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Abstract. We give examples of birational selfmaps of Pd, d ≥ 3, whose
dynamical degree is a transcendental number. This contradicts a conjecture
by Bellon and Viallet. The proof uses a combination of techniques from
algebraic dynamics and diophantine approximation.
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1. Introduction

The first dynamical degree of a rational map f : Pd 99K Pd is the quantity

λ(f) := lim
n→∞

deg(fn)1/n,

where fn denotes the nth iterate of f , and deg(fn) := deg f−n(H) is the preim-
age of a general hyperplane H ⊂ Pd. The limit defining λ(f) always exists, and
its value is a fundamental invariant for the dynamics of f . For many rational
maps, one has that λ(f) = deg(f) is an integer. In many other situations,
it is known that λ(f) is the largest eigenvalue of some integer matrix. It is
also known [BF00, Ure18] that the first dynamical degree ranges through only
countably many possible values in general.
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The values are not, however, limited to roots of integer polynomials. In [BDJ20]
the first three authors presented examples of rational self-maps f : P2 99K P2

whose first dynamical degrees are transcendental. These examples are non-
invertible. For many purposes, both theoretical and applied, it is more natural
to consider invertible dynamical systems. However, the lack of invertibility in
dimension two is essential to produce examples of self-maps with transcendental
first dynamical degree, since [DF01] shows that the first dynamical degree of a
birational surface map is always an algebraic integer; see also [BC16]. The same
is true for polynomial automorphisms of A3 in characteristic zero [DF21].

In fact, it was conjectured in [BV98] that the first dynamical degree of a bira-
tional map is always algebraic. Here we resolve that conjecture in the negative.
Specifically, we show that there are birational maps f : Pd 99K Pd, d ≥ 3, whose
first dynamical degrees are transcendental.

While we build on the methods introduced in [BDJ20], we take a different
approach to deriving the crucial power series formula for the dynamical degrees
of our maps, and we obtain a substantially more general transcendence result.
The list of examples we obtain is infinite, but not completely explicit, and there
remain some very interesting further questions. As in [BDJ20], our examples
are based on monomial maps, i.e. maps hA : Pd 99K Pd whose components hA,j =
x
aj1
1 . . . x

ajd
d are monomials with exponents specified by the jth row of a d × d

integer matrix A. Since we aim to construct birational maps, we will always
take A ∈ SLd(Z). Our main theorem may be stated as follows.1

Theorem 1.1. For each d ≥ 3, there exists a birational involution g : Pd 99K Pd

and matrices A ∈ SLd(Z) such that the birational maps f : Pd 99K Pd given by

(1.1) f = g ◦ hA
have transcendental dynamical degree λ(f).

All maps in the theorem have coefficients in {−1, 0, 1}, so the field of defini-
tion for f can be taken to be any field of characteristic different from 2. The
involution g is explicit, given at the beginning of §3.1, but the matrix A is not.
As we will explain in more detail shortly, we begin with a suitable particular
element of SLd(Z), and take A to be a large enough power of a fairly general
conjugate of of this element. However, at the end of this article in §7.2 we ex-
plain how one can check, with some computer assistance, that the conclusion of
Theorem 1.1 applies for a particular matrix A. See (7.1) for the precise matrix
we consider.

To compute deg(fn) for the maps f in Theorem 1.1, we use that by duality,
deg(fn) is also equal to the intersection number between a fixed hyperplane

1J. Blanc informed us that he has independently been able to modify the construction
of [BDJ20] to obtain birational maps with dynamical degrees satisfying a power series formula
similar to (1.2). These maps might also serve to produce transcendental examples.
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H ⊂ Pd and the forward image fn(ℓ) of a general line ℓ. As we explain in §2,
it is convenient for tracking the successive images of ℓ to regard iterates of f as
maps between various toric blowups of Pd. We then show in §3 that for suitable
A, the dynamical degree of f satisfies an equation involving a power series with
integer coefficients.

To state the precise formula, we introduce some notation. Let d be a positive
integer, and U ,V ⊂ Zd finite, non-empty sets of non-zero vectors. For any d× d
integer matrix A, we set

ΨU ,V(A) :=
∑
v∈V

max
u∈U

⟨u,Av⟩ ,

where ⟨·, ·⟩ denotes the standard bilinear pairing on Zd. The resulting integer-
valued function is piecewise linear in the entries of A. The main result of §3 is
as follows.

Theorem 1.2. Suppose that Ã ∈ SLd(Z) has irreducible characteristic poly-
nomial and eigenvalues of largest magnitude equal to a complex conjugate pair
ξmax, ξ̄max with ξjmax /∈ R for any non-zero j ∈ Z. If A = ÃN for large enough
N ∈ Z≥0, and f is given by (1.1), then λ = λ(f) satisfies

(1.2)
∞∑
j=1

ΨU ,V(A
j)λ−j = 1,

where U ,V ⊂ Zd are finite sets of vectors that depend only on the dimension d.

The particular sets U ,V referred to in this theorem are given in (2.3) and (3.4).
Regardless, for any fixed u ∈ Zd, the sequence

∑
v∈V ⟨u,Ajv⟩ is an integer linear

recurrence, so if U contained only one element, the power series (1.2) would
define a rational function with integer coefficients, and it would follow that λ
is algebraic. For U as given, however, the coefficients ΨU ,V(A

j) are obtained by
maximizing over several integer linear recurrences. The condition on the leading
eigenvalue of A guarantees that the largest among them varies irregularly as j
increases. Under these circumstances it would seem difficult for λ and the value
of the series to be simultaneously algebraic. The following result solidifies this
intuition. Together with Theorem 1.2, it suffices for establishing Theorem 1.1.
Here we say that z, w ∈ C have an angular resonance if zaw̄b ∈ R for some
integers a, b > 0.

Theorem 1.3. Let Ã ∈ SLd(Z) be a matrix with irreducible characteristic poly-
nomial. Suppose that there are no angular resonances between distinct eigenval-
ues of Ã and that the eigenvalues of largest magnitude are a complex conjugate
pair ξmax, ξ̄max. Then, for any finite sets U ,V ⊂ Zd \ {0} with #U ≥ 2, there
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exist matrices A ⊂ SLd(Z) conjugate to Ã such that

(1.3)
∞∑
j=1

ΨU ,V(A
Nj)xj

is transcendental for any N ≥ 1 and any real x ∈ Q̄ ∩ (0, |ξmax|−N).

Note that there is no angular resonance between the leading eigenvalues ξmax

and ξ̄max if and only if ξjmax /∈ R for any non-zero j ∈ Z. When d = 3 the
remaining eigenvalue is real, so this is the entire content of the no angular
resonance requirement. When d > 3, the requirement is more restrictive and
implies in particular that A has at most one real eigenvalue. Note also that
the condition on x implies that it belongs to the domain of convergence of the
series (1.3). Indeed it follows from Corollary 4.2 below and irreducibility of the
characteristic polynomial of Ã that the radius of convergence of the series is
exactly |ξmax|−N , though we only need to know that that it is at least this large.

To prove Theorem 1.3 we note that the dynamics of the linear map A on
Zd ⊂ Cd can be understood by diagonalizing A. Write ξmax = |ξmax|e2πiθ, where
the normalized argument θ ∈ R is irrational by hypothesis on ξmax. Using our
assumptions on the spectrum (ξ1 = ξmax, ξ2 = ξ̄max, ξ3, . . . , ξd) of A, we show
that for large enough j ∈ Z≥0, we have

ΨU ,V(A
j) =

〈
γ(jθ), (ξj1, . . . , ξ

j
d)
〉
,

for some 1-periodic, piecewise constant function γ : R → Q̄d. The hypotheses
on A, U , V imply, however, that γ is not (globally) constant.

Theorem 1.3 then reduces to the following theorem, which we prove in §6.
Note here that we rely implicitly on a fixed embedding Q̄ ⊂ C and its associated
archimedean absolute value | · |.

Theorem 1.4. Let θ ∈ R be an irrational number and ρ ∈ Q̄d be a vector whose
coordinates each satisfy |ρj| < 1 and are pairwise multiplicatively independent.
Let γ : R → Q̄d be a non-constant but piecewise constant, 1-periodic function
with (discrete) discontinuity set Dsc(γ) ̸= ∅ such that

• (discordance) for any t, t′ ∈ Dsc(γ) ∪ {0} and any a, b ∈ Z, aθ =
b(t− t′) mod 1 implies a = 0 and either t− t′ ∈ Z or b is even;

• (maximality) for all sufficiently large integers j, the function

t 7→
〈
γ(t), (ρj1, . . . , ρ

j
d)
〉

is real-valued, non-constant, and maximized by t = jθ.

Then

Ω :=
∞∑
j=1

〈
γ(jθ), (ρj1, . . . , ρ

j
d)
〉

is transcendental.
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The proof of Theorem 1.4 expands on ideas from [BDJ20]. In particular, we
rely heavily on a lower bound (Theorem 4.1) for Diophantine approximations
due to Evertse [Eve84] and a finiteness result (Theorem 4.4) for solutions of
unit equations due to Evertse, Schlickewei and Schmidt [ESS02]. The bulk of
the proof consists of carefully analyzing the continued fraction expansion of θ to
identify and exploit large, but necessarily finite, stretches in the series defining
Ω in which the coefficients satisfy some sort of linear recurrence.

To pass from Theorem 1.4 to Theorem 1.3, we set ρi = (xξi)
N for i = 1, . . . , d.

Since there are no angular resonances among the ξi, the resulting ρi are mul-
tiplicatively independent for any x and N . When derived from the data in
Theorem 1.4, the function γ = γA, and especially its discontinuity set Dsc(γA),
depend on the sets U and V and the matrix A. The maximality condition in
Theorem 1.3 holds for any choice of U , V and A. The reason for replacing the
given matrix Ã in Theorem 1.3 with a conjugate matrix A is to guarantee that
the discordance hypothesis is also satisfied.

Our approach to finding suitable conjugates relies on the fact that all powers
ξjmax of the maximal eigenvalue in Theorem 1.3 lie in the unit subgroupO∗

K of the
integers OK in the number field K generated by eigenvalues of A. On the other
hand, the elements of Dsc(γA) are normalized arguments of elements of K, but
these elements need not be units. In fact, given a specific matrix Ã ∈ SLd(Z),
it is not difficult to find a specific conjugate A by trial and error and then
check by computer algebra that no element (or difference between elements) of
Dsc(γA) is the normalized argument of an algebraic unit. We account for this
phenomenon by showing that suitable conjugates of Ã are in some sense generic.
See Theorem 5.3 and its proof in §5.3. The argument there relies on the general
fact (Lemma 5.5) that a non-constant rational function τ ∈ K(x) cannot have
range τ(K) contained in the group of units O∗

K .
Since the discordance hypothesis of Theorem 1.4 is a bit unnatural and diffi-

cult to arrange, it is worth stressing that it is needed only when the irrational
number θ is badly approximable (equivalently, of bounded type), i.e. when the
continued fraction expansion of θ has uniformly bounded coefficients. For well
approximable θ, the proof of Theorem 1.4 is substantially simpler, effectively
ending with Corollary 6.7 rather than the subsequent and more technical argu-
ments of §6.4 and §6.5. Nor in this case do we need Theorem 5.3. Unfortunately,
however, it is unclear to us whether/when the normalized argument θ of the
leading eigenvalue ξmax in Theorems 1.2 and 1.3 is well approximable.

Question 1.5. Are there algebraic units whose normalized arguments θ are irra-
tional and well approximable? Likewise, are there any for which θ is irrational
and badly approximable?

Let us close by returning to the first paragraph of this introduction and the
dynamical significance of the first dynamical degree. The interested reader may
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consult [BDJ20] for a longer account, but here we recall a single aspect of that
discussion. The first dynamical degree is only one of d− 1 intermediate dynam-
ical degrees for a birational map f : Pd 99K Pd; see [DS05a, Tru20, Dan20]. For
rational maps f over C, the logarithm of the largest of these dynamical degrees
is known [DS05a] to be an upper bound for the entropy of f (see also [FTX22]
for a non-archimedean version), and in many instances [BS92, BD01, Gue05,
DS05b, Duj06, Vig14], the two quantities are known to be equal. Hence it is
interesting to ask whether the first dynamical degrees of the maps we construct
here are also the largest.

Question 1.6. Does there exist a birational map f : Pd 99K Pd for which λ1(f) is
transcendental and also maximal among intermediate dynamical degrees λi(f),
i = 1, . . . , d − 1? Does there exist a birational map f : Pd 99K Pd for which all
intermediate dynamical degrees are transcendental?

The outline of the paper is as follows. In §2, we give background on toric
threefolds and monomial maps. This is used in §3, where we analyze the maps
g and f = g ◦ hA and prove Theorem 1.2. In §4, we give the relevant back-
ground from Diophantine approximation, which will be used in the proofs of
Theorems 1.3 and 1.4. In §5 we prove Theorem 1.3, or more precisely reduce it
to Theorem 1.4, which is proved in §6. Finally, in §7.1 we complete the proof of
Theorem 1.1, the main remaining step being to construct suitable characteristic
polynomials from which to obtain our matrices A. In §7.2, we focus on a specific
matrix A ∈ SL3(Z) to explain how one can use computer algebra to certify that
particular maps f = g ◦ hA satisfy the conclusion of Theorem 1.1.

Acknowledgments. We thank Nguyen-Bac Dang for his thoughtful comments
about this article. We would also like to thank the anonymous referee for their
many useful suggestions and careful reading of this article.

The first author was partially supported by NSERC grant RGPIN-2016-
03632; the second author by NSF grant DMS-1954335; the third author by
NSF grants DMS-1600011 and DMS-1900025, and the United States-Israel Bi-
national Science Foundation; and the fourth author by Isaac Newton Trust
(RG74916).

2. Intersection theory, toric varieties and monomial maps

We work over an algebraically closed field k of characteristic different from
two.

2.1. Rational maps and intersection numbers. We begin with a somewhat
ad hoc definition of intersection numbers between curves and divisors, consis-
tent with the general theory of [Ful84]. Let X be a smooth proper variety of
dimension d ≥ 2, let C ⊂ X an irreducible curve, and let D be a Cartier divisor
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on X. Consider the inclusion map ι : C → X and normalization map τ : C̃ → C.
In this situation we define

(C ·D) := deg(τ ∗ι∗OX(D)),

the degree of the line bundle τ ∗ι∗OX(D) on C̃. When C and D are smooth, and
C is not contained in the support of D, (C ·D) is the number of points in C∩D
counted with multiplicity. Note also that (C · D) only depends on the linear
equivalence class of D. When X = Pd, we have (L ·D) = degD for every line L.

Now consider a birational map f : X1 99K X2 between smooth varieties. The
indeterminacy set Ind(f) is the smallest set such that f : X1 \ Ind(f) → X2

is a morphism; this set has codimension at least two. The critical set Crit(f)
is the (finite) union of all irreducible hypersurfaces contracted by f . For any
irreducible subvariety V ⊂ X1 not contained in Ind(f), we adopt the convention

that f(V ) := f(V ) \ Ind(f) is the proper transform of V by f . In particular
f(V ) is irreducible and, if not contained in Crit(f), of the same dimension as
V .

Let D2 be a divisor on X2. The pullback f ∗D2 is the divisor on X1 defined
as follows. Let X ⊂ X1 × X2 be the Zariski closure of the graph of f , and
πj : X → Xj, j = 1, 2, the projections. Then f ∗D2 := π1∗π

∗
2D2, where we pull

back D2 as a Cartier divisor, then push forward π∗
2D2 as a Weil divisor. Since

X1 and X2 are smooth any Weil divisor on either Xj is also Cartier. We rely on
the following version of the projection formula that is easily verified.

Proposition 2.1. In the situation above, let C1 ⊂ X1 be an irreducible curve
disjoint from Ind(f) and not contained in Crit(f), and let D2 be a Cartier
divisor on X2. Then

(2.1) (C1 · f ∗D2) = (f(C1) ·D2).

We are particularly interested in the case X1 = X2 = Pd. In homogeneous
coordinates f is given by

[x0, . . . , xd] 7→ [f0, . . . , fd],

where the fj are homogeneous polynomials, all of the same degree and without
common factors. The (algebraic) degree of f is then defined to be deg f :=
deg fj = deg f ∗H = (L · f ∗H), where H ⊂ Pd is any hyperplane and L is any
line. So Proposition 2.1 allows us to rewrite deg f as follows.

Corollary 2.2. The degree of a birational map f : Pd 99K Pd is given by

deg f = (f(L) ·H),

where L ⊂ Pd is any line disjoint from Ind(f) and not contained in Crit(f), and
H ⊂ Pd is any hyperplane.
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Since Ind(f) has codimension at least two, the hypothesis of the corollary is
satisfied by a general line L, i.e. a line corresponding to a general point in the
Grassmannian Gr(2, d+ 1).
If f, g : Pd 99K Pd are rational maps, then deg(f ◦ g) ≤ (deg f)(deg g). This

fact implies that the limit in the following definition exists.

Definition 2.3. The first dynamical degree of a rational map f : Pd 99K Pd is
the quantity λ(f) := limn→∞(deg fn)1/n.

2.2. Toric varieties. For our purposes, a toric variety will be a smooth alge-
braic compactification X of the torus T := Gd

m such that the natural action of
the torus on itself extends to all of X. Any toric variety is defined by a lattice
N ∼= Zd and a fan Σ(X) in N , by which is meant a collection of regular rational
simplicial cones inside N ⊗ R ∼= Rd, satisfying natural axioms, see [Ful93].

In what follows, we fix a basis for N ≃ Zd. The fan of Pd is then the set of
cones in Rd generated by the proper subsets of

(2.2) P = {(−1, . . . ,−1), (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}.
For any toric variety, the complement X \ T is a simple normal crossings

divisor, and for k > 0, the k-dimensional cones in Σ correspond to T-invariant
irreducible subvarieties of X \ T of codimension k. In particular, rays of Σ(X)
correspond to irreducible hypersurfaces E ⊂ X \ T which we will call poles.2

We let vE ∈ N denote the unique primitive element (i.e. vE ̸= 0 and vE ̸∈ bN
for b ≥ 2) in the ray in Σ(X) corresponding to a pole E ⊂ X. Given a primitive
element v ∈ N , we say that X realizes v if v = vE for some pole E of X.
For example, the poles of Pd corresponding to the elements of P above are the
coordinate hyperplanes {xj = 0}, 0 ≤ j ≤ d in Pd.
Each pole E of X is itself a toric variety of dimension d−1, its toric structure

defined by a natural fan in the quotient lattice N/ZvE, and its torus TE ≃ Gd−1
m

concretely realized as the set of points in E not contained in any other pole.
We set M := Hom(N,Z) and write ⟨u, v⟩ ∈ Z for the pairing between u ∈M

and v ∈ N . The elements of M can be identified with the set of characters
T → Gm. The identification N ≃ Zd induces an identification M ≃ Zd, and the
characters associated to the standard basis vectors of Zd serve as coordinates
(y1, . . . , yd) on T, giving an isomorphism T ∼→Gd

m. The character associated to
(a1, . . . , ad) ∈M is then the monomial ya11 · · · yadd .

A toric modification is a birational morphism π : X̂ → X between toric va-
rieties that restricts to the identity on T. The fan Σ(X̂) is then a simplicial

subdivision of Σ(X); and for each pole E ⊂ X̂ contracted by π, the image π(E)
is equal to the intersection of two or more poles in X. Given any two toric
varieties X,X ′, there exists a third X̂ that modifies both of them. Moreover,

2They are in fact the (simple) poles in X of the T-invariant form dy1∧···∧dyd

y1...yd
. It is standard

to call E a ‘torus invariant hypersurface’, but we find the shorter term convenient.



BIRATIONAL MAPS WITH TRANSCENDENTAL DYNAMICAL DEGREE 9

given any toric variety X and a primitive element v ∈ N , there exists a toric
modification X̂ → X such that X̂ realizes v.

A divisor D supported on poles of X may be encoded by a support function
ψD : N → Z given by setting ψD(vE) equal to the coefficient of E for each pole

E ⊂ X and then extending linearly across each cone in Σ(X). If π : X̂ → X is
a toric modification, then ψπ∗D = ψD. Moreover, D is principal if and only if
ψD is linear.

For instance, the hyperplane at infinity {x0 = 0} on Pd has support function

(2.3) ψ(v) = max
u∈U

⟨u, v⟩,

where U ⊂M := Hom(N,Z) ≃ Zd is given by

(2.4) U := {(0, . . . , 0), (−1, 0, . . . , 0), (0,−1, 0, . . . , 0), . . . (0, . . . , 0,−1)}.

Definition 2.4 (see e.g. [GHK15]). An irreducible curve C in a toric variety X
is internal if C∩T ̸= ∅. We say that X is adapted to C if for each pole E ⊂ X,
the intersection C ∩ E is contained in TE.

If X̂ → X is a toric modification then we identify any internal curve C in X
with its (still internal) proper transform on X̂. If X is adapted to C, so is X̂.
Moreover, we have

Proposition 2.5. For any internal curve C on a toric variety X, there is a
toric modification π : X̂ → X such that X̂ is adapted to C.

Proof. If X is not adapted to C, then there are poles E1, . . . , Em ⊂ X, with
m ≥ 2, such that C ∩ E1 ∩ · · · ∩ Em ̸= ∅. The blowup π : X̃ → X of

⋂m
j=1Ej

is toric and contracts a pole Ẽ0 ⊂ X̃ that meets the proper transform C̃ ⊂ X̃
of C. Additionally, if Ẽj ⊂ X̃ denotes the proper transform of Ej, then π

∗Ej =

Ẽj + Ẽ0. So if D =
∑

E⊂X E and D̃ =
∑

Ẽ⊂X̃ Ẽ are the reduced divisors with

supports equal to all poles of X and X̃, then π∗D = D̃ + kẼ0 for some k ≥ 1.
From this and Proposition 2.1, we get

(C ·D) = (C̃ · π∗D) = (C̃ · D̃) + k(C̃ · Ẽ0) > (C̃ · D̃) ≥ 0,

where the last inequality follows from the fact that C̃ is an internal curve. If X̃
is not adapted to C̃, we repeat the above as often as necessary. At each step
the intersection between the set of poles and C̃ drops by at least one. Since the
intersection must remain non-negative, the process must stop in finitely many
steps, at which point X is adapted to C̃. That is, if at this point E0 is the
(further) blowup of any other intersection between two or more poles, we must

have C̃ · E0 = 0; hence C̃ intersects at most one pole. □
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In light of this discussion we can associate to any internal curve C the following
measure on N :

(2.5) µC :=
∑

(C · E)δvE ,

where δvE is the point mass supported at vE ∈ N , and the sum is over poles
E ⊂ X in some/any toric variety adapted to C. For instance, if L is a general
line in Pd, then

µL =
∑
v∈P

δv,

with P as in (2.2). If C is an internal curve on a toric varietyX andD is a divisor
supported on poles of X, then it follows from (2.1) that the intersection number

(C ·D) is unchanged by toric modifications π : X̂ → X, i.e. (C ·D) = (C · π∗D).

Taking X̂ adapted to C, it therefore follows from definitions that

(2.6) (C ·D) =

∫
N

ψD µC =
∑
E⊂X̂

(C · E)ψD(vE).

For example, the degree of an internal curve C ⊂ Pd is given by

(C · {x0 = 0}) =
∫
N

ψ µC ,

where ψ is given by (2.3).
Since the intersection number with a principal divisor must vanish, we obtain

Corollary 2.6. The measure µC associated to an internal curve C is balanced
in the sense that

∑
E⊂X(C · E)vE = 0 ∈ N for any X adapted to C.

Remark 2.7. The measure µC associated to an internal curve corresponds to the
Minkowski weight, in the sense of [FS97], for the class of the curve C.

2.3. Monomial maps. For monomial maps and their dynamics, see [Fav03,
HP07, JW11, FW12, Lin12].

Definition 2.8. Let A = (aij)1≤i,j≤d be a d× d integer matrix with detA ̸= 0.
We call hA : T → T given by

hA(y1, . . . , yd) = (y1, . . . , yd)
A := (ya111 . . . ya1dd , . . . , yad11 . . . yaddd )

the monomial map associated to A.

In what follows we will always assume that A ∈ GLd(Z), i.e. detA = ±1,
in which case hA is an automorphism of T and extends to a birational map
hA : X 99K X ′ between any two d-dimensional toric varieties.

Our convention for monomial maps is that A ∈ GL(N), so the induced auto-
morphism M → M is given by the transpose AT . Note that for any n ∈ Z, we
also have hnA = hAn .
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Proposition 2.9. Suppose that A ∈ GLd(Z), that X,X ′ are toric varieties, and
that h = hA : X 99K X ′ is the associated monomial map. Assume that for every
pole E ⊂ X there exists a pole E ′ ⊂ X ′ such that AvE = vE′. Then h(E) = E ′.
Moreover h is an isomorphism in a neighborhood of TE, and sends TE onto TE′.
In particular, Crit(h) = ∅.

Proof. It suffices to prove the statement about TE and TE′ . Pick u′1 ∈ M
such that ⟨u′1, vE′⟩ = 1, and elements u′2, . . . , u

′
d ∈ M that generate the lattice

v⊥E′ := {u ∈ M | ⟨u, vE′⟩ = 0}. Each u′j defines a monomial χ′
j in (y1, . . . , yd),

and χ′ := (χ1, . . . , χd) gives a birational map ofX to Ad which is an isomorphism
in a neighborhood of TE′ and sends TE′ onto the coordinate hyperplane {w1 = 0}
in A1 ×Gd−1

m .
Set uj = ATu′j for 1 ≤ l ≤ d. Then ⟨u1, vE⟩ = ⟨u′1, vE′⟩ = 1 and u2, . . . , ud

generate the lattice v⊥E . Each uj defines a monomial χj and χ := (χ1, . . . , χd)
defines a birational map of X to Ad that is an isomorphism in a neighborhood of
TE and sends TE onto the hyperplane {w1 = 0} in A1×Gd−1

m . By construction,
χ = χ′ ◦ h, and the result follows. □

The image of any internal curve C ⊂ T under a monomial birational map is
a new internal curve, and we have:

Corollary 2.10. If C ⊂ T is an internal curve and A ∈ GLd(Z), then
(2.7) µhA(C) = A∗µC,

where µC and µhA(C) are the associated measures on N ∼= Zd.

Proof. Since A is invertible over Z, it preserves the set of primitive vectors in
Zd. Hence the formula follows from the previous proposition with X adapted
to C and X ′ adapted to hA(C). □

Corollary 2.11. For any A ∈ GLd(Z), the dynamical degree of the monomial
map hA is equal to the absolute value of the leading eigenvalue(s) of A.

Proof. Taking C = L to be a general line in Pd and integrating the function ψ
in (2.3) against (2.7) , we obtain

(2.8) deg hnA =

∫
ψAn

∗µL.

If we add a linear function to ψ, the integral does not change. So replacing
ψ(v) with e.g. ψ(v) + ⟨u, v⟩, where u = 1

4
(1, . . . , 1), we may assume that ∥v∥ ≤

ψ(v) ≤ C ∥v∥ for some norm ∥·∥ on N ⊗ R and some constant C > 1. Thus
deg hnA is multiplicatively comparable, uniformly in n, to maxv∈suppµL

∥Anv∥.
Since the vectors in suppµL span N , we see further that for large n, deg hnA
is comparable to nk−1ρn, where ρ is the magnitude of a leading eigenvalue for
A and k is the size of the largest Jordan block for such an eigenvalue. Thus
λ(hA) = ρ. □
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3. Degrees of certain birational maps

In this section we study the composition of a birational monomial map with
a well chosen birational involution which, though not monomial, still behaves
well on toric varieties. This will lead to a proof of the power series formula in
Theorem 1.2 for the dynamical degree.

3.1. A birational involution. The Cremona involution on Pd is the birational
monomial map h−I given in affine coordinates by (y1, . . . , yd) 7→ (y−1

1 , . . . , y−1
d ),

or in homogeneous coordinates [x0, . . . , xd], where yj = xj/x0, by

[x0, . . . , xd] → [
∏
i ̸=0

xi, . . . ,
∏
i ̸=d

xi].

It contracts each homogeneous coordinate hyperplane {xj = 0} to the torus
invariant point where the others intersect and is indeterminate along each linear
subspace {xj = xk = 0}, j ̸= k.

Now consider the (d + 1) × (d + 1)-matrix B = (Bi,j)0≤i,j≤d with entries
Bi,j = (−1)i−j for i ≤ j and Bi,j = (−1)i−j−1 for i > j. It is straightforward
to see that B is invertible (except in characteristic two), and that the non-zero
entries of the inverse B−1 are as follows: B−1

i,i = 1
2
for 0 ≤ i ≤ d, B−1

i,i+1 =
1
2
for

0 ≤ i < d, and B−1
d,0 = (−1)d

2
.

For example, if d = 3, then

B =


1 −1 1 −1
1 1 −1 1

−1 1 1 −1
1 −1 1 1

 and B−1 =
1

2


1 1 0 0
0 1 1 0
0 0 1 1

−1 0 0 1

 .
The matrix B defines an automorphism of Pd, also denoted by B, and given by

[x0, . . . , xd] 7→ B[x0, . . . , xd] = [b0, b1, . . . , bd].

Now set

g := B−1 ◦ h−I ◦B.
By construction, g : Pd 99K Pd is a birational involution, Crit(g) consists of
the d + 1 hyperplanes {bj = 0}, and Ind(g) consists of the linear subspaces
{bi = bj = 0}, i ̸= j. One computes that g = [g0, . . . , gd], where

(3.1) gj = xj
∏

i ̸=j,j+1

bi for j < d and gd = xd
∏
i ̸=0,d

bi.

For example, if d = 3, then

(3.2) g : [x0, x1, x2, x3] → [x0b2b3, x1b0b3, x2b0b1, x3b1b2].
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The coordinate hyperplanes {xj = 0} are not contained in Crit(g), so it follows
from the formula above that g restricts to a birational self-map on each of them,
a statement that will be generalized in Corollary 3.3 below.

In what follows we will use the (non-toric) hyperplanes

(3.3) Hj = {bj = 0} ∩ T.

Then g(Hj \ Ind(g)) = qj, where qj ∈ Pd \ T is the point with homogeneous

coordinates given by column j of the matrix B−1. Also set H =
⋃d

j=0Hj. We

will write Hj ⊂ X and H ⊂ X for the Zariski closures of Hj and H, respectively,
in any toric modification X → Pd.
Note that the hyperplanes Hj ⊂ Pd omit the d+ 1 torus invariant points

[1, 0, . . . , 0], [0, 1, 0, . . . , 0], . . . , [0, . . . , 0, 1].

Lemma 3.1. Let π : X → Pd be any toric modification and let gX : X 99K X be
the lift of g. Then (T \H) ∩ Ind(gX) = ∅ and gX(T \H) ⊂ T.

Proof. It suffices to consider the case X = Pd, and then the statement is clear
in view of (3.1), since bi ̸= 0 on T \H for 0 ≤ i ≤ d. □

Lemma 3.2. Let π : X → Pd be any toric modification, and E ⊂ X a pole such
that vE is contained in the interior of a d-dimensional cone of Σ(Pd). Then:

(i) H ∩ TE = ∅;
(ii) the lift gX : X 99K X of g is an isomorphism in a neighborhood of the

torus TE, and sends TE onto itself.

Proof. The assumption on E means that π(E) ∈ Pd is one of the d + 1 torus
invariant points above. As these points do not lie on the closure of H in Pd, we
immediately deduce (i). Moreover, for any i = 1, . . . , d, the zeros and poles of
the rational function bi/b0 omit all torus invariant points of Pd. So on X, the
restriction of bi/b0 to E is a non-zero constant.

Now pick u1 ∈ M such that ⟨u1, vE⟩ = 1, and elements u2, . . . , ud ∈ M that
generate the lattice v⊥E := {u ∈ M | ⟨u, vE⟩ = 0}. Each uj defines a monomial
χj in (y1, . . . , yd), and χ := (χ1, . . . , χd) gives a birational map of X to Ad which
is an isomorphism in a neighborhood of TE and sends E onto the coordinate
hyperplane {w1 = 0} in Ad. Now it follows from (3.1) that g∗χj = χjψj,
where ψj is a monomial in the rational functions bi/b0 and hence equal to a
non-zero constants on TE. Thus χ ◦ gX : X 99K Ad is also an isomorphism in a
neighborhood of TE and sends E onto the coordinate hyperplane {w1 = 0}. We
conclude that gX = χ−1 ◦ χ ◦ gX has the desired properties. □

Corollary 3.3. Let π : X → Pd be any toric modification. Then the lift gX : X 99K
X of g restricts to a birational map gX : E 99K E on any pole E ⊂ X.
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Proof. This can be proved in a way similar to Lemma 3.2, but let us give a
different proof using valuations. Let ValT be the set of valuations v : k(T)× → R
on the function field k(T) ≃ k(y1, . . . , yd) of the torus T that are trivial on k.
We equip it with the topology of pointwise convergence. The birational map
g : T 99K T induces a field automorphism of k(T), and a homeomorphism g∗ of
ValT.
We can identify the space NR ∼= Rd with the set of monomial valuations

in coordinates (y1, . . . , yd): given t ∈ Rd, the corresponding valuation vt ∈
ValT is uniquely determined by v(

∑
α cαy

α) = min{⟨α, t⟩ | cα ̸= 0} for every
Laurent polynomial

∑
α cαy

α ∈ k[y±1
1 , . . . , y±1

d ]. The map NR → ValT is then a
homeomorphism onto a closed subset. It is also homogeneous with respect to
the multiplicative actions of R>0 on NR and ValT.

If X is a toric variety and E ⊂ X a pole, then the valuation corresponding
to the element vE ∈ N ⊂ NR is also denoted by vE and can be geometrically
described as follows: for any non-zero rational function f ∈ k(T) = k(X),
vE(f) ∈ Z is the order of vanishing of f along E.

It now follows from Lemma 3.2 that g∗(v) = v for all primitive elements v ∈ N
that lie in the interior of a d-dimensional cone of ΣPd . Since g∗ is homogeneous
with respect to the scaling action above, it follows that g∗(v) = v for all v ∈ NQ
that lie in the interior of a d-dimensional cone of ΣPd . As the set of such v is
dense in NR we must have g∗ = id on NR.
In particular, if X is a toric variety and E ⊂ X is a pole, then g∗(vE) = vE.

Unraveling the geometric description of vE, this implies that gX(E) = E. □

We now study the critical set of lifts of g. Set

(3.4) V := {v0, v1, . . . , vd}
where vj ∈ N ≃ Zd is the vector whose kth entry is the order of bj in the
expression for gk/g0, 1 ≤ k ≤ d. For example, if d = 3 we have

V = {(1, 1, 0), (0, 1, 1), (−1,−1, 0), (0,−1,−1)}.
If π : X → Pd is a toric modification that realizes vj ∈ V , then we denote the
associated pole by Ej.

Proposition 3.4. Let π : X → Pd be any toric modification that realizes all
elements of V, and let gX : X 99K X be the lift of of g to X. Then:

(i) the irreducible hypersurfaces contracted by gX are Hj, 0 ≤ j ≤ d; more-
over, g maps a general point on Hj into TEj

;
(ii) g∗XEj = Ej +Hj for each 0 ≤ j ≤ d;
(iii) g∗XE = E for all other poles of X.

Proof. Let ej ∈ Pd denote the point with homogeneous coordinates equal to
the jth standard basis vector. Let ℓ0 denote the line joining e0 and ed, and for
0 < j ≤ d let ℓj denote the line joining ej and ej−1. Then qj = g(Hj) is a
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general point on ℓj and the strict transform of ℓj under the toric modification
X → Pd is the pole Ej. Hence the preimage of qj in X is the closure of a
(d− 2)-dimensional subvariety Sj ⊂ TEj

.
To prove (i), recall from Corollary 3.2 that gX(E) = E for all poles E ⊂ X.

Hence any irreducible hypersurface of X contracted by gX must meet T ⊂ X.
It must then also be contracted by g, and thus equal to Hj for some j. Note,
conversely, that gX contracts each Hj to Sj. Thus (i) holds.

Let π : Y → X be the (non-toric) blowup of X along each of the mutually
disjoint subvarieties Sj, and let S̃j ⊂ Y denote the preimage of Sj. Further, let
Z → Pd be the smooth (non-toric) variety obtained by blowing up all points
qj = g(Hj), and Fj ⊂ Z the preimage of qj. Since g is linearly conjugate to the
Cremona involution h−I , we have that the lift gZ : Z 99K Z of g to Z contracts
no hypersurfaces (i.e. gZ is a ‘pseudoautomorphism’) and exchanges Hj with
Fj.

On the other hand, the birational map ω : Y 99K Z induced by the identity on
Pd satisfies ω(S̃j) = Fj. Therefore, the irreducible hypersurfaces of Y contracted
by ω are precisely the poles contracted by the toric modification X → Pd, and
in the reverse direction ω−1 contracts no hypersurfaces of Z at all. It follows
from this discussion and Corollary 3.3 that the lift gY : Y 99K Y of g to Y is
again a pseudoautomorphism, this time exchanging Hj and S̃j while preserving

the proper transform Ẽ of each pole E ⊂ X.
Since the birational map gXY := gX ◦ π−1 contracts no hypersurfaces of X,

we obtain that g∗XD = g∗XY π
∗D for all divisors D on X. In particular, for each

0 ≤ j ≤ d, we have g∗XEj = g∗XY (Ẽj + S̃j) = π∗(Ẽj +Hj) = Ej +Hj. And for

any other pole E ⊂ X, we have g∗XE = g∗XY Ẽ = π∗Ẽ = E. Thus (ii) and (iii)
hold, which completes the proof. □

Now consider the measure

(3.5) µV :=
d∑

j=0

δvj

on N . It is balanced in the sense of Corollary 2.6.

Proposition 3.5. Let C ⊂ Pd be an internal curve that meets each critical
hyperplane Hj ⊂ Pd only at points in T. If for some toric modification X → P3

adapted to C and realizing all elements of V, the proper transform of C in X
avoids the indeterminacy set of gX , then g(C) is an internal curve satisfying

µg(C) = µC + (degC)µV .

Proof. Recall our convention that internal curves are irreducible. Since C must
meet some pole of X, the assumption C ∩Hj ⊂ T implies that C ∩ Crit(gX) is
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finite. It follows that gX(C) is also an internal curve. By Proposition 2.1,

(gX(C) · E) = (C · g∗XE)
for every pole E ⊂ X. When vE /∈ V , this gives (gX(C) · E) = (C · E). When
E = Ej is the pole associated to vj ∈ V , we obtain

(gX(C) · Ej) = (C · Ej) + (C ·Hj).

One should note here that in the term (C · Hj), the closure takes place in X.
However, our hypothesis that in Pd all points of C ∩ Hj lie in T, means that
(C · Hj) = degC is the same if the closure/intersection takes place in Pd. The
formula for µg(C) follows. □

3.2. The composed birational map. We now consider the birational map

f := g ◦ h : Pd 99K Pd,

where h = hA is a monomial birational map and g is the birational involution
we have just discussed. Our aim is to give a power series equation satisfied by
the dynamical degree of f under suitable assumptions on A.

Recall the finite subsets P ,V ⊂ N and U ⊂M defined in (2.2),(3.4), and (2.4),
respectively. As in the introduction, define Ψ = ΨU ,V : Matd(Z) → Z≥0 by

(3.6) Ψ(A) =
∑
v∈V

max
u∈U

⟨u,Av⟩.

Theorem 3.6. Suppose that A ∈ GLd(Z) has the property that for all n ≥ 1,
each vector in An(V ∪ P) lies in the interior of a d-dimensional cone of Σ(Pd).
Then λ = λ(f) is the unique positive real number satisfying

1 =
∞∑
n=1

Ψ(An)λn.

In §3.1 we will see how to find matrices A that satisfy the hypothesis of the
theorem. To prove the theorem, we will analyze the internal curves fn(L) and
h(fn(L)) for a general line L ⊂ Pd. Consider a sequence

· · · → Xn → Xn−1 → · · · → X0 → Pd

of toric modifications chosen so that X0 realizes all elements of V , and Xn+1

(further) realizes AvE for each pole E ⊂ Xn.
For n ≥ 1, let gn : Xn 99K Xn and hn : Xn−1 99K Xn be the lifts of g and h,

respectively. Then fn := gn ◦ hn : Xn−1 99K Xn is the lift of f and

Fn := fn ◦ · · · ◦ f1 : X0 99K Xn

is the lift of fn. By convention, F0 = id: X0 99K X0. We also define F ′
n : X0 99K

Xn for n ≥ 0 by F ′
0 = id and F ′

n := hn ◦ Fn−1 for n ≥ 1. Thus Fn = gn ◦ F ′
n for

n ≥ 1.
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Lemma 3.7. Given n ≥ 0, the following hold for a general line L ⊂ Pd, where
C0 ⊂ X0 is the proper transform of L:

(i) C0 ∩ Ind(Fn) = C0 ∩ Ind(F ′
n) = ∅;

(ii) Cn := Fn(C0) ⊂ Xn and C′
n := F ′

n(C0) ⊂ Xn are internal curves;
(iii) Xn is adapted to Cn and C′

n;
(iv) for each pole E ⊂ Xn, the intersection Cn ∩ E (resp. C′

n ∩ E) is empty
unless vE ∈ AnP or vE ∈ AkV for some 0 ≤ k < n (resp. 0 < k < n);

(v) if n ≥ 1, then C′
n ∩H ⊂ T and C′

n ∩ Ind(gn) = ∅.

The proof will be given in the next subsection. Note that the set of lines for
which the assertions hold depends on n. When k is uncountable, the assertions
will hold for all n for a very general line, but we will not need this fact.

Corollary 3.8. Fix n ∈ Z≥0. Then, for a general line L ⊂ Pd, we have

µfn(L) = An
∗µL +

n−1∑
j=0

deg h(f j(L))An−j
∗ µV(3.7)

µh(fn(L) = An+1
∗ µL +

n−1∑
j=0

deg h(f j(L))An+1−j
∗ µV .(3.8)

Proof. Equation 3.7 for n = 0 is trivial. A general line has empty intersection
in T with Ind(Fn) and Ind(fn), so fn(L) is an internal curve and equal to the
image of Cn under Xn → Pd. Similarly, h(fn(L)) is an internal curve equal to
the image of C′

n+1 under Xn+1 → Pd. The curves Cn and C′
n+1 are described by

Lemma 3.7.
Corollary 2.10 first gives

µh(fn(L)) = A∗µfn(L).

Hence (3.7) implies (3.8). It only remains to show that (3.8) implies (3.7) for
n+ 1. But by Lemma 3.7 (v), Proposition 3.5 applies, yielding

µfn+1(L) = µg(h(fn(L)) = µh(fn(L)) + deg(h(fn(L)))µV ,

and we are done. □

If L is a general line, then the degree of the internal curve h(fn(L)) can be
computed using Corollary 2.2 and (2.6):

deg(h ◦ fn) = (h(fn(L)) · {x0 = 0}) =
∫
ψ µh(fn(L)),

where ψ(v) = maxu∈U⟨u, v⟩ is the support function for the coordinate hyper-
plane {x0 = 0}. Note that ∫

ψAn
∗µV = Ψ(An),
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where Ψ is defined in (3.6). It now follows from integrating ψ against (3.8) that

(3.9) deg(h ◦ fn) = deg hn +
n−1∑
j=0

Ψ(An−j) deg(h ◦ f j)

for all n ≥ 1; here we have used (2.8).
Note that because we are using µV rather than µP , the integer Ψ(An) is not

necessarily equal to deg(hnA). However, since µV is balanced and V spans N , the
proof of Corollary 2.10 gives the following result. It says, in essence, that since
the divisor D encoded by ψ is ample, the pullbacks hn∗D grow like a bounded
multiple of deg hn.

Lemma 3.9. There exists r ≥ 1 such that r−1 deg hnA ≤ Ψ(An) ≤ r deg hnA all
n ∈ Z≥0. In particular, limn→∞Ψ(An)1/n = λ(hA) is the spectral radius of A.

Proof of Theorem 3.6. Let a(t) :=
∑∞

n=0(deg h ◦ fn)tn, b(t) :=
∑∞

n=0(deg h
n)tn,

and c(t) :=
∑∞

n=1Ψ(An)tn. Then the recursion formula (3.9) can be reformu-
lated as a functional equation

a(t) = b(t) + a(t)c(t).

For any n, we have

(deg g)−1 deg fn+1 ≤ deg(h ◦ fn) ≤ deg h deg fn,

which implies that the radius of convergence of a(t) equals λ(f)−1. Moreover,
submultiplicativity of deg(fn) implies that deg(fn) ≥ λ(f)n for all n ∈ Z≥0.
Hence a(t) strictly increases from 1 to ∞ as t increases from 0 to λ(f)−1. Sim-
ilarly b(t) strictly increases from 1 to ∞ as t increases from 0 to λ(h)−1, and
by Lemma 3.9, c(t) increases from 0 to ∞ on the same interval. Hence there
is exactly one positive number t ∈ (0, λ(h)−1) for which c(t) = 1, and from
a = b

1−c
, we conclude that t = λ(f)−1 is the radius of convergence of a(t). □

3.3. Proof of Lemma 3.7. As in Theorem 3.6, we continue to assume for all
n ≥ 1 that each vector in An(V ∪P) lies in the interior of a d-dimensional cone
of Σ(Pd). We start with the following result.

Lemma 3.10. Suppose 1 ≤ k ≤ n and that E ⊂ Xk−1 is a pole with vE ∈⋃
j≥0A

j(V ∪ P). Then TE ∩ Ind(fk) = ∅. Moreover, there exists a pole E ′ of
Xk such that vE′ = AvE and fk maps TE onto TE′.

Proof. As above, we write fk = gk ◦ hk. By construction, AvE is realized as
a pole E ′ ⊂ Xk, so by Proposition 2.9, TE does not intersect Ind(hk), and hk
maps TE onto TE′ . Now vE′ ∈

⋃
j≥1A

j(V ∪P), so by our assumption on A, vE′

lies in the interior of a d-dimensional cone of Σ(Pd). Lemma 3.2 therefore shows
that TE′ does not intersect Ind(gj), and that gj maps TE′ onto itself. The result
follows. □
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Proof of Lemma 3.7. Note that a line L ⊂ Pd is internal and adapted to Pd

iff it meets T but does not meet the intersection of two distinct coordinate
hyperplanes. In this case, it meets each of the coordinate hyperplanes exactly
once, transversely, in the corresponding torus. For such lines (and hence for a
general line) X0 is adapted to C0 = C′

0, and (i)–(iv) hold when n = 0.
Now suppose n ≥ 1. We shall identify a Zariski closed subset Zn,0 ⊂ T of

codimension at least two such that if an internal line L ⊂ Pd has the property
that L ∩ Zn,0 = ∅ and Pd is adapted to L, then properties (i)–(v) hold.
By Proposition 3.4 we can find a Zariski closed subset Zn ⊂ T of codimension

at least two such that H∩Ind(gk) ⊂ Zn for 0 ≤ k ≤ n and gk(Hj \Zn) ⊂ TEj
for

0 ≤ j ≤ d, 0 ≤ k ≤ n. Using Zn, we construct Zariski closed subsets Z ′
n,k ⊂ T,

0 ≤ k ≤ n and Zn,k ⊂ T, 1 ≤ k ≤ n as follows. First set Z ′
n,n := Zn. Then

successively define

Zn,k := h−1
k+1(Z

′
n,k+1) and Z ′

n,k := Zn ∪ (g−1
k (Zn,k) ∩ (T \H))

for 0 < k < n, where the Zariski closure is taken in T. Finally set Zn,0 :=
h−1
1 (Z ′

n,1). These are all subsets of T of codimension at least two since hk+1 is
an automorphism of T and gk : T \H → T is an open embedding.

With these definitions, we obtain the following properties:

(a) if 0 ≤ k < n and p ∈ T \ Zn,k, then hk+1(p) ∈ T \ Z ′
n,k+1;

(b) if 1 ≤ k ≤ n and p′ ∈ Hj \ Z ′
n,k ⊂ Xk, then gk(p

′) ∈ TEj
, 0 ≤ j ≤ d;

(c) if 1 ≤ k ≤ n and p′ ∈ T \ (H ∪ Z ′
n,k) ⊂ Xk, then gk(p

′) ∈ T \ Zn,k.

It follows from these properties and from Lemma 3.10 that if p ∈ T\Zn,0 ⊂ X0,
then p ̸∈ Ind(Fn)∪Ind(F ′

n). Moreover, either Fn(p) ∈ T, or Fn(p) ∈ TE for some
pole E of Xn with vE ∈

⋃n−1
j=0 A

jV ; and either F ′
n(p) ∈ T \Zn or F ′

p(p) ∈ TE for

some pole E of Xn with vE ∈
⋃n−1

j=1 A
jV .

It also follows from Lemma 3.10 that if E ⊂ X0 is a pole with vE ∈ P , then
TE ∩ Ind(Fn) = ∅, and Fn maps TE onto TE′ , where E ′ ⊂ Xn is the unique pole
with vE′ = AnvE.

The above description now shows that if L ⊂ Pd is a line such that L∩Zn,0 = ∅
and Pd is adapted to L, then properties (i)–(v) of Lemma 3.7 hold. □

3.4. Proof of Theorem 1.2.

Proposition 3.11. Suppose the characteristic polynomial of A ∈ SLd(Z) is
irreducible over Q and that its largest roots in C are a conjugate pair ξmax, ξ̄max

satisfying ξnmax /∈ R for n ∈ Z≥0. If v ∈ Zd is non-zero and W ⊂ Rd is a rational
hyperplane, then there exists a positive integer N such that Anv /∈ W for n ≥ N .

Proof. By hypothesis W is the orthogonal complement of a non-zero vector
u ∈ Zd. Let V ′ ⊂ Rd denote the real A-invariant plane corresponding to the
pair ξmax, ξ̄max and V ′′ ⊂ Rd denote its A-invariant complement. Since A is
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an integer matrix with irreducible characteristic polynomial, neither V ′ nor V ′′

contain non-zero integer vectors.
Let an = ⟨u,Anv⟩. Then (an) is an integer linear recurrence sequence. Sup-

pose to get a contradiction that an = 0 for infinitely many n ∈ Z≥0. The
Skolem-Mahler-Lech Theorem (see 2.5 in [BGT16]) tells us that if this happens,
then an vanishes along an arithmetic progression; i.e. there exists m and l such
that akm+l = 0 for all k ∈ Z≥0. So replacing v by Alv and then A by Am, we
may assume that an = ⟨u,Anv⟩ = 0 for all n ∈ Z≥0.

However, decomposing v = v′ + v′′ into (necessarily non-zero) vectors v′ ∈ V ′

and v′′ ∈ V ′′, we have that |ξmax|−mn ∥Anv − Anv′∥ → 0. Since an = 0, we infer
that a′n := ⟨u,Anv′⟩ satisfies lim |ξmax|−mna′n = 0. Let P ∈ SLd(C) be a linear
change of coordinate such that PAP−1 is diagonal with entries ξmmax, ξ̄

m
max, . . .

equal to the eigenvalues of A. Then Pv′ = (z, z̄, 0, . . . , 0) for some non-zero z ∈
C and PAnv′ = (ξmn

maxz, ξ̄
mn
maxz̄, 0, . . . , 0). Moreover, the intersection V ′∩W is one-

dimensional, hence equal to Rw, where w ∈ W satisfies Pw = (ω, ω̄, 0, . . . , 0) for
some non-zero ω ∈ C. Convergence |ξ−mn

max |a′n → 0 translates to the statement

that
(

ξmax

|ξmax|

)mn

z is asymptotic to the line Rω as n→ ∞. But this is impossible,

because the hypothesis on ξmax implies that
{(

ξmax

|ξmax|

)mn

∈ C : n ∈ Z≥0

}
is dense

in the unit circle. □

Proof of Theorem 1.2. The complement of the open d-dimensional cones in
Σ(Pd) is contained in the finite union of rational hyperplanes spanned by distinct
pairs of vectors in U . So if, as in the statement of the theorem, Ã ∈ SLd(Z)
has irreducible characteristic polynomial and leading eigenvalues ξmax, ξ̄max with
ξnmax /∈ R for any n ∈ Z≥0, we can apply Proposition 3.11 to obtain N ∈ Z≥0

such that Ãnv avoids all (d− 1)-dimensional cones of Σ(Pd) for all n ≥ N . We
can therefore invoke Theorem 3.6 for A = ÃN to complete the proof. □

4. Background from diophantine approximation

In this section, we recall fundamental results in Diophantine approximation
and basic height bounds that we will use to quantify approximations of the
power series in Theorem 1.4.

Let K ⊂ Q̄ be a number field, and denote by MK the places of K, with
finite places Mfin

K and infinite places M inf
K . We normalize the absolute values

corresponding to elements of MK so that they extend the absolute values on Q
and satisfy the product formula ∏

ν∈MK

|z|ν = 1
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for all z ∈ K \ {0}. In particular, if ν ∈M inf
K is a complex place, corresponding

to a conjugate pair τ, τ̄ : K → C of complex embeddings, then |x|v = |τ(x)|2 =
|τ̄(x)|2.

We make use of a result of Evertse on linear forms. Given a finite set of places
S ⊂ MK that contains all the infinite places, we let OK(S) denote the set of
S-integers in K; that is,

OK(S) := {z ∈ K : |z|ν ≤ 1 ∀ν ̸∈ S}.
Then OK(S) is a ring, which is called the ring of S-integers in K, and the units
of OK(S) are call the S-units. In the case when S is the set of infinite places of
K, we write OK for OK(S), which is the ring of algebraic integers in K.
Given a vector z = (z1, . . . , zℓ) ∈ Kℓ we set

HS(z) :=
∏
ν∈S

max{|z1|ν , . . . , |zℓ|ν}.

We use the general result of Evertse [Eve84] on unit equations, as formulated
in [EG].

Theorem 4.1 ([EG], Proposition 6.2.1). Let S ⊂MK be a finite set of places of
K containing all infinite places, T a subset of S, and ℓ ≥ 2 an integer. For any
fixed ϵ > 0, there exists a constant c = c(K,S, ℓ, ϵ) so that if z = (z1, . . . , zℓ) ∈
OK(S)

ℓ and
∑

k∈I zk ̸= 0 for all non-empty I ⊂ {1, . . . , ℓ}, then∏
ν∈T

|z1 + · · ·+ zℓ|ν ≥ c

∏
ν∈T max{|z1|ν , . . . , |zℓ|ν}
HS(z)ϵ

∏
ν∈S
∏ℓ

k=1 |zk|ν
.

When comparing non-negative sequences we will use Vinogradov notation
‘aj ≫ bj’ to mean that bj ≤ Caj for some constant C > 0 and large enough
j ∈ Z≥0.

Corollary 4.2. Let K ↪→ C be a number field together with an embedding into
C. Let ξ ∈ K be such that ξj /∈ R whenever j is a non-zero integer. Then for
each non-zero a ∈ K, j ∈ Z≥0, and any r ∈ (0, 1), we have

|Re aξj| ≫ |rξ|j

We emphasize that for our purposes, it is important that r can be taken
arbitrarily close to 1 in this corollary.

Proof. By hypothesis ξ = |ξ|e2πit where t ∈ [0, 1) is irrational. Let z = (z1, z2) =
(aξj, āξ̄j). Since t ∈ R\Q, we see that z1+z2 = 0 for at most one j ∈ Z≥0. Take
S ⊂MK to be a finite set containing all infinite places of K so that a, ā, ξ, ξ̄ are
S-units. Set T = {| · |2}. Then the product formula tells us that

∏
ν∈S |zi|ν = 1

for i = 1, 2. Hence for every ϵ > 0, Theorem 4.1 gives

|2Re aξj|2 = |aξj + āξj|2 ≫ |ξ|2jHS(z)
−ϵ.
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As

HS(z) ≪

(∏
ν∈S

max{|ξ|ν , |ξ̄|ν}

)j

≤

(∏
ν∈S

max{|ξ|ν , |ξ̄|ν , 1}

)j

,

the conclusion follows by choosing ϵ > 0 so that(∏
ν∈S

max{|ξ|ν , |ξ̄|ν , 1}

)−ϵ

= r2,

noting that because ξ is not a root of unity, the product in parentheses is strictly
greater than 1. □

For further applications of Theorem 4.1, we need a basic height bound. Here
we employ multi-index notation

(4.1) ρα := ρα1
1 . . . ραd

d and deg(α) =
∑

αi

for all α = (α1, . . . , αd) ∈ Zd.

Lemma 4.3. Let D be a positive integer and let Z be a finite subset of K. Then
there exists a positive constant R such that whenever z =

∑
deg(α)≤D ζαρ

α is a
polynomial of degree at most D with coefficients ζα ∈ Z, we have∏

ν∈MK

max{|z|ν , 1} ≪ RD.

Proof. See the proof of Lemma 3.6 in [BDJ20]. □

Another result, useful for establishing non-degeneracy in Theorem 4.1, is the
following unit equations theorem of Evertse, Schlickewei, and Schmidt. We recall
that a finite sum

∑
i∈I aizi is non-degenerate if no proper subsum vanishes; that

is,
∑

j∈J ajzj ̸= 0 for all J ⊊ I. We say that an abelian group G is of finite rank
if there exists a finitely generated subgroup G′ of G such that every element of
G/G′ has finite order.

Theorem 4.4 ([ESS02]). Let G ⊂ C∗ be a multiplicative subgroup of finite rank
and let ℓ be a positive integer. Then for each (a1, . . . , aℓ) ⊂ Cℓ, there are only
finitely many non-degenerate sums∑

i∈I

aizi = 1,

where I ⊂ {1, . . . , ℓ} and zi ∈ G for all i ∈ I.

5. Proof of Theorem 1.3

We now explain how Theorem 1.3 may be reduced to proving Theorem 1.4.
The bulk of the work will be to establish an auxiliary result that gives us the
discordance condition needed to employ Theorem 1.4.
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5.1. Setup. Recall the relevant notation and assumptions from Theorem 1.3:
Ã ∈ SLd(Z) is a matrix of size d ≥ 3 with irreducible characteristic polynomial,
and U ,V ⊂ Zd are finite sets of vectors with #U ≥ 2. In particular, the set

W := (U − U) \ {0}

is non-empty. By hypothesis there are no angular resonances among the eigen-
values ξ = (ξ1, . . . , ξd) of Ã, and the eigenvalues of largest modulus are a complex
conjugate pair ξ1 = ξmax, ξ2 = ξ̄max. In particular,

θ := 1
2π

arg(ξmax) ∈ (0, 1)

is an irrational number.
We can extend the function Ψ := ΨU ,V : Matd(Z) → Z from Theorem 1.3 to

all of Matd(C) by

(5.1) Ψ(A) :=
∑
v∈V

max
u∈U

Re⟨u,Av⟩ =
∑
v∈V

Re⟨Γ(Av), Av⟩,

where ⟨z, z′⟩ =
∑d

i=1 ziz
′
i is the C-bilinear pairing on Cd, and for each z ∈ Cd,

the vector Γ(z) ∈ U is chosen so that

Re⟨Γ(z), v⟩ = max
u∈U

Re⟨u, z⟩.

Hence Γ : Cd → U is uniquely determined and locally constant outside the finite
collection of real hyperplanes given by

(5.2)
⋃
w∈W

{v ∈ Cd : Re⟨w, v⟩ = 0},

where as above W consists of differences between distinct elements of U .
Now let K ⊂ Q̄ be a splitting field for the characteristic polynomial of Ã.

Then the Ã-equivariant projection π̃ : Cd → Cd onto the ξmax-eigenspace of Ã is
defined over K. For any Y ∈ SLd(Z), we set

AY := Y −1ÃY

and let HY ⊂ Cd be the ξmax-eigenspace of AY . The AY -equivariant projection
πY : Cd → Cd onto HY is then given by πY (v) = Y −1π̃(Y v).
Since AY is an integer matrix with irreducible characteristic polynomial, no

proper AY or AT
Y invariant subspace of Rd contains non-zero integer vectors.

Thus, for any non-zero w ∈ Zd, the linear function Re⟨w, ·⟩ does not vanish
identically on HY . Indeed, since HY is AY -invariant, the subspace H⊥

Y of Cd

consisting of vectors z for which Re⟨z, ·⟩ vanishes is AT
Y invariant and proper

and therefore omits all integer vectors. It follows that the restriction Γ|HY
is

nonconstant, though still uniquely defined and locally constant outside a finite
union of real rays in the complex line HY .
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5.2. Reducing Theorem 1.3 to a discordance condition. To prove Theo-
rem 1.3, we need to study Ψ(Aj

Y ) for large j, and Equation (5.1) reduces this

to understanding Γ(Aj
Y v) for v ∈ V .

Lemma 5.1. Let v ∈ Zd be a non-zero vector. Then for all but finitely many
j ∈ Z≥0, we have

Γ(Aj
Y v) = Γ(ξjmaxπY (v)),

and the common value is a vector u ∈ U that uniquely maximizes both ⟨u,Aj
Y v⟩

and Re⟨u, ξjmaxπY (v)⟩.

Proof. Since the characteristic polynomial of Ã is irreducible over Q and since
v, w are non-zero integer vectors, πY (v) is non-zero and Re⟨w, ·⟩ does not vanish
identically on HY . So (real) linearity and the fact that ξj /∈ R for any j ∈ Z>0

imply that Re⟨w, ξjmaxπY (v)⟩ = 0 for at most one j ∈ Z≥0.
Hence, for sufficiently large j, we have Re⟨u, ξjmaxπY (v)⟩ > Re⟨ũ, ξjmaxπY (v)⟩,

where u = Γ(ξjmaxπY (v)) and ũ ∈ U \ {u} is any other vector.
We need to show that u also uniquely maximizes ⟨u,Aj

Y v⟩ for large j. Now

v′ := v − πY (v)− πY (v)

lies in the AY -invariant subspace of Cd complementing HY ⊕ H̄Y , so since
ξmax, ξ̄max are the eigenvalues of maximal magnitude, there exists ϵ > 0 such
that ∥∥Aj

Y v
′∥∥ ≤ (1− ϵ)j|ξmax|j

for sufficiently large j. On the other hand, given ũ ∈ U \ {u} we can apply
Corollary 4.2 with a = 2⟨u − ũ, πY (v)⟩ and some fixed r ∈ (1 − ϵ/2, 1). Then
from maximality of Re⟨u, ξjmaxπY (v)⟩ we obtain for large j that

2Re⟨u− ũ, ξjmaxπY (v)⟩ ≥ (1− ϵ/2)j|ξmax|j.
Hence

⟨u− ũ, Aj
Y v⟩ = 2Re⟨u− ũ, ξjmaxπY (v)⟩+ ⟨u− ũ, Aj

Y v
′⟩

≥ ((1− ϵ/2)|ξmax|)j − ((1− ϵ)|ξmax|)j > 0

for all j sufficiently large, completing the proof. □

Write AY = PDP−1, where D is the diagonal matrix with entries ξ1, . . . , ξd
and P = PY is a matrix with ith column equal to an eigenvector for ξi. By our
assumptions, the number field K contains all entries of P and D.

For large j ∈ Z≥0, Lemma 5.1 tells us that

(5.3) Ψ(Aj
Y ) =

∑
v∈V

⟨P TΓ(ξjmaxπY (v)), D
jP−1v⟩ =

〈
γY (jθ), (ξ

j
1, . . . , ξ

j
m)
〉
,

where

(5.4) γY = (γY,1, . . . , γY,d) : R → Kd
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is the piecewise constant and 1-periodic function with ith component given by

(5.5) γY,i(t) =
∑
v∈V

(P TΓ(e2πitπY (v)))i(P
−1v)i.

Lemma 5.2. For large j ≥ 1, the 1-periodic function on R given by

fj(t) := ⟨γY (t), (ξj1, . . . , ξ
j
d)⟩

is Z-valued, non-constant, and maximized at t = jθ. As a consequence, the
discontinuity set Dsc(γY ) ⊂ R of γY is non-empty.

Proof. Unwinding the definition of γY , it follows that

fj(t) =
∑
v∈V

⟨Γ(e2πitπY (v)), Aj
Y v⟩.

For any v ∈ V we have Γ(e2πitπY (v)) ∈ U ⊂ Zd and Aj
Y v ∈ Zd, so fj(t) ∈ Z.

Moreover, for any large enough j,

⟨Γ(e2πitπY (v)), Aj
Y v⟩ ≤ ⟨Γ(Aj

Y v), A
j
Y v⟩

= ⟨Γ(ξjmaxπY (v)), A
j
Y v⟩

= ⟨Γ(e2πijθπY (v)), Aj
Y v⟩,

where the inequality holds by definition of Γ, the first equality follows from
Lemma 5.1, and the second equality follows from homogeneity of Γ. Thus fj(t)
is maximized for t = jθ. It only remains to show that fj is non-constant. But if
fj were constant, the inequality above would have to be an equality for all t and
all v ∈ V . By the uniqueness statement in Lemma 5.1, this would imply that
Γ(e2πitπY (v)) is a constant function of t. Since πY (v) ̸= 0, the 0-homogeneous
function Γ|HY

would then be constant, a contradiction. □

In order to prove Theorem 1.3 we will require the following result, whose
proof will be given in the following subsection.

Theorem 5.3. There exists a coset Y ⊂ SLd(Z) of a finite-index subgroup such
that θ and Dsc(γY ) are discordant for every Y ∈ Y.

Recall that discordance means that for any t, t′ ∈ Dsc(γY ) ∪ {0} and any
a, b ∈ Z, aθ = b(t− t′) mod 1 implies a = 0 and either t− t′ ∈ Z or b is even;

Taking Theorem 5.3 for granted momentarily and assuming Theorem 1.4, we
can quickly give the proof of Theorem 1.3.

Proof of Theorem 1.3. Suppose Y ∈ SLd(Z) is such that θ and γ := γY is
discordant, and fix N ≥ 1. Then Nθ and γ are also discordant.

Since the largest eigenvalues of Ã are ξmax, ξ̄max, the radius of convergence
of the series (1.3) in Theorem 1.3 is at least |ξmax|−N . Pick any x ∈ Q̄ ∩
(0, |ξmax|−N), and set

(5.6) ρi = (xξi)
N for i = 1, . . . , d,
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so that |ρi| < 1 for all i.
In view of Theorem 5.3 and Equation (5.3), it suffices to show that

(5.7) Ω :=
∞∑
j=1

〈
γ(jNθ), (ρj1, . . . , ρ

j
m)
〉

is transcendental. Indeed, the series in Theorem 1.3 might differ from this one
in finitely many terms, but this is immaterial since all terms are algebraic.

We must show that the hypotheses of Theorem 1.4 are satisfied. First, the
assumption that there are no angular resonances between distinct eigenvalues
ξi of A implies that the ρi are pairwise multiplicatively independent. Indeed,
suppose ρai ρ

b
j = 1, where i ̸= j and (a, b) ̸= (0, 0). As |ρi| < 1, we can’t

have a, b ≥ 0 or a, b ≤ 0, so we may assume a > 0 and b = −c < 0. Then
ξNa
i = xN(a+c)ξNc

j , and hence ξNa
i ξ̄Nc

j = xN(a+c)|ξj|2Nc > 0, a contradiction.
Second, we have already observed that Nθ and γ are discordant.
It therefore only remains to show that the maximality condition in Theo-

rem 1.4 holds. But this amounts to, for j large, the 1-periodic function

t 7→ ⟨γ(Nt), (ρj1, . . . , ρ
j
d)⟩ = xNjfj(Nt)

being R-valued, non-constant, and maximized at t = jNθ. Here fj is the
function in Lemma 5.2, which therefore allows us to conclude the proof. □

5.3. Establishing discordance. We will spend the rest of this section proving
Theorem 5.3. The discontinuities of γY all arise from discontinuities of Γ|HY

.
More precisely, (5.5) shows that t0 ∈ Dsc(γY ) implies that the function t 7→
Γ(e2πitπY (v)) is discontinuous at t0 for some v ∈ V . This, in turn, means that
⟨w, e2πit0πY (v)⟩ is purely imaginary for some w ∈ W = (U − U) \ {0}; hence
e4πit0 is one of the finitely many elements of K of the form

(5.8) σ(Y, v, w) := −⟨w, πY (v)⟩
⟨w, πY (v)⟩

.

Most of the time we will fix v and w and regard σ : SLd(Z) → K as a function
of Y only. To obtain Theorem 5.3 we will show that for “many” Y ∈ SLd(Z),
σ(Y ) is not a unit in the ring of algebraic integers of K, see Corollary 5.10
below.

Fix ξmax-eigenvectors vmax, umax ∈ Kd of Ã and ÃT , respectively, normalized
so that ⟨umax, vmax⟩ = 1. Then the projection π̃ : Cd → Cd onto the ξmax-
eigenspace of Ã is given by π̃(v) = ⟨umax, v⟩vmax. For Y ∈ SLd(Z) we further
have that

πY (v) = ⟨umax, Y v⟩Y −1vmax.

Hence we can rewrite

(5.9) σ(Y, v, w) = −⟨ūmax, Y v⟩⟨w, Y −1v̄max⟩
⟨umax, Y v⟩⟨w, Y −1vmax⟩

.
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This formula extends σ to a rational function σ : Matd(C) 99K C on the space

Matd(C) ≃ Cd2 , with the homogeneity property σ(zY ) = σ(Y ) for all z ∈ C∗.
Note that σ is regular and non-zero at any Y ∈ SLd(Z), since neither the

numerator nor the denominator of (5.9) can vanish. For example ⟨umax, Y v⟩ ≠ 0
since Y v ∈ Zd is non-zero and the entries of umax are Q-linearly independent,
given that Ã has irreducible characteristic polynomial.

Lemma 5.4. Given v, ṽ ∈ V and w, w̃ ∈ W, define σ, σ̃ : Matd(C) → C by

σ(Y ) := σ(Y, v, w) and σ̃(Y ) = σ(Y, ṽ, w̃).

Then

(i) σ and σ̃ are non-constant;
(ii) either σ/σ̃ is non-constant or σ ≡ σ̃, the latter occurring precisely when

v is a multiple of ṽ and w is a multiple of w̃.

Proof. Recall that all vectors in V and W are non-zero.
We first prove (i), supposing to get a contradiction that σ(Y ) = σ0 for some

constant σ0 and every Y ∈ SLd(Z). Since SLd(Z) is Zariski dense in SLd(C),
and σ(zY ) = σ(Y ) for all z ∈ C∗ and Y ∈ GLd(C), we infer that σ(Y ) = σ0
for all Y ∈ GLd(C). Taking H ⊂ Matd(C) to be the complex hyperplane
of matrices Y such that ⟨umax, Y v⟩ = 0, we note that since the (irreducible)
variety {det(Y ) = 0} contains no hyperplanes, invertible matrices are Zariski
dense in H. So for general Y ∈ H, we have

0 = σ0⟨umax, Y v⟩⟨w, Y −1vmax⟩ = ⟨ūmax, Y v⟩⟨w, Y −1v̄max⟩.

Hence one of the two factors on the right vanishes identically. But ξmax /∈ R
implies that umax and ūmax are linearly independent. So ⟨ūmax, Y v⟩ ≠ 0 outside
a proper linear subspace of H, and it must be that ⟨w, Y −1v̄max⟩ = 0 for every
invertible Y ∈ H.

But this amounts to saying that there is a hyperplane H ′ ⊂ Matd(C) such
that for all invertible Y ∈ H, we have Y −1 ∈ H ′. To see that this is impossible,
choose matrices B1, B2 ∈ GLd(C) such that BT

1 umax = (1, 0, . . . , 0) and B2v =
(0, . . . , 0, 1). Replacing all Y ∈ H by B−1

1 Y B−1
2 , we may assume that H is the

set of matrices whose (1, d)-entry is zero. It follows that H and therefore also
H ′ contains all diagonal matrices. And for any distinct i, j ∈ {1, . . . , d} with
(i, j) ̸= (1, d), we have Y = I + Eij ∈ H, where Eij is the matrix with (i, j)-
entry equal to 1 and all other entries equal to zero. Thus Y −1 = I − Eij ∈ H ′,
and we infer from taking linear combinations that H ⊂ H ′. Finally, H also
contains the upper triangular matrix Y = I +

∑d−1
i=1 Ei,i+1 whose (d, 1)-minor

has non-zero determinant. Hence Y is invertible and by Cramer’s formula for
Y −1, the (1, d)-entry of Y −1 is non-zero. It follows that H ′ is strictly larger than
H and in particular, not a hyperplane.
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It remains to prove (ii), so assume instead that σ/σ̃ is constant on SLd(Z).
As before, this identity extends to all of GLd(C). Also assume that v and ṽ are
not proportional; the case when w and w̃ are not proportional is similar.

We again let H be the set of d×d complex matrices Y for which ⟨umax, Y v⟩ =
0. This time, we obtain from the formulas for σ and σ̃ that

0 = ⟨ūmax, Y v⟩⟨w, Y −1v̄max⟩⟨umax, Y ṽ⟩⟨w̃, Y −1vmax⟩

for all Y ∈ H. Thus one of the four factors on the right vanishes identically. But
we already showed that the first two factors can’t vanish, and the fourth factor
may be excluded by the same argument used to rule out the second. Finally,
since ṽ is not a multiple of v, we exclude the third factor for the same reason as
the first. So we again have our contradiction. □

Lemma 5.5. Let σ : SLd(C) 99K C be a non-constant rational function that is
regular at any element of Y ∈ SLd(Z). Then there exists a matrix Y ∈ SLd(Z)
and a nilpotent matrix B ∈ Matd(Z) such that the function τ : Z → C given by
τ(k) = σ(Y (I + kB)) is non-constant.

Proof. Suppose that τ is constant for all choices of Y and B. Working induc-
tively, we then have

σ((I + k1B1) · · · · · (I + ksBs)) = σ((I + k1B1) · · · · · (I + ks−1Bs−1)) = · · · = σ(I)

for all k1, . . . , ks ∈ Z and nilpotent B1, . . . , Bs ∈ Matd(Z). By [GT93] the group
generated by unipotent matrices I + kB is a finite-index subgroup of SLd(Z)
and therefore Zariski dense in SLd(C). It follows that σ(Y ) ≡ σ(I) is constant
on SLd(C). □

Recall that OK denotes the subring of integers in the splitting field K and O∗
K

denotes its group of units, a finitely generated abelian group. Recall also (see §4)
that Mfin

K denotes the set of finite places ν on K and |·|ν denotes the associated
absolute values. Every such absolute value extends (up to normalization) the
p-adic absolute value |·|p on Z associated to the unique prime p ∈ Z≥0 for which

|p|ν < 1. Conversely, for any prime p there are finitely many ν ∈Mfin
K such that

|p|ν < 1. Recall that if a ∈ K, then a ∈ O∗
K iff |a|ν = 1 for all ν ∈Mfin

K .
The following lemma is well-known and can be deduced from a result of

Schur [GB71, Sch12]. Since we lack a precise reference, we give a different proof.
It depends on two distinct ways to determine whether a sequence (τ(k))k≥0 ⊂ C
satisfies a linear recurrence τ(k + n) =

∑
0≤j<n cjτ(k + j). First, if τ(k) is

the restriction of a rational function τ : C → C, then (τ(k)) satisfies a linear
recurrence if and only if the rational function is a polynomial. Second, we have
the more standard general fact that (τ(k)) satisfies a linear recurrence if and
only if its generating function

∑
τ(k)zk is rational.
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Lemma 5.6. Let τ ∈ K(x) be a non-constant rational function. Then there
are infinitely many places ν ∈ Mfin

K for which there is some integer k such that
|τ(k)|ν ̸= 1.

Proof. Write τ = α/β as a quotient of coprime polynomials α, β ∈ K[x]. Then
the sequences (α(k))k≥0 and (β(k))k≥0 each satisfy linear recurrences. If there is
a finite set of places S, including all infinite places, such that τ(k) ∈ OK(S)

∗ for
every k ∈ Z, then both α(k)/β(k) and β(k)/α(k) are in the finitely generated
ring OK(S) for every k. So by the Hadamard quotient theorem [vdP88], the
generating functions for the sequences are rational. Hence both τ and 1/τ are
polynomials. So τ is constant. □

Recall that the congruence subgroup of SLd(Z) determined by a positive inte-
ger n is the finite index subgroup

SLd(Z;n) := {B ∈ SLd(Z) : B ≡ I modn}.
Lemma 5.7. Let σ : Matd(C) 99K C be a rational function, defined over K,
that is regular and non-zero at every point in SLd(Z). Let Y ∈ SLd(Z) be a
matrix. Assume |σ(Y )|ν > 1 for some place ν ∈ Mfin

K , and let p ∈ Z≥0 be the
unique prime for which |p|ν < 1. Then there exists a positive integer k such that
|σ(Y B)|ν > 1 for every B ∈ SLd(Z; pk).

Proof. Let ϵ1, . . . , ϵs be an integral basis for OK , and write σ = α/β as a quo-
tient of coprime polynomials with coefficients in K. We may rationalize σ by
multiplying the numerator and denominator by the non-trivial Galois conju-
gates of β; that is, the polynomials obtained by application of an element of
Gal(K̄/K) to the coefficients of β. Since β(Y ) ̸= 0 and Y is defined over Q, the
rationalization is regular at Y and has denominator with rational coefficients.
We can therefore write

σ =
∑

σjϵj

where each σj is a rational function with rational coefficients, regular at Y ; can-
celling denominators, we can assume these coefficients are integers. Writing σj =
αj/βj as a quotient of coprime integer polynomials, we have minj |βj(Y )|p = p−m

for some m > 0.
Take k = 2m+ 1 and suppose B ∈ SLd(Z; pk). For any j we can write

σj(Y B) =
αj(Y B)

βj(Y B)
=
ajp

k + αj(Y )

bjpk + βj(Y )

for some aj, bj ∈ Z. This gives

|σ(Y B)− σ(Y )|ν ≤ max |ϵj|ν

∣∣∣∣ajpkβj(Y )− bjp
kαj(Y )

(bjpk + βj(Y ))βj(Y )

∣∣∣∣
p

≤ 1 · p−1 < 1,

since |ϵj|ν ≤ 1 and pk divides the numerator but not the denominator of the
fraction accompanying ϵj. We conclude that |σ(Y B)|ν = |σ(Y )|ν > 1. □
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Lemma 5.8. Let σ1, . . . , σℓ : Matd(C) 99K C be rational functions defined over
K, that are regular and non-zero at every point in SLd(Z). Let Y ∈ SLd(Z) be
a matrix such that σi(Y ) ̸∈ O∗

K for every i. Then there exists n ∈ Z≥0 such that
for any B ∈ SLd(Z;n) and any i we have σi(Y B) /∈ O∗

K.

Proof. After replacing some of the functions σi by their reciprocals σ−1
i if neces-

sary, we may assume that σi(Y ) ̸∈ OK for i = 1, . . . , ℓ. As in Lemma 5.7,
we fix an integral basis ϵ1, . . . , ϵs for OK and we decompose the functions
σi =

∑
σi,jϵi, with the rational functions σi,j defined over Q and regular at

Y . For each i ∈ {1, . . . , ℓ}, σi(Y ) /∈ OK , and thus there is some j = j(i) such
that σi,j(Y ) /∈ Z. We write σi,j = αi/βi where αi, βi are coprime integer poly-
nomials in d2 variables such that βi(Y ) is non-zero. By assumption αi(Y ) and
βi(Y ) are integers such that βi(Y ) ∤ αi(Y ). We take n = 2

∏
i βi(Y ) ∈ Z \ {0}.

Given B ∈ SLd(Z;n), we have (as in the proof of Lemma 5.7) integers ai, bi
such that

σi,j(Y B) =
ain+ αi(Y )

bin+ βi(Y )
,

where the denominator is non-zero because βi(Y ) divides n/2. Since βi(Y )
divides n but not αi(Y ), it follows that σi,j(Y B) /∈ Z for i = 1, . . . , ℓ and
j = j(i). Hence σi(Y B) ̸∈ OK for i = 1, . . . , ℓ. □

Lemma 5.9. If n, n′ ∈ Z≥0 are coprime and Y, Y ′ ∈ SLd(Z) for d ≥ 3, then the
Y -coset of SLd(Z;n) intersects the Y ′-coset of SLd(Z;n′).

Proof. Since SLd(Z;n) and SLd(Z;n′) are finite index normal subgroups of SLd(Z),
so is the product G := SLd(Z;n) SLd(Z;n′). Since d ≥ 3, G is itself a congruence
subgroup [BLS64], i.e. G = SLd(Z;n′′) for some n′′ > 0. Since gcd(n, n′) = 1,
we have a, b ∈ Z such that an+ bn′ = 1. So G contains in particular the matrix
I +B12 = (I + anB12)(I − bn′B12), where B12 is the matrix with 12-entry equal
to 1 and all other entries equal to 0. Thus n′′ = 1 and G = SLd(Z) is the entire
group. It follows that Y −1Y ′ = B(B′)−1 for some B ∈ SLd(Z;n) and some
B′ ∈ SLd(Z;n′), giving us that Y B = Y ′B′ ∈ Y SLd(Z;n) ∩ Y ′ SLd(Z;n′). □

Putting the above results together, we arrive at the following summary state-
ment.

Corollary 5.10. There exists a coset Y ⊂ SLd(Z) of a finite index subgroup
such that the following hold for any Y ∈ Y.

(i) σ(Y, v, w) /∈ O∗
K for any v ∈ V and w ∈ W; and

(ii) σ(Y, v, w)/σ(Y, ṽ, w̃) /∈ O∗
K for any v, ṽ ∈ V and w, w̃ ∈ W unless both

pairs of vectors are linearly dependent.

Proof. Let {σ1, . . . , σL} be the collection of all rational functions σi : Matd(C) 99K
K obtained by setting σi(Y ) = σ(Y, v, w) or σi = σ(Y, v, w)/σ(Y, ṽ, w̃), where
(in the latter case) both pairs v, ṽ ∈ V and w, w̃ ∈ W are linearly independent.
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By Lemma 5.4, the σi are all non-constant, and they are regular and non-zero
at any Y ∈ SLd(Z).
By Lemmas 5.5 and 5.6 there exists Y1 ∈ SLd(Z) such that σ1(Y1) /∈ O∗

K . So
by Lemma 5.7, there exist n1 ∈ Z≥0 and σ1(Y1B) /∈ O∗

K for all B ∈ SLd(Z;n1).
Suppose inductively that for some ℓ < L there exists Yℓ ∈ SLd(Z) and nℓ ∈ Z≥0

such that σ1(YℓB), . . . , σℓ(YℓB) /∈ O∗
K for all B ∈ SLd(Z;nℓ).

By Lemmas 5.5, 5.6 and 5.7, we may also choose a matrix Y ′ ∈ SLd(Z), a
prime p not dividing nℓ, and k ∈ Z≥0, such that σℓ+1(Y

′B′) /∈ O∗
K for B′ ∈

SLd(Z; pk). Finally, Lemma 5.9 tells us that the cosets Yℓ · SLd(Z;nℓ) and Y
′ ·

SLd(Z; pk) intersect non-trivially. So picking Yℓ+1 in the intersection then gives
σi(Yℓ+1) ̸∈ O∗

K for all i = 1, . . . , ℓ + 1. Lemma 5.8 further yields an nℓ+1 ∈ Z≥0

such that σi(YℓB) /∈ O∗
K for any i = 1, . . . , ℓ + 1 and any B ∈ SLd(Z;nℓ+1).

Once ℓ+ 1 reaches L, the induction is complete. □

Proof of Theorem 5.3. Let Y ⊂ SLd(Z) be the coset given by Corollary 5.10
and let Y ∈ Y be any element. If a, b ∈ Z and t ∈ Dsc(γY ) satisfy aθ =
bt (mod 1), then we have v ∈ V and w ∈ W such that

(ξmax/ξ̄max)
a = e4πiaθ = e4πibt = σ(Y, v, w)b.

But ξmax and ξ̄max are eigenvalues of a matrix in SLd(Z) and therefore units
of OK . So unless b = 0, the equation implies that σ(Y, v, w) is a unit in OK ,
contrary to our choice of Y . And if b = 0, it follows that a = 0 because by
hypothesis no power of ξmax is real.

Now suppose aθ = b(t− t′) for some a, b ∈ Z and t, t′ ∈ Dsc(γY ). Then

(ξmax/ξ̄max)
a =

(
σ(Y, v, w)

σ(Y, ṽ, w̃)

)b

for some v, ṽ ∈ V and w, w̃ ∈ W . If b ̸= 0, then σ(Y, v, w)/σ(Y, ṽ, ũ) is a unit in
OK as before. Then Corollary 5.10 tells us that ṽ is a multiple of v and w̃ is a
multiple of w. In this case,

e4πit = σ(Y, ṽ, w̃) = σ(Y, v, w) = e4πit
′
,

which implies that 2(t− t′) = 0 mod 1 and also (ξmax/ξ̄max)
a = 1. Hence a = 0;

and if t− t′ ̸= 0 mod 1, then b is even. □

Remark 5.11. The reduction of Theorem 5.3 to Corollary 5.10 furnishes a rea-
sonably practical way to verify the conclusion of Theorem 5.3 for specific sets
V and W and matrices A and Y . That is, from the given data, one generates
finitely many elements σ(Y ), σ(Y )/σ̃(Y ) ∈ K which can then be checked very
quickly by computer to see whether any are algebraic integers. Implementing
the check in software such as Maple, Mathematica and Sage requires only a few
lines of code.
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6. Proof of Theorem 1.4

6.1. Setup. Let us begin by recalling the relevant notation and assumptions
from Theorem 1.4. For convenience we take K to be a number field contain-
ing the finitely many pertinent elements of Q̄ specified in the next couple of
paragraphs, fixing an embedding K ↪→ C and letting | · | denote the induced
archimedean absolute value on K.

We are given a (possibly transcendental) irrational number θ, a vector ρ :=
(ρ1, . . . , ρd) ∈ Kd and a piecewise, but not globally, constant 1-periodic vector-
valued function γ : R → Kd. These satisfy the following additional conditions

(i) The entries of ρ are pairwise multiplicatively independent, and each
satisfies |ρi| < 1;

(ii) θ and ρ are discordant (see the paragraph before Theorem 1.4);
(iii) for each j ∈ Z≥0 sufficiently large, the function t 7→

〈
γ(t), (ρj1, . . . , ρ

j
d)
〉

is real-valued and maximized by t = jθ.

We aim to show that Ω =
∑∞

j=1

〈
γ(jθ), ρj1, . . . , ρ

j
d)
〉
is transcendental.

To get a contradiction, we assume henceforth that Ω ∈ Q̄. We then let Z ′ ⊂ Q̄
be the finite set of values taken by the components of γ together with {−1, 0, 1},
and we let Z = (Z ′ − Z ′) ∪ {Ω, ρ1, . . . , ρd} be the set of differences of elements
of Z ′ together with the finite set {Ω, ρ1, . . . , ρd}. Enlarging if necessary, we may
assume that K contains Z. For purposes of applying Theorem 4.1 throughout
this section, we let S ⊂MK consist of all infinite places together with all finite
places that have non-zero valuation on some element of the finite set Z, and we
take T = {| · |2}.
We will proceed with a Liouville-style argument, constructing high-quality

but not exact algebraic approximations of Ω. The maximality hypothesis (iii)
will allow us to rule out exactness. We employ Theorem 4.4 to strengthen it,
showing that

〈
γ(t), (ρj1, . . . , ρ

j
d)
〉
is not only maximized by t = jθ, but for the

most part strictly so.

Lemma 6.1. For j ∈ Z≥0 sufficiently large, if t ∈ R with γ(t) ̸= γ(jθ), then〈
γ(jθ)− γ(t), (ρj1, . . . , ρ

j
d)
〉
> 0.

Proof. By the maximization hypothesis (iii) on γ, it suffices to show that there
are only finitely many j ∈ N for which there exists t ∈ R with γ(jθ) ̸= γ(t) and

(6.1)
〈
γ(jθ)− γ(t), (ρj1, . . . , ρ

j
d)
〉
= 0.

Given such a j, assume without loss of generality that γ1(jθ) ̸= γ1(t). Rear-
ranging (6.1) we obtain

d∑
i=2

γi(jθ)− γi(t)

γ1(jθ)− γ1(t)
·

(
ρji
ρj1

)
= 1.
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So zi = (ρi/ρ1)
j is a (possibly degenerate) solution of

∑d
i=2 aizi = 1, where the

coefficients ai are taken from the finite set{
γi(s)− γi(t)

γ1(s)− γ1(t)
: γ1(s) ̸= γ1(t) and i ̸= 1

}
and zi in the finite rank multiplicative group G generated by the finitely many
coordinates ρi of ρ. While the sum

∑d
i=2 aizi = 1 may contain a vanishing

subsum, we may discard a maximal set I ⊂ {2, . . . , d − 1} for which
∑

i∈I aizi
vanishes. As the full sum is non-zero, I is necessarily a proper subset, and we
obtain a non-degenerate solution

∑
i/∈I aizi = 1. Theorem 4.4 then tells us that

there are only finitely many such solutions with all zi ∈ G. Hence there is a finite
set X ⊂ G, independent of j, such that whenever (6.1) holds, zi = (ρi/ρ1)

j ∈ X
for some i ∈ {2, . . . , d}.

On the other hand, the independence hypothesis (i) above implies for any
i ̸= 1 that distinct values of j yield distinct elements (ρi/ρ1)

j ∈ G. In particular
(ρi/ρ1)

j ∈ X for only finitely many j, and as there are only d − 1 possibilities
for i, we conclude that (6.1) can hold for only finitely many j. □

6.2. Convergents and n-irregular indices. For t ∈ R, we let ∥t∥ denote the
distance from t to the nearest integer and let {t} ∈ [0, 1) denote the fractional
part of t.

Recall (from e.g. Chapters X-XI of [HW]) that any irrational number θ ∈ R
admits an infinite sequence of continued fraction approximants mi/ni, with ni

strictly increasing, mi coprime to ni, and |niθ −mi| < 1
ni

for all i ∈ Z≥0.

Definition 6.2. We call mi/ni the convergents of θ, and write Cvgt(θ) := {ni}i
for the set of convergent denominators of θ.

We recall here three elementary properties of convergents, proofs of which
may be found in the first two chapters of [Khi64].

(i) A convergent mi/ni of θ is a best approximation of the second kind;
that is, for all n ∈ N, ∥nθ∥ < ∥niθ∥ implies n > ni.

(ii) If m/n ∈ Q is in lowest terms with |θ − m/n| < 1
2n2 , then m/n is a

convergent of θ. It follows that if n ∈ N and ∥nθ∥ < 1
2n
, then n is a

multiple of some element of Cvgt(θ).
(iii) For any i ∈ N we have ∥niθ∥ < 1

ni+1
.

Definition 6.3. Given n ∈ Cvgt(θ) and j ∈ N with j > n, we say that j is
n-irregular if γ((j − n)θ) ̸= γ(jθ).

If j is n-irregular, then jθ approximates some t ∈ Dsc(γ) ∩ [0, 1) in the sense
that

(6.2) ∥jθ − t∥ ≤ ∥nθ∥,
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and we call this t a crossing angle of j for n. Since Dsc(γ)∩ [0, 1) is finite, when
∥nθ∥ is small enough, the crossing angle of j for n is unique. In particular if
n ∈ Cvgt(θ) is a sufficiently large convergent denominator, the third property
of convergents noted above yields a unique crossing angle of j for n whenever j
is n-irregular.
We now show that the approximability properties of convergents of θ ensure

that n-irregular indices are sparse for n ∈ Cvgt(θ).

Lemma 6.4. Let D be the number of elements of Dsc(γ) ∩ [0, 1). Given C > 0
and n ∈ Cvgt(θ) sufficiently large, there are at most D(C−1) n-irregular indices
j ∈ (n,Cn].

Proof. Suppose that n ∈ Cvgt(θ) is large enough that crossing angles are well-
defined for n-irregular indices. Since θ is irrational, we may also assume that
for j > n we have {jθ} ̸∈ Dsc(γ), as only finitely many j ∈ N will fail this
condition. Suppose that j ̸= j′ are n-irregular indices with the same crossing
angle t ∈ Dsc(γ). Since n ∈ Cvgt(θ) is a large convergent of θ, nθ mod 1
is either a small positive number or slightly less than 1. In the former case,
any n-irregular index j has jθ mod 1 slightly larger than t, and in the latter,
slightly less than t (unless t = 0, in which case any n-irregular index j has jθ
mod 1 close to 1). Thus jθ mod 1 and j′θ mod 1 are either both smaller or
larger than t; since ∥jθ − t∥, ∥j′θ − t∥ < ∥nθ∥, we see that ∥(j − j′)θ∥ < ∥nθ∥.
Since n is a convergent denominator, we conclude that |j − j′| > n. Thus
(n,Cn] contains at most (C−1) n-irregular numbers with crossing angle t. The
assertion then follows from applying this bound to all possible crossing angles
t ∈ Dsc(γ) ∩ [0, 1). □

6.3. Ubiquity of n-irregular indices. We now define some useful algebraic
approximations of Ω and estimate their quality. A consequence of our estimates
and the assumption Ω ∈ K will be that, in spite of Lemma 6.4, n-irregular
numbers occur with some frequency.

Define ω(i) :=
∑∞

j=1 γi(jθ)ρ
j
i , so that Ω =

∑d
i=1 ω

(i). To each pair of integers

b ≥ 0 and n ≥ 1, we associate the following K-rational approximation of ω(i),
which has n-periodic coefficients after the first bn terms:

ω
(i)
n,b :=

bn∑
j=1

γi(jθ)ρ
j
i +

1

1− ρni

(b+1)n∑
j=bn+1

γi(jθ)ρ
j
i .

Then

(6.3) ω(i) − ω
(i)
n,b =

∑
j>(b+1)n

(γi(jθ)− γi(j̃θ))ρ
j
i ,
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where j̃ ∈ (bn, (b+ 1)n] agrees with j modulo n. Finally, write

(6.4) Ωn,b :=
d∑

i=1

ω
(i)
n,b.

When n ∈ Cvgt(θ) is large, Ωn,b is a real number by (iii) in §6.1, and the
sequence (γi(jθ))j∈Z≥0

is nearly n-periodic, and so the difference Ω − Ωn,b is a
small real number. Crucially, however, it does not vanish.

Proposition 6.5. Let b be a positive integer. Then Ω > Ωn,b for all but finitely
many n ∈ Cvgt(θ).

Proof. By Equations (6.3) and (6.4) we have

Ω− Ωn,b =
d∑

i=1

ω(i) − ω
(i)
n,b =

∑
j>(b+1)n

〈
γ(jθ)− γ(j̃θ), (ρj1, . . . , ρ

j
d)
〉
.

By Lemma 6.1 and the maximization hypothesis (see (iii) in §6.1) on γ, it
suffices to find for n ∈ Cvgt(θ) sufficiently large a single j ≥ (b+ 1)n such that
γ(jθ) ̸= γ(j̃θ).

As γ is non-constant and piecewise constant, there exist non-empty open
intervals I, I ′ ⊂ [0, 1) such that γ is constant on I and I ′ but γ(I) ̸= γ(I ′). As
θ /∈ Q, we have {pθ} ∈ I ′ for some p ∈ Z≥0. Now for n ∈ Cvgt(θ) large enough,
we have

• n > p,
• {(p+ bn)θ} ∈ I ′, and
• ∥nθ∥ is smaller than the width of I.

The last condition guarantees the existence of an integer k′ > b such that
{(p + k′n)θ} ∈ I. Taking j = p + k′n we have {jθ} ∈ I and, by the first two
conditions, that j̃ = p + bn, so that {j̃θ} ∈ I ′. Thus, γ(jθ) = γ(I) ̸= γ(I ′) =
γ(j̃θ) as desired. □

For each n ∈ Z≥0, write

Qn =
d∏

i=1

(1− ρni ).

Note that Qn and Qnω
(i)
n,b are polynomials in ρ of degree at most dn and (d+b)n,

respectively, with coefficients in the finite set Z. Furthermore, as all elements

of Z are S-units by definition of S, Qn and Qnω
(i)
n,b are S-integral. We have

(6.5) Qn ·
(
ω(i) − ω

(i)
n,b

)
=
∏
k ̸=i

(1− ρnk)
∑

j>(b+1)n

(γi(jθ)− γi((j − n)θ)) ρji .

Recall now the Vinogradov notation ‘≫’ introduced after Theorem 4.1.
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Proposition 6.6. Let b be a positive integer and let R > 0 be as in Lemma 4.3.
Then for n ∈ Cvgt(θ) we have,

|Qn · (Ω− Ωn,b) |2 ≫ R−3(b+d)n.

Proof. Assume first that Ω ̸= 0. Then both z1 := QnΩ and z2 := −QnΩn,b are
non-zero S-integers, and |zi−Ω| → 0 as Cvgt(θ) ∋ n→ ∞, and so for sufficiently
large n, we have z1, z2 ̸= 0. Then Proposition 6.5 ensures that z1 + z2 ̸= 0 for
sufficiently large n ∈ Cvgt(θ).

Since z1 and z2 are polynomials in ρ of degree at most (d + b)n with co-
efficients in the finite set Z, we may apply Lemma 4.3 to obtain the bound∏

ν∈MK
max{|zj|ν , 1} ≪ R(b+d)n for j ∈ {1, 2}. Hence

∏
ν∈S

|zj|ν ≪ R(b+d)n,

and

HS(z1, z2) =
∏
ν∈S

max{|z1|ν , |z2|ν} ≤
∏
ν∈S

2∏
j=1

max{|zj|ν , 1} ≪ R2(b+d)n.

We conclude from Theorem 4.1, taking z = (z1, z2) and ϵ = 1, that

|z1 + z2|2 ≫
|z1|2

R3(b+d)n
≫ 1

R3(b+d)n
,

where the second inequality follows from the assumption that Ω ̸= 0 and so |z1|
is bounded below independently of n.
In the case that Ω = 0, choose z ∈ Z \ {0}, and replace z1 and z2 with z1 + z

and z2−z to guarantee that neither vanishes for large n; with this choice, z1 and
z2 remain ρ-polynomials of the same degree, with coefficients in Z, and z1 + z2
is unchanged. Proceeding as above we deduce the desired inequality. □

Corollary 6.7. There exists c0 > 1 such that for all M ∈ N, there is at least
one n-irregular number j ∈ [Mn, c0Mn) for all n ∈ Cvgt(θ) sufficiently large.

Proof. Choose λ ∈ (0, 1) such that |ρi| ≤ λ for all 1 ≤ i ≤ d. Suppose for some
integer C ≥ 1 and arbitrarily large n ∈ Cvgt(θ) that there are no n-irregular
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j ∈ (Mn,CMn]. Then we estimate using (6.5) and b =M that

|Qn (Ω− Ωn,M) | =

∣∣∣∣∣
d∑

i=1

Qn

(
ω(i) − ω

(i)
n,M

)∣∣∣∣∣
≤

d∑
i=1

∏
k ̸=i

|1− ρnk |
∑

j>M(n+1)

|γi(jθ)− γi((j − n)θ)||ρji |

≪
d∑

i=1

∑
j>CMn

|γi(jθ)− γi((j − n)θ)||ρji |

≪ λCMn.

So from Proposition 6.6, we infer that λ2CMn ≫ R−3(M+d)n. This implies that

C < (d + 1) 3 logR
2 log λ−1 , and so picking c0 > λ

(
1, (d+ 1) 3 logR

2 log λ−1

)
, we obtain the

desired result. □

Remark 6.8. If θ is sufficiently well-approximable by rationals (for example, if θ
has unbounded integers in its continued fraction expansion), one may prove that
for any C ∈ Z≥0, there are infinitely many convergent denominators such that
[2n,Cn) has no n-irregular indices. This together with Corollary 6.7 provides
an immediate contradiction and so implies transcendence of Ω. As we do not
want to impose any approximability constraints on θ, we proceed with a more
delicate argument that applies to general θ.

6.4. Residual sums. For the remainder of this section we fix b = 0, writing

ω(i)
n := ω

(i)
n,0 =

1

1− ρni

n∑
j=1

γi(jθ)ρ
j
i , and Ωn := Ωn,0 =

d∑
i=1

ω(i)
n .

While we consider the sum only in the case b = 0, note that the results of
Section 6.3 are required with arbitrary values of b below in Lemma 6.12 and
Corollary 6.13.

We wish to write Qn · (Ω − Ωn) as a sum of ρ-monomials. We have by
Equation (6.5) that

Qn · (Ω− Ωn) =
d∑

i=1

(∏
k ̸=i

(1− ρnk)

)(∑
j>n

(γi(jθ)− γi((j − n)θ)) ρji

)
.

Recall the multi-index notation (4.1). Given α = (a1, . . . , ad) ∈ Zd
≥0, define

ζn(α) ∈ Z to be the coefficient of the ρ-monomial ρα = ρa11 · · · ρadd in this series;
that is,

(6.6) Qn · (Ω− Ωn) =
∑

α∈Zd
≥0

ζn(α)ρ
α, ζn(α) ∈ Z for α ∈ Zd

≥0.



38 JASON P. BELL, JEFFREY DILLER, MATTIAS JONSSON, AND HOLLY KRIEGER

By the discussion preceding Lemma 6.4, ζn(α) ̸= 0 if and only if there exists
some component ai of α such that ak ∈ {0, n} for all k ̸= i, ai > n, and

γi(aiθ)− γi((ai − n)θ) ̸= 0.

In this case, we have

ζn(α) = (−1)
1
n

∑
k ̸=i ak (γi(aiθ)− γi((ai − n)θ)) .

Definition 6.9. We say a multi-index α ∈ Zd
≥0 is n-residual if ζn(α) ̸= 0. If

α = (a1, . . . , ad) is n-residual with ai > n, we say that aiei is the irregular
component of α, where ei ∈ Zd denotes the i-th vector of the standard basis.

Our argument will rely on the fact that due to the discordance condition,
when n ∈ Cvgt(θ) is odd, subsums of (6.6) which are non-degenerate (in the
sense of Theorem 4.4) and have small support can vanish only in very limited
circumstances. We make this statement precise in the following proposition.
Note that as successive elements of Cvgt(θ) are coprime, there are infinitely
many odd elements of Cvgt(θ).

Proposition 6.10. Let L be a natural number. Then there exists a positive
integer N = N(L) such that whenever n ∈ Cvgt(θ) is odd and larger than N ,
and A ⊆ Zd

≥0 is a set of size at most L such that∑
α∈A

ζn(α)ρ
α = 0

is a vanishing non-degenerate subsum of (6.6), we have that every α ∈ A has
the same irregular component.

Proof. Let G be the multiplicative subgroup of C∗ generated by the non-zero
elements of Z, and fix an isomorphism G → Zr ⊕ G0, where G0 is the torsion
subgroup. Projecting onto the first factor gives a (surjective) homomorphism π :
G → Zr with kerπ = G0. The coordinates ρi of ρ are pairwise multiplicatively
independent elements of Z by hypothesis, so the vectors vi := π(ρi) are pairwise
linearly independent.

Suppose the proposition fails. Then there is an infinite set N of odd n ∈
Cvgt(θ) and for each n ∈ N a set An of size at most L such that

∑
α∈An

ζn(α)ρ
α

is a vanishing non-degenerate n-residual subsum which, by the discussion pre-
ceding Definition 6.9, includes multi-indices β = jei + nδ and β′ = j′ei′ + nδ′

with different irregular components jei ̸= j′ei′ , where i, i′ ∈ {1, . . . , d} and
δ, δ′ ∈ {0, 1}d. By refining the set N , we may assume that i, i′, δ, δ′ are fixed.
While the irregular indices j, j′ > n must vary with n, we can again refine to
assume that their crossing angles t, t′ ∈ Dsc(γ) do not.

Fixing n ∈ N , we rearrange the equation
∑

α∈An
ζn(α)ρ

α = 0 to get

1 =
∑

α∈A\{β}

−ζn(α)
ζn(β)

ρα−β.
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The sum on the right remains non-degenerate, with coefficients −ζn(α)/ζn(β)
in a finite set that is independent of n. Thus applying Theorem 4.4 with G as
above, we obtain a finite set X ⊂ G, independent of n, such that ρα−β ∈ X
for all n ∈ N and all α, β ∈ An. In particular, ρβ−β′ ∈ X. Refining N still
further, we may suppose that ρβ

′−β ∈ X is the same for all n ∈ N . Applying
the homomorphism π : G→ Zr to ρβ−β′

, we obtain

(6.7) j′vi′ − jvi + nw = u

for some fixed w, u ∈ Zr and all n ∈ N . Note our notation suppresses depen-
dence of j, j′ on n. From here we divide the argument into two cases.

Suppose first that i ̸= i′, in which case there is a vector u ∈ Zd
≥0 such that

⟨u, vi⟩ ≠ 0 = ⟨u, vi′⟩. Multiplying both sides of (6.7) by u then gives

aj = bn+ c

for some fixed a, b, c ∈ Z with a ̸= 0; without loss of generality, we may cancel
common factors to assume (a, b, c) = 1. By n-irregularity we have ||jθ − t|| <
||nθ||, so multiplying through by θ and letting n→ ∞ in N gives

at ≡ cθ mod 1.

As θ and Dsc(γ) are discordant, c = 0, and either a is even or t = 0. Since
(a, b, c) = 1 and c = 0, if a is even then aj = bn implies that n is even as well,
contradicting our assumption that N consists of odd n ∈ Cvgt(θ). So t = 0,
and since t is the crossing angle of j for n, ∥jθ∥ < ∥nθ∥. As j > n and aj = bn,
we have |a| < |b|. On the other hand, for large n ∈ N ,

|a| ∥nθ∥ > |a| ∥jθ∥ = ∥ajθ∥ = ∥bnθ∥ = |b| ∥nθ∥ ,
so |a| > |b|, a contradiction.

Now suppose instead that i = i′ in (6.7): we proceed similarly in this case.
Applying π now yields

(j − j′)vi = u− nw,

where j − j′ ̸= 0 by our choice of β, β′ and vi ̸= 0 by linear independence of the
vi. Hence we may restrict to a single coordinate of vi, u, w to get

(j − j′)a = c+ nb

where a, b, c ∈ Z and a ̸= 0; cancelling common factors, we may assume
(a, b, c) = 1. Multiplying through by θ and letting n→ ∞ in N now gives

a(t− t′) ≡ cθ mod 1

By discordance, c = 0 and either a is even or t = t′.
If a is even, then by coprimality, b is odd. As each n ∈ N is also odd and

(j − j′)a = nb,

we have a contradiction. So t = t′, and we have as in the proof of Lemma 6.4
that 0 < ∥(j − j′)θ∥ < ∥nθ∥. As noted in 6.2, n is a best approximation of the
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second kind, so we must have |j − j′| > n and therefore |a| < |b|. On the other
hand, for large n ∈ N , we obtain

|a| ∥nθ∥ > |a| ∥(j − j′)θ∥ = ∥a(j − j′)θ∥ = ∥bnθ∥ = |b| ∥nθ∥ ,
and thus |a| > |b|, a contradiction. □

Despite the non-vanishing result of Proposition 6.10, it is possible that some
subsum of terms with the same irregular component vanishes. However, a non-
trivial sum containing all of the n-residual terms which come from a fixed n-
irregular number j cannot vanish, as we now explain. For i ∈ {1, . . . , d}, n ∈
Cvgt(θ), and j > n n-irregular, let Ri,n,j denote the set of n-residual α ∈ Zd

≥0

which have irregular component jei.

Corollary 6.11. Let L be a positive integer. Then there exists N = N(L) such
that whenever n ∈ Cvgt(θ) is odd and larger than N and A ⊂ Zd

≥0 is a set of
size at most L with the property that there exists an n-irregular index j > n
such that Ri,n,j ⊂ A for all i ∈ {1, . . . , d}, we have∑

α∈A

ζn(α)ρ
α ̸= 0.

Proof. Suppose towards a contradiction that
∑

α∈A ζn(α)ρ
α = 0. Working in-

ductively, decompose A into a disjoint union A1, . . . ,Ar of subsets so that∑
α∈Aℓ

ζn(α)ρ
α = 0

is a non-degenerate vanishing subsum of A for each ℓ ∈ {1, . . . , r}. With N =
N(L) of Proposition 6.10, for n ∈ Cvgt(θ) odd and larger than N , we have for
each ℓ ∈ {1, . . . , r} some i(ℓ) and j(ℓ) such that Aℓ ⊂ Ri(ℓ),n,j(ℓ). Since j is
n-irregular, we have γi0(jθ) ̸= γi0((j − n)θ) for some choice of i0 ∈ {1, . . . , d},
so Ri0,n,j ⊂ A is non-empty. Therefore, Ri0,n,j is a disjoint union of elements of
a subset of {A1, . . . ,Ar}, and so

(6.8)
∑

α∈Ri0,n,j

ζn(α)ρ
α = 0.

On the other hand, by (6.5) we have∑
α∈Zd

≥0

ζn(α)ρ
α =

d∑
i=1

(∏
k ̸=i

(1− ρnk)

)(∑
j>n

(γi(jθ)− γi((j − n)θ)) ρji

)
.

The terms of the sum on the right-hand side which correspond to α ∈ Ri0,n,j

are precisely those with exponent j for ρi0 , so∑
α∈Ri0,n,j

ζn(α)ρ
α =

(∏
k ̸=i0

(1− ρnk)

)
(γi0(jθ)− γi0((j − n)θ)) ρji0 .
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The right-hand expression above is non-zero as we have chosen i0 so that
γi0(jθ) ̸= γi0((j − n)θ). This contradicts (6.8). □

6.5. Completing the proof. To any multi-index α ∈ Zd
≥0, we assign the

(weighted) norm

(6.9) ∥α∥ρ := − log |ρα|.
As 0 < |ρi| < 1 for all i, any n-residual α with irregular component jei has norm
∥α∥ρ that is multiplicatively comparable to j with constants independent of n.
We may therefore reformulate weighted versions of Lemma 6.4 and Corollary 6.7
as follows.

Lemma 6.12. There exists a constant c0 > 0 such that for any C > 0, there
are at most c0C n-residual multi-indices α ∈ Zd

≥0 satisfying ∥α∥ρ ≤ Cn for
n ∈ Cvgt(θ) sufficiently large.

Corollary 6.13. There exists a constant c1 > 1 such that for any C > 0, the
following holds for n ∈ Cvgt(θ) sufficiently large: there is an n-irregular j such
that for all i ∈ {1, . . . , d}, the set of multi-indices satisfying Cn ≤ ∥α∥ρ < c1Cn
includes the set Ri,n,j of n-residual α with irregular components jei.

We now fix constants k0, k1, k2, and L as follows. With θ, ρ, and γ as in
Theorem 1.4, choose k0 > max1≤i≤d log

1
|ρi| . Let k1 > max{c1, (1 + 2k0d) logR}

with c1 as in Corollary 6.13, and k2 > 2c1k1. Given such a choice of k2, by
Lemma 6.12, there is a constant L such that the sum∑

∥α∥ρ≤k2n

ζn(α)ρ
α

has at most L non-zero terms. We now bring together the technical details of
the preceding subsections to ensure non-vanishing of well-chosen subsums.

Lemma 6.14. Given n ≥ 1, and suppose p(n) and q(n) satisfy k1n ≤ p(n) <
2k1n and k2n ≤ q(n). Then for n ∈ Cvgt(θ) odd and sufficiently large,∑

∥α∥ρ≤p(n)

ζn(α)ρ
α ̸= 0

and ∑
p(n)≤∥α∥ρ≤q(n)

ζn(α)ρ
α ̸= 0.

Proof. By hypothesis and Corollary 6.13, we have for large n ∈ Cvgt(θ) that
there is some n-irregular j such that the multi-index set {∥α∥ρ ≤ p(n)} includes
Ri,n,j for all i ∈ {1, . . . , d}. Thus by Corollary 6.11,

∑
∥α∥ρ≤p(n) ζn(α)ρ

α ̸= 0

for n ∈ Cvgt(θ) odd and sufficiently large. The same argument applies to the
second sum. □
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As L is fixed, there exists δ1 > 0 such that for all n ∈ Cvgt(θ) sufficiently
large, there is a subinterval of (k1n, 2k1n] with length at least δ1n that contains
no number of the form ∥α∥ρ with ζn(α) ̸= 0. For each such n ∈ Cvgt(θ), let
p(n) ∈ (k1n, 2k1n] be the left endpoint of this interval.
Fix n ∈ Cvgt(θ), and let

(6.10) z1 := QnΩ, z2 = −QnΩn,

and write

z1 + z2 = Qn(Ω− Ωn) =
∑

α∈Zd
≥0

ζn(α)ρ
α.

Here z1 and z2 depend on n, but this is suppressed in the notation.
By Lemma 6.14, the sum ∑

∥α∥ρ≤p(n)

ζn(α)ρ
α

is non-zero, and it contains at most L terms. We write

(6.11) z3 + z4 + · · ·+ zℓ(n) = −
∑

∥α∥ρ≤p(n)

ζn(α)ρ
α ̸= 0,

with the zi chosen to be the monomials of the right-hand sum which remain after
removing a maximal vanishing subsum, noting that since p(n) < 2k1n < k2n,
ℓ(n) ≤ L by the choice of k2 above.

Lemma 6.15. For odd n ∈ Cvgt(θ) sufficiently large, z1+z2+· · ·+zℓ(n) contains
no vanishing subsum.

Proof. Suppose the lemma fails. Remove a maximal vanishing subsum from
z1 + · · ·+ zℓ(n) to obtain a minimal non-empty index set I ⊂ {1, . . . , ℓ(n)} such
that z1 + · · · + zℓ(n) =

∑
k∈I zk. First suppose that I is non-empty. As in the

proof of Proposition 6.6, if Ω = 0, replace z1, z2 with z1 + 1, z2 − 1. Then we
have |z1| and |z2| larger than a positive constant for all n sufficiently large,
while the terms z3, . . . , zℓ(n) converge to 0 as n ∈ Cvgt(θ) goes to infinity, so
for n ∈ Cvgt(θ) sufficiently large, I either contains both z1 and z2, or neither.
As z3 + · · · + zℓ(n) has no vanishing subsums, I contains neither z1 nor z2. In
particular, all terms of I are S-units.

By Theorem 4.1 and the product formula, for any ϵ > 0 we have∣∣∑
k∈I

zk
∣∣2 ≥ c(ϵ, L)

maxk∈I |zk|2

HS(z)ϵ
,

where z = (zk)k∈I . Each zk with k ∈ I has ρ-degree bounded above by c3p(n)
for some constant c3 = c3(ρ) ≥ 1. By Lemma 4.3 it follows that

HS(z) ≪ Rc3p(n)L.
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As ∥α∥ρ ≤ p(n) for all elements contributing to the sum, maxk∈I |zk| ≫ e−p(n).
So ∣∣∑

k∈I

zk
∣∣2 ≫ e−2p(n)

Rc3Lp(n)ϵ
.

On the other hand, since p(n) was chosen to be the left endpoint of an interval
of length δ1n with ζn(α) = 0 whenever ∥α∥ρ lies in the interval, we have∣∣∑

k∈I

zk
∣∣2 = ∣∣∣∣ ∑

∥α∥ρ>p(n)+δ1n

ζn(α)ρ
α

∣∣∣∣2 ≪ e−2p(n)−2δ1n.

Combining the estimates,

e2δ1n ≪ Rc3Lp(n)ϵ ≪ R2c3Lk1nϵ,

a contradiction for ϵ sufficiently small.
Therefore, I must be empty, and we have

(6.12) z1 + z2 + · · ·+ zℓ(n) = 0.

Arguing as above, for some δ2 > 0 the interval (k2n, 2k2n] contains a gap of
size δ2n with no numbers of the form ∥α∥ρ with α n-residual. Say this gap starts
at q(n) ∈ (k2n, 2k2n], and write

zℓ(n)+1 + · · ·+ zm(n) = −
∑

p(n)<∥α∥ρ≤q(n)

ζn(α)ρ
α,

where the zℓ(n)+1 + · · · + zm(n) are the monomials remaining after removal of
a maximal vanishing subsum. This sum is non-empty by Lemma 6.14, non-
degenerate by construction, and contains at most L terms.

We then have by Theorem 4.1 that for any ϵ > 0 and odd n ∈ Cvgt(θ)
sufficiently large,

|z1 + · · ·+ zm(n)|2 = |zℓ(n)+1 + · · ·+ zm(n)|2 ≫
e−2q(n)

Rc3Lq(n)ϵ
,

where the first equality holds by Equation 6.12. On the other hand

|z1 + · · ·+ zm(n)|2 =
∣∣ ∑
∥α∥ρ>q(n)+δ2n

ζn(α)ρ
α
∣∣2 ≪ e−2q(n)−δ2n.

Thus
e2δ2n ≪ R2c3Lk2nϵ,

a contradiction for ϵ sufficiently small. □

Proof of Theorem of 1.4.
Recall that k0 > max1≤i≤d{log(|ρi|−1)}, so that

∥α∥ρ ≤ k0degα
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for every d-tuple α of non-negative integers, with ∥α∥ρ as in Equation 6.9. As
noted in the discussion preceding Lemma 6.14, we may choose constants k1, k2,
and L such that k1 > max{c1, (1 + 2k0d) logR} and k2 > 2c1k1, with c1 as in
Corollary 6.13 and R as in Lemma 4.3, so that the sum∑

∥α∥ρ≤k2n

ζn(α)ρ
α

will have at most L non-zero terms for any sufficiently large n ∈ Cvgt(θ). Given
such an n, we choose p(n) and q(n) to satisfy k1n ≤ p(n) < 2k1n and k2n ≤ q(n),
so that Lemma 6.14 applies when n is odd. As in Equations 6.10 and 6.11, we
write

z1 + z2 = Qn(Ω− Ωn)

and

z3 + z4 + · · ·+ zℓ(n) = −
∑

∥α∥ρ≤p(n)

ζn(α)ρ
α.

By Theorem 4.1 and Lemma 6.15, we have for any ϵ > 0 and sufficiently large
odd n ∈ Cvgt(θ) that

|z1 + · · ·+ zℓ(n)|2 ≫
1

Rk0Lp(n)ϵR2dk0n

while also

|z1 + · · ·+ zℓ(n)|2 ≪ e−2p(n)−2δ1n,

so that

22k1n+2δ1n ≤ e2p(n)+2δ1n ≪ R(2k0Lk1ϵ+2k0d)n.

However, we have chosen k1 so that k1 > (1 + 2k0d) logR, so

22k1 ≥ R1+2k0d.

Thus for any choice of ϵ satisfying 2k0Lk1ϵ < 1, we obtain a contradiction for n
sufficiently large. □

7. Conclusion and an example

To conclude, let us explain how the results from the preceding sections of
this paper suffice to guarantee existence of matrices A ∈ SLd(Z) for which the
birational map f = g ◦hA : Pd 99K Pd has transcendental first dynamical degree.
We do this first for general d ∈ Z, using a matrix A that is far from explicit.
Then we give a particular and completely explicit example in dimension d = 3.
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7.1. Proof of Theorem 1.1. To find an appropriate matrix A for Theorem 1.1,
we begin by identifying a suitable characteristic polynomial. Given the results
from previous sections, this will be the main step.

Proposition 7.1. For any integer d ≥ 3, there exists a monic, degree d, irre-
ducible polynomial P ∈ Z[t] such that

(i) P (0) = 1;
(ii) The Galois group of P is the full symmetric group on the roots of P ;
(iii) P has at most one real root.
(iv) The dominant roots of P are a complex conjugate pair ξmax, ξ̄max.

Proof. We begin by choosing three deg d monic polynomials P0(t), P1(t), P2(t) ∈
Z[t]. Specifically, we take P0(t) to be any deg d polynomial that is irreducible
mod 2. Necessarily P0(0) ≡ 1 mod 2. We then take P1(t) = P̃1(t)(t − b) where
P̃1 is irreducible mod 3 and of degree d− 1, and b satisfies bP̃1(0) ≡ 1 mod 3.
The choice of P2(t) is a bit more elaborate. Let p ≡ 1 mod 4 be a prime

larger than 2d. In particular, −1 is not a quadratic residue mod p. Choose
a, b ∈ {0, . . . , p−1} such that a is not a quadratic residue and b is a mod p mul-
tiplicative inverse of a(−1)d−2((d− 3)!)2. Since ±1 are both quadratic residues,
whereas a is not, it follows that b is not a quadratic residue either. Then
P2(t) = (t2−a)(t− b)

∏d−2
i=1 (t− i2) has d−1 distinct roots b, 12, . . . , (d−2)2 and

a quadratic factor t2 − a that is irreducible mod p.
Next we apply the Chinese Remainder Theorem to obtain a polynomial P ∈

Z[t] such that P ≡ P0 mod 2, P ≡ P1 mod 3 and P ≡ P2 mod p. We may further
assume P (0) = 1. Then P , like P0, is irreducible mod 2 and therefore irreducible
over Z. Hence the Galois group of P is transitive. Dedekind’s Theorem (cf. Lang
[Lan02, Theorem 2.9, p. 345]) and P ≡ P1 mod 3 implies that the Galois group
contains a d − 1 cycle. Likewise, P ≡ P2 mod p implies that the Galois group
contains a transposition. Standard theory of permutation groups tells us that
a transitive subgroup of the symmetric group on d elements is the full group as
soon as it contains a transposition and a d− 1-cycle. Thus P satisfies the first
two conclusions of the proposition.

To guarantee it also satisfies the last two conclusions, we will replace P by
P +Q for some polynomial Q ∈ Z[t] satisfying Q(0) = 0 and Q ≡ 0 mod 6p.

Lemma 7.2. Let P (t) be a monic real polynomial with degP = d ≥ 3 and
P (0) = 1. Then for large enough a, b > 0 the following hold.

• If d is even, and Q(t) := atd−2 + bt2, then P +Q has no real roots.
• If d is odd, and Q(t) := atd−2+ bt, then P +Q has exactly one real root.

Proof. Suppose first that d is even. Then P (t) = td+ cd−1t
d−1+ t2R(t)+ c1t+1,

where cn−1, c1 ∈ R and degR(t) ≤ d− 4. Hence

P (t)+Q(t) = td−2
(
t2 + cd−1t+

a

2

)
+t2

(
R(t) +

a

2
td−4 +

b

2

)
+

(
b

2
t2 + c1t+ 1

)
,
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and one checks easily that all three polynomials in parentheses are positive for
a, b > 0 large enough and any t ∈ R. Hence P +Q has no real roots.

When d is odd one checks by the same sort of computation that Q′(t) > 0
for all t ∈ R when a, b > 0 are large, so in this case P +Q has exactly one real
root. □

We can now conclude the proof of Proposition 7.1 as follows. Assume that
d is even and let a, b ∈ Z≥0 be positive multiples of 6p chosen large enough
that Lemma 7.2 holds. Then P (t) +Q(t) = P (t) + atd−2 + bt2 satisfies the first
three conclusions of the proposition. Note that P (t) +Q(t) = td + atd−2 + P̃ (t),
where deg P̃ (t) = d − 1 does not depend on a. Let M = max|t|=1 |P̃ (t)|. Then
increasing a if necessary, we have

|td + atd−2| ≥ a− 1 > M

whenever |t| = 1. Hence by Rouché’s Theorem, P +Q and td + atd−2 have the
same number of zeroes in the unit disk, i.e. d − 2 of them. As P + Q has no
real roots, the two roots outside the unit disk are a complex conjugate pair. So
all four conclusions of the proposition hold with P +Q in place of P . The case
when d is odd is similar, and we leave it to the reader. □

Proposition 7.3. When d ≥ 3, there are no angular resonances between distinct
roots of the polynomial P in Proposition 7.1.

Proof. If z, w ∈ C are distinct roots of P with an angular resonance zaw̄b ∈ R
for some a, b > 0, then

zaw̄b = z̄awb

is a relationship between four roots of P . Since P has at most one real root, we
may assume that at least z is not real. Assume that z ̸= w̄ (the case z = w̄ is
similar). Since the Galois group of P is the full symmetric group on the roots, it
includes the transposition exchanging w and w̄. Applying it gives the additional
relation zawb = z̄aw̄b. Multiplying our two relations, we infer z2a = z̄2a. But
now we can use the Galois group to exchange z̄ with any root z′ distinct from
z to obtain that z2a = (z′)2a for all roots z′ of P . In particular, all roots of P
have the same magnitude. When d ≥ 3, this contradicts that P has exactly two
roots ξmax, ξ̄max of largest magnitude. □

To complete the proof of Theorem 1.1, we let Ã ∈ Matd(Z) to be the com-
panion matrix of the degree d polynomial P ∈ Z[x] from Proposition 7.1. Then
Propositions 7.1 and 7.3 tell us that Ã satisfies all the conditions of Theorem 1.3;
in particular P (0) = 1 means that A ∈ SLd(Z). The transcendence statement
in the conclusion of Theorem 1.3 therefore holds for an appropriate conjugate
A = Y ÃY −1 of Ã. On the other hand, since there are no angular resonances
between roots of P , the leading eigenvalue ξmax of A satisfies ξjmax /∈ R for any
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positive integer j. Hence Theorem 1.2 tells us that for a sufficiently high power
AN , the dynamical degree λ(f) of f := g ◦ hAN satisfies

1 =
∞∑
n=1

ΨU ,V(A
Nn)λ(f)−n.

Returning to Theorem 1.3, we infer that x = λ(f)−1 is not algebraic, and our
main result Theorem 1.1 is proved.

7.2. A specific example. With some computer assistance, one can also verify
that Theorem 1.1 holds for specific, explicit choices of the matrix A ∈ SLd(Z).
We illustrate this in dimension d = 3, starting with the companion matrix

Ã =

0 −1 1
1 0 0
0 1 0

 ∈ SL3(Z)

for the polynomial P (t) = t3 − t + 1. Since P (0) = P (1) = 1, one sees that
P is irreducible mod 2 and therefore irreducible over Z. The leading roots of
P are a conjugate pair ξmax, ξ̄max where ξmax ≈ −0.341164 + 1.16154i, and the
remaining root is real equal to |ξmax|−2 < 1. Moreover, by computing its minimal
polynomial one checks that ξmax/ ¯ξmax is not a root of unity. Hence ξjmax /∈ R for
any non-zero j ∈ Z, and as we noted following Theorem 1.3, this implies there
are no angular resonances among the roots of P . All told, these facts allow us
to apply Theorems 1.3 and 1.2 to Ã as above.

We claim in fact that taking

Y =

1 −2 3
0 1 −2
0 0 1


in Theorem 1.3 and then N = 7 in Theorem 1.2 suffices; i.e. Theorem 1.1 holds
with

(7.1) A = Y Ã7Y −1 =

−3 −14 −12
4 11 6
−2 −4 −1

 .

To justify this, one needs to verify two things:

• the function γ = γA constructed in §5 satisfies the discordance condition
in Theorem 1.4; and

• A satisfies the hypothesis of Theorem 3.6.

Accomplishing the first task is straightforward and can be achieved even for N =
1, i.e. for Y ÃY −1 in place of A. Equation (5.8) tells us that the discontinuity set
Dsc(γA) consists of normalized arguments of finitely many elements σ(Y, v, w) of
the splitting field K for ξmax, one for every pair of vectors v ∈ V , w ∈ W . Even
without accounting for repetition, this yields less than fifty possible elements
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of K. It suffices (see Remark 5.11) to verify that all of them, together with all
of their non-trivial ratios, lie outside the ring of units O∗

K . Standard computer
algebra packages do this easily.

The second task is harder. To verify the hypothesis of Theorem 3.6 it suffices
to show that 8 = 2(3+1) vectors v ∈ Z3 have strict forward orbits (Anv)n≥1 that

avoid 6 = 3(3+1)
2

rational two-dimensional hyperplanes in Z3. This boils down to
showing that 48 integer linear recurrences (an)n∈Z≥0

have no zeroes beyond the
initial term a0. For this we show that in our situation, the Skolem-Mahler-Lech
Theorem can be made more effective as follows.

Lemma 7.4. None of the linear recurrence sequences (an)n≥0 of interest have
vanishing terms an with n ≥ 1020.

Proof. We only sketch the argument. The terms in any linear recurrence of
interest here have the form

an =
3∑

j=1

cjξ
n
j

where ξ1 = ξmax, ξ2 = ξ̄max and ξ3 = |ξmax|−2 are the eigenvalues of A, and
cj ∈ K are determined by A and a choice of v ∈ V and w ∈ W . So if an = 0,
we obtain an exponential (in n) upper bound

|a(ξmax/ξ̄max)
n − 1| ≤ b|ξmax|−3n,

which is equivalent to

| log a+ n log(ξmax/ξ̄max)| ≤ bc−n

for some (explicit) constants a ∈ K and b, c ≥ 1. The expression inside absolute
values on the left is a linear form in logarithms with integer coefficients. Hence a
result of Baker and Wusthöltz [BW93] gives a lower bound for the same quantity
of the form b′n−c′ where the constants b′, c′ > 0 are again explicit and derived
from A, V and W . Since the Baker–Wusthöltz bound is polynomial in n−1, it is
inconsistent with the exponentially decaying upper bound for large n. Carefully
tracking all constants, one finds that if an = 0, then n must be smaller than
1020. □

It remains to verify that none of the first 1020 terms vanish in each of the linear
recurrences (an). This is impractical to do directly even with computer assis-
tance. However, one can avoid direct verification by reducing the recurrences
modulo various primes p. The advantage is that modulo p, all the recurrences
become periodic with period no more than e.g. the number of invertible 3 × 3
matrices with coefficients in Z/pZ. It turns out, moreover, that there are many
primes p that are ‘good’ in the sense that the sequence (An mod p)n∈Z≥0

has
period mp dividing p − 1. For such p it is often the case that there is no more
than one vanishing term an mod p among the first mp.
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If we find a specific prime for which no terms an mod p of the reduced re-
currence vanish, we are done. In our example this happens for more than half
the recurrences we consider. For all but one of the other recurrences, the initial
term an term of the unreduced recurrence vanishes, so it must be the case that
an mod p vanishes for all n ≡ 0 modmp in any reduction, too. However, for
many good primes p, the initial term is the only one of the first mp terms whose
reduction vanishes. It follows that the smallest positive index n for which the
(unreduced) term an vanishes is at least as large as the product of the periods
mp associated to these good primes. With some computer algebra one easily
finds enough good primes to boost the product past 1020.
In our example, there is only one recurrence (an) not covered by either of

these considerations: i.e. a0 ̸= 0 but (an mod p)
mp−1
n=0 seems to always include

at least one vanishing term. Nevertheless, by focusing on those good primes p
for which only one reduced term vanishes among the first mp, one can use the
Chinese remainder theorem to synthesize the information from reductions by
various good primes and get a lower bound on the index of the first vanishing
term in the reduced recurrence. Computer algebra again allows one to boost
the bound past 1020 without much trouble and complete the verification that A
satisfies the hypothesis of Theorem 3.6.
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