the mean displacement at different
times (measured in collision events, τMD). Rattlers are identified by pink crosses and
the value of the Spearman’s rank correlation coefficient is indicated in the lower right
part of each panel.

again, I mention that the distribution of values of the mean displacement is broad
enough to conclude that many of the particles have a preferential motion direction,
i.e 〈δ~r〉 6= ~0. It is worth emphasizing that, since we used a large set of trajectories,
this latter fact cannot be attributed to statistical noise. Another relevant feature
that validates our hypothesis is that the rattlers (shown with pink crosses in Fig. 3.8
and whose pdf are drawn with dashed lines in Fig. 3.6) generically exhibit a larger
value of mean displacement, which is consistent with the expectation that their tra-



3.3 Results with MD simulations 125

jectories are less constrained because they are not part of the network of contacts;
cf. Fig. 2.3. Similarly, it is also normal that initially the dynamics of each particle
is highly correlated with its value of C, but as more collisions occur this relation
eventually gets lost.

These results confirm that there is indeed a correlation between 〈δ~r〉 and the
sum of unit contact vectors, which means that we can use our knowledge about ~C
to identify preferential directions in the motion of individual particles. To measure
the quality of such inference we used the Spearman’s rank correlation coefficient,
K, whose value is reported in the lower-right part of each panel. The advantages
of using K for studying the correlation between local structure and dynamics in
disordered systems are twofold: for one part, this coefficient has proven to be very
sensitive to changes of the different parameters of a glass former model[49,69]; and on
the other, it naturally reflects our inferential approach based on the hypothesis that
the particles ranking by a suitably chosen static variable (in this case Ci) should
have a direct connection with the ranking obtained via a dynamical variable (here
〈δri〉).

Intuitively, the influence of a particle’s set of contact vectors in establishing its
preferred direction of motion can be understood because ~C provide a good descrip-
tion of where the particles’ neighbours are located and, therefore, which are the
directions that will be favoured by possible collisions. Thus, a large value of, say,
C

(x)
i indicates that the particle’s nearest neighbours are arranged in such a way that

their net effect is to predominantly push it in that direction. In contrast, a mostly
uniform arrangement will lead to a very small value of Ci and thus the particle
would mainly remain in a reduced vicinity.

On the other hand, we do not expect Ci to appropriately describe the fluc-
tuations of a particle’s motion around its mean displacement mainly because the
information about the directionality is lost when computing the second moment of
its displacement. Fig. 3.9 corroborates this prediction by a component-wise com-
parison of V ar[δ~r] with the absolute value of the sum of contact vectors. (The
data were obtained with the same parameters as in Fig. 3.8, and rattlers are also
identified by pink crosses). As anticipated from the results of the last part, there
are no correlations between these two quantities and the values of K found in this
case are notably small, reflecting the fact that contact vectors only provide informa-
tion about preferential directions in the particle’s motion, but not about the their
corresponding deviations.

To continue, I will study the correlation with the particles’ square displacement.〈
|δri|2

〉
is an important quantity to take into account in the high density regime

because it provides an estimate of the “cage” size in which the particle is moving.
As anticipated in Fig. 3.6, there is a close correlation between {

〈
|δri|2

〉
}Ni=1 and ~S.

However, here there is no reason a priori why this variable should be used instead of
other observables that can be obtained from the network of contacts. In particular,
the role of the forces magnitudes has been so far ignored. Given that

∑
j∈∂i fij = 0,

their role as analogous variables of ~C can be immediately discarded. But this is not
the case when scalar combinations are considered. Therefore, I will now show that it
is more convenient to include only the contacts direction and not their magnitude in
order to obtain a better predictor of the particles’ mobility. To do so, I will consider
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Figure 3.9. Scatter plot of the components (one in each row) of V ar[δri] and the abso-
lute value of the components of Ci in the MD simulations at different times (different
columns). Rattlers are identified by pink crosses as before.

here two other scalar quantities that are, both, physically well defined (in terms of
the network of contacts at jamming), and intuitively related to the statistics of |δ~r|2.
The first one is the sum of all the contact forces magnitudes,

∑
j∈∂i
|fij |; while the

second one consists in the sum of all the pair of dot products between contact forces8,∑
j<k∈∂i

fij · fik. Fig. 3.10 compares the correlation between {
〈
|δri|2

〉
}Ni=1 and these

two observables (first two columns), as well as ~S (right-most column). (The values
reported correspond to τMD = 10.) Upper (resp. lower) panels show the results from
the MD trajectories with a density of ϕ/ϕJ = 0.999 (resp. ϕ/ϕJ = 0.99). As before,

8Note that because their are many very small forces and only few large ones, despite the dis-
cussion at the end of Sec. 3.1.2, these two variables will have different distributions.
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Figure 3.10. Scatter plots of the particles’ average mobility and three possible scalar
quantities that can be constructed using the network of contact forces at the jamming
point: the sum of forces magnitudes (first column), the sum of dot product between
pairs of contact forces (second column), or using the contact vectors, Si, (third column)
as defined in Eq. (3.2). In the upper panels we report the results from simulations
with density ϕ/ϕJ = 0.999, while the lower ones show the analogous results using
ϕ/ϕJ = 0.99. As in the previous figure, rattlers are also identified with pink crosses
and the Spearman’s rank correlation coefficient is also included. Note that only Si
cleanly separates this type of particles.

data associated with rattlers are indicated with pink crosses and the corresponding
values of K are also included for comparison. Note that rattlers are distinguished
much more clearly through Si. As expected, in all cases the correlations attained in
the system of higher density are larger because the local structure resembles more
the one of the jammed state. The dynamics is therefore considerably influenced
by the collisions with the closest neighbours at such state. Yet, at first sight it
seems paradoxical that including more information, namely, the magnitudes of the
forces, effectively reduces the predictive power. However, before explaining why this
happens, I will present the analogous results from the MC simulations, where we
obtained very similar findings. Hence, a common explanation applies to both types
of simulations as discussed later in Sec. 3.5. To close this section, I point out that
we tested this same methodology on another independent jammed configuration, as
described in the Appendix 3.A, obtaining identical results; see Figs. 3.21 and 3.22.



128 3. Inferring the particle-wise dynamics near the jamming point

3.4 Results with MC simulations
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Figure 3.11. Average energy per particle as a function of the number of MC steps (τMC)
for the three potentials used: α = 3/2 or sub-harmonic (blue), α = 2 or harmonic
(brown), and α = 5/2 or Hertzian (green). Different line styles correspond to different
temperatures (T1 < T2 < T3), as indicated in the right legends.

In contrast with the MD simulations, for the MC ones we fixed the spheres’
radius at RJ and soften the interaction between them by introducing a contact pair
potential as the one introduced in Sec. 1.4.2, but without scaling by the exponent,
i.e.

U(ri, rj) = |2RJ − |rij ||α Θ(2RJ − |rij |) ; (3.5)

where rij = ri− rj and Θ is the Heaviside step function. α plays the role of a “stiff-
ness” parameter that we varied to explore the effect of different types of interactions.
Because we generated trajectories using different temperatures, introducing the pro-
portionality constant of 1/α simply rescales the temperature, T . Analogously to
the MD simulations, we used the jammed configuration as initial condition to gen-
erate a trajectory using the Metropolis-Hastings algorithm at a fixed T . Hence, for
this type of dynamics, the natural time unit is the number of MC steps performed,
which I will denote as τMC to distinguish it from the time scale of the MD simu-
lations and the physical time. We tried different interaction potentials by setting
α = {3/2, 2, 5/2} (henceforth referred as sub-harmonic, harmonic, and Hertzian
interaction, respectively), performing MMC = 1000 MC simulations for each type
of potential and temperature. The different values of T were selected in such a
way that the samplings were done with a similar acceptance rate. This is shown
in Fig. 3.11 by plotting the temporal evolution of the average energy per particle
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scaled by the inverse temperature, β 〈E〉 /N . The figure includes the results of the
three interactions potentials and the different temperatures used for each one. For
a fixed value of α, the energies of the different simulations are comparable between
them, once the scaling with β is considered, indicating that a similar sampling was
carried out. We can then conclude that the trajectories generated, using different
values of T and α, belong to the same dynamical regime given that all the values
of β 〈E〉 lie within a small range of each other.
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Figure 3.12. Scatter plots of 〈δ~r〉 and ~C (each row corresponds to one direction), and
for the three types of interaction considered: sub-harmonic (first column), harmonic
(second), and Hertzian (third); different colours are included just for clarity sake. The
temperature used to generate the MC trajectories for each potential is indicated at the
top, and the values of 〈δ~r〉 reported correspond to τMC = 250 MC steps. For each value
of α, the corresponding values of temperature were chosen so that the average energy
of the system divided by T remained within a small range; see Fig. 3.11. As in the
analogous plots of MD simulations, the quantities associated with rattlers are identified
by pink crosses and the value of K is also included.

I now show that with this different dynamical protocol we obtain results in
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Figure 3.13. Scatter plot of the components (one in each row) of V ar[δ~r] and the absolute
value of the components of ~C in the MC simulations for the three different potentials
considered in this work (different columns). All the data reported here correspond to
τMC = 250 and the value of T used throughout the simulations of each potential are
reported above the corresponding column. Different colours are used for the sake of
clarity, except for the rattlers data, which as usual are depicted with the pink crosses.
The very small values of K obtained are also included and confirm that these two
variables are uncorrelated.

excellent agreement with those of MD simulations. In Fig. 3.12 I compare the
correlations between 〈δ~r〉 and ~C for the three types of interactions (one in each
column), and with the temperatures indicated on top. As mentioned above, the
value of T was selected in such a way that a similar acceptance rate was obtained
for all potentials. Each row corresponds to a component of 〈δri〉, computed at
τMC = 250 in all cases, and with a different colour for each value of α. Additionally,
rattlers are identified in all panels rattlers by pink crosses as in previous figures.
The values of K are comparable for all the interaction potentials tested and also
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Figure 3.14. Scatter plots of each particle’s average mobility at τMC = 250 with the
same interaction parameters and temperatures of Fig. 3.12. Each row consists on the
same values of

〈
|δri|2

〉
as function of different scalar quantities that can be constructed

using the network of contact forces at the jamming point, like the sum of forces mag-
nitudes (first column), the sum of dot product between pairs of contact forces (second
column), or using the contact vectors (third column) as defined in Eq. (3.2). As in the
previous figures, points associated with rattlers are identified with pink crosses and the
Spearman’s rank correlation coefficient is also included.

with the ones obtained in the MD simulations, thus signalling that our approach is
robust enough to be applied to both types of dynamics. It is also worth mentioning
that there is a systematic increase of the correlation with α, i.e. the smallest
(largest) value of K was obtained with the sub-harmonic (Hertzian) interaction,
independently on the components. However, as I discuss later, this last result is
related to the fact that different values of α produce different decorrelation rates,
if measured by τMC . In Sec. 3.6.2 I show that if the MSD is used instead as a
measure of the evolution of the configuration, the decrease of K follows a universal
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behaviour. On the other hand, in Fig. 3.13 I present the analogous results of the
correlation between V ar[δ~r] and the absolute value of ~C, using the same format
and parameters than in the previous figure. In agreement with the MD results,
these data demonstrates that the sum of contact vectors is a very poor indicator
of the single-particle displacement’s variance, even when the interaction potential
has been softened. This claim is quantified by the almost vanishing values of K
reported in each panel.

More importantly, when considering the mean mobility of particles and its cor-
relation with the scalar observables constructed from the network of contacts, we
also found that ~S is the most informative variable in comparison with the ones
that include the magnitudes of the contact forces. This finding holds independently
of the type of interaction as shown in Fig. 3.14, where each column compares the
correlation between

〈
|δri|2

〉
and the three scalar quantities considered before, while

different rows (from top to bottom) correspond to the different interaction types
(from α = 3/2 to α = 5/2). Once again, we obtained values of K comparable to
the ones of the MD simulations, although this time the highest value of K was ob-
tained with the harmonic interaction between particles. But this is due to the fact
that there is a different decorrelation rate between different statistics, as I argue in
Sec. 3.6.2.

To close this section I want to stress that the structural variables considered here,
namely ~C and ~S, are computed exclusively from the properties of the configuration
at jamming. Consequently their value remains fixed and is independent of the type
of dynamical protocol employed. Yet, our results demonstrate that they can be
utilized as proxies of the statistics of single-particle trajectories in a rather broad
range of circumstances.

3.5 Contact vectors vs contact forces

Let me now go back to the question of why the contact vectors (nij) are variables
more informative about the dynamics near jamming than the contact forces (fij).
In other words, ~C = {Ci}Ni=1 and ~S = {Si}Ni=1, defined respectively in Eqs. (3.1)
and (3.2), are predictive enough to allow us to identify a preferential direction of
motion for each sphere, as well as to spot the most mobile particles. However, the
value of these observables does not depend on the magnitude of the contact forces
but only on their direction. And the results of Secs. 3.3 and 3.4 show that when the
forces magnitude is included the quality of the prediction worsens. Moreover, this is
the case independently of the model, i.e. either HS or SS, and even the interaction
potential in the latter case. It is thus worthwhile to analyse more closely this
counterintuitive finding.

Let me begin by considering the same problem from a purely static point of view.
As derived in detail in Sec. 1.4.3, in configurations having 1SS –as we know ours
do– the forces magnitude can be obtained as the unique zero mode of the contact
matrix, S defined in Eq. (1.59). Therefore, magnitudes do not contain any extra in-
formation than what is already present in the spheres position. Second, considering
for the time being only the MD dynamical protocol, it is clear that as soon as the
spheres are no longer touching each other, the magnitude of a contact force loses its
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physical meaning, while the true force is related to the momenta exchange during
the collisions. In contrast, the corresponding contact vector still contains informa-
tion about which directions constrain a particle’s motion the most. Similarly, in
the case of SS the value of the contact force at jamming is not the relevant physical
quantity either, because the real forces driving the dynamics in the MC protocol
depend explicitly on both, their mutual overlap and the type of interaction poten-
tial, which we have parametrized here through α. Yet, independently of the choice
of α, and hence the value of the force magnitude, the contact vectors can be used as
a proxy of the force field experienced by each particle, at least for the initial part of
the dynamics. So, in either case, the set of contact vectors provide an estimation of
the optimal direction in which a particle should move in order to minimize the free
energy of the system. Additionally, as can be noted from the rightmost equality
of Eq. (3.2), ~S also incorporate the influence of the number of neighbours of each
particle, qi. This feature intuitively explains that regardless of the vectorial con-
tribution of the contacts, particles with more (less) neighbours are expected to be
more (less) constrained. Besides, it also explains why a significant correlation was
found when considering

∑
j∈∂i |fij | and

∑
j<k∈∂i fij · fik as a predictors, the reason

being that they are essentially a weighted sum of the number of contacts. Another
fact to consider is that the distribution of dot products between contact forces and
the analogous one between contact vectors are significantly different, as discussed
in Sec. 3.1.2; that is, Fig. 3.3 provides further evidence that these two quantities
convey different information.

Even more importantly, another physical mechanism is suggested by the fractal
FEL picture; see Secs. 1.3.4 and 2.3.1. The argument goes as follows: in Ref. [111]
the authors measured numerically the overlap of contact vectors between pairs of
jammed states (i.e. pairs of minima in the landscape), defined by a target pres-
sure p?, as a function of a common initial pressure of the configurations, p0. What
they found is that as p0 was closer to p?, the overlap increased gradually. This
implies that, although jammed configurations belonging to a same (fractal) meta-
basin share a similar structure, the specific neighbours with which a particle will
eventually be in contact, once in the jammed state, are not defined unequivocally
by its local environment above jamming. Instead, they are determined progres-
sively as such state is approached. By the same token it also indicates that as a
configuration goes up in the landscape, the jammed state it departed from will still
encode useful structural information, since a significant amount of the network of
contacts is shared by the nearby minima. Now, note that we can think of the short
time dynamics studied here as several realizations of trajectories followed by a con-
figuration in its way to explore a small neighbourhood above its initial minimum.
Under these assumptions, the original meta-basin should contain all the phase space
available as this brief exploration takes place, which in turn implies that many of
the interactions between nearest neighbours influencing the dynamics are going to
remain roughly unchanged, and therefore we can expect major correlations with the
actual network of contact vectors.
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3.6 Further statistical properties

3.6.1 Predicting the mean displacement and mobility

In Sec. 1.1.1 in the first chapter it was mentioned that there have been many pro-
posals to tackle the problem of the connection between local structure of disordered
solids and their dynamics. However, one of the most pressing issues is not only to
find such correlations between statical and dynamical properties, but instead using
the former to predict the latter. To the best of our knowledge, just a handful of
works have dealt in detail with this problem using well established physical vari-
ables[41,67,218], although more recently in[70–75, 219] researchers addressed similar
questions employing machine learning methods. As I have commented before, this
latter techniques have an outstanding prediction power, but they rely on an artifi-
cial representation of the particles’ environment at the mesoscopic scale, which is
an important difference with the approach we have adopted here. At any rate, as a
further benchmark of our method we now address the predictability issue.

First, I should clarify that this is the inverse scenario of the one explored so
far. Consider in particular Figs. 3.6 and 3.7, where we began by distinguishing the
particles with some prior information about the dynamics (e.g. the ranking based
on the first moments of δri and |δri|2) and showed that such distinction carried over
to the structural features we here study (as exemplified by the clustering of data
with similar colours). In contrast, I now focus on the reciprocal problem where our
starting point is the static information (namely, the contact vectors) which will then
be used to infer a property about the dynamics of the configuration. I will show
that within our approach, prediction is indeed possible insomuch as we can use ~C
to reveal preferential direction in the particles’ motion, while Si can be utilized to
identify the most mobile ones, without any prior information about the dynamics.
As expected, the validity of such predictions is highest at the initial part of the
trajectories and later it decays as time goes by and the system evolves.

To be more precise about how the initial correlation is lost, it is important to find
a way to consistently compare the evolution of the configuration in both types of
dynamical protocols and for different values of the parameters. A natural candidate
is the (ICE averaged) MSD, defined in Eq. (3.4). Intuitively, it is a measure of
how much the configuration has changed from its initial state, ~r(J). Because we
focused on the short-time dynamics, the values attained by the MSD during our
simulations are well below the one of its characteristic long time plateau –identified
with the onset of the Debye behaviour in the density of states[51]– as I have shown
in Sec. 3.3.1. Furthermore, Fig. 3.5 there shows that all our simulations were done
in the same dynamical regime, where the MSD have a similar behaviour for the
different packing fractions we used. Thus, I will henceforth report the evolution of
the quantities we analyse as a function of 〈∆〉 instead of as a function of time, τMD,
or τMC .

We can pose the problem of predicting the preferred directions in configuration
space as investigating whether particles for which the observable Ci has a large
absolute value in one of its components also exhibit trajectories that move predom-
inantly along that same component. We can answer in the affirmative this question
following a straightforward method: we rank the particles according to their value
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Figure 3.15. Evolution of the x̂ component of the mean displacement (upper panels) and
the average squared displacement (lower panels) of 20% of the particles for the two
type of dynamics utilized here (MD on left panels and MC on the right ones), with
the parameters specified on top. The trajectories on the upper (resp. lower) panes
were selected by choosing the top and bottom 10% of the particles ranked according to
their value of Ci (resp. Si); rattlers were also included in the first case. Trajectories
are coloured according to the scale shown in the right. Thus, the division of colours
demonstrates that we can identify both: which particles are the most mobile ones and
if they have a preferred direction of motion. We used the mean squared displacement,
∆, to measure the dynamical evolution for the reasons explained in the main text.

of C(x)
i , then select the top and bottom 10%, and plot the evolution of their trajec-

tories. This results in the plots in the upper panels of Fig. 3.15 for the x̂ component
of the trajectories generated via the MD simulations with ϕ/ϕJ = 0.99 (left panel)
or the MC algorithm with harmonic interaction and T = 10−4 (right panel). In
both cases, the lines colour indicates the value of the sum of contact vectors ac-
cording to the scale on the right. These figures show that most particles which
share a close value of Ci, and thus whose respective curves are shown in a similar
colour, move in the same direction. Trajectories of rattlers are also included (as
dashed lines) and even though we can not predict any preferred direction in their
motion, we can nevertheless identify them as highly mobile particles and thus can
be used as an estimate of bounds delimiting the maximum displacement of indi-
vidual particles. Analogously, if we rank the spheres according to their value of Si
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we have enough information to identify the most mobile particles, as demonstrated
in the lower panels of Fig. 3.15. In this case, the effect of the different protocols
for the simulations is more evident for the initial part, since the MD simulations
show a much narrower range of values of the squared displacement, while the MC
ones yield values of

〈
|δri|2

〉
that differ by more two orders of magnitude. However,

the grouping of trajectories with similar colours is still preserved, confirming that
Si can be used to distinguish between mostly mobile and mostly blocked particles.
Note that in this case, rattlers also provide a good estimate for an upper bound on
the value of

〈
|δri|2

〉
and that only for these particles Si is identically zero, while for

the others Si ' −1 at most. As anticipated, the clear division of colours, reflecting
an almost perfect correspondence between contact vectors and the statistical prop-
erties of the dynamics, is subsequently lost as the configuration moves away from
its initial state, or, in other words, as ∆ gets larger.

3.6.2 “Universal” decorrelation rate
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Figure 3.16. Evolution of the Spearman correlation between preferential directions and
total contact vector (upper panels) and between mobility and the sum of dot products
of contact vectors pairs (lower panels), for several values of ϕ (each one in a different
line colour). The right panels show that if the MSD is rescaled by a factor that measures
the distance from the jamming point, simulations with different parameters follow the
same behaviour. See main text for a detailed discussion.
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Results so far show that significant correlations exist between the structural
properties at jamming and the dynamics near the such point. Nonetheless, it is clear
that as time evolves such initial correlation should eventually disappear. Therefore
a crucial question is how fast and in which way this initial information is lost. To
answer it, we computed the value of K[Ci, 〈δri〉] and K

[
Si,
〈
|δri|2

〉]
at different

times. (For brevity, I introduced the notation K[X,Y ] to denote the Spearman’s
rank correlation coefficient between variables X and Y .) Expectedly, different sys-
tems and different parameters yield diverse decorrelation rates, using ∆ to measure
the temporal evolution as above. The results obtained with the different parame-
ters using the MD and MC simulations are reported in the left panels of Figs. 3.16
and 3.17, respectively, confirming this behaviour. However, a surprising feature is
revealed when ∆ is rescaled in terms of the “distance to the jamming point”: all the
curves can collapsed on top of each other for a significant fraction of the dynamics.
This finding signals the existence of a common process by which the configuration
decorrelates from its initial state. For instance, considering first the correlation be-
tween the total contact vector and the mean displacement in the MD simulations,
it is natural to use ϕ to parametrize the distance from jamming. In fact, we found
the appropriate rescaling factor to be (ϕJ − ϕ)1.8 and, as the upper right panel of
Fig. 3.16 shows, when the MSD is divided by such factor the different curves fall
on top of each other almost two orders of magnitude. Very similar findings hold for
K[Si,

〈
|δri|2

〉
] as reported in the lower right panel of Fig. 3.16, except that in this

case the scaling factor turns out to be (ϕJ − ϕ)1.65.
When considering the dynamics of SS, it is reassuring that we found completely

analogous results using the MC dynamics. More precisely, each value of α fixes an
intrinsic softness to the spheres, while the temperature determines how much they
are allowed to overlap on average. Hence, once the interaction parameter α is set,
the rescaling of the MSD should only depend on T . With this in mind, we can define
a “thermal scale” for the MSD as ∆̃α(T ) = cαT

να , where cα and να are constants
that only depend on the interaction type; we report the latter in the first row of
Table 3.1. By measuring ∆ in terms of the corresponding thermal scale, all the
different curves of K[Ci, 〈δri〉] can be collapsed; see upper right panel of Fig. 3.17.
For the case of the mobility, the same type of rescaling applies, albeit with different
constants, i.e. ∆̃′α(T ) = c′αT

ν′α ; the values of these exponents are reported in the
last row of Table 3.1.

α = 3/2 α = 2 α = 5/2
να 0.84 0.64 0.51

ν ′α 0.45 0.40 0.35
Table 3.1. Values of the exponents used for the rescaling of the MSD with the temperature

in the MC simulations, producing the curves shown in Fig. 3.17. Values in the first row
correspond to the results ofK[Ci, 〈δri〉] while in the second row we report the associated
values for K

[
Si,
〈
|δri|2

〉]
.

To better comprehend these findings, some remarks are useful. First, it is clear
that we obtained considerably high values ofK for both types of structural variables
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Figure 3.17. Analogous to Fig. 3.16 but for MC dynamics, modelling SS with different
contact potentials (different colours) and at different temperatures (different markers
shape). Note that once again, if the MSD is rescaled by a function of the distance to
the jamming point (in this case determined by T ), the different curves can be collapsed
into a single one (right panels).

and dynamical protocols. Additionally, the fact that during the intervals considered
here the value of K decreases by roughly an order of magnitude, while the (rescaled)
MSD increases by at least two decades, reveals that the decorrelations are actually
rather slow. It is also worth emphasizing that, in all cases, the rescaling factors
essentially measure how far away from the jamming point the dynamics takes place:
either by reducing its packing fraction (in the HS scenario) or by providing some
thermal energy (in the case of SS with a contact potential). Unfortunately, no
theory exists for predicting the form of these scaling variables, and here we had to
determine them by inspection. Nevertheless, if we resort to the fractal FEL picture,
the curves collapse suggests that, independently of the type of dynamical protocol
or even the interaction potential, the same mechanism drives the loss of correlation
as the system explores its meta-basin. It is tempting to rationalize this feature
in terms of the jamming universality (see Sec. 1.4.1), but I consider that a careful,
dedicated study, with a more systematic characterization of the dynamics and other
physical variables, is needed for such purpose. Finally, we can understand that the
correlations with ~C and ~S yield different scalings exponents because these two



3.7 Comparison with normal modes and other works 139

observables provides information about different features of the dynamics, namely,
the directions in which the particles’ displacements are facilitated and how much
they are expected to move, respectively. I finish this section mentioning that we
also verified that the same results hold for the other configuration we tested, as
shown in Fig. 3.23 in the Appendix 3.A.

3.7 Comparison with normal modes and other works

In the Sec. 1.1.1 it was mentioned that the dynamical properties of systems near
jamming have been investigated predominantly in experiments, and for the scope of
this chapter it is relevant to consider Ref. [211]. In this study, the authors found a
clear connection between the dynamics of their samples, which consisted in a bidis-
perse mixture of photoelastic soft disks, and the network of contacts formed among
them. They studied both the under- and over-compressed parts of the dynamics,
although an important difference with our work is that in their case the dynamics
was driven by an external vibrating apparatus rather than by thermal fluctuations
as we considered here. At any rate, our results should be considered as complimen-
tary to each other because while we focused on the statistics of the trajectories for
a given configuration, their results are based on several realizations on the network
of contacts, i.e. over several jammed states. The fact that during our simulations
we found displacements of the same magnitude as the ones reported experimentally
is reassuring.

On the other hand, this reference is also important because their experiments
managed to probe several of the dynamical features analysed theoretically by Ikeda
et al. in Ref. [51]. In this latter work, the authors identify a “critical regime” char-
acterized by strong anharmonicities that make a vibrational description unavailable.
As I will argue below, our simulations fall precisely within this same critical region.
To provide the necessary context, I briefly summarize the results obtained by Ikeda
et al. that are most important for this thesis. Their main finding is that the changes
in the behaviour of the MSD can be associated with corresponding changes in the
DOS, D(ω), where this latter quantity is calculated via the Fourier transform of
the velocity autocorrelation function of the particles, d(t) = 1

3N ′T
∑N ′
i=1 〈vi(t)vi(0)〉

(as above, N ′ is the number of non-rattlers). For instance, they showed that the
time at which the MSD deviates from the ballistic regime can be associated with
a frequency for which the rapid decay of the DOS at large ω occurs. Similarly, for
the time at which the MSD reaches its plateau value at high densities, there is a
corresponding frequency which indicates the onset of the Debye behaviour for small
frequencies, D(ω) ∼ ωd−1. And although this identification is blurred out as the
systems move away from their jamming point, say, by raising the temperature or
changing the packing fraction, the authors were able to define a region where the
harmonic description is always valid. Indeed, they showed that there is a tempera-
ture, T ? ∼ |ϕ− ϕJ |α, such that whenever T < T ?, then the collective properties of
the dynamics are well described by the vibrational modes. In turn, if for a given ϕ
the temperature of the system is large in comparison with T ?, then the dynamics
is dominated by anharmonic effects and no vibrational description is available and
the system is in the so called critical regime.
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Importantly, the instances considered in our work lie precisely in this latter
regime as I will now show. To begin with, recall that the MC simulations were
performed exactly at ϕ = ϕJ , meaning that for any finite temperature, the dynamics
are not be purely vibrational. In fact, Ikeda et al. state that in this scenario, the
jamming DOS cannot be used to infer properties of the vibrational dynamics for any
T > 0. Additionally, the temperature range that we considered for the harmonic
interaction –the only case analysed numerically by the authors– is several orders
of magnitude above T ?. So even if the harmonic description was appropriate at
the packing fraction we utilized, all its effects in our simulations would have been
washed out due to thermal noise.

The case of the MD simulations using HS is more subtle, but in Ref. [211] it was
pointed out as well that the experimental configurations analysed in [207, 218, 220],
which consisted of hard brass disks, also belong to the anharmonic regime. Clearly,
these are empirical realizations that closely resemble the infinitely rigid spheres of
our simulations, and suggest that our findings with ϕ < ϕJ should lay beyond an
interpretation in terms of vibrational modes. Nevertheless, we deem indispensable
to stringently test that normal modes are unable to described the single-particle
dynamics in the regime considered here, so I will present some results obtained fol-
lowing such method. I should emphasize that our procedure cannot mimic exactly
the one of Ref. [51] because, as mentioned above, the authors used the velocity
autocorrelation function in order to compute D(ω). However, note that d(t) is
intrinsically a dynamical property, while our approach relies on exclusively using
knowledge about the structure of the configuration. This limitation is, fortunately,
only apparent because using the formalism developed in Refs. [150, 167–169] and
reproduced in detail in Sec. 1.4.3, we can compute the Hessian (H) at the jamming
point and then obtain the exact DOS by diagonalizing it. I think it is worth remark-
ing that, formally, this is the procedure that should be followed to compute D(ω),
although under certain conditions it has been shown[52] to coincide with the DOS
obtained from the Fourier transform of d(t), which is the technique most commonly
utilized.

In the case of the harmonic potential, the Hessian is given by H = STS, where
S is the Nc× dN ′ contact matrix mentioned above an whose entries are spelled out
in Eq. (1.59). As a side note, I bring the attention to the fact that the vibrational
formulation is unable to take the rattlers into account, since they are omitted from
S by construction; in contrast, our method incorporates them readily. Now, when
dealing with a different type of interaction, universality ensures that a jammed state
obtained with a given potential is also a valid jammed configuration for any other
potential (see Secs. 1.4.2, 1.4.3 and Refs. [104, 150]). In the case of HS, the entries
of the contact matrix should be rescaled by the corresponding force magnitude (see
Eq. (1.64)), whence a similar expression for H is recovered, as stated in Eq. (1.65).
Explicitly, its entries are

Hjα′

iα = δij
∑
k∈∂i

f2
kin

α
kin

α′
ki − δ([ij])f2

ijn
α
ijn

α′
ij (3.6)

where δ([ij]) is a function that is one only if particles i and j are in contact and
zero otherwise.
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To obtain the normal modes of the system, we need to obtain the eigenvalues
of the Hessian, which in turn determine the normal frequencies of the system and,
thus, the DOS: if {λn}3N

′
n=1 are the eigenvalues of H, then the associated frequency

is ωn =
√
λn. The 3N ′ eigenvectors9, {~vn}3N

′
n=1, correspond precisely to the vibra-

tional modes, each of which describe a unique oscillatory mode of the configuration
around the jamming energy minimum. For further use, I introduce here the Inverse
Participation Ratio (IPR), which can be calculated in terms of the eigenvectors
as[58],

Y (ω) =
∑N ′
i=1 |vi(ω)|4(∑N ′
i=1 |vi(ω)|2

)2 (3.7)

where vi(ω) is a d = 3 dimensional vector obtained from the eigenvector ~v with
corresponding frequency ω by taking the components associated with particle i.
Intuitively, Y (ω) quantifies the localization of the mode with frequency ω. That
is, for very small values (Y ∼ 1/N ′) of the IPR, the associated mode is essentially
extended, meaning that many particles are collectively displaced, all of them by
roughly the same amount. In contrast, for large values (Y ∼ 1) few particles
participate in the displacement excitation, so the mode is localized.

Now, if the particles were only vibrating around an energy minimum their dis-
placements would be easily captured by the normal modes formalism. Moreover,
if this was the case, we could expect the lowest energy modes to carry most of
the weight of the configuration’s displacement. To put to test this assumption, we
measured the projections of the configurational vector of mean displacement along
the different modes, i.e. 〈̂δ~r〉 · ~vn, where only non-rattlers components are included
and 〈̂δ~r〉 indicates that the average displacement vector has been normalized. Such
normalization is performed at each time, so the different values of the projections
remain comparable to each other and a fair comparison is possible as time evolves.
The resulting values from the MD simulations with ϕ/ϕJ = 0.995 are reported in
Fig. 3.18, where the Hessian was obtained with both the harmonic (upper panel) and
hard sphere (lower panel) interaction potentials, while different colours correspond
to different times at which 〈δ~r〉 was calculated. The scatter of the points hints that,
for either type of potential, the collective particles’ displacement is not concentrated
in few modes, specially during the initial times. For longer times, more weight is
allocated in the first modes, but still there are many other low frequency modes
with negligible weight. We consider that such lack of criterion to select the most
relevant modes exhibits one important drawback of the normal mode description at
the single-particle level, and, unfortunately, it carries over to the IPR as I discuss
next.

Considering the IPR is important because, independently of their frequency,
we expect that not all the modes are equally important, due to the fact that the
trajectories we studied here consist in displacements of all the particles of the system.
Hence, a more reasonable property to study is whether the extended modes posses
a higher weight than the localized ones. Were this to be the case, then choosing

9I will also use the notation ~• to denote the 3N ′ dimensional vectors of the configuration space,
in order to highlight the fact that any displacement δ~r can be expressed as a linear combination
of the eigenvector. Of course, such decomposition assumes that rattlers are excluded from the
components of δ~r.
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Figure 3.18. Value of the projection of 〈̂δ~r〉(t) along each of the normal modes, {~vq}N
′

q=1,
obtained from the Hessian using the harmonic (upper panel) or hard-sphere interaction
potential (lower panel). The different times at which the dot products were computed
are identified by different colours and markers, according to the legend. Values of 〈̂δ~r〉
were obtained from the simulations with ϕ/ϕJ = 0.995. It is only for later times that
more weight is assigned to few of the low frequency modes, but there is no way of
knowing, a priori, how to select them.

the modes with the lowest value of Y (ω) could be taken as a criterion for selecting
the vibrational modes that influence the dynamics the most. Yet, as Fig. 3.19
demonstrates, even using the IPR we are unable to identify the correct normal
modes to account for the configuration’s displacement statistics. That is, even when
the IPR is very small, i.e. Y (ω) ∈ (2× 10−3, 10−2), the corresponding values of the
projections lie within a range of 2-3 orders of magnitude. Such a broad distribution
exemplifies that the collective dynamics cannot be described as if it consisted of few
extended excitations. Note that, on the one hand, these results are independent
of the type of potential, while on the other, allowing the dynamics to evolve for
longer times only affects the localized modes, the vast majority of which loses most
of its weight. A more quantitative comparison is at hand by considering the three
most extended modes (the ones lying on the vertical line 1/N ′) corresponding to
the zero modes of H, which in turn are associated with the translational invariance
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of our system induced by its periodic boundary conditions. These modes determine
directions along which the system could be collectively displaced without any energy
cost, but since we know that during the dynamics the systems is not being uniformly
translated, we can use their weight as a lower threshold to distinguish relevant
modes for the dynamics. What we observe from Fig. 3.19 is that there are several
modes (also considerably extended) that have an even smaller weight, while we
still lack a guideline to find the ones more aligned with 〈̂δ~r〉. Furthermore, note
that the sign of the projection is particularly important if we really want to be
able to identify preferential directions. But still, the vibrational scheme fails to
provide this information because it is assumed that the motion mainly consists in
oscillations around a given minimum, so the direction of motion becomes irrelevant.
Nonetheless, our results of the previous sections prove that this is not the case
for the dynamical regime we are studying. For completeness, I mention that we
verified that our results are unmodified if use K

[
〈̂δ~r〉, ~vn

]
instead of the projection

for measuring the correlation between the configurational displacement and the
normal modes.

As I argued before, the lack of connection between the mean configurational dis-
placement and the distinct vibrational modes can be explained by the fact that these
modes are not suitable to examine the trajectories generated with our simulations,
given that they belong to the critical region where the harmonic approximation is
not valid. And even though the results presented so far support this hypothesis, we
have not yet verified that the dynamics is mainly driven by anharmonic effects. To
do so, we computed the value of 〈̂δ~r〉 ·H · 〈̂δ~r〉, which should provide an estimate of
the “curvature”induced by the dynamics at the FEL’s minimum. The idea is that
if the harmonic description was valid, this curvature should be small given that
particles move predominantly along the lower-energy (i.e. flatter) directions. Con-
versely, a large value signals that the forces driving the dynamics are not captured
by the linear assumption implicit in the harmonic approximation. To test these
hypotheses, in the upper (resp. lower) panel of Fig. 3.20 we plot the cdf of the fre-
quencies for the harmonic (resp. hard-sphere) potential and we indicate the values
of 〈̂δ~r〉 · H · 〈̂δ~r〉 with vertical dashed lines, using different colours to distinguish
different times. Recall we have normalised the average displacement at each time,
so the intersection of each vertical line with the curve of cdf(ω) determines the frac-
tion of frequencies smaller than the corresponding value of the curvature. Clearly,
during the initial times the value of the curvature is quite large, i.e. greater than
40 − 60% of the frequencies, specially considering the hard-sphere potential. But
also for longer times this fraction remains around 20% (i.e. an extensive number
of modes), corroborating that the preferential directions of motion, inferred via the
vibrational modes of low energy, do not correspond to the real trajectories followed
by the particles. This finding establishes that our systems were in the anharmonic
region, according to the classification of Ref. [51].

3.8 Conclusions

I presented a simple and robust method to connect the structural information
present at the jamming point of a configuration of N spherical particles and the
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Figure 3.19. Same projections as in Fig. 3.18 but plotted as a function the IPR defined in
Eq. (3.7), using the harmonic and hard-sphere potentials, panels (a) and (b) respectively.
The black vertical dashed line at 1/N ′ is the lowest value that can be attained by Y (ω)
and correspond to maximally extended modes, while the dotted line at 1 identifies the
most localized ones. The few points with Y (ω) ≈ 1/N ′ are associated with the d = 3
zero modes caused by the translational invariance of our systems and their respective
weight can be used as a lower threshold for determining when a mode can be considered
relevant (see main text).

dynamics that happens close to such point. I first analysed the statistics of the
spheres’ displacement after producing several trajectories originating from the po-
sitions at the jammed state. The resulting distributions show, on the one hand,
the existence of preferential directions of motion, and on the other, the presence
of heterogeneity in the particles’ mobility, reflected by the fact that some spheres
remain mostly fixed, while others are more mobile by several orders of magnitude,
see Fig. 3.6. I also argued that these features are captured by their respective first
moments, i.e. 〈δri〉 and

〈
|δri|2

〉
for i = 1, . . . , N , and thus we used these statistics

to succinctly represent the full distributions.
The main result is that we found a straightforward and significant connection, at

the single particle level, between these statistics and the network of contact vectors
that is formed at the jammed state. In particular, we found that the sum of contact
vectors acting on a given particle, Ci (defined in Eq. (3.1)), is a good predictor of
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Figure 3.20. Comparison of the “curvature”, measured by 〈̂δ~r〉·H · 〈̂δ~r〉, with the spectrum
of H computed using the harmonic (top) and hard-sphere (bottom) interaction. Values
of this curvature at different times are indicated by the vertical dashed lines, and their
intersection with with cdf(ω) (black curve) equals the fraction of frequencies smaller
than ω. The fact that the fraction of frequencies smaller than a given value of curvature
is always extensive, even for long times, reveals that the dynamics probed during our
simulations are not captured by the normal modes approach.

its preferred displacement direction, if any; while the sum of dot products between
all pairs of contact vectors, Si (defined in Eq. (3.2)), is highly correlated with the
particle’s mobility. Our approach was tested using two different types of dynamical
protocols, namely Molecular Dynamics and Monte Carlo simulations, and verified
that it remains valid in both cases and for the different parameters we studied; cf.
Figs. 3.8-3.15. The statistical correlation, measured by the Spearman coefficient,
K, decays rather slowly as the dynamics evolves, thus showing that the jammed
state used as the initial condition of the trajectories has a persistent influence on
the particles displacements. More precisely, using the MSD as a measure of how far
the configuration is from its initial state, we found that while K decreases its value
by an order of magnitude or less, the MSD has increased by at least two decades.
Because we are not probing the ballistic regime, the change in the MSD is only due
to interaction between particles, and thus implies that ~C and ~S are relevant after a
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small, but definitely measurable, rearrangement of the whole configuration has taken
place. Furthermore, in Figs. 3.16 and 3.17 I showed that when ∆ is rescaled by a
factor that depends on how far from the jamming point the dynamics occurs, the
curves of the loss of correlation follow a single master curve. This suggests that for a
given dynamical protocol the decorrelation rate is, surprisingly, independent of the
distinct parameters used in our simulations. We therefore conclude that the network
of contact vectors formed at a jamming point contains significant information to
infer the short-time features of the particles’ motion near such point.

Importantly, our results show that in the dynamical regime we studied, and for
the timescales of our simulations, the particles’ motion does not consist of simple
vibrations around a reference state, which in our case is naturally identified with the
initial jammed configuration. This novel finding is supported by the fact that the
vibrational modes fail to capture the real mean displacement of the configuration,
as argued in the previous section. The negligible correlations obtained in this case
are reported in Figs. 3.18 and 3.19. I should emphasize that the scope of our work
is restricted to finding a connection between dynamical and structural (and hence,
static) variables, therefore we only used data about the contact forces as input for
our statistical inference. These data can be used to compute the Hessian at the
jamming point, whence the normal modes can be easily obtained. This shows that,
utilising the same structural information as input, our approach yields a better
description of the statistics of the single-particle dynamics than the normal modes
approach. Moreover, the level of statistical correlations we obtained is comparable
to the ones derived from more sophisticated, state of the art methods.

Additionally, I want to mention that I am optimistic that our method could
be applied, given that it is rather simple and straightforward, to other type of
systems having jamming as a critical point (see Sec. 1.4). In other words, it is
likely that the structural variables we identified here, namely ~C and ~S, also convey
information about the particles trajectories when the dynamics is driven by other
physical variables, e.g., the application of a load or a stress. A related feature is that
because jamming criticality is noteworthy robust to changes in dimensionality and
interaction types, our approach presumably has the same range of validity. Besides,
recall that the jamming universality class is composed not only by amorphous solids
and glass formers but also by several constraint satisfaction problems and learning
algorithms. Thus, once the analogous structural variables are identified in those
cases, our method could also be used to extract new insights about the algorithmic
dynamics of that sort of problems.

Now, some remarks about the regime of validity of our results are also in order.
For this purpose, I will once again follow the picture of the fractal FEL, in particular
the results of Ref. [111] and Sec. 2.3.1. There it was shown that a jammed state
is realized gradually as the configuration goes down towards a minimum and the
contact forces are concomitantly determined. Therefore, similar jammed states
exhibit similar network of contacts and, more importantly, different realizations of
jammed states, originated from a single initial configuration, would have a significant
fraction of common contacts. Of course, the closer this initial configuration is to an
energy minimum the higher the fraction of common contacts in the final jammed
packings. Now, assuming that the short time dynamics essentially explores a small
vicinity around the reference jammed sate, these findings set the Gardner phase as



3.8 Conclusions 147

a rough limit beyond which we do not expect our method to remain valid. That
is as long as the dynamics departs from a state (in parameter space) within this
marginal phase, it is likely that we find non-negligible correlations between our
structural variables and the single-particle displacement statistics. To see why this
is the case, let us imagine that we use a jammed configuration as the initial condition
of a given dynamical protocol. After a short time we stop the evolution, then bring
the configuration to a new jammed state and, finally, we restart the dynamics using
this second state as initial condition. Since the two jammed states are similar,
we expect that the second trajectory to be correlated, at least to some extent,
with the structure of the first jammed state. Yet, note that for this scenario to
be true it is crucial that the dynamics occurs inside the Gardner phase because
only in this way we can guarantee that the structural variables from the original
configuration are going to be similar to the ones of the nearby sub-basins explored
during the dynamics. Nevertheless, this argument does not provide a criterion for
determining the rate and sharpness of the loss of correlation as the stable glass
phase is approached. This and other open questions are described in more detail
next.

3.8.1 Future work

I finish by pointing out several routes of improvement that can be considered. The
first one is to construct other variables that incorporate information of the “second
nearest neighbours”. In other words, as it is now, our method only considers the role
of a particle’s first neighbours, but it is expected that a more complete description
can be attained when a larger vicinity is considered. An independent possibility
to explore is that, with enough data, we could aim to infer the full distribution of
the particles displacements and not only their moments as we did here. This would
provide a complete description of the trajectories followed by amorphous solids
near their jamming point. Clearly, both approaches can be combined, where the
degree of statistical agreement of the full distribution expectedly increases as more
complicated models are taken into account, which in turn would include observables
constructed from an even larger set of nearby particles and more parameters. This
opens the way to the application of Bayesian model selection, which has proven to
be very fruitful in a surprisingly broad range of topics.

On the other hand, as I stressed through this chapter, we have used a particle-
wise approach in which the most relevant structural features are captured by the
position of a particle’s nearest neighbours. But one could also think on imple-
menting a more “coarse-grained” description in which the dynamics of a group of
particles (say their mean mobility) is characterized by a structural quantity of the
corresponding region (for instance the average value of Si in the cluster). This
clusterised approach would be similar to the more common methods that explore
the influence of the local environment on the dynamics of glassy system. Hence
we expect that the more we adopt a cluster description, the longer our inferences
should remain valid. In this way, one could extend the duration of high correla-
tions by including the information of more neighbours and analysing their statistical
properties.

The possibilities I just mentioned are concerned with developing techniques to
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improve the quality and duration of the statistical inference, but our results also
hint at some properties that deserve to be explored, from a physical point of view,
with greater detail. First of all, the spatial correlations of ~C and ~S. That is, based
on the fact that particles are dynamically correlated at the large scale, while we
have shown that dynamics and local structure are connected, we can anticipated
that ~C and ~S (or other similar structural variables) should also exhibit signatures of
correlations on longer length scales. Unfortunately, due to high fluctuations in these
structural variables, a very large number of independent jammed configurations
should be used in order to extract a meaningful signal and thus identify the presence
of truly extensive structural correlations. Nonetheless, we deem that putting this
hypothesis to test is particularly relevant since it would provide stronger evidence
of the influence of the local structure on the dynamics.

Additionally, a promising path for extension, also related to long range corre-
lations, is how the presence of system-wide order or regularity would influence our
results. Candidates for such studies could be, for instance, either low density sys-
tems –such as tunnelled crystals[189]– or, on the contrary, high density ones –formed
by slightly polydisperse crystals[162,163]. Besides the usual marginal stability of com-
mon jammed packings, which leads to structural correlations lengths comparable to
the system size (see Chp. 4), these systems are characterised by periodic ordering
of their particles. Therefore, two different types of structural correlations coexist
across the whole configurations. It is clear that our method can be directly applied
to such systems because the network of contacts is equally well defined in all of
them, but the extent to which their inherent order increases the relevance of the
second nearest neighbours in the dynamics, and thus the level of correlation our
approach would yield, is something that needs to be explored.

Another independent feature to investigate is how the dynamics of the configu-
ration in its original basin affects the loss of correlation in time. In other words, it
would be interesting to study if there is a connection between this decorrelation and
the distance from the original minimum to nearest one at a given state of the config-
uration. This would provide evidence that the decorrelation is strongly influenced
by the overlap between the many jammed sates in a basin of the FEL and, more-
over, it could suggest how to use the structure of these other free energy minima
to enhance the quality and the duration of the statistical inferences we presented
here or other similar ones. Additionally, if a stronger link between such statistical
correlations and the overlap of jammed sates within a meta-basin is found, it could
be used to set a more accurate limit for the range of applicability of the sort of
inference tools we developed here.

Appendix

3.A Reduced analysis on an independent configuration

To verify that our methodology is system independent, we performed the same
analysis on another configuration selected at random from the set of configurations
analysed in Sec. 3.1.2. It also consists of N = 1024, with 1.4% of rattlers, and
packing fraction ϕJ = 0.6350. We used the same MD algorithm to explore its



3.A Reduced analysis on an independent configuration 149

−0.04−0.02 0.00 0.02 0.04
−2

−1

0

1

2
C

(x
)

i

K = 0.916

τMD = 2

−0.5 0.0 0.5

〈δxi〉/RJ (×10−2)

K = 0.654

τMD = 10

−2 −1 0 1 2

K = 0.49

τMD = 20

−0.04−0.02 0.00 0.02 0.04
−2

−1

0

1

2

C
(y

)
i

K = 0.91

−0.5 0.0 0.5

〈δyi〉/RJ (×10−2)

K = 0.662

−2 −1 0 1

K = 0.484

−0.04−0.02 0.00 0.02 0.04
−2

−1

0

1

2

C
(z

)
i

K = 0.93

−0.5 0.0 0.5 1.0

〈δzi〉/RJ (×10−2)

K = 0.672

−1 0 1 2

K = 0.498

Figure 3.21. Correlations of mean displacements and Ci for a second independent con-
figuration. Note the close resemblance to the results reported in Fig. 3.8. The packing
fraction used is ϕ/ϕJ = 0.995.

dynamics, although in a reduced set of packing fractions, obtaining very similar
results and values of correlations with the two structural variables of interest. For
instance, the scatter plots of Fig. 3.21 show the correlations between 〈δ~r〉 and ~C,
analogous to Fig. 3.8. Likewise, we tested the three scalar variables considered in
Figs. 3.10 and 3.14 and once again found that the value of ~S is a better predictor of
the particles mobility. We thus confirm that, compared to contact forces, contact
vectors are more useful to infer dynamical statistical properties.

Finally, we also verified that the decorrelation from the initial configuration
follows the same universal behaviour as the ones reported in Fig. 3.16. To do so,
we computed the values of K[〈δri〉 ,Ci] and K[

〈
|δri|2

〉
, Si] as they evolved in time,

and compared them with the ones of the original configuration at the same packing
fraction. The comparison is shown in Fig. 3.23. The fact that the two curves
resemble each other very closely shows that our approach is robust enough to be
applied to any jammed configuration of spherical particles.
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Chapter 4

Finite size scaling of
microscopic structural variables

4.1 Introduction
This chapter contains a detail study of the finite size effects in the critical distribu-
tions of contact forces and interparticle gaps; see Secs. 1.4.4-1.4.5 and Eqs. (1.67)-
(1.68) in particular. For convenience, I reproduce here such equations:

g(h) ∼ h−γ , with γ = 0.41269 . . . ; (1.67)
p`(f`) ∼ fθ` , with θ` ' 0.17, (1.68a)
pe(fe) ∼ fθee , with θe = 0.42311 . . . ; (1.68b)

Many of the results of this chapter have already been presented in Ref. [2], in
collaboration with several colleagues to whom I am deeply grateful. There, we
studied said distributions in four models: monodisperse spheres, the Mari–Kurchan
(MK) model (see Secs. 1.4.1 and 2.2) in 3d, polydisperse disks, and minimally
polydisperse FCC crystals. However, here I will only present results from the first
two, because those are the ones to which I contributed more actively. Nevertheless,
in the case of the monodisperse spheres, I will also make use of the numerical data of
our colleagues to exemplify the very nice match obtained when the jamming point is
approach from either side of the transition using hard spheres (HS) or soft spheres
(SS); see Figs. 4.3 and 4.6 below. Actually, this last point is but a reason for the
need of further testing the non-trivial power law distributions of forces and gaps,
despite what has been said in Sec. 1.4 about the universality and robust criticality
of the jamming transition. To explain why, I will briefly come back to some of the
points already discussed in that section to give some perspective of how they affect
the topics of this chapter. Specifically, a precise determination of the exponents of
the distribution of forces, {θe, θ`}, and gaps, γ.

Recall that in Sec. 1.4.2 I mentioned that several thermodynamic variables in
configurations of spheres exhibit scalings in the vicinity of the jamming point but
that, importantly, these relations differ if jamming is approached from the over-
compressed (OC) phase –see Eqs. (1.51)– or from the under-compressed (UC) one1

1Throughout this chapter, I will only use physics-based terminology. But it is important to keep
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–Eqs. (1.52). The most salient example is the (reduced) pressure that, assuming
an harmonic interaction in the OC regime, scales as p ∼ |ϕ− ϕJ |±1, as ϕ → ϕ±J ,
where once again ϕJ is the system’s density at jamming. Such power laws be-
haviours of thermodynamic variables have been amply validated both by numerical
results[51,136,137] and by detailed scaling analyses[154–156]. Additionally, we now know
that these features are essentially unmodified by changes in dimension, polydisper-
sity, etc. And even though they are strictly valid only in the T → 0 limit, the role of
temperature has been partially incorporated in some studies[51,152]. This behaviour
is not exclusive of thermodynamic variables, but is also observed in quantities such
as the coordination number, z, for which numerical simulations show that its mean
value, z = 1

N

∑N
i=1 zi, exhibits a discontinuity exactly as φ → φ−J , and then grows

as z(φ)− z(φJ) ∼ (φ− φJ)1/2 for φ > φJ
[136,153].

Hence, we should not immediately take for granted that the exponents of the
critical distributions have the same value if jamming is approached from the high or
the low density phase. In fact, to the best of my knowledge, the only work analysing
this question in detail is Ref. [153] and they obtained different exponents of the
forces distributions in the OC regime (θSS ≈ 0.42) and in the UC one (θHS ≈ 0.28).
The situation was further complicated because shortly afterwards, the authors of
Ref. [169] estimated θSS ≈ 0.17 after improving on the statistics (although they
also reported θ′HS ≈ 0.23 in 3d monodisperse packings). Besides, some dependence
on the dimensionality has also been observed[167,169]. All these works however re-
ported a value of γ ≈ 0.4. To add even more confusion, the mean-field (MF)
theory –developed almost simultaneously[84,111,112,117,118]– predicted exactly, in the
limit of very high dimensions, the values γ = 0.41269 and θ = 0.42311, as stated
in Eqs. (1.67) and (1.68). So how to reconcile all the numerical results between
themselves and explain the occasional agreement with MF theory? Fortunately, an
elegant way out of this dilemma was soon devised[150,169]: the MF predictions are
correct also for low dimensional systems, and the apparent contradictions observed
in the value of θ are caused by the presence of two different types of contact forces.
The difference is that opening a contact associated to one or other type gives rise
to either an extended or to a localized excitation; see Fig. 1.20. (For brevity, I will
henceforth use “localized” and “extended” to distinguish the corresponding contact
forces, although they obviously are only present at the contact point.) When the
two contributions are considered separately, it is consistently found that localized
(extended) forces are distributed according to θ` ≈ 0.17 (θe ≈ 0.42) for any di-
mension d ≥ 2. However, the relative fraction of localized and extended modes
strongly depends on the dimensionality and, possibly, also on the preparation pro-
tocol (and maybe even on polydispersity in d = 3). This is caused by the fact
that localized forces are predominantly associated with buckling excitations which
occur, with very high probability, in particles with z` ≡ d+ 1 contacts. The reason
is that buckling forces occur mainly because d contacts are approximately coplanar
and thus, the remaining force should be almost orthogonal and of small magnitude.
Note that as zi increases it is ever more unlikely to achieve a similar nearly copla-

in mind that many of the arguments considered here also apply from the constraint satisfiability
perspective of jamming (see Secs. 1.4.1 and 2.1). For instance, the UC regime (or when jamming
is approached from below) corresponds to the SAT phase, while the OC one (or approaching from
above), is equivalent to the UNSAT phase, where at least one constraint is not satisfied.
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nar arrangement, and therefore the vast majority of bucklers have z` contacts; see
details in [150, SI. II]. Importantly, the amount of buckling particles decreases very
rapidly with dimension, because fluctuations away from the isostatic value zc = 2d
are exponentially suppressed[150]. Putting all of these arguments together we can
satisfactorily explain, on the one hand, why MF is unable to provide a description
of localized modes (namely, because they are an exclusive low d phenomenon) and,
on the other, the discrepancy of values of θ. In particular, the results of Ref. [150]
reveal that in d = 2 localized forces are dominant, an hence if the two forces are
considered together it is found that θ ≈ 0.19; in d = 3, the same analysis yields
θ ≈ 0.25 (cf. θHS and θ′HS above), and θ ≈ 0.30 in d = 4. But these dissimi-
lar values are actually simply caused by the dependence of the amount of bucklers
with the dimension. Even more, when localized and extended forces are consid-
ered separately, in all these cases their probability function (pdf) follow very closely
p(f`) ∼ fθ`` and p(fe) ∼ fθee , where θ` = 0.17462 and θe = 0.42311, in agreement
with the MF prediction for the latter.

Unfortunately, once this matter was solved, no further test was made to care-
fully verify that the three values (γ, θe, θ`) match as ϕ→ ϕ±J . That is, the available
numerical evidence strongly supports that this is the case but, as with many other
phase transitions, there is no reason a priori to suppose that the jamming criti-
cality is unaffected by the direction of the limit. Moreover, a precise estimation of
their value is needed because the three exponents are related by mechanical stability
bounds as derived in Sec. 1.4.5. MF predictions of θe and γ saturate the correspond-
ing bound, Eq. (1.74a), and current estimates of θ` indicate that the same is true
for the other relation, Eq. (1.74b). Hence, it is fundamental to perform a careful
analysis of the values of (γ, θe, θ`) inferred from numerical simulations in order to
assess the stability, if only marginal, of jammed configurations. Conducting such an
analysis is especially important considering that packings of slightly polydisperse
crystals are reported to exhibit a microstructure characterized by exponents that
significantly differ from those of Eqs. (1.67) and (1.68)[162,163]. Additionally, recent
works have shown that many of the salient features of spherical packings depend
sensitively on particle shape. For instance, introducing even an infinitesimal amount
of asphericity changes the universality class[165,166], in which the isostatic condition
no longer holds. The relevance of investigating the extent of the jamming uni-
versality class and thoroughly testing its many theoretical predictions is therefore
needed[102], specially considering that jamming criticality is, up to date, the most
precise prediction reaped from the replica method applied to realistic materials
models.

With this in mind, in this chapter I will present a detailed analysis of the finite-
size scaling of the distributions of interparticle gaps and contact forces. These
distributions are one of the fundamental consequences of the presumed non-trivial
critical behaviour of jammed packings, hence their testing is a key step toward rig-
orously validating a whole set of critical properties. Although a similar analysis
has been carried out for the perceptron[140] and for the gaps distribution of a two-
dimensional binary mixture[165], no systematic result exists for jammed packings of
spherical particles, nor for amorphous packings with other sources of disorder. As I
mentioned above, in Ref. [2] we considered several models, both in d = 2 and d = 3,
with the aim to define precisely which are the most robust features of jamming criti-
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cality, and thus better demarcate its physical universality. For instance, to properly
account for size effects in 2d systems logarithmic corrections[155,221–223] are impor-
tant, thus confirming that d = 2 is the upper critical dimension[150,155,167]. (Further
evidence comes from recent studies[114,224] where a different criticality is observed
in quasi-one-dimensional systems.) Similarly, we also found that crystalline order-
ing breaks the jamming universality and renders jammed configurations unstable
according to the criterion of the usual bounds, Eqs. (1.74). Nevertheless, I will not
consider such systems here an instead only focus in 3d systems of monodisperse
spheres, and the analogous MK model.

This chapter is organized as follows, in Sec. 4.2 I provide some details about
the generation of jammed packings and in Sec. 4.3 I explain how to study the size
effects we are interested id. Then in Sec. 4.4 I present a meticulous analysis of the
finite size effects in the critical distributions of packings of spherical particles. An
unexpected outcome is the striking contrast of such effects on the distributions fe
and h. Then, in Sec. 4.5 I carry out a similar study for the MK configurations,
which shows that size effects are much pronounced in this model and that localized
forces exhibit a different distribution. A tentative explanation is advanced for both
features in terms of the particular properties of the MK model. Finally, a discussion
and brief conclusion are given in Sec. 4.6.

4.2 Methods for generating jammed packings

I will first consider the case of three-dimensional configurations of N spheres of
equal diameter σ in a cubic box under periodic boundary conditions. In a certain
sense, this choice is the minimal model for producing jammed packings. Lower-
dimensionality systems inevitably crystallize unless polydisperse mixtures are used,
but ordering can be avoided for monodisperse spheres in d ≥ 3. Sphere positions
then serve as the only source of disorder. For configurations initially in the UC
regime, a hard-sphere potential is used and a combination of molecular dynamics
(MD) and linear optimization algorithms are employed to reach φJ . More precisely,
we start from a low-density configuration (ϕ = 0.2) with particles’ position assigned
randomly and uniformly in the box volume. Then, we use event-driven MD with
a Lubachevsky–Stillinger growth protocol[94] (see Sec. 2.2 for details) to increase
the (reduced) pressure up to p = 500. This first step is performed with a fast
compression rate (σ̇ = 10−2) in order to avoid any partial crystallization and is
then followed by a second, much slower (σ̇ ≤ 10−3), growth protocol until p & 107.
(Details about the influence of σ̇ and the final p on the jammed configuration thus
produced are reported in Sec. 2.3.1.) At this point the configuration is used as
input for the iterative Linear Programming (iLP) algorithm described in Sec. 2.1.
As discussed there, at each step, the LP algorithm finds the optimal rearrangement
of particles that allows to maximize their radius, considering a linearised version of
the non-overlapping constraint between all pairs of particles. Upon convergence, this
algorithm produces a jammed configuration, because neither particle displacements
nor size increases are possible. With this we can easily reconstruct the full network
of contacts at jamming, because genuine contact forces can be extracted from the
active dual variables associated to the non-overlapping constraints. As I proved in
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Sec. 2.1.2, our iLP algorithm always produces a mechanically stable configuration
and, the majority of times, it has a single state of self-stress (1SS). As discussed in
Sec. 1.4.3, such a state is characterized for having one contact above isostaticity, i.e.
when the total number of constraints in a system (Nc) matches its number of degrees
of freedom (Ndof ), and determines where the jamming criticality comes about. The
extra contact with respect to isostaticity is required in order to achieve a finite bulk
modulus[154,174]. Put differently, the system density is an additional variable that
needs to be fixed, and thus requires one additional contact above isostaticity[172]
(Sec. 2.1.2).

On the other hand, when in the OC phase2 and given the position vectors,
{ri}Ni=1, we considered an harmonic contact potential,

U
(
{ri}Ni=1

)
= ε

2
∑
i,j

(σ − |ri − rj |)2 Θ(σ − |ri − rj |), (4.2)

where ε is a constant that defines the energy scale, and Θ is the Heaviside step
function. Hence, a pair of particles only interacts if there is an overlap between
them. Starting with ϕ > ϕJ and a Poisson random distribution of spheres, a series
of energy minimization steps and packing fraction reduction steps are performed
until the system has 1SS. More precisely, at a given density the FIRE algorithm[151]

is used to achieve force balance in the configuration. The energy of the configuration
is then calculated and the known scaling relation[150], U ∝ (φ− φJ)2, is used to
determine by how much the sphere radii should be uniformly decreased to reduce the
system energy by a fixed fraction. Thus, after several iterations of this procedure,
the packing has precisely Nc = Ndof + 1 ≡ N1SS contacts. After removing rattlers
(see below), the dynamical matrix[4] is used to ensure that the packing is jammed.
This algorithm is implemented in the pyCudaPacking software using general purpose
graphical processing units and quad-precision calculations, see details in Refs. [58,
225, 226].

Once the contact forces have been computed for a given configuration, they are
normalized so that their mean value equals 1. We then proceeded to classify them as
localized or extended. The criterion we used is based on the coordination number
of each particle, zi. Thus, if a particle has z` = 4 contacts, it is automatically
considered a buckler and all its contact forces are classified as localized. In turn,
if a particle has zi > z` all the related forces, except the ones possibly associated
with bucklers, are classified as extended. Clearly, this criterion is far from perfect,
because (i) not all particles with z` neighbours necessarily have a buckling contact
and (ii) not all bucklers have z` contacts. However, the fact that a buckling force
is associated with a specific geometric configuration as discussed above and that
relatively few particles have less than zc = 6 contacts justifies that by doing so,
we are capturing most of the relevant localized modes. Of course, more accurate
methods have been devised[162,167,169], but as shown in Ref. [150] this criterion often
suffices. Besides, another way to extract the distribution of localized and extended
forces is to consider the smallest and median force per particle. When this is done,
it is found that p(fsmall) ∼ fθ`small and p(fmed) ∼ f

θe
med. We verified that our results

2All the simulations in the OC regime were performed by our collaborators, so I just describe
them briefly.
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hold with either methodology, so I will only present the data obtained from the
connectivity criterion.

On the other hand, computing the dimensionless gaps, h (defined in Eq. (1.49)),
in each configuration is straightforward once the jamming point has been reached: it
is enough to compute the distance between non-touching particles, rescale it by σJ
and subtract 1. However, given that the jamming power-law only applies for small
gaps, it is convenient to introduce a cut-off to the distances considered. Here, we
set it to 2σJ , which amounts to hmax = 1, a value well beyond the critical regime
(see Figs. 4.6 and 4.14). As a side comment, note that when the iLP algorithm
is employed, another advantage of using active dual variables to define contacts
between particle pairs is that such pairs can be directly excluded from the list of
distances to be considered.

Finally, for the MK model we restricted our analysis to configurations of HS, and
hence, approaching jamming from below. As described in previous chapters, this
model is characterized by particles interacting through a randomly shifted distance,
as in Eq. (2.18). For our simulations, we assumed the random shifts to be quenched
vectors uniformly distributed in space, corresponding to the MF limit. To generate
the packings we followed essentially the same procedure relying on the MD+iLP
algorithm. With respect to HS packings, there were only a couple of differences
in the MD compression part of MK (the actual protocol is illustrated in Fig. 2.6).
First, that a single value of 10−3 ≤ σ̇ ≤ 2× 10−3 was used, because there is no risk
of crystallization in this model, so there is no need to begin with a fast compression.
Second, the initial configuration for the dynamics was a planted configuration with
density ϕ = 2.5. In this way, we drastically reduced the time of the MD simulations
and guaranteed to go beyond the dynamical transition point[109,110] (see Fig. 2.6).
However, I should mention that a disadvantage of doing so is that the fraction of
rattler increases considerably to about 15%−20%. Nevertheless, we always obtained
a configuration having 1SS with the help our iLP algorithm. As a final remark I
mention that generating a jammed packing of N particles following this procedure
takes considerably longer than for a usual HS configuration of the same size. This
is due to the fact that any given particle is surrounded by many more particles than
in the case with Euclidean distance. Besides, the neighbours-list approach[194] for
the MD compression is also significantly slower than the cell-based one[94]; more
details are given in Sec. 2.2.

4.3 Methods for studying finite size effects

We used the methodology just described to produce several jammed configurations
for each system size, parametrized by N . For systems of spheres with the usual
Euclidean (resp. MK) distance, we tried N ∈ {28, 214} (resp. N ∈ {28, 212}).
Moreover, to ensure that we sampled all the systems with the same accuracy, for
a given value of N , MN independent packings were produced in such a way that
N×MN ' 2.2×106 (5.5×106) for standard HS (SS) configurations, while N×MN '
106 for the MK ones. The reason of the smaller sizes and reduced dataset in this
latter model is that both the MD and iLP algorithms perform much slower than in
the common case as mentioned above. These data provide enough accuracy to study
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the forces and gaps across many orders of magnitude, and finite-size corrections can
be systematically identified.

It is known that using a logarithmic binning when testing for power-laws in
a pdf often leads to poor comparisons as a consequence of the loss of resolution
when grouping enough data in a single bin[227]. To tackle this difficulty, we instead
utilized the cumulative distribution function (cdf). Note that if a random variable,
x, is distributed according to a pdf of the form ρ(x) ∼ xα for α > −1, then its
cdf follows c(x) ∼ x1+α. The cdf allows the accuracy of the data acquired to be
preserved and, in the case of independent random variables, maximum likelihood
methods can be used to obtain a more precise estimation of α than by least-squares
fit[227]. However, for the cases I consider here, a size scaling analysis leads to better
results (see discussion in Sec. 4.5.2.2).

To empirically estimate the cumulative distributions, we opted to put together
the data of all theMN samples for each system size. Doing so improves the statistics
of the smallest values of the structural variables we investigate here, so we are able
to probe with some detail the left tail of all the distributions. Such analysis is
an important part of our results as I describe below. However, given the MN

independent samples for each system size, this is not the only way in which one
could estimate the corresponding cdf. Nevertheless in Appendix 4.A I show that
this approach produces essentially the same results than when the cdf of single
samples are considered.

Now, when fitting a distribution to empirical data it should be considered that,
even if x strictly follows such a distribution all the way down to x = 0, finite
sampling inevitably leads to deviations. Here, the situation is further complicated by
our consideration of marginals of correlated variables. Gaps and forces distributions
of finite N configurations are indeed prone to exhibit deviations from their expected
form due to both finite sampling and system-wide correlations. As I will argue in
the remaining part of this chapter, introducing a scaling function (as is usually done
in the study of critical phenomena[175,228]) can account for both effects, allowing the
N dependence of the cdf to be carefully analysed. To derive the size scaling of the
distributions of x, we first note that in a sample of size N � 1, we can estimate
the order of the smallest value observed in the data, xmin from the probability mass
assigned to the extremes of the distribution:∫ xmin

0
ρ(x) dx ∼ x1+α

min ∼
1
N
. (4.3)

It then follows that xmin ∼ N−1/(1+α). Note that strictly speaking in this last equa-
tion N should be replaced by Nc when analysing, for instance, the distribution of
contact forces. However, given that Nc ∼ dN and that we are mostly concerned
with the scaling exponent, we can safely neglect the associated proportionality con-
stants. The behaviour of the gaps distribution is expected to be similar, in the sense
that particles almost in contact should be self-averaging. Following the traditional
path for analysing size scalings, we can write the pdf as

ρ(x) ∼ Nβ ρ̃
(
xN

1
1+α
)

(4.4)

where ρ̃ is the scaling function of the pdf such that ρ̃(x) ∼ xα for x & 1. The expo-
nent β can be easily determined by requiring that ρ(x) exhibit no N dependence.
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We thus get that β = − α
1+α , whence the expressions used for the scalings studied

in Ref. [140] are recovered. For the cumulative distributions, repeating the above
analysis for c(x) ∼ N−δ c̃

(
xN

1
1+α
)
gives c̃(x) ∼ x1+α, and it immediately follows

that δ = 1, whence the relevant scaling relation is

c(x) ∼ N−1 c̃
(
xN

1
1+α
)
. (4.5)

Using the correct α should remove any dependence on N in this last equation. That
is, data for different system sizes can be rescaled in such a way that they follow a
common curve, c̃. Finding a good collapse of the curves for differentN thus indicates
that deviations from the expected algebraic behaviour are caused by our systems
necessarily being off the thermodynamic limit, but not because variables follow a
different power-law scaling. Additionally, showing that the system size influences
the cdf of a given variable strongly evinces that such a variable is correlated across
the whole system. Hence, an upper bound to the correlation length can then be
estimated.

Notice that Eq. (4.3) suggests another way to estimate the value of α from the
datasets obtained from different system sizes. And in fact, this was the method em-
ployed in Ref. [140] for a similar study in the perceptron. The idea is the following.
For a fixed N , instead of computing the cdf of a given variable by putting together
the data of theMN samples, the typical xmin is approximated by its sample average,
that is,

xmin ≡
1
M

M∑
m=1

x
(m)
min ∼ N

− 1
1+α , (4.6)

where x(m)
min is the smallest value of the random variable x in the m-th sample. In

practice, this expression can be tested by showing that N
1

1+α xmin ≈ constant for
different values of N . Unfortunately, this method cannot be used in the cases we
study here due to corrections to Eq. (4.4) for very small values, as I now describe.

Given that our jammed configurations have one extra contact than Ndof (see
Secs. 1.4.3, 2.1.2), theoretical predictions[141,165,229] establish that the microstruc-
tural critical variables should exhibit a different scaling in their left tails. For
instance, MF theory predicts that interparticle gaps are distributed as h−γ only
for values larger than a cut-off h? ∼ δz

1
1−γ , where δz is the excess of contacts in

a system. In our case, δz ∼ 1/N , so instead of Eq. (1.67) the pdf describing the
distribution of h reads,

g(h) ∼

N
γ

1−γ g0
(
hN

1
1−γ
)
, hN

1
1−γ � 1

h−γ , hN
1

1−γ & 1
; (4.7)

where g0(x) ∼ 1 for x� 1[165]. Analogously, for extended forces Eq. (1.68b) should
be replaced by

p(f) ∼

N
−θe

1+θe p0
(
fN

1
1+θe

)
, fN

1
1+θe � 1

fθe , fN
1

1+θe & 1
; (4.8)
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where p0(x) ∼ 1 for very small values is to be expected. Equations (4.7) and (4.8)
are indeed consistent with Eq. (4.4), and, repeating the same arguments as above,
it is straightforward to derive that both regimes can be captured by Eq. (4.5) using
a single scaling function, such that

c̃(x) ∼
{
x , x� 1
x1+α , x� 1

. (4.9)

That is, using the correct α in Eq. (4.5) accounts for size effects that give rise to
deviations from the main power-law scaling as well as the appearance of the linear
regime in the left tails. By plotting Nc as a function of N

1
1+αx both corrections can

thus be tested from a single scaling collapse.
Importantly, from this last equation and the preceding arguments, it is easy to

conclude that the left-tail corrections become important in the same regime than
the finite N effects, thus what we will see in a realistic scenario is a crossover from
the MF algebraic distributions to a flat one, given the form of g0 and p0. This is
the reason why Eq. (4.6) yields a very poor estimation of the critical exponents.

Before concluding this section I want to emphasize that for microscopic vari-
ables of jammed configurations the situation is conceptually different from that of
standard critical phenomena, because the systems are already at the critical point.
That is, all the results that I will present here do not deal with the question of how
the distributions of contact forces and gaps converge to the expected ones as we
move away from ϕJ . Instead, I am going to analyse how the system size affects the
range over which power-law scalings are followed. Equation (4.5) can nevertheless
be used to estimate the scaling functions of the cdf of gaps and forces, obtained by
integrating Eqs. (1.67) and (1.68b), respectively. I should mention as well that most
of our results are concerned with extended forces and gaps since theory and pre-
vious numerical studies suggest that these variables are critically correlated across
the whole system. In contrast, the distribution of buckling forces is expected to be
independent of the system size, given the localized nature of their corresponding
floppy modes. As I show in the next sections, our findings verify this picture.

4.4 Finite size effects in spheres systems

4.4.1 Some structural properties

In this section, I briefly analyse two quantities of the HS jammed packings, namely,
the distribution of coordination number, z, and the radial distribution function
(RDF), g(r), both for all the values of N tested. The idea is to verify that the
system’s size does not affect the expected properties of configurations with at the
jamming point. Hence, the results here are not concerned with the size scaling, but
are more of a “security check” for the scalings presented in the next part. The pdf
of z is shown in Fig. 4.1 for all values of N . Clearly, no signatures of size effect are
present, and in all the cases it is found that zc = 2d = 6 is the likeliest value. This
last feature is expected on the basis of the constraints counting argument at the
jamming transition, introduced in Sec. 1.4.3. The very small amount of particles
with 10 ≤ z ≤ 12 (the latter being the 3d kissing number) suggest that no ordering
is present in our configurations.
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Figure 4.1. Probability density function of the coordination number for different system
sizes. The mode is located at zc = 2d as expected from the marginal stability of our
jammed packings. No visible size effects are found.
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Figure 4.2. Radial distribution function of HS jammed packings (data average over at
least 100 samples for each system size). Curves of different values of N have been
displaced vertically for clarity, while the domain of each curve is limited by r < L/2 due
to the periodic boundaries, with L being the size of the box containing the system. No
influence of the system size is found. Grey dotted lines indicate the expected position of
peaks or discontinuities in g(r) present in amorphous packings, while red dashed lines
are the analogous positions for ordered structures; cf. Fig. 2.10 and see text for details.

This last feature can be tested more stringently by looking at the peaks of
the RDF’s, computed according to Eq. (1.17) and presented in Fig. 4.2. (In this
case curves associated to a different value of N have been displaced vertically for
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clarity.) Notice first that no size dependence is found in this case either, except
for the trivial fact that periodic boundary conditions constrain r to be restricted
to less than half of the box. That is, given that σ ∼ N−1/3, the smaller N the
faster periodic effects are important. But this does not affect the behaviour of the
RDF. Now, the positions of the peaks commonly found in disordered packings are
indicated by grey dotted lines, showing an excellent agreement. In contrast, the red
dashed lines correspond to the positions of peaks associated with the formation of
crystalline domains (see Fig. 2.10 and the related discussion). The absence of peaks
at such locations confirms that no partial crystallization is present in our samples,
for all values of N .

4.4.2 Finite size scaling of the critical distributions

4.4.2.1 Distribution of extended forces

Once we know that our packings do not present signatures of crystallization, let me
begin by analysing the size effects in the cdf of the extended forces, {fe}. Figure 4.3
shows the distributions of fe obtained coming from below (UC, upper left panel) and
from above (OC, upper right panel). Comparing the results with the theoretically
predicted power-law (dashed red) reveals an outstanding agreement over at least
three decades. More importantly, no visible signature of finite-size corrections can
be detected over the range of N considered. To verify more stringently the absence
of finite-size effects, we attempted to collapse the different curves by rescaling the
extended forces and their cdf following Eq. (4.5), obtaining the curves reported in
the bottom panel. This latter figure contains our first main result: strong evidence
that the same critical distribution of forces is found independently of whether the
jamming point is generated from the UC or OC regimes.

Yet, it is clear that our packings exhibit an excess of very small forces (an effect
more noticeable when jamming is reached from below; cf. upper panels of Fig. 4.3),
echoing earlier observations[140,150,162,167]. Note that the scaling of Eq. (4.5) does
not remove these deviations from the predicted distribution, and that they occur,
roughly, at the same scaled force: N

1
1+θe fe . 1. It is therefore likely that forces are

subject to size effects caused by the onset of a different behaviour, p(f) ∼ 1 (see
Eq. (4.8)). One way to analyse more carefully these two regimes, and in particular
the linear left tail of the cdf, is to divide the cdf by the corresponding power law.
That is, assuming c(x) ∼ x1+α, plotting x−1−αc(x) should result in a rather constant
function. Performing such rescaling in the cdf of fe yields the curves shown in
Fig. 4.4, where the exponent for the rescaling factor used in each panel is, from top
to bottom, (1 + θe, 1, 1 + θ`, 1.25). The reason for including 1 + θ` and 1.25 is to
check whether the left tail is due only to localized modes, or, to the fact that the
“zi = z` =⇒ localized” criterion fails for the smallest forces, respectively3. Thus,
the topmost figure confirms, in the right part of the distribution, the MF prediction
for the extended forces, while the panel below it tests the linear behaviour mentioned
for the left tail. Notice that in this latter case the cdf has also been scaled by N

θe
1+θe ,

3Recall that in the introduction I mentioned that in d = 3 the distribution of the two types of
forces combined has an exponent of 0.25. This was shown in Ref. [150] and we verified that the
same is true for our data.
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Figure 4.3. Cumulative distributions of contact forces associated with extensive excita-
tions in monodisperse configurations of frictionless spheres for different system sizes N .
The upper left panel (resp. upper right panel) show the data as the jamming point is
reached from below or UC regime (resp. above or OC regime). To better distinguish
between the two different regimes, results belonging to the UC (OC) phase are identified
by solid lines (circular markers). Bottom panel: Rescaling data from the upper panels
according to Eq. (4.5) clearly collapses the data. The red dashed line corresponds to
the power-law scaling of Eq. (1.74a), and shows an excellent agreement between the MF
predictions and our numerical results. The coincidence of results from the UC phase
and OC phase for various N confirms that θe is the same when jamming is reached from
either direction. In the left tail of the distributions of the bottom panel I also include a
comparison with the linear scaling expected for very small values, following Eq. (4.8).

as predicted by Eq. (4.8), in order to verify that the fe → 0 tail leads to a constant of
order 14. Data from the UC phase (lines) show a reasonable agreement, i.e. a slight
plateau, for fe ∈ [10−4, 10−3] approximately. Nevertheless, the same comparison
with data from the OC regime (circles) is slightly worse. Moreover, the second to
last and bottom panels of the same figure show that, arguably, the cdf corresponding

4Clearly, this “extra” factor has the effect of splitting vertically the curves of different values of
N . However, I verified that this effect can be removed by rescaling the horizontal axis by N

1
1+θe ,

as expected.
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Figure 4.4. Same distributions of Fig. 4.3 but rescaled by fαe to examine more carefully
the different scalings present in the cdf. The value of α in the different panels, from top
to bottom, is 1 + θe, 1, 1 + θ`, 1.25, for the reasons explained in the main text Notice
that the cdf values in the second panel (from top to bottom) have also been multiplied
by N

θe
1+θe , following Eq. (4.8); this serves to verify that once rescaled, the behaviour of

the left tail should be a constant of order 1. The data from the UC phase (lines) seem to
be consistent with a linear scaling in the left tail, while OC data suggest that localized
modes might also be present, inducing small deviations from the MF behaviour.
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Figure 4.5. Same distributions of Fig. 4.3 but subtracting 1/N to the cdf. This is a
simple strategy for isolating the main scaling domain, by removing the contribution of
the extremes. This reduced cdf clearly shows (left panel) that finite N effects can be
identified in the distribution of extended forces and, more importantly (right panel),
accurately accounted for by the scaling function of Eq. (4.5), using the MF value of θe.

to SS data is better rescaled by assuming some influence of the localized modes. In
contrast, this does not seem to be the case for HS data. Unfortunately, with the
available data it is impossible to prove (or even to disprove) the linear form of the
left tail, which calls for a more assiduous future study of the true behaviour of the
extremes of p(fe).

As a final “trick” to isolate the main finite-N effects in the cdf notice that,
according to Eq. (4.3), by subtracting c(x)− a/N the influence of the left tails can
be teased out, with a a constant of order 1 to be determined. In other words, given
that the weight of the extremes is of order 1/N , by removing their contribution to
the cdf only the main, MF power-law should remain, albeit in a reduced domain.
Hence, by applying the same scaling arguments in such main region a more rigorous
analysis is obtained. In Fig. 4.5 I show the outcome of this technique when applied
to the usual cdf (left panel), as well as to the distribution rescaled according to
Eq. (4.5) with the MF value of θe (right panel). Notice that in the first case, the
size effects are now evident, but the second figure shows a remarkable collapse onto
the scaling function, confirming the MF prediction for θe. I assumed a = 0.25, given
the value of the approximate plateaus in the second panel of Fig. 4.4, but the results
are rather insensitive to this value.

4.4.2.2 Distribution of gaps

I will now analyse the distribution of interparticle gaps, {h}, and their associated
size effects. Fig. 4.6 shows the corresponding cdf’s obtained from the UC (upper left
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Figure 4.6. Cumulative distributions of interparticle gaps for the same configurations
of Fig. 4.3, as their jamming point is reached from below or UC phase (upper left)
and from above or OC phase (upper right). Lower panel: rescaling both datasets
according to Eq. (4.5) shows that finite-size corrections can be accounted for in all
cases. For comparison, the power-law scaling derived from MF theory, Eq. (1.67), is
also shown (red dashed line). Once again, the fact that datasets from both phases, i.e.
UC (markers) and OC (lines), neatly superimpose confirms that the exponents at the
jamming point are the same, independently of how φJ is approached. Additionally, the
secondary scaling regime g(h) ∼ 1 of Eq. (4.7), also predicted by MF theory, can be
observed for very small values. Its associated linear cdf is shown (magenta dash-dotted
line).

panel) and OC (upper right) from the same configurations as above. Once again,
the data are in very good agreement with the predicted distribution, Eq. (1.67),
independently of the direction in which jamming is approached. More interesting
however, is the fact that the cdf(h) exhibits strong signatures of finite N effects, in
contrast to p(fe). Note that the scaling correction given in Eq. (4.5) using the MF
value of γ precisely corrects for such effects over almost seven orders of magnitude
(lower panel of Fig. 4.6). We thus verified that the MF value of γ holds on both
sides of the jamming transition as well.

On the other hand, the growing deficit of very small gaps as the system size
decreases is, very likely, another manifestation of the cut-off in the main power
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Figure 4.7. Same distributions of Fig. 4.6 but rescaled by h−(1−γ) (top plot) andN
−γ

1−γ h−1

(bottom one) to examine more carefully the different scalings present in the cdf’s. The
N dependence of the rescaling factor in the second case follows from Eq. (4.7); see main
text. As with the case of extended forces, configurations of HS (lines) show a better
agreement with the linear dependence assumed, while the smallest packings generated
from the OC phase using SS (circles) exhibit significant deviations in this extremal
regime.

law of g(h). It leads to a secondary linear regime, as stated in Eq. (4.7), that is
in reasonable agreement with the numerical results shown in the lower panel of
Fig. 4.6. Yet, to assess the presence of such regime more thoroughly we can once
again resort to the method of dividing the cdf by h raised to the corresponding
power of the regime we want to investigate. When doing so, we obtain the plots
shown in Fig. 4.7, where the rescaling factor is h−(1−γ) in the upper panel (to verify
the theoretical exponent) and N

−γ
1−γ h−1 in the lower one (to test for the presence

of the linear left tail, including the prefactor spelled out in Eq. (4.7)). Once again,
by including such correction the h→ 0 behaviour of the rescaled tail approaches a
constant value of order 1, for almost all values of N . In fact, the only discrepancies
observed are for the two smallest sizes of the systems obtained from the OC regime.
But larger systems of SS as well as all the cases with HS reproduce the expected
plateau. I deem important to emphasize that to remove as much as possible any
size dependence of this secondary regime the N

−γ
1−γ term is needed. That is, if the

cdf are rescaled only by h−1 an increase in the left tails is observed, i.e. an spurious
sub-linear behaviour.

At any rate, the different role of the system’s size in the distributions of forces
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and gaps is, nonetheless, striking. Our numerical results indicate that distances
between nearby spheres are significantly modified in finite N configurations and,
consequently, so is the distribution of gaps. This is an intriguing finding that I
will attempt to rationalize heuristically relying on the response to contact openings
in jammed packings. The argument goes as follows. In the thermodynamic limit,
a system has always enough space to relax any perturbation caused by a contact
opening, and hence it is always able to re-accommodate enough particles –even if
this requires bringing many of them infinitesimally close to each other– in order to
guarantee stability. In a finite system, by contrast, no such unconstrained relaxation
can take place. Rearranging an extensive fraction of particles necessarily influences
the pair of spheres involved in the contact just opened. Therefore, there is a certain
scale below which the occurrence of small gaps is disfavoured. If the system was
further relaxed, then at least one extra contact would form. This is consistent with
the uniform distribution hypothesis, since such distribution decreases the weight
of small enough gaps in comparison with the MF one, that actually predicts a
divergence as h→ 0.

At this point, I wish to stress that our results demonstrate the existence of
two different types of finite-size corrections to the distributions of extended forces
and gaps. The first is a consequence of large scale correlations and can thus be
readily taken into account by the scaling of the cdf given in Eq. (4.5). Although
this correction is practically absent in the forces distribution, for g(h) it is the main
source of deviation from the theoretical prediction. The second is a consequence of
the critical scalings of Eqs. (1.67) and (1.68b) being cut off at very small values.
This effect, which is likely related to the extra contact with respect to Ndof (see
Sec. 4.3), affects both microstructural variables. I get back to this point in Sec. 4.5,
after having considered its signature in the MK model.

4.4.2.3 Distribution of localized forces

The only critical distribution that remains to be analysed is the one associated
to the set of localized forces, {f`}. As I have anticipated above, no size effects are
expected for this variable and this claim is nicely confirmed by our numerical results
reported in Fig. 4.8. Note that in this case the estimation of cdf(f`) is very close to
the predicted power-law for forces as small as 10−4 (cf. the case of extended forces
in Fig. 4.3). Besides, for even smaller values the curves corresponding to different
N are disperse both above and below the theoretical line, which indicates that no
systematic size dependence is present.

Before concluding this section, it is worth emphasizing that our numerical results
are in excellent agreement with the MF, d → ∞ predictions for the power-law
scaling of the distributions of both the extended forces and the interparticle gaps,
as well as analogous previous estimates concerning the localized forces. These results
confirm that the jamming criticality of these microstructural variables is also valid
for low dimensional systems all the way down to d = 3, in agreement with earlier
albeit less accurate studies[153,167,169]. Because results from both OC and UC phases
superimpose onto each other, we can further conclude that the critical behaviour is
controlled by the same exponents on both sides of the jamming point.
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Figure 4.8. Cumulative distribution function of localized forces, {f`}, in configurations
obtained from the UC (lines) and OC (circles) phases and for different system sizes,
as indicated by the colours in the legend. No signatures of finite N dependence are
observed.

4.5 Finite size effects in the MK model

I will now present the analogous results obtained from the jammed configurations
in the MK model. Here however, packings were produced only from the UC phase,
so only data for HS will be considered. In Sec. 4.5.1 I begin by analysing some
properties of contact vectors which are distinctive of the MK configurations. Then,
in Sec. 4.5.2 I present the main results of this section, concerning the size effects in
the critical distributions.

4.5.1 Distribution of contact vectors

The first notable property of the MK packings is their connectivity. First, because
the possible number of contacts per particle is no longer constrained by the respec-
tive kissing number. But also because zc = 2d is no longer the most common value
of the coordination number. Instead, our results show that z` = 4 and z = 5 are
the likeliest values, at least in our 3d configurations. Both features are illustrated in
Fig. 4.9 where it is also shown that these properties are independent of the systems’
size. Note that the distribution of z is monotonically decreasing, in contrast with
HS systems (see Fig. 4.1). Along the same lines, given that 〈z〉 = zc +O(1/N), the
broader domain of the distribution shifts the mode to lower values than zc, differing
from previous results[150] in d = 2, . . . , 8. This is an unexpected result given that
all our packings have 1SS, and therefore their average connectivity is indeed zc with
corrections of order 1/N .
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Figure 4.9. Probability distribution of the coordination number per particle in MK con-
figurations of different size, identified according to the legend. The expected value
from isostaticity arguments (zc) in 3d, as well as the corresponding kissing number are
highlighted. Cf. with Fig. 4.1 for the analogous results in HS.

For future use, I will now study the geometric arrangement of contacts, for
which I will follow the same methodology than in Sec. 3.1.2. Hence, I will first
analyse the distribution of dot product between pairs of contact vectors, nij · nik,
for j, k ∈ ∂i. The pdf obtained from the data of the N = 2048 configurations is
shown in Fig. 4.10, where I have also included the corresponding distributions when
localized and extended modes are considered separately. Comparing with Fig. 3.3,
where the corresponding results in HS are presented, it is clear that random shifts
in the MK configurations allow particles to form rather different structures. The
most salient feature is that no peak is observed at 0.5, and actually the distribution
continues all the way down to 1. This is expected, because many neighbours of
a given particle can overlap (from the point of view of such particle), and these
results show that they can even be concentric. As in the HS case, the distributions
of the full set of particles and the ones associated to extended forces are very similar
to each other, while the one of bucklers is in this case notoriously different. Note
that for this latter type of particles more weight is given to contact vectors forming
angles greater than π/2, which supports the near coplanarity assumption of bucklers.
However, an accompanying peak around 0 is clearly missing, signalling that other
configurations that fulfil the mechanical equilibrium condition are possible.

Finally, I consider the sum of such dot product per particle, i.e. the variable
Si defined in Eq. (3.2). Fig. 4.11 shows the resulting distributions in both MK and
HS configurations, and considering different system sizes. These results show, once
again, that size effects do not influence the structural variables considered in the
previous chapter. More importantly, we can observe that even if Si can take values
greater than −0.5 in MK configurations, the effect on the distribution is rather
small. In fact, bucklers in both models seem to have a very similar pdf, which is
rather unexpected from the corresponding distributions shown in Figs. 3.3 and 4.10.
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Figure 4.10. Probability distribution of dot products between contact vectors in MK con-
figurations of N = 2048 particles. The contributions of bucklers (orange) and extended
(blue) modes are also plotted separately. Cf. with Fig. 3.3 for analogous results in HS.

All these results will be important to understand some of the findings presented in
the following part, but the comparison included in this last figure will have a special
role in the discussion of the distribution of {f`} (see Sec. 4.5.2.1).

−2.0 −1.5 −1.0 −0.5 0.0
Si in bucklers [MK]

10−3

10−2

10−1

100

pd
f

−2.0 −1.5 −1.0 −0.5 0.0
Si in bucklers [HS]

N

256

512

1024

2048

4096

−2 −1 0
0

1

2
N = 2048

MK

HS

Figure 4.11. Pdf of Si of bucklers in MK (left) and HS (right) jammed packings of different
sizes. Inset: comparison of the same distributions in both models (using a linear scale);
data from configurations of N = 2048 particles.
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4.5.2 Finite size scaling of the critical distributions

4.5.2.1 Distribution of extended forces

I will now proceed to analyse the size effects in the critical distributions, following
the same methodology than for HS (Sec. 4.4.2). Hence, I begin by the considering
the distributions of extended forces for N = 256, . . . , 4096, shown in the left panel
of Fig. 4.12. Notice that in contrast with the HS results, here the size effects are
noticeable, even if small. Interestingly, this seems to be a feature exclusive of the
MK packings, since the other models studied in Ref. [2] do not show such dependence
on N . The influence of the size effects in cdf(fe) is clearer when the size scaling is
carried out, following Eq. (4.5). The result is shown in the right panel of the same
figure, where the collapse obtained using the MF value of θe is again outstanding.
The reasons explaining the pronounced finite N effects in the MK systems however
is postponed to Sec. (4.5.2.2), because similar findings hold for g(h).
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Figure 4.12. Cdf of the set of extended forces in MK configurations of different size (left)
and the resulting scaling (right) following Eq. (4.5) with the MF value of θe. The red
dashed line is the theoretical power-law, while the pink, dash-dotted one corresponds
to the linear regime mentioned in Eq. (4.8).

On the other hand, an excess of very small forces is easy to observe, similar to the
one found for HS (and the other systems of Ref. [2]). To analyse this left tail more
carefully, I will make use of the same methodology than from HS, namely, rescale
cdf(fe) by a power of fe in an attempt to find a constant function. The outcome of
trying 1 + θe (to verify the main scaling) and 1 (to test the hypothesis of a linear
left tail) is presented in the top and bottom panels, respectively, of Fig. 4.13. Note
that, once more, these two exponents describe the respective two regimes within
an acceptable degree, but more data is needed to confirm the power-law of the left
tail beyond doubts. I mention in passing that in this case there is no need to try
θ` or another power because for MK packings the localized forces actually follow a
different power-law; see Sec. 4.5.2.3.
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Figure 4.13. Same distributions of Fig. 4.12 but rescaled by f1+θe
e (upper panel) and

N
θe

1+θe f−1 (bottom one) to examine more carefully the different scalings present. Also
in this case the left tail of cdf(fe) agrees reasonably well with a linear behaviour. Note
that, in analogy to the analysis of the previous section, the size dependence of the left
tail has also been accounted for, thus leading to a rather constant value of order 1.

4.5.2.2 Distribution of gaps

To continue, I now analyse the cdf of the interparticle gaps. The distributions
obtained from the same configurations as above, together with the size scaling of
Eq. (4.5) using the MF value of γ, are shown in the left and right panels, respec-
tively, of Fig. 4.14. The analysis of these results is more interesting, given that in
comparison with the analogous results in HS, here the curves do not really seem to
follow the power-law behaviour predicted by MF. In fact, we can note that individ-
ual distributions of h suggest that a smaller exponent would better fit the curves in
the left panel of Fig. 4.14. Yet, using the theoretical value of γ produces an excellent
collapse as shown in the right panel of the same figure, and trying different values
significantly worsens the quality of such collapse. This is, in fact, a typical situation
of many critical scalings in finite N systems[175,228]. In these cases, the most reliable
way to determine true critical exponents is from the finite-size scaling analysis, as
we have done here.

Before further analysing the prominent size effects observed in this model, I
test once again the hypothesis of a linear behaviour for very small values of gaps.
Applying the technique used so far, in Fig. 4.15 I present the cdf rescaled by h−(1−γ)

(upper panel) and N
−γ

1−γ h−1 (bottom one). Notice that in MK packings, the curves
do not really have a constant value the region associated to the main power law,
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Figure 4.14. Cdf of the set of interparticle gaps in MK configurations of different size (left)
and the resulting scaling (right) following Eq. (4.5) with the MF value of γ. The red
dashed line is the theoretical power-law, while the pink, dash-dotted one corresponds
to the linear regime mentioned in Eq. (4.7). Additionally, the dotted, cyan line is the
result of fitting Eq. (4.10) to the rescaled data of N = 4096. This fit assumes the MF
value of γ, but weighs the two different regimes of (4.9) depending on the values of the
scaling variable; see discussion in the main text. Interestingly, in this case, the curves
do not seem to follow the predicted power-law due to strong finite size effects, but the
very good collapsed obtained verifies that the exponent predicted by MF is the correct
one. See text for details.

i.e. h ∈ [10−5, 10−2], in contrast to the analogous results in HS and SS systems (cf.
Fig. 4.7). This simply reproduces what I pointed out in the previous paragraph that
a seemingly smaller value of γ (greater slope) would better fit the cdf, specially for
the smallest systems. Nevertheless, it is remarkable that also in these configuration
the linear behaviour of the smallest values of h remains unaltered, for at least two
orders of magnitude. In fact, for this model the agreement with Eq. (4.7) of such
secondary regime is better than in other cases. This is likely caused by the MF
power-law being realized only partially, leading to a quick crossover to the extremal
statistics behaviour. Note also that when the N dependence in the prefactor of the
scaling function is included the plateau of all curves has a similar value.

I now come back to the marked size effects found in this model, evinced by
the size dependence of cdf(fe) and the (apparently) different exponent of the gaps
distribution. Both of these features contrast with the results of the previous section
and the other models studied in Ref. [2]. For concreteness, I will restrict the analysis
to the gaps cdf’s, where finite size effects are most pronounced. We should first
consider that, somehow surprisingly, the individual gaps distributions in the MK
model, which by construction should closely resemble the MF value, do not display
the right gap exponent. Indeed, from the right panel of Fig. 4.14 we observe that the
scaling variable using the MF value of γ is the correct one (curves do collapse when
plotted as a function of h̃ = N

1
1−γ h), but the slope of the different curves in the
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Figure 4.15. Same distributions of Fig. 4.14 but rescaled by h1−γ (upper panel) and
N
−γ

1−γ h−1 (bottom one) to examine more carefully the different scalings present. Here,
the near plateau formed after rescaling the cdf with a linear factor is much clearer, and
by including the N dependence of the prefactor of Eq. (4.7) the different curves tend to
roughly the same value as h→ 0.

range covered in our simulations (10−3 < h̃ < 103) differs from the MF prediction.
An important concern is thus whether this deviation is due to finite-size corrections
or whether it indicates a failure of the MK model. In order to resolve the matter,
we used the expected form of the scaling function, Eq. (4.9), to construct a fitting
function, F (h̃), that assumes the correct behaviour of the scaling function for large
values of h̃. Explicitly:

F (h̃) =
[
(ah̃)d + (bh̃1−γ)d

]1/d
(4.10)

This fitting function hence only depends on three parameters and fulfils the con-
dition that F (h̃) ∝ h̃ for h̃ � 1, while the MF form, h̃1−γ , is recovered for large
values of the scaling variable. Fitting F (h̃) to the largest system size results in the
dotted, cyan line in the bottom panel of Fig. 4.14, which clearly interpolates nicely
between both regimes. (The values of the parameters obtained from a least squares
fit read: a = 0.179008, b = 0.223543, d = −1.25569.) Therefore, the hypothesis
that gaps in larger MK systems would eventually follow the MF power-law is very
plausible or, at least, cannot be rejected. The convergence of the slope of the scaling
function to the predicted value is nevertheless extremely slow in comparison with
both SS and HS (and also considering the cases studied in Ref. [2]). This implies
that very large values of h̃ are needed to measure the right slope. Quantitatively,
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in Fig. 4.16 I report the difference of γ and our estimation of local γMK from the
local slope estimated around h̃ = 1 and h̃ = 100 for the various system sizes. The
value of γMK was determined using a maximum likelihood estimation[227] (empty
markers, dashed lines) and a least squares fit (filled markers, solid line). Notice that
both methods yield very similar results, although maximum likelihood values are
systematically smaller than the ones of least squares. This is likely due to the fact
that by truncating the interval used for the fit, the simple5 maximum likelihood
method is no longer exact and the resulting exponent is underestimated. In any
case, around h̃ = 1, the slope clearly differs from the MF prediction, but even when
h̃ ∼ 102 very large system sizes are needed for it to approach the theoretical expo-
nent. This deviation results in an apparent size dependence of the global exponent,
i.e. γMK = γMK(N), that is substantially more pronounced than for other models
at similar N .
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Figure 4.16. Difference of the gaps exponent in the MK model and its MF value. The
values of γMK were determined using a least squares fit (solid lines, filled markers) or
a maximum likelihood estimation (dashed lines, empty markers) at two different values
of the scaling variable, h̃ = 1 (orange) and h̃ = 100 (blue). Note that even in this latter
case the MF value is not fully recovered, indicating that larger systems, possibly by
orders of magnitude, would be needed to observe the theoretical value of γ.

It is likely that this discrepancy is caused, at least in part, by the MK model be-
ing a fully connected one. In contrast with their sparse counterparts, fully connected
models indeed require much larger system sizes for thermodynamic power-law scal-
ings to be visible[231–233]. In the MK configurations in particular this feature can be
physically understood by recalling that the introduction of random shifts results in
neighbours of a given particle (very likely) not being neighbours themselves. A par-

5There is also a generalization for truncated power-laws as explained, for instance, in [230].
However, assessing the goodness of fit is much more involved in this scenario and, for the case we
are interested in, the results do not improve significantly.



176 4. Finite size scaling of microscopic structural variables

ticle can thus have many more contacts than normally allowed in Euclidean space,
as reported in Fig. 4.9. Data in that figure shows that it is not uncommon (∼ 1%)
for particles at jamming to have as many as 12 contacts (the d = 3 kissing num-
ber) or more. In general, particles are thus surrounded by many more particles –in
actual and near contact– than usual hard spheres. Additionally, jamming densities
in this model are much higher than in standard HS systems. Using the method
described in Sec. 4.2 –i.e. our MD+iLP algorithm with planted configurations[110]
to speed up the growing process– produces packings with densities φJ,MK & 3.1 (cf.
φJ,3d ' 0.64). Considering that φ ∼ σ1/d, such values in the packing fraction imply
that our MK configurations are made out of particles nearly twice as big as those of
standard HS. When these two effects are combined, the outcome is that particles in
MK packings are surrounded by an abundant cluster of relatively large neighbours.
Therefore, with the effective size of the system being thus drastically reduced, the
finite-size corrections are correspondingly more pronounced. We thus conclude that
gaps in the MK model will probably follow the MF power-law scaling, as expected,
but only at system sizes orders of magnitude larger than those considered here. In
practice, the finite size effects are so important in the distribution of gaps in the MK
model that its MF nature is, perhaps paradoxically, a strong limitation to study
its MF behaviour in the thermodynamic limit. These same features are probably
also responsible for the more pronounced size effects found in the distribution of
extended contact forces.

4.5.2.3 Distribution of localized forces

Lastly, I consider the cdf of localized forces whose cdf is presented in Fig. 4.17, where
no clear signatures of finite N effects are visible, although some dispersion can be
observed in the extremal values. Putting together these results with the analogous
ones in standard configurations of spheres (Sec. 4.4.2.3) and considering that the
same absence of size effects were observed in the other two models of Ref. [2], we
conclude that the expected behaviour is fully confirmed. Recall that this finding
was anticipated previously in this chapter on the basis that the set {f`} corresponds
to contact forces acting on bucklers, for which opening a contact mostly results in
localized displacement field as derived in Refs. [150, 167] and Sec. 1.4.5. In other
words, given that opening any of the contacts associated with a buckler only has a
non-negligible effect over few particle layers away from its origin (see Fig. 1.20), it
is reasonable to assume that their properties should be insensitive to N , or to any
border or periodic effects, as we have here verified.

On the other hand, a surprising finding is that f` is distributed uniformly, i.e.
θ`,MK = 0, at variance with previous studies reporting θ` ≈ 0.17. A careful analysis
suggests that this unexpected distribution is in tune with the spatial properties of
MK packings. To explain why, first note that even though buckling forces follow a
different pdf, selecting particles with z` contacts is still a valid selection criterion.
(If their contribution had not been isolated, the remaining forces would not follow
the MF power-law scaling given in Eq. (1.68b), as it does in Figs. 4.12-4.13, whereas
if both kinds of forces are considered together, their joint pdf scales with an expo-
nent ≈ 1.1, which differs from the analogous quantity for conventional spheres[150].)
Second, analysing the distribution of dot products between contact vectors as in
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Figure 4.17. Cumulative distribution function of {f`} in MK packings of different sizes
(as indicated by the legend). Note that, as anticipated, no signature of finite size effects
are present. However, an unexpected finding is that f` is distributed linearly (pink
dash-dotted line), in contradiction the behaviour expected from previous studies (red,
dashed line), i.e. with an exponent 1 + θ`.

Sec. 4.5.1 reveals that particles with z` contacts in MK packings have a very similar
distribution as those in standard hard sphere packings (cf. Fig. 4.11). Bucklers
thus mainly give rise to a localized response thanks to them having three nearly
coplanar contacts and one nearly orthogonal force. In order to understand why
localized forces are uniformly distributed, I follow Ref. [167], which showed that the
two types of contact forces are related to two different types of floppy modes: (i)
extended forces are related to floppy modes that can couple strongly to external
perturbations, and hence their response is bulk dominated; and (ii) buckling forces
are associated to floppy modes of a rapidly decaying displacement field. (See also
the discussion of Sec. 1.4.5.) With this in mind, it is important to consider that the
value of θ` ≈ 0.17 was estimated from the statistics of displacements in the latter
type of contacts. There is therefore a strong connection between the distribution of
forces in bucklers and the particle displacements their floppy modes produce. Now,
let us assume that in an MK packing we open a buckling contact, [ij], between par-
ticles i and j, in order to describe the associated displacement field. In particular,
let us focus on the remaining contacts of, say, particle i. Because of the random
shifts, the other particles touching i are (very likely) not constrained by each other
nor by the other particles near i. Instead, the displacement of each neighbour of i
is limited by its own contacts, which are not neighbours themselves, and are typ-
ically far apart. By the same token, the effect on the rest of particles in contact
with j is determined by secondary contacts that –with high probability– are distant
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from each other and from [ij]. As a result, opening a buckling contact produces
a small series of uncorrelated displacements. No particular length scale is hence
favoured over any other. Because of the close relation between localized forces and
displacements just mentioned, it is natural for f` to be uniformly distributed.

At any rate, I would like to stress that our finding of a different value of θ` is
important not merely as a matter of scrupulous curve fitting, but mainly because it
violates the stability bound related to local excitations, Eq. (1.74b). Interestingly,
a similar result was obtained for the FCC packings studied in [2], suggesting that
more general criteria are needed for assessing the stability of such excitations in
other classes of disordered models. I comment further about this point below.

4.6 Conclusions

The results I presented here systematically corroborate the non-trivial power-laws
of the distributions of forces and gaps in two disordered systems at jamming, fully
supporting the description derived from the exact MF theory. I emphasize that for
the archetypical minimal model of monodisperse spheres, such validation included
changing the direction of approach to the jamming point. Our results obtained with
the MK model, a mandatory reference for comparison given its MF-like behaviour,
similarly reinforces the d→∞ predictions.

Yet, our main finding is the contrasting system-size dependence of these distri-
butions. In the two models studied here, size effects in p(fe) are practically non-
existent, while g(h) exhibits clear and systematic signatures of finite-N deviations
from the expected power-law scaling. The same is true in the rest of the models con-
sidered in Ref. [2] and analysed with the same methodology. I emphasize that testing
for such size scalings not only rigorously assesses the critical exponents[175,228], but
also provides key insight into the length scale of their correlations. Hence, it can
be concluded that the MF exponents for all gaps and extended forces distributions
are correct. Moreover, a second and more informative conclusion is that the dis-
tribution p(fe) reaches its thermodynamic limit behaviour at smaller values of N
than g(h). Two different correlation lengths, ξfe and ξh, therefore characterise the
relevant length scales of correlations of contact forces and gaps, respectively. For
the former, it must hold that N1/d � ξfe , and thus finite size corrections are negli-
gible, while the analogous condition for gaps reads N1/d . ξh. In other words, gaps
are correlated over significantly larger distances than forces, i.e. ξh � ξfe . Such
disparity in the correlation lengths is an unexpected consequence of our results,
considering that both quantities are usually treated on an equal footing from the
perspective of the SAT-UNSAT transition in the perceptron[138,139], constraint sat-
isfaction problems[141,229], and neural networks[148] as well as from the point of view
of marginal stability in amorphous solids[177,178]. MK results back this hypothesis
if we consider that their very high densities and connectivity reduce the effective
system size, as discussed in Sec. 4.5.2. Observing the scaling of Eq. (4.5) for the
cdf of fe is thus a manifestation of the smaller effective volume (for a similar N),
which confirms that finite-size effects at jamming do occur for p(fe), but disappear
for relatively small system sizes; see also the discussion leading to Fig. 4.5. The
significantly more pronounced N dependence of the distributions of h (Figs. 4.12
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and 4.14) thus supports our finding that ξh � ξfe .
On the other hand, the linear growth of cdf(f`) in the MK model is at odds with

the stability condition of Eq. (1.74b). This finding is more surprising because in
these systems there is no long-range order, as there is in near-crystalline packings
where similar violations have been reported[2,162,163]. At the end of Sec. 4.5.2.3 I
used the peculiar geometry of the MK packings to suggest a physical explanation for
the uniform distribution of f`, but this reasoning does not explain why the stability
condition between γ and θ` is apparently violated. Given the drastic difference in the
inherent structures of the near-crystals and MK packings, they highlight the need
to better understand how the spatial correlation caused by external perturbations
are influenced by the type of disorder in jammed packings.

Finally, the most persistent observation was that all cumulative distributions, of
both gaps and extended forces, behave in a seemingly linear fashion at very small
arguments (specially when jamming is reached from the UC phase), in agreement
with the MF predictions, p0 and g0 in Eqs. (4.7) and (4.8), respectively. We argued
that such a cut-off in the main power-law is due to the extra contact with respect
to isostatic configurations (see Sec. 4.3) and has been previously reported for the
gaps distributions of disks packings[165], but we are not aware of analogous findings
in any other model or for the {fe} distributions. The universality of this secondary
scaling has been previously predicted[141] for all models that can be mapped to jam-
ming of spherical particles, and it has been shown to occur even for non-spherical
particles[165], provided that their jammed states remain sufficiently close to isostatic-
ity. Such robustness can be understood in part by considering that isostaticity is a
global property of a system –where the amount of constraints matches the degrees
of freedom– and not to the specific distributions of its microstructural variables.
Because we have restricted our analysis to packings having 1SS, that is with exactly
Nc = Ndof + 1 contacts, the ubiquity of the linear growth in the extremal part of
the cdf’s supports the hypothesis that left tails of the critical distributions is de-
termined by the 1SS property alone, and not by the inherent structure. However,
undersampling effects are very hard to avoid when dealing with extremal statistics,
so a more stringent analysis must be carried out to verify that p0(x) ∼ g0(x) ∼ 1
when x� 1, specially for the former pdf. For completeness, I should mention that a
previous work on the perceptron[140] also reported a similar transition to a uniform
distribution of contact forces that, unexpectedly, depended on the type of algorithm
used to reach the jamming point. This is an important consideration because the
MD+iLP and FIRE algorithms, used in the UC and OC phases, respectively, in-
deed yielded distributions with rather different left tails. Given the prominent role
of the smallest forces and gaps in determining the global stability of the packings
(Sec. 1.4.5), understanding their algorithmic dependence, if any, is undoubtedly an
interesting topic for future research.
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Appendix

4.A Equivalence of cumulative distributions

Here I briefly compare the cumulative distributions presented before in the chapter
with the estimations using two other methods. Given M independent samples,
the first of such methods consists in computing the cdf of each individual sample,
and then compare such distributions across the M datasets. Because in general
computing the cdf of a set of values involves ranking them, when different cdf’s are
compared, we can obtain an estimate of the typical value of the first, second, etc.
element in such set. Moreover, the sample variance of the cdf thus estimated can
also be provides useful information about how big are the fluctuations of the ranked
elements.

The third way we tried also involves computing the cdf of each sample indi-
vidually. But then, such function is evaluated at a fixed set of points, and this is
repeated for all the systems. Clearly, the set of points at which all the cdf’s are
evaluated will not coincide in general with the sample values of any given system,
but nonetheless the empirical cdf can be evaluated in all of them. The reason is that
the empirical cdf of a given system is computed as a stepwise function, whose incre-
ments occur at the values sampled on such system, but is constant in the intervals
formed by such values. Thus, the value of the cdf is well defined essentially in any
point (compatible with its domain). In any case, the advantage of this procedure
is that by considering the cumulative distributions of the different samples we can
obtain the statistics of the probability mass assigned to a fixed set of points.
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Figure 4.18. Cumulative distribution functions of extended (left panel) and localized
(right) forces in HS computed using three different methods and for all the system sizes
considered in this chapter. The method used in the main text (lines) is clearly compati-
ble with (i) the cdf obtained by ranking the forces in each sample (filled diamonds) and
(ii) with evaluating each sample’s cdf on the same set of points (empty squares). Curves
of different N have been displaced horizontally for clarity. Error bars correspond to the
standard deviation in the MN samples considered for each size; their different meaning
in the two latter cases is explained in the text.
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Naturally, with enough data available both methods should be compatible with
each other, as well as with the estimation of the cdf used in the main text, i.e. using
a single, large dataset obtained from all the samples. However, the two methods
described in this appendix are useful to obtain uncertainties of the cdf and are
complimentary in this aspect: the method based on each sample’s ranking mainly
informs on the variance of the random variable itself, while evaluating different cdf’s
in the same points provides the fluctuations of the probability mass.
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Figure 4.19. Cumulative distribution functions of interparticle gaps in HS computed fol-
lowing three different procedures and for all the system sizes considered in this chapter.
Once again, combining all the data in a single set as done in the main text (lines)
produces compatible results with (i) the cdf obtained from each sample’s ranking (filled
diamonds) and (ii) with evaluating each sample’s cdf on the same set of points (empty
squares). Curves of different N have been displaced horizontally for clarity. Error
bars correspond to the standard deviation in the MN samples considered for each size.
Note that the smallest gaps show much broader sample-to-sample fluctuations than the
smallest forces.

In Figs. 4.18 and 4.19 I compare the cumulative distributions of forces and gaps,
respectively, computed using each the three methods in all our HS systems. The
agreement between them is excellent for all system sizes and the three of structural
variables considered here. Additionally, the error bars of each data series confirms
the interpretation given above for the corresponding method.
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