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MULTI-AGENT SYSTEM FOR TARGET TRACKING ON A SPHERE AND ITS

ASYMPTOTIC BEHAVIOR

SUN-HO CHOI, DOHYUN KWON, AND HYOWON SEO

Abstract. We propose a second-order multi-agent system for target tracking on a sphere. The
model contains a centripetal force, a bonding force, a velocity alignment operator to the target,
and cooperative control between flocking agents. We propose an appropriate regularized rotation
operator instead of Rodrigues’ rotation operator to derive the velocity alignment operator for tar-
get tracking. By the regularized rotation operator, we can decompose the phase of agents into
translational and structural parts. By analyzing the translational part of this reference frame de-
composition, we can obtain rendezvous results to the given target. If the multi-agent system can
obtain the target’s position, velocity, and acceleration vectors, then the complete rendezvous oc-

curs. Even in the absence of the target’s acceleration information, if the coefficients are sufficiently
large enough, then the practical rendezvous occurs.

1. Introduction

Target tracking refers to designing a dynamical system that agents follow given maneuvering
target agents using the information of the targets, such as position, velocity, and acceleration. The
target tracking problem is applied in various fields, such as mobile sensor networks, virtual reality,
and surveillance systems using unmanned aerial vehicles (UAVs) [18, 22, 24]. Most of the relevant
literature focuses on the uncertainty of target motions. From a technical point of view, we can divide
the models for this field into measurement models, target motion models, and filtering models. The
measurement model deals with target information in a sensor coordinate containing additive noise
such as image sensors and radar sensor networks [2, 3, 20]. The target motion model is a coupled
dynamical system for target tracking. The filtering model is based on the particle filter method and
stochastic frameworks estimating the target state such as nonlinear filtering [13, 15] and adaptive
filtering [14, 16].

Depending on the structure of the system, we also divide the models for target tracking into
two types of systems: single integrator model and double integrator model. For the single integrator
model, one can control the velocity of the agents directly. For example, in [10], the authors pro-
posed a tracking algorithm for a slowly moving target using the target’s position and bearing angle.
Many researchers assume agents can obtain only the target’s position and bearing angle for targets
maneuvering underwater. From the engineering point of view, it is a reasonable assumption. For
the double integrator model, one can control the acceleration of agents. After Olfati-Saber’s seminal
work [11], researches for the dynamic tracking system using the double integrator model have been
extensively conducted. For this kind of model, the tracking agents can have the position and velocity
information of the target. Moreover, to avoid collisions between agents or make a formation flight
of the agents, a flocking algorithm and cooperative control are frequently used.

The domain or manifolds of agents are also one of the main topics in this field [1, 18] such as the
surveillance system for the restricted area or target tracking system on the whole planet. Our goal
is to provide a robust navigational feedback system for the target tracking problem on a sphere. Let
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γ-agent be a given target governed by the following system:

q̇γ = pγ ,

ṗγ = −‖pγ‖2
‖qγ‖2

qγ + Uγ(t),
(1.1)

where qγ ∈ S
2, pγ ∈ TqγS

2, and Uγ are the position, velocity, and control law of the target agent

(γ-agent) on sphere, respectively. To conserve the modulus of qγ(t) ∈ S
2, we additionally assume

that the following condition holds for all t ≥ 0.

qγ(t) ⊥ Uγ(t).

Therefore, the control law Uγ(t) has the following form: for some uγ(t) ∈ R
3,

Uγ(t) = ‖qγ(t)‖2uγ(t)− 〈uγ(t), qγ(t)〉qγ(t).
For simplicity, we assume that uγ(t) is continuous.

For a given γ-agent, we propose a novel multi-agent system for the target tracking on a spherical
space:

q̇i(t) = pi(t),

ṗi(t) = −‖pi‖2
‖qi‖2

qi +

N
∑

j=1

σij
N

(‖qi‖2qj − 〈qi, qj〉qi)

+ cq(‖qi‖2qγ − 〈qi, qγ〉qi) + cp(Pqγ→qi(pγ)− pi) + Ui,

(1.2)

where qi ∈ S
2 and pi ∈ TqiS

2 are the position and velocity of the ith agent, respectively. The first
term on the right-hand side of the second equation is the centripetal force term to conserve the
modulus of qi. The second term

N
∑

j=1

σij
N

(‖qi‖2qj − 〈qi, qj〉qi)

is the cooperative control term between agents where the inter-particle force parameter is given by

σij = σ(‖xi − xj‖2).

The next two terms, cq(‖qi‖2qγ − 〈qi, qγ〉qi) and cp(Pqγ→qi(pγ) − pi), are the bonding force and a
velocity alignment term between the target and the ith agent, respectively, where cq > 0 and cp > 0
are target tracking coefficients for the position and velocity, respectively. The last term Ui is an extra
control law based on the target’s information, which will be determined later in (1.5) and (1.6) for
each purpose.

Throughout this paper, we assume the initial data satisfies the following admissible conditions on
S
2:

‖qi(0)‖ = 1, 〈pi(0), qi(0)〉 = 0, for all i ∈ {1, . . . , N}. (1.3)

Definition 1.1. For a given target (qγ(t), pγ(t)), let {(qi(t), pi(t))}Ni=1 be the solution to (1.2). We

define the two kinds of rendezvouses.

(1) An asymptotic complete rendezvous occurs between the agents and the given target, if

lim
t→∞

max
1≤i≤N

‖qi(t)− qγ(t)‖ = 0.

(2) An asymptotic practical rendezvous occurs between the agents and the given target, if

lim
cq,cp→∞

lim
t→∞

max
1≤i≤N

‖qi(t)− qγ(t)‖ = 0.
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In what follows, we will show that our model contains many robust properties, including the
complete rendezvous. Even in the absence of the target acceleration information, the practical ren-
dezvous occurs when the coefficients are large enough. In particular, we obtain a sharp estimate of
the distance between the target and agents. There are many other papers on the dynamics on S

2 as
well as Rn, but our asymptotic analysis including exponential convergence and practical rendezvous
is new on the target tracking problem, to the best of our knowledge.

The derivation of our model is motivated by the decomposition property of flocking dynamics
on a flat space. On a flat space, from momentum conservation, the dynamics is represented by the
composition of frame reference dynamics and local alignment dynamics as in [11]. In contrast to
previous results in R

n, it is hard to expect such a decomposition for the flocking model on S
2.

See Sections 2 and 3 for details. In particular, in our previous papers [6, 7, 8], we used Rodrigues’
rotation operator R·→· to derive a flocking system on a sphere since Rodrigues’ rotation operator
R·→· is the most natural flocking operator. However, its composition is complex so that it is difficult
to analyze. Moreover, it contains an unavoidable singularity at antipodal points due to its geometric
characteristics. From this singularity, even though agents are located on S

2, the vanishing point on
the communication rate is necessary [6]. Due to this difficulty, the target tracking problem on S

2 has
not been well understood.

We remove the singular term from the natural rotation operatorR·→· to obtain a rotation operator

in two dimensions :

Pz1→z2 := 〈z1, z2〉I + z2z
T
1 − z1z

T
2 , for z1 and z2 in a unit sphere. (1.4)

See also Appendix A for the motivation of the non-singularity rotation operator P and its prop-
erties. We will prove that its dynamics consists of the composition of the rigid motion part on S

2

and the local alignment part. Using this property, we derive an S
2-version of the reference frame

decomposition in Proposition 3.2 and provide a sufficient condition to obtain a target tracking es-
timate between multiple agents {(qi(t), pi(t))}Ni=1 and the given target (qγ(t), pγ(t)). Moreover, by
the regularity of the operator P , we can obtain the following global existence result.

Theorem 1. Assume that for a continuous function uγ, a given target (qγ(t), pγ(t)) satisfies (1.1).
If the initial data {(qi(0), pi(0))}Ni=1 satisfies (1.3) and Ui is Lipschitz continuous with respect to

{(qi, pi)}Ni=1 with 〈Ui, qi〉 = 0, then there exists a unique global-in-time solution {(qi(t), pi(t))}Ni=1 to

system (1.2) and {qi(t)}Ni=1 are located on S
2 for all time t > 0.

As in R
d, we notice that the velocity alignment operator between the target and the agents plays

an important role in target tracking. In particular, the bonding force between the target and the
agents, cq(‖qi‖2qγ − 〈qi, qγ〉qi), alone is not enough to track a target on S

2. The velocity alignment
operator cp(Pqγ→qi(pγ) − pi) is crucial for the target tracking algorithm. See the simulations in
Section 5. In the next two theorems, we present a quantitative analysis of the velocity alignment
operator with two different Ui’s;

Ui = 2〈wγ , qi〉(qi × pi) + ẇγ(t)× qi (1.5)

or

Ui = 0, (1.6)

where wγ is the angular velocity of the target given by

wγ = qγ × pγ . (1.7)

From Theorem 2, if the agents can obtain the exact target information containing acceleration,
then the agents can accurately track the target, and the position differences between the target and
the agents decay exponentially fast.
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Theorem 2. Let (qγ(t), pγ(t)) be a given target satisfying (1.1) with a continuous target control uγ
and {qi(t), pi(t)}Ni=1 be the solution to (1.2) satisfying (1.3). We assume that σij = σ is a positive

constant and

Ui = 2〈wγ , qi〉(qi × pi) + ẇγ(t)× qi,

where wγ is the angular velocity defined in (1.7).
If cq > σ > 0 or

1

N

N
∑

i=1

‖pi(0)− wγ(0)× qi(0)‖2

+
σ

2N2

N
∑

i,j=1

‖qi(0)− qj(0)‖2 +
cq
N

N
∑

i=1

‖qγ(0)− qi(0)‖2 < σ
(

1 +
cq
σ

)2

,

then the asymptotic complete rendezvous occurs and its convergence rate is exponential, i.e., there

are positive constants C, D such that

‖qi(t)− qγ(t)‖, ‖pi(t)− pγ(t)‖ ≤ Ce−Dt.

Remark 1.1. (1) If the above sufficient condition in Theorem 2 does not hold, then we can find

a steady-state solution. This means that the sufficient condition is almost optimal to lead the

convergence result in Theorem 2. See Section 5.

(2) The author in [11] does not deal with the estimate of the distance between the target and

agents. Our model is inspired by [11], but the target tracking estimate and practical ren-

dezvous are novel.

(3) The derivation of Ui in the above theorem is technical, but from the frame decomposition in

Proposition 3.2, it is a very natural choice to obtain the complete rendezvous.

The former one in (1.5) corresponds to the case with the target acceleration, while it is unknown
in the latter case (1.6). These choices with the different amounts of the target information induce
the different accuracies of the target tracking. Since the target information obtained by the agents
through observation is usually incomplete, there have been many studies to overcome this incom-
pleteness. For example, many researchers proposed target tracking systems including restricted target
information [10, 19], communication-induced delays [12, 17], and additive noise from measurement
[9, 23]. The result in Theorem 3 below means that the large coefficients of the system allow the
agents to get close enough to the target as needed without acceleration information of the target.
In other words, the practical rendezvous occurs.

Theorem 3. For (qγ(t), pγ(t)) satisfying (1.1) with a continuous target control uγ, let {qi(t), pi(t)}Ni=1

be the solution to (1.2) subject to the initial data satisfying (1.3) and

Ui = 0.

Assume that σij = σ is a positive constant and the angular velocity of the target and its time

derivative are bounded

‖wγ‖, ‖ẇγ‖ < Cγ .

If ‖pi(0)− pγ(0)‖ 6= 2 for all i ∈ {1, . . . , N}, then the asymptotic practical rendezvous occurs and

‖qi(t)− qγ(t)‖ ≤ Ce−D

4
t +

C
D ,

where C is a positive constant depending on the initial data, σ, and Cγ . The constant D is given by

D :=







cp −
√

−4cq + c2p, if c2p ≥ −4cq,

cp, if c2p < −4cq.
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There are technical issues in the proofs of Theorems 2 and 3. We can obtain the complete
rendezvous result in Theorem 2 through Lasalle’s invariance principle with an energy functional.
However, Lasalle’s invariance principle does not give a convergence rate. An appropriate Lyapunov
functional will be used to obtain the exponential convergence result. In particular, in this case, we
derive a closed differential inequality by using six functionals including information on the distance
between the target and agents and the distance between agents. The practical rendezvous in Theo-
rem 3 has a more subtle issue. It is necessary to control the distance between the target and agents
through the size of the coefficients. However, it is impossible if the coefficients appear in the nonlin-
ear higher-order terms except for the linear terms. If we use a standard functional, the coefficients
necessarily occur in the nonlinear terms due to the geometrical characteristics of S2. This problem
will be solved by using new functionals inspired by hyperbolic geometry.

The rest of the paper is organized as follows. In Section 2, we present the global-in-time existence
and uniqueness of the solution to (1.2) and target tracking results for R

3. Section 3 is devoted
to a reference frame decomposition for the main system. From this decomposition, the solution to
the main system is represented by the composition of operators for the translational part and the
structural part. Next, we reduce the system for the structural part to a linearized system in Section
4. Using this, we prove the complete and practical rendezvouses of Theorems 2 and 3 in Section 5.
In Section 6, we verify our analytic results using numerical simulations. Section 7 is devoted to the
summary of our results.

2. Preliminary: Global well-posedness and Motivations

2.1. The global existence and uniqueness. In this section, we provide the proof of Theorem 1:
there is a unique global-in-time solution to (1.2) and this solution is located on the sphere when the
initial data satisfies the admissible conditions in (1.3).

For the local existence and uniqueness, we use the same argument in [6, 7]. For given C1 functions
qγ , pγ , and wγ = qγ × pγ , we consider the following system of ODEs:

q̇i(t) = pi(t),

ṗi(t) = −‖pi‖2
‖qi‖2

qi +

N
∑

j=1

σ(‖xi − xj‖2)
N

(‖qi‖2qj − 〈qi, qj〉qi)

+ cq(‖qi‖2qγ − 〈qi, qγ〉qi) + cp(〈qγ , qi〉pγ − 〈qi, pγ〉qγ − pi) + Ui.

(2.1)

Here, we will choose Ui = 2〈wγ , qi〉(qi × pi) + ẇγ(t)× qi for the complete rendezvous and Ui = 0 for
the practical rendezvous.

We assume that the initial data {(qi(0), pi(0))}Ni=1 satisfies the admissible condition in (1.3).
Then the right-hand side of (2.1) is Lipschitz continuous with respect to {(qi, pi)}Ni=1 in a small
neighborhood of {(qi(0), pi(0))}Ni=1 in R

6N . By the Picard-Lindelöf Theorem, there is the maximum
time interval [0, TM ) in which a solution of (2.1) exists and it is unique.

We next follow the same argument in [6, 7]. On the maximum time interval [0, TM ), we take the
inner product between the second equation of (2.1) and xi to obtain that

〈ṗi, qi〉 = −‖pi‖2 − cp〈pi, qi〉. (2.2)
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By (2.2) and the first equation of (2.1), we obtain that

d

dt

N
∑

i=1

|〈pi, qi〉|2 = 2

N
∑

i=1

(〈ṗi, qi〉+ 〈pi, q̇i〉)〈pi, qi〉

= 2

N
∑

i=1

(〈ṗi, qi〉+ ‖pi‖2) 〈pi, qi〉

= −2cp

N
∑

i=1

|〈pi, qi〉|2.

Note that the initial data satisfies
∑N
i=1 |〈vi(0), xi(0)〉|2 = 0. Therefore, the Gronwall inequality

implies that

N
∑

i=1

|〈vi(t), xi(t)〉| ≡ 0, for t > 0,

and this implies that

〈vi(t), xi(t)〉 ≡ 0.

We take the inner product between q̇i and qi. By the first equation of (2.1),

d

dt
‖qi‖2 = 2〈q̇i, qi〉 = 2〈pi, qi〉 = 0.

Since initial conditions satisfy ‖xi(0)‖ = 1 and 〈vi(0), xi(0)〉 = 0 for all i ∈ {1, . . . , N}, we have

‖xi(t)‖ ≡ 1, for t > 0, i ∈ {1, . . .N}.
In conclusion, we can apply the extensibility of solutions in [21, Corollary 2.2] to obtain that

TM = ∞.

Moreover, we can easily check that {(qi(t), pi(t))}Ni=1 is the unique solution to (1.2) by a standard
argument. Therefore, we can obtain the following proposition.

Proposition 2.1. Let {(qi(t), pi(t))}Ni=1 be a solution to (1.2) with (1.3). Then for all i ∈ {1, . . . , N}
and t > 0,

〈qi(t), pi(t)〉 = 0 and ‖qi(t)‖ = 1.

2.2. Target tracking problem in R
3. In this section, we estimate the distance between the target

and agents for the following model in R
3:

q̇i = pi,

ṗi =
N
∑

j=1

ψij
N

(pj − pi) +
N
∑

j=1

σij
N

(qj − qi) + cq(qγ − qi) + cp(pγ − pi) + ui,

where qi ∈ R
3 and pi ∈ R

3 are the position and velocity of the ith agent, respectively. Here, qγ , pγ ,
and uγ are the position, velocity, and acceleration of a given target (γ-agent) satisfying

q̇γ = pγ ,

ṗγ = uγ .

A new input parameter ui will be determined later. Depending on the information of the target,
we choose two different ui’s and analyze the corresponding asymptotic behaviors. The argument
is straightforward, and thus the reader familiar with target tracking problems in R

3 may skip this
section.
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If ui = 0, then the above model corresponds to the one in Olfati-Saber’s seminal paper [11].
As studied in [11], the system of equations can be decomposed as two second-order systems for the
structural dynamics and translational dynamics. For simplicity, we assume that ψij = 0 and σij = σji
for all indices i and j in {1, . . . , N}. We note that the effect of the flocking term

∑N
j=1

ψij

N (pj − pi)

is negligible, when max1≤i,j≤N ‖pj − pi‖ ≪ 1. See the numerical simulations in Figures 6 and 7.
Let

qc =
1

N

N
∑

i=1

qi, pc =
1

N

N
∑

i=1

pi,

and

xi = qi − qc, vi = pi − pc. (2.3)

Then, the above dynamics can be decomposed into the translational dynamics (2.4) and the struc-
tural dynamics (2.5):

q̇c = pc,

ṗc = cq(qγ − qc) + cp(pγ − pc) + ui,
(2.4)

and

ẋi = xi,

v̇i =

N
∑

j=1

σij
N

(xj − xi)− cqxi − cpvi.
(2.5)

The structural dynamics part in (2.5) has been analyzed in [11].
We focus on the translational dynamics part in (2.4) for two different cases of ui. We first suppose

that all of the position pγ , velocity qγ , and acceleration uγ of the target are given. In this case, it is
natural to choose ui := uγ . Let

qd = qc − qγ , pd = pc − pγ .

Then the translational dynamics in (2.4) can be rewritten as

q̇d = pd,

ṗd = −cqqd − cppd.

This is a simple linear system of ODEs and it has the following solution;

qd(t) =
1

2
√

c2p − 4cq

[

− cpqd(0)e
1

2
t(−

√
c2p−4cq−cp) + qd(0)

√

c2p − 4cqe
1

2
t(−

√
c2p−4cq−cp)

+ cpqd(0)e
1

2
t(
√
c2p−4cq−cp) + qd(0)

√

c2p − 4cqe
1

2
t(
√
c2p−4cq−cp)

− 2pd(0)e
1

2
t(−

√
c2p−4cq−cp) + 2pd(0)e

1

2
t(
√
c2p−4cq−cp)

]

.

Therefore, we can easily check that qd and pd converge to zero exponentially. This means that the
complete rendezvous with an exponential decay rate occurs for any positive cq and cp.

If we only know the position and velocity of the target, we cannot expect a complete rendezvous.
On the other hand, we can control the maximum position difference between the target and agents
if the tracking coefficients for the target are sufficiently large. We refer to [4, 5] for related issues.

For ui = 0, the translational dynamics is given by

q̇d = pd,

ṗd = −cqqd − cppd − uγ .
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As we mentioned above, we cannot expect the complete rendezvous for this case. Alternatively, to
obtain the practical rendezvous estimate, we additionally assume that the acceleration of the target
is bounded:

lim sup ‖uγ‖ ≤ Cγ , (2.6)

for some Cγ > 0. Then we define auxiliary variables as follows.

X1
d = 〈qd, qd〉, X2

d = 〈qd, pd〉, X3
d = 〈pd, pd〉.

By the system of the translational dynamics, we can obtain

Ẋ1
d = 2X2

d ,

Ẋ2
d = X3

d − cqX
1
d − cpX

2
d − 〈qd, uγ〉,

Ẋ3
d = −2cqX

2
d − 2cpX

3
d − 2〈pd, uγ〉.

We rewrite the above system of equations as the following inhomogeneous linear system of ODEs:

Ẋd = AdXd + Fd,

where Xd = (X1
d , X

2
d , X

3
d)
T and Fd = (0,−〈qd, uγ〉,−2〈pd, uγ〉)T , and the coefficient matrix is given

by

Md =











0 2 0

−cq −cp 1

0 −2cq −2cp











.

Note that Md has the following eigenvalues.
{

−cp, −cp −
√

c2p − 4cq, −cp +
√

c2p − 4cq

}

.

Let Dd < 0 be the greatest real part in the above eigenvalues and let

−µd = Dd.

Then, we have

d

dt
‖Xd‖2 = 2〈Xd,MdXd〉+ 2〈Xd, Fd〉

≤ −2µd‖Xd‖2 + 2‖Xd‖‖Fd‖,
this implies that

d

dt
‖Xd‖ ≤ −µd‖Xd‖+ ‖Fd‖.

From elementary calculations, it follows that for any ǫ > 0,

‖Fd‖ ≤ ‖qd‖‖uγ‖+ 2‖pd‖‖uγ‖

≤ ǫ‖qd‖2
2

+
1

2ǫ
‖uγ‖2 +

ǫ‖pd‖2
2

+
2

ǫ
‖uγ‖2

≤ ǫ‖Xd‖+
5

2ǫ
‖uγ‖2.

We choose ǫ = µd/2 and use the Gronwall inequality and (2.6) to obtain that

‖Xd‖ ≤ e−(µd−ǫ)t‖Xd(0)‖+
5

2ǫ
e(µd−ǫ)t

∫ t

0

‖uγ(s)‖2e(µd−ǫ)sds

≤ e−(µd−ǫ)t‖Xd(0)‖+ C2
γ

5

2ǫ
e−(µd−ǫ)t

e(µd−ǫ)t − 1

µd − ǫ
.
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This implies that

lim sup ‖Xd‖ ≤
10C2

γ

µ2
d

.

Thus, if we choose a sufficiently large tracking coefficients cq, cp > 0, then we obtain that

lim sup
t→∞

‖qi(t)− qγ(t)‖, lim sup
t→∞

‖pi(t)− pγ(t)‖ ≪ 1.

3. Generalized rotation operator on sphere and reference frame decomposition

In this section, we decompose our model (1.2) on S
2 into structural dynamics and translational

dynamics. Due to the complexity of (1.2), the decomposition of agents’ positions into a sum of two
vectors as the model in R

3 is not suitable for our case. Instead, we observe that a rigid body motion
on S

2 can be used as a reference frame. Choosing an appropriate rigid body motion, our model
can be represented as the composition of a rigid body motion and local alignment dynamics. The
rigid body motion can be derived based on the angular velocity tensor Wγ(t) of the γ-agent and a
generalized rotation operator Sγ along the given target described below. Recall the given γ-agent
trajectory on S

2:

q̇γ = pγ ,

where qγ ∈ S
2 and pγ ∈ TxS

2 are the position and velocity of the given γ-agent, respectively.
Let

wγ = qγ × pγ .

By elementary calculation, we have qγ × wγ = −pγ and

q̇γ = wγ × qγ .

For the angular velocity vector wγ = (w1
γ , w

2
γ , w

3
γ)
T , we define the angular velocity tensor Wγ(t) of

the γ-agent by

W t
γ =











0 −w3
γ(t) w2

γ(t)

w3
γ(t) 0 −w1

γ(t)

−w2
γ(t) w1

γ(t) 0











.

From the above notation, the equation for the γ-agent is written by

q̇γ = pγ =W t
γqγ .

Now, we consider the following system of ODEs:

ẋ(t) =W t
γx(t). (3.1)

We can define the corresponding solution operator Sγ(x0, t) = Stγx0 : S2 × [0,∞) 7→ S
2 such that

Stγx0 = x(t;x0), (3.2)

where x(t;x0) is the solution to (3.1) subject to

x(0;x0) = x0 ∈ S
2. (3.3)

One can easily check that Stγ is a rigid body motion on S
2.

Lemma 3.1. Let xγ(t) ∈ S
2 be the position of a γ-agent which is a C2 function with respect to

t ≥ 0. For the given γ-agent, the solution operator Stγ defined above is represented by a matrix and

the matrix product. Moreover, for any x, y ∈ R
3,

‖x‖2 = ‖Stγx‖2, 〈x, y〉 = 〈Stγx, Stγy〉.
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Proof. Let xγ(t) be a given C2 function with ‖xγ(t)‖ = 1. We define the solution operator Stγ by

(3.1)-(3.3). Take any two vectors x01 and x02 on S
2. Let

x1(t) = Stγx
0
1, x2(t) = Stγx

0
2.

Equivalently,

ẋ1(t) =W t
γx1(t), ẋ2(t) =W t

γx2(t),

subject to

x1(0) = x01, x2(0) = x02.

Then we have

ẋ1(t)− ẋ2(t) =W t
γ(x1(t)− x2(t)).

This implies that

1

2

d

dt
‖x1(t)− x2(t)‖2 = 〈x1(t)− x2(t),W

t
γ(x1(t)− x2(t))〉.

We note that Wγ is a skew symmetric matrix and this implies that

〈x1(t)− x2(t),W
t
γ(x1(t)− x2(t))〉 = 〈WT

γ (t)(x1(t)− x2(t)), x1(t)− x2(t)〉
= −〈Wγ(t)(x1(t)− x2(t)), x1(t)− x2(t)〉
= −〈x1(t)− x2(t),Wγ(t)(x1(t)− x2(t))〉.

Therefore, we can obtain that

〈x1(t)− x2(t),W
t
γ(x1(t)− x2(t))〉 = 0

and

d

dt
‖x1(t)− x2(t)‖2 = 0.

Since we choose x01 and x02 arbitrary, Stγ : S2 7→ S
2 is a rigid body motion of S2. This implies that

Stγ is represented by a matrix and the matrix product. Moreover, the following holds.

‖x‖2 = ‖Stγx‖2, 〈x, y〉 = 〈Stγx, Stγy〉,

for any x, y ∈ R
3. �

In R
3, the agent’s position can be decomposed into a sum of two vectors as described in (2.3)-(2.5).

Similarly, the agent’s position on S
2 is expressed as the composition of the translational operator Stγ

and the structural vector xi:

qi(t) = Stγxi(t). (3.4)

Notice that xγ(t) := qγ(0) is a time-independent fixed point on S
2 and satisfies

qγ(t) = Stγxγ(t). (3.5)

In the proposition below, we derive a second-order system of xi in the moving frame.

Proposition 3.2. Let (qγ(t), pγ(t)) be a given γ-agent satisfying

q̇γ = pγ ,

where qγ ∈ S
2 and pγ ∈ TxS

2. Let Stγ be the solution operator defined by (3.1)-(3.3). If (3.4) and

(3.5) hold, then the followings are equivalent.
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(1) {(xi(t), vi(t))}Ni=1 satisfies the following structural system of ODEs:

ẋi = vi,

v̇i = −‖vi‖2
‖xi‖2

xi +

N
∑

j=1

σij
N

(‖xi‖2xj − 〈xi, xj〉xi)

+ cq(‖xi‖2xγ − 〈xi, xγ〉xi)− cpvi +Ai,

(3.6)

subject to initial data xi(0) ∈ S
2, vi(0) ∈ Txi(0)S

2 for all i ∈ {1, . . . , N}.
(2) {(qi(t), pi(t))}Ni=1 is the solution to main system (1.2) subject to (1.3) with

Ui = 2〈wγ , qi〉(qi × pi) + ẇγ(t)× qi + StγAi. (3.7)

Proof. For any x0 ∈ S
2, we consider x(t) = Stγx0. Then

Ṡtγx0 =
d

dt
(Stγx0) = ẋ(t) =W t

γx(t) =W t
γS

t
γx0. (3.8)

Since x0 is arbitrary and Stγ is a 3× 3 matrix by Lemma 3.1, we have

Ṡtγ =W t
γS

t
γ . (3.9)

We note that for any x ∈ R
3,

W t
γx = wγ × x. (3.10)

We first prove that if {(xi(t), vi(t))}Ni=1 satisfies (3.6), then {(qi(t), q̇i(t))}Ni=1 is the solution to
the main system with (3.7), where qi(t) = Stγxi(t). By the definition,

d

dt
qi = Ṡtγxi + Stγ ẋi.

Motivated by the above, we naturally define the corresponding velocity as follows.

pi = Ṡtγxi + Stγ ẋi. (3.11)

Thus, we have

d

dt
pi = S̈tγxi + 2Ṡtγ ẋi + Stγ ẍi.

By (3.6) and Lemma 3.1,

Stγ ẍi =− ‖vi‖2
‖xi‖2

Stγxi +

N
∑

j=1

σij
N

[

‖xi‖2Stγxj − 〈xi, xj〉Stγxi
]

+ cq
[

‖xi‖2Stγxγ − 〈xi, xγ〉Stγxi
]

− cpS
t
γvi + StγAi.

(3.12)

From the property of Stγ in Lemma 3.1, it follows that

‖xi‖2 = ‖Stγxi‖2, 〈xi, xj〉 = 〈Stγxi, Stγxj〉.
As [6, 7, 8], we can easily prove that

xi(t) ∈ S
2, vi(t) ∈ Txi(t)S

2, for all t ≥ 0, i ∈ {1, . . . , N}. (3.13)

By this modulus conservation and (3.12),

Stγ ẍi =− ‖vi‖2qi +
N
∑

j=1

σij
N

[

‖qi‖2qj − 〈qi, qj〉qi
]

+ cq
[

‖qi‖2qγ − 〈qi, qγ〉qi
]

+ cp
[

W t
γqi − pi

]

+ StγAi.

(3.14)
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Here, we used (3.9) and (3.11) to obtain

−Stγvi =W t
γqi − pi. (3.15)

By (3.8), (3.9), (3.15) and the definition of qi and pi,

S̈tγxi + 2Ṡtγ ẋi = Ẇ t
γS

t
γxi +W t

γ Ṡ
t
γxi + 2Ṡtγ ẋi

= Ẇ t
γqi +W t

γW
t
γqi + 2W t

γS
t
γ ẋi

= Ẇ t
γqi +W t

γW
t
γqi + 2W t

γ(pi −W t
γ)qi)

= Ẇ t
γqi −W t

γW
t
γqi + 2W t

γpi.

(3.16)

Clearly, by the skew symmetric property of Wγ ,

‖pi‖2 = ‖W t
γS

t
γxi‖2 + 2〈W t

γS
t
γxi, S

t
γ ẋi〉+ ‖Stγ ẋi‖2

= ‖W t
γqi‖2 + 2〈W t

γqi, pi −Wγqi〉+ ‖vi‖2

= 〈qi,W t
γW

t
γqi〉 − 2〈qi,W t

γpi〉+ ‖vi‖2.
This implies that

−‖vi‖2 = −‖pi‖2 + 〈qi,W t
γW

t
γqi〉 − 2〈qi,W t

γpi〉. (3.17)

By (3.16) and (3.17), we have

S̈tγxi + 2Ṡtγ ẋi − ‖vi‖2qi = −‖pi‖2qi + 〈qi,W t
γW

t
γqi〉qi −W t

γW
t
γqi

− 2〈qi,W t
γpi〉qi + 2W t

γpi + Ẇ t
γqi.

(3.18)

Thus, by (3.14) and (3.18),

ṗ = S̈tγxi + 2Ṡtγ ẋi + Stγ ẍi

= −‖pi‖2qi +
N
∑

j=1

σij
N

(‖qi‖2qj − 〈qi, qj〉qi) + cq(‖qi‖2qγ − 〈qi, qγ〉qi)

+ cp(W
t
γqi − pi) + 〈qi,W t

γW
t
γqi〉qi −W t

γW
t
γqi

− 2〈qi,W t
γpi〉qi + 2W t

γpi + Ẇ t
γqi + StγAi.

(3.19)

We note that for any x ∈ R
3,

W t
γx = wγ × x. (3.20)

From (3.19)-(3.20) and the modulus conservation property of Stγ with xi(t) ∈ S
2, it follows that

ṗ = −‖pi‖2
‖qi‖2

qi +

N
∑

j=1

σij
N

(‖qi‖2qj − 〈qi, qj〉qi) + cq(‖qi‖2qγ − 〈qi, qγ〉qi)

+ cp(wγ × qi − pi) + 2〈wγ , qi〉(qi × pi) + ẇγ × qi + StγAi.

Now, if we choose Ai such as

2〈wγ , qi〉(qi × pi) + ẇγ(t)× qi + StγAi = 0,

then our model corresponds to ui = 0 case in the flat space case, and if we choose Ai = 0 then our
model corresponds to ui = uγ case in the flat space case. From the uniqueness of the solution to the
main system, we obtain the desired result.

We next prove that if {(qi(t), pi(t))}Ni=1 is the solution to the main system with (3.7), then
{(xi(t), ẋi(t))}Ni=1 satisfies (3.6), where xi(t) = S−1

γ (t)qi(t). By the first equation of (1.2), we have

pi = q̇i = Ṡtγxi + Stγ ẋi =W t
γS

t
γxi + Stγ ẋi. (3.21)
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This implies that

q̈i = S̈tγxi + 2Ṡtγ ẋi + Stγ ẍi

= Ẇ t
γS

t
γxi +W t

γW
t
γS

t
γxi + 2W t

γS
t
γ ẋi + Stγ ẍi.

(3.22)

By (3.21), we have

‖pi‖2 = ‖W t
γS

t
γxi‖2 + 2〈W t

γS
t
γxi, S

t
γ ẋi〉+ ‖Stγ ẋi‖2

= ‖W t
γqi‖2 + 2〈W t

γqi, pi −Wγqi〉+ ‖vi‖2

= 〈qi,W t
γW

t
γqi〉 − 2〈qi,W t

γpi〉+ ‖vi‖2.
(3.23)

The second equation in (1.2) and qi(t) ∈ S
2 imply that

q̈i = −‖pi‖2qi +
N
∑

j=1

σij
N

(‖qi‖2qj − 〈qi, qj〉qi) + cq(‖qi‖2qγ − 〈qi, qγ〉qi)

+ cp(Pqγ→qi(pγ)− pi) + Ui,

= −‖pi‖2Stγxi +
N
∑

j=1

σij
N

(‖Stγxi‖2Stγxj − 〈Stγxi, Stγxj〉Stγxi)

+ cq(‖Stγxi‖2Stγxγ − 〈Stγxi, Stγxγ〉Stγxi) + cp(Pqγ→qi(pγ)− pi) + Ui.

From the property of Stγ in Lemma 3.1, it follows that

q̈i = −‖pi‖2Stγxi +
N
∑

j=1

σij
N

(‖xi‖2Stγxj − 〈xi, xj〉Stγxi)

+ cq
(

‖xi‖2Stγxγ − 〈xi, xγ〉Stγxi
)

+ cp(Pqγ→qi(pγ)− pi) + Ui.

(3.24)

By (3.22)–(3.24),

Stγ ẍi = −
[

Ẇ t
γS

t
γxi +W t

γW
t
γS

t
γxi + 2W t

γS
t
γ ẋi

]

− ‖pi‖2Stγxi +
N
∑

j=1

σij
N

(‖xi‖2Stγxj − 〈xi, xj〉Stγxi)

+ cq
(

‖xi‖2Stγxγ − 〈xi, xγ〉Stγxi
)

+ cp(Pqγ→qi(pγ)− pi) + Ui

= −
[

Ẇ t
γS

t
γxi +W t

γW
t
γS

t
γxi + 2W t

γS
t
γ ẋi

]

−
(

〈qi,W t
γW

t
γqi〉 − 2〈qi,W t

γpi〉+ ‖vi‖2
)

Stγxi +
N
∑

j=1

σij
N

(‖xi‖2Stγxj − 〈xi, xj〉Stγxi)

+ cq

(

‖xi‖2Stγxγ − 〈xi, xγ〉Stγxi
)

+ cp(Pqγ→qi(pγ)− pi) + Ui.

Note that

−
[

Ẇ t
γS

t
γxi +W t

γW
t
γS

t
γxi + 2W t

γS
t
γ ẋi

]

−
(

〈qi,W t
γW

t
γqi〉 − 2〈qi,W t

γpi〉
)

Stγxi

= −
[

Ẇ t
γqi +W t

γW
t
γqi + 2W t

γ(pi −Wγqi)
]

−
(

〈qi,W t
γW

t
γqi〉 − 2〈qi,W t

γpi〉
)

qi

= −〈qi,W t
γW

t
γqi〉qi +W t

γW
t
γqi + 2〈qi,W t

γpi〉qi − 2W t
γpi − Ẇ t

γqi

= −2〈wγ , qi〉(qi × pi)− ẇγ × qi.

Therefore, by the property of Sγ and the above two equalities, we obtain that {(xi(t), vi(t))}Ni=1

satisfies (3.6) with (3.7).
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4. Reduction to a linearized system with a negative definite coefficient matrix

In this section, we derive a linearized system from the structural system in (3.6). We define
auxiliary variables motivated by the flat case in Section 2 and we extract leading order terms using
‖qi(t)‖ = 1 and 〈qi(t), pi(t)〉 = 0 for all t ≥ 0 and i ∈ {1, . . . , N}. In the system with respect
to auxiliary variables, leading order terms form an inhomogeneous linear system of ODEs with a
negative definite coefficient matrix.

We consider the following system of ODEs with σij = σ > 0 and cq, cp > 0.

ẋi = vi,

v̇i = −‖vi‖2
‖xi‖2

xi +
N
∑

j=1

σ

N
(‖xi‖2xj − 〈xi, xj〉xi)

+ cq(‖xi‖2xγ − 〈xi, xγ〉xi)− cpvi +Ai.

(4.1)

For consistency, we additionally assume that for all t ≥ 0,

〈Ai(t), xi(t)〉 = 0, for all i ∈ {1, . . . , N},

and the initial data satisfies

‖xi(0)‖ = 1 and 〈vi(0), xi(0)〉 = 0, for all i ∈ {1, . . . , N}.

We now define the auxiliary variables as follows.

X1
γ =

1

N

N
∑

i=1

‖xi − xγ‖2, X2
γ =

1

N

N
∑

i=1

〈xi − xγ , vi〉, X3
γ =

1

N

N
∑

i=1

〈vi, vi〉,

and

X1 =
1

N2

N
∑

i,k=1

〈xi − xk, xi − xk〉, X2 =
1

N2

N
∑

i,k=1

〈vi − vk, xi − xk〉,

X3 =
1

N2

N
∑

i,k=1

〈vi − vk, vi − vk〉.

We also define the corresponding inhomogeneous terms as follows.

F 1
γ = 0,

F 2
γ = − 1

N

N
∑

i=1

‖vi‖2
2

‖xi − xγ‖2 +
σ

4N2

N
∑

i,j=1

‖xi − xj‖2‖xi − xγ‖2

+
cq
4N

N
∑

i=1

‖xi − xγ‖4 +
1

N

N
∑

i=1

〈xi − xγ , Ai〉,

F 3
γ =

2

N

N
∑

i=1

〈vi, Ai〉,
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and

F 1 = 0,

F 2 = − 1

N2

N
∑

i,k=1

‖vi‖2 + ‖vk‖2
2

‖xi − xk‖2 +
σ

2N3

N
∑

i,j,k=1

‖xi − xj‖2‖xi − xk‖2

+
cq
2N2

N
∑

i,k=1

‖xγ − xi‖2‖xi − xk‖2 +
1

N2

N
∑

i,k=1

〈Ai −Ak, xi − xk〉,

F 3 =
2

N2

N
∑

i,k=1

(

‖vi‖2〈xi, vk〉+ ‖vk‖2〈xx, vi〉
)

+
2σ

N3

N
∑

i,j,k=1

‖xi − xj‖2〈xi, vk〉

+
cq
N2

N
∑

i,k=1

‖xγ − xi‖2〈xi, vk〉+
2

N2

N
∑

i,k=1

〈Ai −Ak, vi − vk〉.

Let

X = (X1
γ , X

2
γ , X

3
γ , X

1, X2, X3)T , F = (F 1
γ , F

2
γ , F

3
γ , F

1, F 2, F 3)T . (4.2)

Proposition 4.1. For the auxiliary variable X and the inhomogeneous term F , the following holds.

Ẋ =MX + F,

where the coefficient matrix M is given by

M =





























0 2 0 0 0 0

−cq −cp 1 −σ/2 0 0

0 −2cq −2cp 0 σ 0

0 0 0 0 2 0

0 0 0 −(cq + σ) −cp 1

0 0 0 0 −2(cq + σ) −2cp





























.

Proof. Clearly,

d

dt
X1
γ = 2X2

γ .

For X2
γ , we have

d

dt
X2
γ = X3

γ +
1

N

N
∑

i=1

〈xi − xγ , v̇i〉

= X3
γ +

1

N

N
∑

i=1

〈

xi − xγ , −‖vi‖2xi +
N
∑

j=1

σ

N
(‖xi‖2xj − 〈xi, xj〉xi)

+ cq(‖xi‖2xγ − 〈xi, xγ〉xi)− cpvi +Ai

〉

= X3
γ −

1

N

N
∑

i=1

‖vi‖2
2

‖xi − xγ‖2 +
σ

N2

N
∑

i,j=1

〈xi − xγ , xj − 〈xi, xj〉xi〉

+
cq
N

N
∑

i=1

〈xi − xγ , xγ − 〈xi, xγ〉xi〉 −
cp
N

N
∑

i=1

〈xi − xγ , vi〉+
1

N

N
∑

i=1

〈xi − xγ , Ai〉.
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Note that by xi ∈ S
2 and changing the indices,

N
∑

i,j=1

〈xi − xγ , xj − 〈xi, xj〉xi〉 = −
N
∑

i,j=1

〈xγ , xj − 〈xi, xj〉xi〉

= −
N
∑

i,j=1

〈xγ , xi − 〈xi, xj〉xi〉

= −
N
∑

i,j=1

‖xi − xj‖2
2

〈xγ , xi〉

= −1

2

N
∑

i,j=1

‖xi − xj‖2 +
1

4

N
∑

i,j=1

‖xi − xj‖2‖xi − xγ‖2.

(4.3)

By (4.3), we have

d

dt
X2
γ = X3

γ −
1

N

N
∑

i=1

‖vi‖2
2

‖xi − xγ‖2 −
σ

2
X1 +

σ

4N2

N
∑

i,j=1

‖xi − xj‖2‖xi − xγ‖2

− cq
N

N
∑

i=1

‖xi − xγ‖2 +
cq
4N

N
∑

i=1

‖xi − xγ‖4 − cpX
2
γ +

1

N

N
∑

i=1

〈xi − xγ , Ai〉

= −cqX1
γ − cpX

2
γ +X3

γ −
σ

2
X1 + F 2

γ .

Similarly, we have

1

2

d

dt
X3
γ =

1

N

N
∑

i=1

〈vi, v̇i〉

=
1

N

N
∑

i=1

〈

vi, −‖vi‖2xi +
N
∑

j=1

σ

N
(‖xi‖2xj − 〈xi, xj〉xi)

+ cq(‖xi‖2xγ − 〈xi, xγ〉xi)− cpvi +Ai

〉

=
σ

N2

N
∑

i,j=1

〈vi, xj〉 −
1

N

N
∑

i=1

cq〈vi, xi − xγ〉 −
1

N

N
∑

i=1

cp〈vi, vi〉+
1

N

N
∑

i=1

〈vi, Ai〉.

Thus, we have

d

dt
X3
γ = −2cqX

2
γ − 2cpX

3
γ − σX2 + F 3

γ . (4.4)

For X1,

d

dt
X1 = 2X2.
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Similar to the previous cases, we use the second equation in (4.1) to obtain

d

dt
X2 = X3 +

1

N2

N
∑

i,k=1

〈v̇i − v̇k, xi − xk〉

= X3 +
1

N2

N
∑

i,k=1

〈

− ‖vi‖2xi + ‖vk‖2xk +
N
∑

j=1

σ

N
[−〈xi, xj〉xi + 〈xk, xj〉xk]

+ cq [−〈xi, xγ〉xi + 〈xk, xγ〉xk]− cpvi + cpvk, xi − xk

〉

+
1

N2

N
∑

i,k=1

〈Ai −Ak, xi − xk〉.

By xi ∈ S
2, we have

d

dt
X2 = X3 − 1

N2

N
∑

i,k=1

‖vi‖2 + ‖vk‖2
2

‖xi − xk‖2

− σX1 +
σ

4N3

N
∑

i,j,k=1

‖xi − xj‖2‖xi − xk‖2 +
σ

4N3

N
∑

i,j,k=1

‖xk − xj‖2‖xi − xk‖2

− cqX
1 +

cq
4N2

N
∑

i,k=1

‖xγ − xi‖2‖xi − xk‖2 +
cq
4N2

N
∑

i,k=1

‖xγ − xk‖2‖xi − xk‖2

− cpX
2 +

1

N2

N
∑

i,k=1

〈Ai −Ak, xi − xk〉.

Changing the indices implies that

d

dt
X2 = −σX1 − cqX

1 − cpX
2 +X3 + F 2.
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Finally, for X3, we obtain

1

2

d

dt
X3 =

1

N2

N
∑

i,k=1

〈

− ‖vi‖2xi + ‖vk‖2xk +
N
∑

j=1

σ

N
(−〈xi, xj〉xi + 〈xk, xj〉xk)

+ cq [−〈xi, xγ〉xi + 〈xk, xγ〉xk]− cpvi + cpvk, vi − vk

〉

+
1

N2

N
∑

i,k=1

〈Ai −Ak, vi − vk〉

=
1

N2

N
∑

i,k=1

(

‖vi‖2〈xi, vk〉+ ‖vk‖2〈xx, vi〉
)

− σX2 +

N
∑

i,j,k=1

σ

2N3
‖xi − xj‖2〈xi, vk〉+

N
∑

i,j,k=1

σ

2N3
‖xk − xj‖2〈xk, vi〉

− cqX
2 +

cq
4N2

N
∑

i,k=1

‖xγ − xi‖2〈xi, vk〉+
cq
4N2

N
∑

i,k=1

‖xγ − xk‖2〈xk, vi〉 − cpX
3

+
1

N2

N
∑

i,k=1

〈Ai −Ak, vi − vk〉.

Thus, we conclude that
d

dt
X3 = −2σX2 − 2cqX

2 − 2cpX
3 + F 3.

�

Note that the eigenvalues of the 6× 6 coefficient matrix M have the only negative real part. The
above result will be used for the complete rendezvous case.

Remark 4.2. In [8], we use l∞-framework to obtain a uniform decay estimate which is independent

of N . However, due to X2 term on the right-hand side of (4.4), we cannot use this l∞-framework.

We obtain only the convergence result depending on N by using the 6× 6 system with l2-framework.

For the practical rendezvous result, we use a different framework, weighted l∞-framework. To
obtain l∞-estimate, we define the following functionals:

X1
i =

4‖xi − xγ‖2
4− ‖xi − xγ‖2

, X2
i =

16〈xi − xγ , vi〉
(4− ‖xi − xγ‖2)2

, X3
i =

16〈vi, vi〉
(4− ‖xi − xγ‖2)2

, (4.5)

and

F 1
i = 0,

F 2
i = −‖vi‖2

2

16‖xi − xγ‖2

(4− ‖xi − xγ‖2)2
+

16σ

N (4− ‖xi − xγ‖2)2
N
∑

j=1

〈xi − xγ , xj − 〈xi, xj〉xi〉

+
16〈xi − xγ , Ai〉

(4− ‖xi − xγ‖2)2
+

64〈xi − xγ , vi〉2

(4− ‖xi − xγ‖2)3

F 3
i =

32σ

N (4− ‖xi − xγ‖2)2
N
∑

j=1

〈vi, xj〉+
32〈vi, Ai〉

(4− ‖xi − xγ‖2)2
+

64〈vi, vi〉〈xi − xγ , vi〉
(4− ‖xi − xγ‖2)3

.

(4.6)

We note that due to the geometric structure of S2, the quartic terms with the coefficient cq in F 2
γ

and F 2 appear. Thus, the standard functional X(t) in the previous argument and Section 2 does not
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work for this practical rendezvous case. For the complete rendezvous case, we will use the energy
functional method and Lasalle’s invariance principle to control the quartic terms. However, for the
practical rendezvous case, we cannot use the same methodology since the system is not autonomous.
Thus, if an extra term with the coefficient cq appears in F , then it is hard to obtain the desired result.
Alternatively, using the functionals in (4.5), we can remove the quartic term with the coefficient cq
as in (4.6).

By the same argument in Proposition 4.3, we have

d

dt
X1
i = 2X2

i .

Using the second equation for the structural system, we obtain the following for X2
γ .

d

dt
X2
i = X3

i +
16〈xi − xγ , v̇i〉

(4− ‖xi − xγ‖2)2
+

64〈xi − xγ , vi〉2

(4− ‖xi − xγ‖2)3

= X3
i + 16

〈

xi − xγ , −‖vi‖2xi +
N
∑

j=1

σ

N
(‖xi‖2xj − 〈xi, xj〉xi)

+ cq(‖xi‖2xγ − 〈xi, xγ〉xi)− cpvi +Ai

〉

/
(

4− ‖xi − xγ‖2
)2

+
64〈xi − xγ , vi〉2

(4− ‖xi − xγ‖2)3

= X3
i −

‖vi‖2
2

16‖xi − xγ‖2

(4− ‖xi − xγ‖2)2
+

16σ

N (4− ‖xi − xγ‖2)2
N
∑

j=1

〈xi − xγ , xj − 〈xi, xj〉xi〉

+
16cq

(4− ‖xi − xγ‖2)2
〈xi − xγ , xγ − 〈xi, xγ〉xi〉 −

16cp

(4− ‖xi − xγ‖2)2
〈xi − xγ , vi〉

+
16〈xi − xγ , Ai〉

(4− ‖xi − xγ‖2)2
+

64〈xi − xγ , vi〉2

(4− ‖xi − xγ‖2)3
.

Note that

〈xi − xγ , xγ − 〈xi, xγ〉xi〉 = 〈xi − xγ , xγ〉 − 〈xi, xγ〉〈xi − xγ , xi〉
= −‖xi − xγ‖2 − 〈xi − xγ , xγ〉〈xi − xγ , xi〉

= −‖xi − xγ‖2 +
‖xi − xγ‖4

4
.

This implies that

d

dt
X2
i = X3

i −
‖vi‖2
2

16‖xi − xγ‖2

(4− ‖xi − xγ‖2)2
+

16σ

N (4− ‖xi − xγ‖2)2
N
∑

j=1

〈xi − xγ , xj − 〈xi, xj〉xi〉

− cqX
1
i − cpX

2
i +

16〈xi − xγ , Ai〉
(4− ‖xi − xγ‖2)2

+
64〈xi − xγ , vi〉2

(4− ‖xi − xγ‖2)3
.
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For X3
i , we have

d

dt
X3
γ =

32〈vi, v̇i〉
(4− ‖xi − xγ‖2)2

+
64〈vi, vi〉〈xi − xγ , vi〉
(4− ‖xi − xγ‖2)3

= 32

〈

vi, −‖vi‖2xi +
N
∑

j=1

σ

N
(‖xi‖2xj − 〈xi, xj〉xi)

+ cq(‖xi‖2xγ − 〈xi, xγ〉xi)− cpvi +Ai

〉

/
(

4− ‖xi − xγ‖2
)2

+
64〈vi, vi〉〈xi − xγ , vi〉
(4− ‖xi − xγ‖2)3

=
32σ

N (4− ‖xi − xγ‖2)2
N
∑

j=1

〈vi, xj〉 − 32cq
〈vi, xi − xγ〉

(4− ‖xi − xγ‖2)2
− 32cp

〈vi, vi〉
(4− ‖xi − xγ‖2)2

+
32〈vi, Ai〉

(4− ‖xi − xγ‖2)2
+

64〈vi, vi〉〈xi − xγ , vi〉
(4− ‖xi − xγ‖2)3

=
32σ

N (4− ‖xi − xγ‖2)2
N
∑

j=1

〈vi, xj〉 − 2cqX
2
i − 2cpX

3
i +

32〈vi, Ai〉
(4− ‖xi − xγ‖2)2

+
64〈vi, vi〉〈xi − xγ , vi〉
(4− ‖xi − xγ‖2)3

.

In conclusion, we have

d

dt
X1
i = 2X2

i + F 1
i ,

d

dt
X2
i = −cqX1

i − cpX
2
i +X3

i + F 2
i

d

dt
X3
i = −2cqX

2
i − 2cpX

3
i + F 3

i .

Therefore, we have proved the following proposition.

Proposition 4.3. Let

Xi = (X1
i , X

2
i , X

3
i )
T , Fi = (F 1

i , F
2
i , F

3
i )
T ,

where Xk
i , F

k
i , k = 1, 2, 3 are functionals defined in (4.5) and (4.6).

Then the following holds.

Ẋi =M∞Xi + Fi,

where the coefficient matrix M∞ is given by

M∞ =











0 2 0

−cq −cp 1

0 −2cq −2cp











.

5. Asymptotic analysis on the target tracking models: complete and practical

rendezvouses

In this section, we provide the proofs of Theorems 2 and 3 in Section 1. Let (qγ , pγ) be the phase
of the target. We assume that the target satisfies (1.1) for some continuous uγ(t) ∈ R

3. For the given
target (qγ(t), pγ(t)), let {(qi(t), pi(t))}Ni=1 be the solution to (1.2). By the argument in Section 4, we
have the following equivalent system for xi(t) = S−1

γ (t)pi(t).

ẋi = vi,

v̇i = −‖vi‖2
‖xi‖2

xi +

N
∑

j=1

σij
N

(‖xi‖2xj − 〈xi, xj〉xi) + cq(‖xi‖2xγ − 〈xi, xγ〉xi)− cpvi +Ai,
(5.1)
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where Stγ is the solution operator defined by (3.1)-(3.3). For the angular velocity wγ = qγ × pγ , Ai
is the extra control law given by

Ai = S−1
γ (t)Ui − 2〈wγ , qi〉S−1

γ (t)[qi × pi]− S−1
γ (t)[ẇγ(t)× qi].

5.1. Complete rendezvouses. We assume that σij = σ > 0 and Ai = 0, i.e.,

Ui = 2〈wγ , qi〉qi × pi − ẇγ(t)× qi.

We first use an energy functional method to obtain the convergence result in Theorem 2 without
convergence rate. We now define an energy functional E = E({(xi, vi)}Ni=1) as follows.

E = Ek + Ec,
where Ek is the kinetic energy given by

Ek =
1

2N

N
∑

i=1

‖vi‖2,

and Ec is the configuration energy given by

Ec =
σ

4N2

N
∑

i,j=1

‖xi − xj‖2 +
cq
2N

N
∑

i=1

‖xγ − xi‖2.

This energy functional has a dissipation property. To obtain this, we take the inner product
between vi and v̇i to obtain

1

2

d

dt
‖vi‖2 = −‖vi‖2

‖xi‖2
〈xi, vi〉+

N
∑

j=1

σ

N
(‖xi‖2〈xj , vi〉 − 〈xi, xj〉〈xi, vi〉)

+ cq(‖xi‖2〈xγ , vi〉 − 〈xi, xγ〉〈xi, vi〉) − cp〈vi, vi〉.
Using the orthogonality 〈xi, vi〉 = 0 and ‖xi‖ = 1 in (3.13), we have

1

2

d

dt
‖vi‖2 =

N
∑

j=1

σ

N
〈xj , vi〉+ cq〈xγ , vi〉 − cp‖vi‖2.

Therefore,

d

dt
Ek =

N
∑

i,j=1

σ

N2
〈xj , vi〉+

cq
N

N
∑

i=1

〈xγ , vi〉 −
cp
N

N
∑

i=1

‖vi‖2.

Similarly,

d

dt
Ec =

σ

2N2

N
∑

i,j=1

〈xi − xj , vi − vj〉 −
cq
N

N
∑

i=1

〈xγ , vi〉

= − σ

2N2

N
∑

i,j=1

(〈xi, vj〉+ 〈xj , vi〉)−
cq
N

N
∑

i=1

〈xγ , vi〉

= − σ

N2

N
∑

i,j=1

〈xj , vi〉 −
cq
N

N
∑

i=1

〈xγ , vi〉.

Therefore, we have

d

dt
(Ek + Ec) = − cq

N

N
∑

i=1

‖vi‖2 = −2cqEk.

We notice that (5.1) is autonomous, since xγ is a constant vector. Moreover, the energy functional
E is zero if and only if

vi = 0 for all i ∈ {1, . . . , N}.
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We can easily prove that the union of the following two sets is the maximum invariant set of E .
{

{(xi, vi)}Ni=1 : vi = 0, xi = xγ for all i ∈ {1, . . . , N}
}

and

{

{(xi, vi)}Ni=1 : vi = 0,
σ

N

N
∑

j=1

xj + cqxγ = 0 for all i ∈ {1, . . . , N}
}

.

If we assume that cq > σ or E(0) < σ

2

(

1 +
cq
σ

)2

, then
σ

N

N
∑

j=1

xj + cqxγ 6= 0. Thus, by Lasalle’s

invariance principle,

‖vi(t)‖ → 0 and xi(t) → xγ

as t→ ∞. Therefore, we have proved the following proposition.

Proposition 5.1. If cq > σ or E(0) < σ

2

(

1 +
cq
σ

)2

, then

vi(t) → 0

and

xi(t) → xγ(t)

as t→ ∞ for any initial data satisfying xi(0) 6= −xγ(0) for all i ∈ {1, . . . , N}.

Next we consider exponential decay estimates for ‖xi − xγ‖ and ‖vi‖. For notational simplicity,
we define the following two functionals.

Dx(t) = max
1≤i≤N

‖xi(t)− xγ(t)‖2

and

Dv(t) = max
1≤i≤N

‖vi(t)‖2.

Proposition 5.2. Assume that Ai = 0. Then for the functional F defined in (4.2), the following

estimate holds

‖F‖ ≤ 8(σ + cq)[Dx(t) +Dv(t)]X1
γ .

Proof. By elementary calculation, we have

|F 1
γ | = 0,

|F 2
γ | ≤

(Dv(t)
2

+
σDx(t)

4
+
cqDx(t)

4

)

X1
γ ,

|F 3
γ | = 0,
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and

F 1 = 0,

F 2 = − 1

N2

N
∑

i,k=1

‖vi‖2 + ‖vk‖2
2

‖xi − xk‖2 +
σ

2N3

N
∑

i,j,k=1

‖xi − xj‖2‖xi − xk‖2

+
cq
2N2

N
∑

i,k=1

‖xγ − xi‖2‖xi − xk‖2 +
1

N2

N
∑

i,k=1

〈Ai −Ak, xi − xk〉,

F 3 =
2

N2

N
∑

i,k=1

(

‖vi‖2〈xi, vk〉+ ‖vk‖2〈xx, vi〉
)

+
2σ

N3

N
∑

i,j,k=1

‖xi − xj‖2〈xi, vk〉

+
cq
N2

N
∑

i,k=1

‖xγ − xi‖2〈xi, vk〉+
2

N2

N
∑

i,k=1

〈Ai −Ak, vi − vk〉.

Note that

‖xi − xk‖2 ≤ ‖xi − xγ + xγ − xk‖2

≤ 2‖xi − xγ‖2 + 2‖xγ − xk‖2

≤ 4Dx(t),
(5.2)

and

|〈xi, vk〉| = |〈xi − xk, vk〉|
≤ |〈xi − xγ , vk〉|+ |〈xγ − xk, vk〉|
≤ Dx(t) +Dv(t).

(5.3)

By (5.2) and (5.3), we have

|F 2| ≤ Dv(t)
N2

N
∑

i,k=1

‖xi − xk‖2 +
2σDx(t)
N2

N
∑

i,k=1

‖xi − xk‖2 +
cqDx(t)
2N2

N
∑

i,k=1

‖xi − xk‖2,

and

|F 3| ≤ 4(Dx(t) +Dv(t))
1

N

N
∑

i=1

‖vi‖2 +
2σ(Dx(t) +Dv(t))

N2

N
∑

i,j=1

‖xi − xj‖2

+
cq(Dx(t) +Dv(t))

N

N
∑

i=1

‖xγ − xi‖2.

Similarly, we have

1

N2

N
∑

i,k=1

‖xi − xk‖2 =
1

N2

N
∑

i,k=1

‖xi − xγ + xγ − xk‖2

≤ 4X1
γ .

Therefore, we obtain that

|F 1| = 0,

|F 2| ≤ (4Dv(t) + 8σDx(t) + 2cqDx(t))X1
γ ,

|F 3| ≤ (8σ + cq) (Dx(t) +Dv(t))X1
γ + 4(Dx(t) +Dv(t))X3

γ .

The above implies the result in this lemma.
�
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We are ready to prove Theorem 2. We first check that the coefficient matrix M has the following
six eigenvalues.

{

−cp, −cp, −cp ±
√

−4cq + c2p, −cp ±
√

−4cq + c2p − 4σ
}

.

Thus, their real parts are all negative. Let D be the greatest real part of the above eigenvalues and
we define

µ := −D > 0.

Then by Proposition 5.1, for any ǫ > 0, there is t0 > 0 such that if t > t0, then

0 ≤ Dx(t) +Dv(t) <
ǫ

4 (1 + 2σ + 2cq)
.

From Proposition 4.1 and 5.2, it follows that

X(t) = eA(t−t0)X(t0) +

∫ t

t0

eA(t−s)F (s)ds.

This implies that

‖X(t)‖ ≤ e−µ(t−t0)‖X(t0)‖+
∫ t

t0

e−µ(t−s)‖F (s)‖ds

≤ e−µ(t−t0)‖X(t0)‖+ ǫ

∫ t

t0

e−µ(t−s)‖X(s)‖ds.

Therefore, by the Gronwall inequality, if t > t0, then

‖X(t)‖ ≤ ‖X(t0)‖e−(µ−ǫ)(t−t0).

5.2. Practical rendezvouses. In this part, we consider the target tracking problem without ac-
celeration information of the target. We assume that σij = σ > 0 and target speed and acceleration
are bounded:

‖wγ(t)‖, ‖ẇγ(t)‖ < Cwγ , t ≥ 0,

where Cwγ > 0 is a positive constant. We assume that Ui = 0. We first check that the coefficient
matrix M∞ in Proposition 4.3 has the following eigenvalues.

{

−cp, −cp ±
√

−4cq + c2p

}

.

Thus, their real parts are all negative. Let D∞ be the greatest real part of the above eigenvalues
and we define

µ∞ := −D∞ > 0.

Let

X∞ = max
1≤i≤N

‖Xi‖.

By Proposition 4.3, for any fixed t > 0, there is an index it ∈ {1, . . . , N} such that

‖Xit‖ = X∞

and

d

dt
X2

∞ =
d

dt
‖Xit‖2

= 〈Xit ,M∞Xit〉+ 〈Xit , Fit〉
≤ −µ∞‖Xit‖2 + ‖Xit‖‖Fit‖
= −µ∞X

2
∞ +X∞‖Fit‖.
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By direct calculation,

|F 1
i | = 0,

|F 2
i | ≤

‖vi‖2
2

16‖xi − xγ‖2

(4− ‖xi − xγ‖2)2
+

16σ

N (4− ‖xi − xγ‖2)2
N
∑

j=1

|〈xi − xγ , xj − 〈xi, xj〉xi〉|

+
16|〈xi − xγ , Ai〉|
(4− ‖xi − xγ‖2)2

+
64〈xi − xγ , vi〉2

(4− ‖xi − xγ‖2)3

|F 3
i | ≤

32σ

N (4− ‖xi − xγ‖2)2
N
∑

j=1

|〈vi, xj〉|+
32|〈vi, Ai〉|

(4− ‖xi − xγ‖2)2
+

64〈vi, vi〉|〈xi − xγ , vi〉|
(4− ‖xi − xγ‖2)3

.

We note that

〈xi − xγ , xj − 〈xi, xj〉xi〉 = 〈xi − xγ , xj − xγ〉+ 〈xi − xγ , xγ〉 − 〈xi − xγ , 〈xi, xj〉xi〉

= 〈xi − xγ , xj − xγ〉 −
1

2
‖xi − xγ‖2 −

〈xi, xj〉
2

‖xi − xγ‖2.

This implies that

|〈xi − xγ , xj − 〈xi, xj〉xi〉| ≤ 2 max
1≤i≤N

‖xi − xγ‖2.

Similarly,

|〈vi, xj〉| = |〈vi, xj − xi〉| ≤ |〈vi, xj − xγ〉|+ |〈vi, xγ − xi〉| ≤ ‖vi‖2 + max
1≤i≤N

‖xi − xγ‖2,

〈xi − xγ , vi〉2 ≤ 4‖vi‖2.
Thus,

|F 1
i | = 0,

|F 2
i | ≤ 2X∞ +

32σmax1≤i≤N ‖xi − xγ‖2

(4− ‖xi − xγ‖2)2
+

16|〈xi − xγ , Ai〉|
(4− ‖xi − xγ‖2)2

+
256‖vi‖2

(4− ‖xi − xγ‖2)3
,

|F 3
i | ≤ 2σX∞ +

32σmax1≤i≤N ‖xi − xγ‖2

(4− ‖xi − xγ‖2)2
+

32|〈vi, Ai〉|
(4− ‖xi − xγ‖2)2

+
256‖vi‖3

(4− ‖xi − xγ‖2)3
.

By elementary calculation, we have

|〈xi − xγ , Ai〉| ≤ ‖xi − xγ‖2 +
‖Ai‖2

4
.

Note that

‖Ai‖2 ≤ 6‖wγ‖2‖S−1
γ (t)pi‖2 + 3‖ẇγ‖2.

Since pi(t) =W t
γS

t
γxi(t) + Stγ ẋi(t),

‖S−1
γ (t)qi‖2 ≤ 2‖wγ‖2 + 2‖vi‖2

and

‖Ai‖2 ≤ 12(Cwγ )
2‖vi‖2 + 12(Cwγ )

4 + 3(Cwγ )
2.

Therefore, we have

|〈xi − xγ , Ai〉| ≤ ‖xi − xγ‖2 + 3(Cwγ )
2‖vi‖2 + 3(Cwγ )

4 +
3(Cwγ )

2

4
. (5.4)

Similarly, we have

|〈vi, Ai〉| ≤ ‖vi‖2 + 3(Cwγ )
2‖vi‖2 + 3(Cwγ )

4 +
3(Cwγ )

2

4
. (5.5)
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By (5.4)-(5.5) and the above argument, if max
1≤i≤N

‖xi − xγ‖ <
2
√
C1 − 1√
C1

< 2, then

|F 1
i | = 0,

|F 2
i | ≤ (2 + 2σC1 + 5C1 + 3(Cwγ )

2)X∞ + 3(Cwγ )
4C2

1 +
3(Cwγ )

2C2
1

4
,

|F 3
i | ≤

(

2 + 2σ + 2σC1 + 6(Cwγ )
2
)

X∞ + 6(Cwγ )
4C2

1 +
6(Cwγ )

2C2
1

4
+ 4X3/2

∞ .

We conclude that

‖Fi‖ ≤
(

4 + 2σ + 4σC1 + 5C1 + 9(Cwγ )
2
)

X∞ + 9(Cwγ )
4C2

1 +
9(Cwγ )

2C2
1

4
+ 4X3/2

∞ .

Therefore, we obtain that

Ẋ∞ ≤ −µ∞X∞ +
(

4 + 2σ + 4σC1 + 5C1 + 9(Cwγ )
2
)

X∞ + 9(Cwγ )
4C2

1 +
9(Cwγ )

2C2
1

4
+ 4X3/2

∞ . (5.6)

We choose cq and cp sufficiently large and take

X∞(0) =

√
C1 − 1√
C1

.

Let T > 0 be a maximal number such that on t ∈ [0, T ),

max
1≤i≤N

‖xi(t)− xγ(t)‖ < 2X∞(0), t ∈ [0, T ). (5.7)

By the initial condition and the continuity of the solution, there is a positive number T > 0 satisfying
(5.7). We claim that if cq and cp are sufficiently large, then T = ∞. We note that for a given initial
data, σ, C1, C

w
γ are fixed constants. Therefore, on t ∈ [0, T ),

Ẋ∞ ≤ −µ∞X∞ + CX∞ + C. (5.8)

(5.8) implies

Ẋ∞ ≤ −µ
2
X∞ + C, (5.9)

if cq and cp are sufficiently large. Therefore, by the Gronwall inequality and (5.9),

X∞(t) ≤ e−
µ
2
tX∞(0) + e−

µ
2
t 2Ce

µ
2
t − 2C

µ
= e−

µ
2
t

(

X∞(0)− 2C

µ

)

+
2C

µ
.

If cq and cp are sufficiently large, then µ is sufficiently large and X∞ ≤ X∞(0). These imply that on
t ∈ [0, T ),

max
1≤i≤N

‖xi(t)− xγ(t)‖ ≤ X∞ ≤ X∞(0) < 2X∞(0).

By the continuity of the solution, we obtain that

T = ∞.

Finally, by the above, we obtain the following practical rendezvous estimate.

X∞(t) ≤ e−
µ
2
t

(

X∞(0)− 2C

µ

)

+
2C

µ
.

Thus, we complete the proof of Theorem 3.



27

6. Simulation results

In this section, we present several numerical simulations for the target tracking problem on the
unit sphere and the flat space to verify the asymptotic complete rendezvous and practical rendezvous.
We use the fourth-order Runge-Kutta method. We consider six α-agents {(qi, pi)}6i=1 chasing one
target (qγ , pγ). We assume that the control law for the target (qγ , pγ) is given by

uγ(t) = a(cos t, sin t, 1),

where a is a constant. Throughout this section, we assume that the inter-particle bonding force
parameter is given by

σ = 1.

With the extra control law for agents

Ui = 2〈wγ , qi〉(qi × pi) + ẇγ(t)× qi,

the initial positions and velocities for the agents are randomly chosen in

(qi(0), pi(0)) ∈ TS2 ∩ [−1, 1]3 × [−1, 1]3

as follows:

q1(0) = ( 0.8132, 0.4989,−0.2993), q2(0) = ( 0.7198, 0.4908, 0.4908),

q3(0) = (−0.6758,−0.6991, 0.2330), q4(0) = (−0.7878, 0.5627,−0.2501),

q5(0) = (−0.5440,−0.7504, 0.3752), q6(0) = (−0.8599,−0.3608, 0.3608),

and

p1(0) = ( 0.1028,−0.1884,−0.0347), p2(0) = (−0.1168, 0.5118,−0.3405),

p3(0) = (−0.0821, 0.0857, 0.0191), p4(0) = (−0.1454,−0.1506, 0.1189),

p5(0) = ( 0.2220,−0.1040, 0.1137), p6(0) = (−0.0003, 0.3768, 0.3759).

The initial data for the target is

qγ(0) = (−0.6451, 0.6605,−0.3840) and pγ(0) = (0.1761, 0.3646, 0.3311).

Note that all the initial positions and velocities satisfy the admissible conditions in (1.3). Since
ωγ = qγ × pγ , we can check that

Ui = 2〈ωγ , qi〉(qi × pi) + ω̇γ(t)× qi

= 2〈ωγ , qi〉(qi × pi) + (q̇γ × pγ + qγ × ṗγ)× qi

= 2〈ωγ , qi〉(qi × pi) +

(

qγ ×
[

−‖pγ‖2
‖qγ‖2

qγ + ‖qγ‖2uγ − 〈uγ , qγ〉qγ
])

× qi

= 2〈ωγ , qi〉(qi × pi) + (qγ × ‖qγ‖2uγ)× qi.

(6.1)

We fix

σ = 1, cq = 5, cp = 0.1 and a = 0.5.

For this case, the time evolution of (1.2) is given in Figure 1. The red points and blue lines stand for
the position qi(t) at t = t0 and trajectories for the time interval [t0 − 3, t0], respectively. The yellow
one is for the target agent qγ(t). In addition, we can check that the asymptotic complete rendezvous

occurs as we proved in Theorem 2. See Figure 2. Here, the exponential function is 2e(−cp+0.05)(t−40).
For the zero extra control law, i.e. Ui = 0, we fix the parameters such that

σ = 1, cq = 4, cp = 4, a = 0.5.



28 SUN-HO CHOI, DOHYUN KWON, AND HYOWON SEO

(A) t = 0 (B) t = 5 (C) t = 25 (D) t = 40

(E) t = 55 (F) t = 70 (G) t = 100 (H) t = 200

Figure 1. The time evolution of (1.2) with extra control law (6.1)
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(C) Logplot of (A) and (B)

Figure 2. The asymptotic complete rendezvous

The initial data of agents are randomly chosen but near the target as follows:

q1(0) = (−0.8147,−0.5366, 0.2193), q2(0) = (−0.4575,−0.8843, 0.0922),

q3(0) = (−0.4335,−0.8173, 0.3794), q4(0) = (−0.8645,−0.2373, 0.4429),

q5(0) = (−0.4420,−0.7998, 0.4060), q6(0) = (−0.4312,−0.6004, 0.6734),

and

p1(0) = (0.0228,−0.0750,−0.0987), p2(0) = (0.2519,−0.1263, 0.0383),

p3(0) = (0.0200, 0.0169, 0.0594), p4(0) = (0.0388,−0.1447,−0.0017),

p5(0) = (0.0365, 0.1109, 0.2583), p6(0) = (0.0081, 0.0050, 0.0097).

The initial data for the target is given by
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(A) t = 0 (B) t = 1 (C) t = 4 (D) t = 9

(E) t = 35 (F) t = 90 (G) t = 150 (H) t = 200

Figure 3. The time evolution of (1.2) with control law

qγ(0) = (−0.6324,−0.6324, 0.4472) and pγ(0) = (0.4712,−0.1742, 0.4199).

Figure 3 shows the time evolution of (1.2) without extra control law.
We can see that the maximum distance

max
1≤i≤6

‖qi(t)− qγ(t)‖

between agents and the target is bounded by 2/
√
cp. See Figure 4(A). Let

d(t) = max
1≤i≤6

‖qi(t)− qγ(t)‖.

Figure 4(B) displays d(t) at t = 100 with respect to cp. As cp increases, the maximum distance
between agents and target decreases. Therefore, we observe that the asymptotic practical rendezvous
occurs.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

(A) max
1≤i≤6

‖qi(t)− qγ(t)‖

0 50 100
0

0.5

1

1.5

(B) d(t) at t = 100

Figure 4. The asymptotic practical rendezvous
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With the extra control law, we observed the asymptotic complete rendezvous in Figure 1 and
Figure 2. However, if we choose the parameter cp as zero, then the agents are not able to track the
target. See Figure 5. Here, other parameters and initial data are the same as the case in Figure
1. In the absence of the velocity alignment term, the agents easily escape the sphere due to the
accumulation of errors. To overcome this, as in [8], we add the following feedback term f0

i on the
second equation of (1.2).

f0
i = −k0

(

qi −
qi
‖qi‖

)

,

where k0 = 104. From this, we conclude that the velocity alignment operator is crucial in this target
tracking algorithm.

(A) t = 5 (B) t = 55 (C) t = 100 (D) t = 200

Figure 5. The time evolution of (1.2) with extra control law (6.1) and cp = 0

As we mentioned in Subsection 2.2, the flocking term is negligible for the target tracking problem
(1.2). With the same parameters of Figure 1 and Figure 3, the numerical results of (1.2) including
the rotational flocking term

N
∑

j=1

ψij
N

(Rqj→qi(pj)− pi),

where ψij = 1 is given in Figure 6. It is confirmed that the flocking term does not affect the results.
See also Figure 7.
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Figure 6. The numerical results with flocking term and the same parameters with
Figure 2

Finally, we compare the target tracking problems on a sphere and flat space numerically. To
compare the two cases, we impose the periodic boundary for the flat space and fix parameters such
as σ = 1, cq = 5, and cp = 0.1. Let

uγ = (a cos t, a sin t, a),
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Figure 7. The numerical results with flocking term and the same parameters with
Figure 4

where a = 0.5 and ui = uγ . Then we can observe that the complete rendezvous occurs. See Figure
8. If ui = 0, then we observe the practical rendezvous. See Figure 9.

(A) t = 0 (B) t = 5 (C) t = 10 (D) t = 15

(E) t = 40 (F) t = 100 (G) t = 200 (H) t = 300

Figure 8. The snapshops of complete rendezvous on flat space

7. Conclusion

In this paper, we proposed a novel model for target tracking on spherical geometry. With the tar-
get’s position, velocity, and acceleration, if the initial energy of agents is small or the bonding force
between the target and each agent is larger than the one between agents, the complete rendezvous
occurs. When only the information of position and velocity is known and the target’s angular ve-
locity and its time derivative are bounded, the practical rendezvous is obtained for relatively large
intra-bonding forces. The target tracking problems on S

2 with time delay, white noises from the ob-
servation, and measurement are also interesting topics. These issues will be discussed in our future
researches.
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(A) t = 0 (B) t = 5 (C) t = 10 (D) t = 15

(E) t = 40 (F) t = 100 (G) t = 200 (H) t = 300

Figure 9. The snapshops of practical rendezvous on flat space

Appendix A. Properties of the admissible rotation operator

In this part, we consider admissible rotation operators on a sphere and their properties. The
rotation operator appears naturally for defining the flocking on a sphere [6]. Let R·→· be Rodrigues’
rotation operator given by

Rxk→xi
(vk) = R(xk, xi) · vk

and for xk 6= xi,

R(xk, xi) := 〈xk, xi〉I + xix
T
k − xkx

T
i + (1− 〈xk, xi〉)

(

xk × xi
|xk × xi|

)(

xk × xi
|xk × xi|

)T

.

Here, xk, xi and vj are three dimensional column vectors. The rotation operator R·→· has many
good properties we desired or needed to be physically established and we can construct a flocking
model by replacing the velocity difference term vi − vj in the flat space to Rxj→xi

vj(t)− vi(t). See
[6] for the details. However, there are some inconvenient points due to the presence of singularity on
R·→·. Therefore, we can naturally ask whether such alternatives can be found.

The idea to find the alternative is as follows. First, classify the properties that the rotation
operators must satisfy, and find all the operators that satisfy the properties. Next, we will choose one
of those operators that meets our needs. Our option will be the simplest of the possible operators.
This form has various advantages. It is convenient to calculate, and it shares most of the good
properties of the rotation operator R·→· previously defined. By removing the singularity, we easily
show the global-in-time existence and uniqueness of the new model in (1.2). See [6] for the existence
and uniqueness of the model with R·→·.

To construct a unit sphere model with the Newtonian equation, we need a modification of vj − vi
terms, which is the first motivation of the operators Rxj→xi

in [6]. As we compute the velocity
difference between vi and vj at the point xi, we should transform vj into a tangential vector of the
sphere at xi. We note that the typical ansatz for the flocking motion on a sphere is circle motions. In
order to include circle motions along one great circle, the operator should coincide with a rotation
operator in two dimensions, a (xi, xj)-plane. In other words, an admissible rotation operatorM from
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z1 to z2 can be a 3× 3 matrix such that

Mz1 = z2, Mz2 = 2〈z1, z2〉z2 − z1, (A.1a)

〈Mv, z2〉 = 0 for any z1, z2 ∈ D and v ∈ Tz1D. (A.1b)

In the next proposition, we can prove that the admissible choices in (A.1) for the rotation operator
are equivalent to the following set.

Az1→z2 :=
{

Pz1→z2 + a(z1 × z2)(z1 × z2)
T + b(z1 − 〈z1, z2〉z2)(z1 × z2)

T : a, b ∈ R
}

, (A.2)

where Pz1→z2 is the operator defined in (1.4).

Proposition A.1. Suppose that unit vectors z1 and z2 are linearly independent. Then, a 3 × 3
matrix M satisfies (A.1) if and only if M ∈ Az1→z2 .

Proof. As two vectors z1 and z2 are perpendicular to z1 × z2, operator Pz1→z2 satisfies (A.1) from
the direct computation. Note that 〈z1 × z2, zi〉 = 0 for i = 1, 2. From this motivation, we naturally
define

M := Pz1→z2 + a(z1 × z2)(z1 × z2)
T + b(z1 − 〈z1, z2〉z2)(z1 × z2)

T (A.3)

for any a, b ∈ R. Then M satisfies (A.1a). Also, as z2 is perpendicular to both z1 × z2 and (z1 −
〈z1, z2〉z2), we conclude (A.1b).

Conversely, choose any 3 × 3 matrix M ′ satisfying (A.1). As z1 and z2 are linearly independent,
{z2, z1 − 〈z1, z2〉z2, z1 × z2} are a basis of R3. Therefore, there are a, b, c ∈ R such that

M ′ z1 × z2
‖z1 × z2‖2

= a(z1 × z2) + b(z1 − 〈z1, z2〉z2) + cz2. (A.4)

From (A.1b) and z1 × z2 ∈ Tz1D, it follows that c = 0. Therefore, we conclude that

Mz1 × z2 =M ′z1 × z2

for M given in (A.3). On the other hand, (A.1a) show that

M(z2) =M ′(z2) and M(z1 − 〈z1, z2〉z2) =M ′(z1 − 〈z1, z2〉z2). (A.5)

From (A.4) and (A.5), we obtain that M =M ′. �

The set Az1→z2 includes the rotation operators Rz1→z2 and Pz1→z2 given in [6] and (1.4), respec-
tively. Here, if we take the following values in (A.3):

a =
1− 〈z1, z2〉
‖z1 × z2‖2

and b = 0,

then the matrix coincides with Rz1→z2 , which preserves the modulus of each vectors. See Lemma 2.3
in [6]. Among several choices in the admissible set in (A.2), Pz1→z2 can be regarded as the simplest
choice such that a = b = 0 in (A.2). Moreover, there is no singularity compared to the previous
rotation operator R·→·. In addition to this simplicity, the rotation operator Pz1→z2 also share the
following desired transport properties.

Lemma A.2. For z1, z2 ∈ D, Pz1→z2 given in (1.4) satisfies (A.1). Furthermore, we have

PTz1→z2 = Pz2→z1 (A.6)

and

PTz1→z2Pz1→z2(z1) = z1, PTz1→z2Pz1→z2(z2) = z2.



34 SUN-HO CHOI, DOHYUN KWON, AND HYOWON SEO

Proof. As two vectors z1 and z2 are perpendicular to z1 × z2, the properties in (A.1) follow from
the direct computation. Also, since the transpose is the linear operator, we have

PTz1→z2 = 〈z1, z2〉I − z2z
T
1 + z1z

T
2 ,

and we conclude (A.6). From (A.1) and (A.6), it holds that

PTz1→z2Pz1→z2(z1) = PTz1→z2(z2) = z1

and

PTz1→z2Pz1→z2(z2) = PTz1→z2(2〈z1, z2〉z2 − z1) = 2〈z1, z2〉z1 − (2〈z1, z2〉z1 − z2) = z2.

�

While the two operators Rz1→z2 and Pz1→z2 coincide on the (z1, z2)-plane from Lemma A.2, the
following lemma gives us one difference between the two operators. We can show that P·→· gives a
map between two tangent spaces although the operator is not a bijection if 〈z1, z2〉 = 0.

Lemma A.3. Pz1→z2 |Tz1
D is a map from Tz1D to Tz2D. Furthermore, if 〈z1, z2〉 6= 0, then Pz1→z2 |Tz1

D

is a bijection from Tz1D to Tz2D.

Proof. As D is a unit sphere, v ∈ TyD if and only if 〈v, y〉 = 0 for any y ∈ R
3. Thus, we have

〈v, z1〉 = 0 for any vector v ∈ Tz1D. (A.7)

From (A.1a) and (A.6), it holds that for any v ∈ R
3,

(Pz1→z2v) · z2 = vTPTz1→z2z2 = vTPz1→z2rz2 = vT z1 = 〈v, z1〉. (A.8)

By (A.7) and (A.8), we conclude that

(Pz1→z2v) · z2 = 0 and thus Pz1→z2v ∈ Tz2D for any vector v ∈ Tz1D.
We now assume that 〈z1, z2〉 6= 0 and show that Pz1→z2 |Tz1

D is bijective between two tangent
spaces. First, if z1 = z2 or z1 = −z2, we get Pz1→z2 = I and Pz1→z2 = −I. If not, z1 and z2
are linearly independent. From the assumption, Pz1→z2(z1 × z2) = 〈z1, z2〉(z1 × z2) is a nonzero
vector. Combining this with (A.1a), we conclude that Pz1→z2 |Tz1

D is surjective in Tz2D and thus the
determinant of Pz1→z2 is nonzero. As the inverse function of Pz1→z2 exists, we conclude that this
lemma holds. �
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