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Abstract 

In order to understand the dynamics of active matter, we examine a minimalistic model where 

interacting spins on a one-dimensional lattice are driven by a self-propelled spin at the centre with a 

fixed rotational velocity (ω0). The other spins execute rotational Brownian motion by following the 

Shore-Zwanzig model of rotational dynamics. The simplicity of the model allows us to inquire about 

several relevant microscopic quantities. The continuous ‘active’ torque on the central spin is 

propagated through nearest neighbour interactions with a uniform coupling parameter, J. We have 

found a bounded region in the J-ω0 plane where the system exhibits ‘active matter like behaviour’. 

Interestingly, in the limits of large J and ω0, we observe a ‘slipping behaviour’. The site specific 

average rotational velocity of the spin, as one moves away from the central spin exhibits a nearly 

exponential decay with distance, allowing the definition of a correlation length (ξ) which grows 

rapidly with an increase of the coupling (J) between the spins. Site specific average velocity exhibits a 

change from a single exponential to biexponential decay pattern as the system enters the active region 

of the phase diagram, accompanied by a non-monotonic behavior of the correlation length. We 

conclude that a macroscopic coherent state can emerge in the presence of a small concentration of 

active molecules. We discuss experimental relevance of our results. 

 

1. Introduction 

 Since the pioneering work by Vicsek et al.
1
 a large number of studies have been 

devoted to understand the statistical mechanics of active matter.
2-12

 This is naturally a subject 

of great relevance to biological systems where one often finds a coherent pattern of behaviour 

to emerge from seemingly uncorrelated motions.
13-15

 Several pioneering theoretical studies 

have elucidated how standard hydrodynamic models can be generalized to include the motion 

in active matter, leading in turn to an elegant description of the emergence of a dynamically 

ordered state.
3, 16, 17
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 The Vicsek model is the most prominent example of a minimal model which is 

capable of capturing the physics of dynamical ordering transition exhibited by active 

particles.
1, 18, 19

 The velocity-velocity interactions in this two-dimensional model results in a 

phase transition from a disordered state to a long-range correlation in the velocity of the 

driven particles as the noise (an equivalent of temperature) in the system decreases and 

system density increases. The emergence of order in the limiting case of low noise and high 

density has also been observed in simulation studies of one-dimensional Vicsek model.
20

 The 

hallmark of Vicsek model is the emergence of a dynamically ordered state via a phase 

transition in two-dimensions. Ordered state is marked by the particles that move in the same 

direction and exhibits a ‘flocking’ motion.  

We note in passing that in a strict sense an order-disorder phase transition cannot exist 

in an equilibrium two-dimensional systems as stated in the Mermin-Wagner theorem.
21

 

However, such restrictions do not exist in nonequilibrium systems. Activity induced phase 

transtition has also been reported in simple colloidal systems.
22

 Earlier studies have also used 

the Péclet number (that controls the self-propulsion) to monitor the activity of articles in the 

system to induce activity controlled phase transition.
23

 A recent study connects the relation 

between phase transition and the emergence of collective motion in a one-dimensional spin 

system.
24

 

 It is important to note the absence of explicit intermolecular interactions in the Vicsek 

model. This model achieves coherence state only by the application of a conditional ‘velocity 

update rule’ where particles move synchronously with their neighbours with deviations in a 

permissible noise range. More recently, there have been attempts to include intermolecular 

interactions among the participating particle, more in the spirit of the liquid state theory.
25, 26

 

The advantage of such a microscopic approach is that one can include molecular length scale 

processes such as collisions. Also, one can attempt to understand how microscopic time scale 

transcends into macroscopic time scales in a sense similar to the renormalization group 

theory approach to the critical phenomena. This is a formidable aim and the development can 

be regarded at an initial stage. 

In several earlier papers, interaction between active particles has been included 

through a hydrodynamic  advective term.
3, 5

 We refer to the elegant work by Ramaswamy 

which showed how such an interaction can give rise to a motion in a given direction, thereby 

achieving a more physical realization of active matter than provided by the Vicsek model.  
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An important aspect of an active matter is the emergence of a flowing state which is a 

dynamically ordered state. This is a low entropy ordered state that bears certain similarity to 

Progogine’s dissipative structure.
27

 Of course Prigogine’s dissipative structures do not have a 

flow built in. Nevertheless, the seminal aspect of the latter work is the appearance of a 

dynamically stable state characterized by minimum rate of entropy production. This provides 

a variational principle that allows selection of the preferred state. 

 In a recent paper, Vaikuntanathan and co-workers
28

 studied the evolving structure, 

dynamics and fluctuations in a system of two-dimensional disks subject to three kinds of 

forces. First, each disk experiences a conservative force due to distance-dependent repulsive 

interaction forces among themselves, as in any standard liquid state theory. Second, the disks 

experience a stochastic random force that obeys Gaussian statistics and gives rise to 

dissipation. It is the third force, whose form is motivated by an experimental active colloid 

mixture study,
29

 that simulates active matter. This is an external force acting on half of the 

particles, absent for the rest. This external force changes direction periodically. The external 

force is so chosen that in the zero-temperature limit, a single externally driven particle will 

trace a circle in the XY plane. The periodically changing external force induces a coexistence 

between the phases characterized by work done. Work done is defined differently as the 

energy dissipation.
30-32

 Diffusion constant of the system, controlled by the amiplitude of non-

conservative external forces, increases due to energy dissipation and determines properties of 

the non-equilibirum system. There are regions where energy dissipation is more and similar 

other regions where dissipation is less. These factors control the phase separation behaviour 

of the non-equilibrium system. 

 It is interesting to note that several years ago, several studies considered the 

microscopic structure of a liquid made of spherical molecules (like colloidal spheres) 

subjected to shear flow.
33-35

 In particular, considerable attention was devoted to the melting 

of colloidal crystals under shear flow. It was observed that the structure of a liquid under 

shear flow develops anisotropy in the manner that the structure factor in the direction of flow 

becomes different from those in the perpendicular direction. This altered structure influences 

the freezing-melting behaviour of the system.
36

 This bears resemblance to the present study 

of active matter under flow once a steady state is reached.  

 Our motivation is to study the emergence of a dynamically coherent steady state in a 

driven Hamiltonian system.  In particular, we are interested in investigating the possible 
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modification in the microscopic correlations in a nonequilibrium steady state in an interacting 

system. As the spins interact with each other, we have the scope of studying the emergence of 

a coherent steady state as a function of the interaction potential and the driving force. We 

have indeed observed the formation of such a steady state far from equilibrium.  

Our study of active matter that is based on one-dimensional XY like spin system. In 

this paper, we explore how the controlled self-driven rotation of a spin at the centre of the 

one-dimensional chain affects the natural Brownian motional of all other spins. The spins are 

coupled by nearest neighbour interactions. This is perhaps the simplest conceivable model of 

interacting systems, much in the same spirit of the Glauber model that played an important 

role in modelling the dynamics of interacting systems.
37-40

 However, we needed to employ a 

continuum version of the Glauber model, and the model of choice is the celebrated Shore-

Zwanzig model which allows not only  but also Brownian diffusion of the system of 

interacting spins.
41

 

 In the present study we attempt to answer the following questions: How does one 

describe the effects of one spin driving the rest of the system through nearest neighbour 

interactions? This is clearly the scenario when information and effects propagate through 

interactions. In the presence of a driving force correlations appear which under weak 

coupling nevertheless decays as the effects diminish with distance. However, the length scale 

of the decay of correlations remains an interesting point to explore. The second question is 

the possible emergence of a coherent state where all the spins rotate in unison with the central 

driving spin. This is thus a state of zero entropy, if we could define entropy in terms of the 

width of distribution of velocities.  

2. Description of the Model 

The model, as shown in Figure 1, consists of a one-dimensional lattice of spins where 

each spin is free to rotate about its axis. The central spin (#0) is driven externally and rotates 

with a constant velocity 0 . The spins interact with their nearest neighbours following the 

Shore-Zwanzig Hamiltonian and the entire system of spins undergoes continuous Brownian 

diffusion motion. Shore-Zwanzig Hamiltonian is similar to the classical XY model where the 

spins have continuous rotational degree of freedom in the XY plane.
41, 42

 In the absence of a 

uniform external potential acting on the system, the interaction Hamiltonian is given by 

Eq.(1). 
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  
,

cos i j

i j

H J       (1) 

where the indices i and j are nearest neighbour sites and J is the coupling strength parameter. 

When there is no external driving force on the spins, at equilibrium and lower temperatures, 

the spins attain the same orientation. In the case of driven systems, when the central spin 

rotates at a constant velocity 0 , the interaction between spins, governed by the coupling 

constant in Shore-Zwanzig Hamiltonian, determines the spatial propagation of the velocity 

from the central spin. Above a given coupling strength, there emerges a coherent motion.  

 

Figure 1. A schematic illustration of the model: Spins arranged in a 1D lattice with the central spin 

rotating at a constant velocity of 𝛚0. The state of each spin is uniquely defined by an angle (𝛉) and a 

rotational velocity (𝛚). Coupling between the nearest neighbour spins results in a gradient in the site 

specific velocity profile. 

Evolution of orientation of the spins follow continuum diffusion equation [Eq.(4)] that 

is written by combining the continuity equation [Eq.(2)] and the transport equation [Eq.(3)] in 

the presence of interactions (U) between the spins. 

 
. 0

c
j

t



 


       (2) 

where     Rj D c c U            (3) 

Therefore,     2

R

c
D c

t
 


   


      (4) 

Here 𝑐 = 𝑐(𝜃, 𝑡) is the orientation of spins, j is the flux, U is the interaction potential given 

by the Shore – Zwanzig Hamiltonian [Eq.(1)], DR is the rotational diffusion constant, and   

is the torque that is defined as U . The above equations determine the orientational 

evolution for interacting spins in equilibrium conditions. The equations do not account for the 

effect of the central spin constantly rotating at velocity 0 . The driving effect of the central 

spin is not translationally invariant since it depends on the distance of a particular spin from 

the central spin. Such a macroscopic equation that accounts for the evolution for all the spins, 

with one of the spins acting as the driving source, is yet to be formulated. 
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3. Simulation Details 

We propagate the system of one-dimensional interacting spins by employing rotational 

Brownian dynamics simuation as shown in Eq.(5).  

        , 2i R B i R it D k T U t D R t      (5) 

The forces on each spin are given by interactions between the spins written in the Shore-

Zwanzig from [Eq.(1)]. The orientation of the spins are evolved following a first order 

integration scheme [Eq.(5)] resulting in Eq.(6) 

            , 2i i R B R it t t D k T U t dt D dt R t         . (6) 

Here 𝜃𝑖(𝑡) is the orientation of the spin at time 𝑡 and 𝜃𝑖(𝑡 + 𝛿𝑡) is the orientation of the spin 

at time 𝑡 + 𝛿𝑡. ∇θ𝑈𝑖(𝑡) is the force on spin i due to nearest neighbour interactions at time t. 

The coupling constant J given in Eq.(1) is varied to study the effect of increased 

coupling between the spins. We investigated a system of 101 spins arranged in an one-

dimensional array. Each spin interacts with its first nearest neighbor. The central spin rotates 

at a constant velocity 𝜔0. Periodic boundary conditions are implemented such that the first 

spin interacts with the last spin on the array and vice-versa. We use the spin orientation 

values from 50 independent runs in order to calculate various properties presented in the 

subsequent sections. The simulations are performed in reduced units. The details of values of 

the simulation parameters used are as given: dt = 0.1 and 𝐷𝑅 = 1.0. 𝑅𝑖(𝑡) is a gaussian 

distribution with mean 0 and standard deviation 1, scaled by √2𝐷𝑅𝑑𝑡 to represent the thermal 

noise in the system. The central spin is not subjected to thermal noise in the system. Though 

the nearest spins interact with the central spin, the dynamics of the central spin itself is 

unaltered by interactions with nearest spins. Hence, the central spin acts as a source/motor. 

The evolution of orientation of the central spin is written as 

    0 0 0t t t dt       . (7) 

4. Results and discussions 

(A) Phase diagram: Dynamical order and slipping behaviour 

Here we explore the two-dimensional parameter space constructed by – (i) the coupling 

constant, J and (ii) the rotational velocity of the central spin, 0 . We vary J/kBT from 1.0 to 
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10.0 and 0  from 0.05 to 0.9. For every combination of J and 0  we calculate the average 

rotational velocity (scaled by 0 ) of the entire system and construct a phase diagram shown 

in Figure 2. 

 

 

0ω / ω   

Figure 2. Phase diagram for a one-dimensional driven Shore-Zwanzig system in J- 𝛚0 plane. The diagram 

shows the presence of two distinct regions. In one the system behaves as an active system (yellow/red) and 

in the other it exhibits a slipping behaviour (violet/purple). The colour bar indicates the scaled (by 𝛚0) 

average velocity of the system. When J is varied along a fixed value of 𝛚0 (shown by the dotted line at 𝛚0 

= 0.3/dt) the system enters into the active matter domain at ‘p’ and leaves the same at ‘q’. 

 The phase diagram shows the presence of two distinct regions. For intermediate 

values of J/kBT (~4.0 to 8.0) and lower values of 0  (less than 0.4), we observe an active 

matter like behaviour. However, in the limits of large values of J and 0  we observe a 

slipping behaviour. For a large values of J and 0 , the neighbouring spins cannot follow the 

central sping when it rotates at a high velocity. Figure 2 shows that the active behavior is 

actually observed only in a small region of phase diagram.  This situation can be related to 

animal/bird flocks. When one object moves extremely fast, others fail to follow it. On the 

other hand, the unanticipated behaviour in the large J limit is hard to comprehend. When the 

strength of the coupling parameter increases, the non-driven spins influences its neighbours 

more than that of the driven central spin. Therefore, one might observe the emergence of a 

chaotic state.  
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Such phase diagrams can be compared to the order-disorder phase diagrams for 

equilibrium systems. In a recent study, Klamser et al. studied the thermodynamic phases of 

self-propelled particles in two-dimensions and developed a phase diagram.
43

 However, the 

phase diagram reported in Figure 2 is different. In our subsequent analyses, we shall 

concentrate on the active region of the phase diagram.  

(B) Decay of velocity profile 

We perform a detailed study of the emergence of coherence in the velocity of the spins as 

the interaction between the spins increases. These observations are made by keeping the 

velocity of the central spin constant at 0.3/step while the interaction strength ( / BJ k T ) is 

varied between 1.0 to 10.0. The resulting velocity profiles are shown in Figure 3a up to 

J=6.0. This figure embodies one of the main results of the present work. It clearly shows that  

that in a driven nonequilibrium system, the correlations grow non-linearly with coupling 

parameter. Note that in an equilibrium system where systems undergo Shore-Zwanzig 

rotational Brownian motion, correlations in velocity are much shorter ranged.  There are of 

course correlations in orientation, but not in velocity. 

 The site-specific spin velocities shown are scaled by velocity of the central spin. The 

correlation lengths are quantified by fitting the velocity profiles to an exponential or bi-

exponential decay followed by the extraction of the average correlation length,   [Table 

1]. Similar to the observations made with Vicsek model, where decreased noise and increased 

system density gives rise of large correlation in the velocities of the spins, we find an 

emerging coherence in the velocity of the spins with increased coupling interactions among 

the spins. However, beyond a certain value of J (here J > 6), we again observe short ranged 

spatial correlations (that is, a decrease in  ) and an exponential decay of the velocity 

profile [Figure 3b]. The non-monotinicity of Figure 3b originates because of two competing 

factors, namely, (i) the influence of the central driven spin which leads to a dynamically 

ordered state and (ii) the influcne of the non-rotating spins on its neighbours which leads to a 

chaotic disordered state. Sharpness near the peak in the variation of correlation length with J 

at that givent 0  is due to the crossing the two boundaries (in and out) of the phase diagram. 
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Figure 3. (a) Average velocity of the spins scaled by 

velocity of the central spin as a function of position 

of the spin from the central spin. The average 

velocities are obtained by averaging over 50 

independent simulations. Different colours show 

the velocity profiles for different coupling strength 

between the spins (J) as indicated in the figure 

legend. As the coupling between the spin increases, 

the correlation length of velocity of the spins 

increases. The simulations were performed on a 

system size of 101 spins and the central spin is 

positioned at site 0. As the coupling strength is 

varied, the velocity of the central spin is kept 

constant at 𝛚0=0.3/dt. The data are fitted to an 

exponentially/biexponentially decaying function as 

given in Table 1. (b) Variation of the average 

correlation length (<𝛏>) with the coupling constant 

J shows an initial rapid increase followed by a 

decrease for J > 6. The shaded region shows the 

active (large spatial correlation) region which is 

also shown qualitatively by ‘p’ and ‘q’ in Figure 2. 

 

Table 1. Exponential/bi-exponential  fitting parameters for the rotational velocity decay profiles shown in 

Figure 3. 

B
J / k T   1

ξ   2
ξ   ξ   

1.0 0.83 (100%) --- 0.83 

2.0 1.89 (100%) --- 1.89 

3.0 3.05 (100%) --- 3.05 

4.0 3.65 (92%) 30.6 (8%) 5.8 

5.0 4.02 (88%) 211.4 (12%) 28.8 

6.0 4.5 (84%) 1613.6 (16%) 261.9 

7.0 6.0 (86%) 1158.0 (14%) 167.0 

8.0 7.8 (100%) --- 7.8 

9.0 5.7 (100%) --- 5.7 

10.0 4.0 (100%) --- 4.0 

 

(C) Effect of interaction strength on the velocity distributions 

We turn to the probability distribution of velocities as a means of qualitatively 

understanding the entropy of the spin system under different coupling strengths. A broader 
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distribution of the velocities would indicate higher variability in the velocities of the 

individual spins and hence more entropy of the system.  

 

Figure 4. Normalised probability distribution of scaled velocity of the spins.  The velocities are scaled by 

velocity of the central spin. As the coupling between the spins increases, the distribution becomes 

narrower and the mean velocity increases. The results correspond to simulations performed on a 101 spin 

system with the central spin (#0) rotating at 𝛚0 = 0.3/dt. 

Figure 4 shows the normalised probability distribution of the spin velocitites as a 

function of the coupling strength of between the spins. We observe that as the coupling 

between the spin increases, the mean velocity shifts to higher values, closer to the velocity of 

the central spin and the distribution becomes narrower. This is interpreted as the decreasing 

entropy of the system with increased coupling between the spins. 

(D) Effect of the velocity of the central spin 

The central spin, rotating at a constant velocity, produces the motor force for the system. 

Hence the rotational velocity of the central spin dictates the dynamics of all the other spins 

coupled to the central spin. We observe that at a given coupling strength, as the velocity of 

the central spin increases, the average velocity of the spins decreases. Further systematic 

investigation on the relationship between velocity of the driver spin and coupling between the 

spins is yet to be done to ascertain the nature of transition from the decorelated state to a state 

of correlation in the velocity of the spin. 
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Figure 5. Average velocity of the spins scaled by velocity of the central spin as a function of the velocity of 

the central spin (𝛚0). The average velocities are obtained by averaging over 50 independent simulations 

and averaged across the left and right of the central spin for each simulation. As the velocity of the 

central spin increases, the correlation length of velocity of the spins decreases. The simulations were 

performed on a system size of 101 spins. The central spin is positioned at site 0. As the velocity of the 

central spin is varied from 0 to 3, the coupling constant (J) is also varied from 2 to 6. 

 We fit the data shown in Figure 5 with a stretched exponential function: 

 0
exp /y a x


    ,  and provide the fitting parameters in Table 2. 

Table 2. Fitting parameters for the data shown in Figure 7 with a stretched exponential function: 

  
0

exp /y a x


   .  

/ BJ k T   0a         

2.0 0.17 0.27 0.78 

3.0 0.25 0.49 0.79 

4.0 0.43 0.61 0.62 

5.0 0.74 0.57 0.52 

6.0 0.82 0.65 0.50 

 

(E) Correlations in a steady state 

Since the time of Onsager and Prigogine, the nature of stability and dynamics (decay of 

fluctuations)  of systems out of equilibrium has drawn tremendous interest and is a subject of 

fundamental interest. Therefore, we have attempted to characterize the decay of fluctuations 

in such a driven system in a steady state far from equilibrium. We have studied the decay of 

the orientational time correlation function. The total orientational time correlation function in 

equilibrium systems is a measure of total dipole moment time correlation of the system. This 
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was the quantity studied by Shore and Zwanzig, and is routinely studied in dielectric 

relaxation experiments, giving rise to frequency dependent dielectric function, ε(ω). The total 

dipole moment is given by 

 cos i

i

M    (8) 

At equilibrium the fluctuations of total orientation M of the spins follow linear response 

theory. The normalised time correlation of M given as < 𝑀(𝑡)𝑀(0) > < 𝑀(0)2⁄ > decays 

nearly exponentially, with a time constant given by 1 2D . It is therefore of fundamental 

interest to probe the decay of the TCF in the system far from equilibrium.  

The system studied here has an inherent heterogeneous nature. The symmetry of the 

system and the driving central spin introduces a position dependence in the dynamics. We 

investigate the orientation time correlation of the spins for J/kBT=3.0. The orientation time 

correlation of the fifth spin from the central spin is shown in Figure 6. We observe that at a 

coupling strength of J/kBT=3.0, the decay of orientation time correlation of the third and fifth 

spins are faster than that of the non-driven system. At lower coupling strength, it is observed 

that the spins lag behind the central spin. 

 

Figure 6. Site specific orientation time correlation (OTC) function for the driven system and non-driven 

system (dashed line). The OTC for the third, fifth, tenth, and twentieth spins from the central spin are 

shown for the driven systems. The OTCs are shown for J = 3.0 and 𝛚0 = 0.3/dt. Due to the homogeniety in 

the non-driven system, orientation correlation is averaged across the different spins (shown by dashed 

line).  

The decay of normalized time correlation function of M is given as: 

 
   

 
 

2

0
exp

0

M M t
Bt

M
    (9) 
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Here 
2B   , where ζ is the friction coeffient. Using the Einstein’s relation between 

friction coeffcient (ζ) and diffusion constant (D), B can be re-written as 𝐵 = 𝐷 𝜇𝜔2 𝑘𝐵𝑇⁄ . 

Thus as the coupling between the spins increases (or, the velocity of the central spin 

increases) the time correlation of M decays faster. We note here that the assumption of 

expotential decay of time correlation function of M need not be valid for the driven non-

equilibrium system at steady state. 

5. Conclusion 

 Here we study a simple model of an interacting system to capture some aspects of a 

driven system which is the hallmark of an active matter. To the best of our knowledge, this 

could be one of the first studies that consider rotational motion  to mimic the emergence of 

order in driven systems. We employed the elegant Shore-Zwanzig Hamiltonian and Brownian 

dynamics simulations to examine the emergence of dynamical correlations among the spins 

in the system. We find several potentially interesting results, like  growth in dynamical 

correlations as the coupling between the spins increases, and/or the amplitude of the velocity 

is changed.  

The main result is the emergence of a coherent state at certain range of values of the 

coupling parameter J and the driving rotational velocity ω0 of the central spin. It can be easily 

understood that a single active spin at center cannot create a macroscopic dynamically 

ordered state. This is because the dynamical correlation at fixed J and temperature has a finite 

length. However, what makes sense is to consider a finite concentration of active spin rotors. 

In that situation, a dynamically ordered state shall exist at a spin concentration beyond certain 

value which shall be determined by the spin correlation length. The interesting question that 

arises in such a situation is that the active rotors spins can interact with each other 

dynamically  through other spins, and this can create a rotor phase, like the one reported here. 

If the dynamical correlation length is ξ for an isolated active spin, then simple mean-field 

argument shall give the concentration required to be more than /N  , where N is the total 

number of spins. This concentration should actually be less than /N  , and precise 

determination is yet to be made. Perhaps more interesting case arises when the active 

molecules are placed randomly along the lattice. That is, the spins in the lattice are selected to 

be active in a random fashion.  The other interesting case obviously is the two dimensional 

active spins. Here the XY model shows a phase transition. The interaction between phase 

transition and activity can be of considerable interest, especially near the critical point. 
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We find a slipping behavior when the angular velocity is large and no amount of 

coupling can give rise to the coherence in motion among the spins. The present model differs 

from the existing models of active matter in an important aspect. Here  only the central spin is 

self-propelled. Thus, while the onset of a collective motion due to interaction was expected, 

we find several unexpected results also. What was not so obvious is the slipping motion in 

the limits of large interaction and/or large rotational velocity. Also, the emergence of the bi-

exponential decay of the velocity time correlation function and the non-monotonic behavior 

of the correlation length  were unexpected. While it is easy to understand the crossover to 

non-active or slipping region of the system with increase of ω0, the occurance of the same 

with increase of J at constant ω0 is hard to understand.  

Although the model studied here is different from the model of Vicsek et al. and the 

model of del Junco et al., there are also certain similarities. The emergence of the coherent 

state due to nearest neighbour interaction is reminiscent of Vicsek model,
1
 but here the 

interaction is real and originates from a Hamiltonian. The emergence of a phase transition 

like scenario and the change in velocity distribution the coherent state is similar to that of the 

del Junco et al.
28

 We believe that this model can be greatly generalized to study many 

phenomena. We hope to pursue this approach in future work. 
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