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Disordered quantum systems feature an energy scale know as the Thouless energy. For energy
ranges below this scale, the properties of the energy spectrum can be described by random matrix
theory. Above this scale a different behavior sets in. For a metallic system it has been long ago shown
by Altshuler and Shklovskii that the number variance should increase as a power law with a power
dependent only on the dimensionality of the system. Although tantalizing hints for this behavior
have been seen in previous numerical studies, it is quite difficult to verify this prediction using the
standard local unfolding methods. Here we use a different unfolding method, i.e., the singular value
decomposition, and establish a connection between the power law behavior of the scree plot (the
singular values ranked by their amplitude) and the power law behavior of the number variance.
Thus we are able to numerically verify the Altshuler and Shklovskii’s prediction for disordered 3D,
4D, and 5D single-electron Anderson models on square lattices in the metallic regime. The same
method could be applied to systems such as the Sachdev-Ye-Kitaev model and various interacting
many body models for which the many body localization occurs. It has been recently reported that
such systems exhibit a Thouless energy and analyzing the spectrum’s behavior on larger scales is of
much current interest.

I. INTRODUCTION

Weakly disordered quantum systems are known to ex-
hibit a universal behavior of their energy spectrum which
depends only on the symmetry of the system1. The sta-
tistical properties of the energy spectrum do no depend
on the details of the system, and are described by a ran-
dom matrix model with the same symmetry. This behav-
ior is extremely useful in identifying and understanding
various properties of metallic systems2–6.

As pointed out by Altshuler and Shklovskii7, this uni-
versal behavior holds only for energy scales which are
below the Thouless energy ET . The Thouless energy
corresponds to ET = ~/tT where the Thouless time
tT = L2/D (L is the linear dimension of the sample, D
the diffusion constant) depicts the time it takes for a dif-
fusing particle to sample all the system. For shorter times
the motion is not yet diffusive and therefore dependent on
details of the local system. Thus, above this energy scale,
the behavior of statistical properties of the spectrum will
diverge from the random matrix predictions. The canon-
ical measure used to probe this deviation is the number
variance1, defined as the variance in the number of energy
levels within an energy window for an unfolded energy
spectrum. Defining a window of size E, one can count the
number of levels within this window for a given realiza-
tion of disorder and obtain the average number of levels,
〈n(E)〉, and the variance, 〈δ2n(E)〉 = 〈(n(E)−〈n(E)〉)2〉,
where 〈. . .〉 denotes an average over an ensemble of dif-
ferent realizations of disorder. For the Wigner-Dyson
random matrix ensemble (Gaussian orthogonal ensem-
ble, GOE): 〈δ2n(E)〉 = 0.44 + (2/π2) ln(〈n(E)〉), while
for the localized regime 〈δ2n(E)〉 = 〈n(E)〉. Metallic
systems correspond to the Wigner-Dyson random ma-
trix predictions up to a energy window of size ET and
Altshuler and Shklovskii7 predict that for E > ET the
number variance will follow 〈δ2n(E)〉 ∝ 〈n(E)〉d/2, where

d is the dimensionality.

The deviation of the number variance from the ran-
dom matrix logarithmic behavior to a stronger than
linear behavior at large energies has been observed in
metallic system8,9. Recently, it has gained much inter-
est beyond the traditional single-particle disordered sys-
tems. Stronger than linear deviations of the number
variance beyond a certain energy scale have been seen
in the context of Sachdev-Ye-Kitaev (SYK) model10,11,
many body localization systems12–14,18 and the general-
ized Rosenzweig-Porter random matrix model15,16. In
all these cases it was argued that the energy for which
the number variance becomes stronger than linear cor-
responds to the inverse of the time scale for which the
motion can no more sample the whole phase space.

Although the prediction for the behavior of the num-
ber variance on scales larger than the Thouless energy
is straight forward, it is not easy to corroborate even
for simple single-particle systems such as the Anderson
model with any degree of certainty. We shall see that
the main problem is the local unfolding procedure, as
has been noted by previous studies17,18.

Here we intend to address this challenge of verifying
Altshuler and Shklovskii prediction7. We shall illustrate
in detail that a straight forward study of the number
variance using local unfolding is fraught with ambigui-
ties. Therefore, it is clear that a different tack is needed.
Here we will suggest that a couple of new measures,
which are based on singular value decomposition (SVD)
method. This method has been used to classify whether
a system follows Wigner or Poisson statistics19–21, and
recently to identifying non-ergodic extended signature
in the Rosenzweig-Porter model22. As we shall demon-
strate, using the SVD method to replace the short range
unfolding provides a clearer way to study the the behav-
ior of the energy spectrum beyond the Thouless energy.

The paper is organized as follows. In the next section
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(Sec. II) we define the single particle Anderson model on
a square lattice for different dimensionalities. The follow-
ing section (Sec. III) presents the numerical results for
the number variance using local unfolding and discusses
the challenges it presents. Section IV shows the use of
the SVD to tease out the behavior of the large energy
scales. In its first subsection (IV A) we give an overview
of the SVD method. In the next subsection (IV B) we
use the SVD to perform a global unfolding by filtering
out the low modes of the singular values which corre-
sponds to the global features of the energy spectrum and
thus retaining only the fluctuations. Establishing analyt-
ically a connection between the Power spectrum of these
fluctuations and the number variance enables us to glean
the long range behavior of the energy spectrum. Since
there is a connection between the power spectrum and
the scree plot of the singular value modes (the singular
values ranked by their amplitude), as established in sub-
section IV B, the scree plot may be used to read off the
long range spectrum properties. This is used in subsec-
tion IV C in order to verify the dependence of the number
variance on dimensionality. Issues relating to the num-
ber of eigenvalues taken into account and the number
of realizations of disorder considered are also discussed.
In section V we discuss the possibility of applying the
SVD to additional interesting systems such as Sachdev-
Ye-Kitaev model and disordered interacting many body
models known to exhibit many body localization.

II. MODEL

We consider a simple one-particle Anderson model on
a d dimensional square lattice with sites at ~r = jxx̂ +
jy ŷ + . . ., where ji = 1, 2, . . . Li, and Li is the length

in the î direction. Each site has an on-site energy ε~r
chosen randomly from a box distribution in the range
−W/2 . . .W/2. Nearest neighbor hopping between the
sites is considered, with a hopping matrix element set to
one. Thus the Hamiltonian is written as:

H =
∑
~r

ε~rc
†
~rc~r +

∑
~r

∑
â

c†~r+âc~r, (1)

where c†~r is the creation operator at site ~r and â =
±x̂,±ŷ . . . are unit vectors to the nearest neighbor sites.

This model is known to exhibit a metal-insulator tran-
sition at a critical disorder WC = 16.5 for the 3D case,
WC = 34.5 for the 4D case, WC = 57.5 for the 5D case23.
In order to study the long range spectra behavior deep
in the metallic regime, we concentrate on values of dis-
order much lower than the critical disorder, i.e., W = 5
and W = 10, . Using exact diagonalization we calculate
the eigenvalues for the Ld × Ld matrices, where we con-
sider hyper-cubes of size L = Lx = Ly, . . . and hard wall
boundary conditions. For the 3D case we consider sizes
L = 20, 24, 28, corresponding to L3 = 8000, 13824, 21952,
while in the 4D case we evaluate sizes L = 9, 10, 11, 12, 13,
resulting in L4 = 6561, 10000, 14641, 20736, 29561,and

for the 5D case L = 6, 7, 8, which amounts to L5 =
7776, 16807, 32768. Unless noted differently, in all cases
the spectra was calculated for 3000 different realizations.

III. NUMBER VARIANCE

To begin, we shall investigate the behavior of num-
ber variance at large energies as function of the dimen-
sionality and system size. Using the Ld eigenvalues, εi,
obtained for each realization, the spectrum is locally
unfolded. The following local unfolding was applied:
Each eigenvalue obtains the value εi = εi−1 + 2p(εi −
εi−1)/〈εi+p− εi−p〉 where 〈. . .〉 is an average over realiza-
tions, and we have checked that the results are not very
sensitive to the value of p (for all results presented here
p = 6 was chosen). The number variance is also averaged
over 41 positions of the center of the energy window,
E(k), equally spaced around the band center, where the
furthest point is no more than 1/15 of the bandwidth
from the center. For each E(k), the number of states in
a window of width E centered at E(k), nk(E) is eval-
uated, then the averages 〈n(E)〉 and 〈n2(E)〉 are taken
over all positions of the center k and all realizations.

One expects that for E < ET , the number variance will
follow the Wigner Dyson prediction, while for E > ET ,
〈n2(E)〉 ∼ 〈n(E)〉d/2. This is probed in Fig. 1 where the
variance 〈δ2n(E)〉 as function of 〈n(E)〉 for 3D, 4D, and
5D samples of different sizes are plotted. In all cases the
GOE logarithmic behavior is followed for small energy
windows. For energy windows larger than the Thouless
energy, 〈n〉 > 〈n(ET )〉, a stronger than linear growth sets
in. The Thouless energy depends on disorder and dimen-
sionality, and we chose the strength of disorder for each
case (W = 5 for 3D and 4D samples, W = 10 for 5D
samples) so ET will be such that 〈n(ET )〉, which corre-
sponds to the dimensionless conductance g, will be of or-
der O(10-100). Above 〈n(ET )〉 the variance crosses over
to a different behavior and shows a stronger than lin-
ear increase. Fitting the variance to a 〈n(E)〉β behavior
shows that beyond the crossover region, there is a wide
range for which the power law β is constant, and at even
higher energies deviations appear.

This general behavior is seen for all dimensionalities
and system sizes. For the 3D case with W = 5, the
Thouless energy, i.e., where the variance starts to di-
verges from the Wigner Dyson (GOE) predictions, ap-
pears around 〈n(ET )〉 ∼ 20. Fitting β after the variance
has substantially diverged from the logarithmic behav-
ior, i.e., in the region 50 < 〈n(E)〉 < 150 results in
β = 1.23, 1.26, 1.31 for L = 20, 24, 28, which seems to
hold well up to 〈n(E)〉 < 350, 400, 450 correspondingly.
Above these values, the numerical computed variance ta-
pers off to a more moderate increase. This may be finite
size effects or a problem with local unfolding on larger
energy scales. For 3D we expect β = 1.5, while the val-
ues we see are below, but increasing with the system size
L. Thus, it may be that for much larger system sizes the
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FIG. 1. The variance 〈δ2n(E)〉 as function of 〈n(E)〉 for
3D (a); 4D (b); and 5D (c) samples of different sizes. (a)
3D samples of sizes L = 20, 24, 28 and disorder W = 5.
For 〈n〉 < 〈n(ET )〉 ∼ 20, Wigner Dyson (GOE) behavior
is followed as can be seen clearly in the inset. In the re-
gion 50 < 〈n(E)〉 < 150 a fit to 〈n(E)〉 ∼ 〈n(E)〉β is per-
formed, resulting in β = 1.23, 1.26, 1.31 for L = 20, 24, 28
correspondingly. Above 〈n(E)〉 > 80, deviations from the
power law become apparent and the variance increases more
moderately. In the inset the deviation from the GOE log-
arithmic behavior at 〈n(ET )〉 ∼ 20 can be clearly seen.
(b) 4D samples of sizes L = 9, 10, 11, 12, 13 and disorder
W = 5. For 〈n〉 < 〈n(ET )〉 ∼ 80 Wigner Dyson (GOE)
behavior is followed. In the region 400 < 〈n(E)〉 < 800
a fit to 〈n(E)〉 ∼ 〈n(E)〉β is performed, resulting in β =
1.52, 1.56, 1.65, 1.68, 1.73 for L = 9, 10, 11, 12, 13 correspond-
ingly. In the inset the behavior for larger values of the energy
window is depicted. Clearly, the variance does not continue
to grow at the same pace. (c) 5D samples of sizes L = 7, 8 and
disorder W = 10. For 〈n〉 < 〈n(ET )〉 ∼ 60, Wigner Dyson
(GOE) behavior is followed as can be seen clearly in the inset.
In the region 200 < 〈n(E)〉 < 400 for L = 6 and the region
400 < 〈n(E)〉 < 800 for L = 7, 8 a fit to 〈n(E)〉 ∼ 〈n(E)〉β
is performed, resulting in β = 1.75, 1.83 for L = 7, 8 corre-
spondingly. Again, as shown in the inset, for larger values of
〈n(E)〉 a weaker growth in variance appears.

predicted value would be reached, nevertheless, extrapo-
lating from the change in β as L increases one concludes
that much larger systems will be needed in order to reach
β = 1.5.

A similar behavior is seen for higher dimensionality.
For the 4D case with the same disorder W = 5 the
Thouless energy is larger and 〈n(ET )〉 ∼ 80. This is
expected since as the number of nearest neighbors to
which the particle can hop increases the effect of disorder
should decrease. Again, we fit β for the region for which
the variance begins to significantly diverge from GOE,
400 < 〈n(E)〉 < 800, 〈n(E)〉 ∼ 〈n(E)〉β , and obtain
β = 1.52, 1.56, 1.65, 1.68, 1.73 for L = 9, 10, 11, 12, 13.
Once more, values which are below the expected power
law β = 2, but becoming closer as the system size is in-
crease. The same pattern emerges also for 5D samples
where the disorder was increased to W = 10 in order that
the Thouless energy will be similar to the value obtained
for lower dimensions 〈n(ET )〉 ∼ 60 A fit for the region
400 < 〈n(E)〉 < 800 yields β = 1.75, 1.83 for L = 7, 8,
far from the expected β = 2.5 Once more, for 4D and
5D samples, for large energy scales, 〈n(E)〉 > 1500, the
increase in the variance tappers.

Thus, although with much effort probing even larger
sizes may be possible, it nevertheless does not seem very
promising, and we shall turn in a different direction. This
direction is based on the singular value decomposition
method and would be described in the following section.

IV. SINGULAR VALUE DECOMPOSITION

A. General

Singular value decomposition (SVD) is a mathemati-
cal method applied mainly in the field of data analysis
and has enjoyed growing popularity24. In this method a
matrix X of size M × P (not necessarily Hermitian nor
square) is decomposed to a multiplication of three matri-
ces. In general the relevant data is arranged by rows and
columns, where the specifics depend on the application.
Thus, X is decomposed to X = UΣV T , here U and V are
M ×M and P ×P matrices, while Σ is a M ×P diagonal
matrix of rank r = min(M,P ). σk stands for the r di-
agonal elements of Σ are called the singular values (SV)
of X. The SV are always positive and could be arranged
by size so σ1 ≥ σ2 ≥ . . . σr. The Hilbert-Schmidt norm

of the matrix ||X||HS =
√
TrX†X =

√∑
k λk (where

λk = σ2
k). Thus, X can be written as a sum of matri-

ces X(k), where Xij =
∑
k σkX

(k)
ij , and X

(k)
ij = UikV

T
kj .

Since the SV are ordered by amplitude, the main con-
tribution to X comes from the first m modes, and X
may be approximated by, X̃ =

∑m
k=1 σkX

(k), for which

||X||HS − ||X̃||HS is minimal. Thus, if λk become rel-

atively small for some value m X̃ could be used as an
approximation of X25,26. Moreover, by plotting λk as
function of its ranking k (known as a scree plot in the con-
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text of statistical factor analysis27) one may gain some
insight into the statistical properties of the data in X.

Here we study an ensemble of M realizations of disor-
der each with P eigenvalues. For the SVD analysis we
construct a matrix X of size M × P where Xmp is the
p level of the m-th realization. After carrying out SVD
on X, the singular values squared λk are ranked from
the largest to the smallest. This approach has been ap-
plied to the spectrum of disordered systems in several
studies19–22. As is usual in the SVD analysis in these
studies the first few λk (k ≤ O(1)) correspond to global
features of the spectra. Larger SV (λk) show a power
law behavior k−α with α = 2 at the Poisson regime and
α = 1 for the Wigner regime.

Here we will examine whether the large scale behavior
of the energy can be gleaned with the help of SVD. We
will use two different approaches which will eventually
lead to similar results. In the first, we shall use SVD to
perform a global unfolding. The second will use the scree
plot to tease out a power law behavior for the relevant
energy scale.

B. Global Unfolding

The idea behind global unfolding using SVD is to filter
out the low modes which represent the global behavior,
while retaining the lower modes that encode local fluc-
tuations. We shall illustrate the global unfolding proce-
dure for an ensemble of realization for the 3D case of size
L = 28. As previously described, we construct a matrix
X, where each row contains P = 4096 eigenvalues around
the center of the band for each realization and M = 4096
columns representing the different realizations. Matrices
U ,V and Σ are numerically extracted and the r = M di-
agonal terms σk are ranked according to amplitude, from
the largest to the smallest. The matrices X(k) are con-
structed out of U and V , paying attention to the correct
sign28. As can be seen in Fig. 2 where the SVD values of
λk = σ2

k are plotted, the first couple of modes λk=1,2 are
clearly orders of magnitude larger than the lower modes.
This is a feature common to all the cases considered here.
Thus, we may attribute the global features of the spec-
trum to the first two modes and the local fluctuations to
the rest.

We define the contribution of the first couple of modes
to the j-th eigenvalue of the i-th realization as eij =∑2
k=1 σkX

(k)
i,j and the contribution of the rest of the

modes is δij =
∑r
k=3 σkX

(k)
i,j . An illustration of the be-

havior of ei=1
j and δi=1

j for the first realization in the
ensemble is presented in the inset of Fig. 2. It is obvious
that ei=1

j corresponds to the linear increase of the eigen-
values as function of j expected in the Anderson model
around the center of the band (at zero energy). Thus,
the broad features of the spectra are captured by these
two modes. The local fluctuations are captured by δi=1

j ,
and one can see the fast short range fluctuations, but
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FIG. 2. A scree plot of the ranked singular values for
M = 4096 different realization of the 3D case of size L = 28,
where P = 4096 eigenvalues around the center of the band are
considered. The first two modes k = 1, 2 are clearly orders of
magnitude larger than the rest. Lower modes seem to follow
a power law λk ∼ kα. For 3 < k < 20, α = 2.5 fits well while
for k > 50, α = 1. Inset: The contribution of the first cou-
ple of modes to the j-th eigenvalue of a particular realization
ei=1
j and the contribution of the remaining modes δi=1

j . The
dashed magenta line indicates a range of ±∆ around zero.

also some longer range ones. Estimating the mean level
spacing ∆ from ei=1

j and comparing it to δi=1
j (see lower

inset Fig. 2) further strengthens the case for longer range
fluctuations.

This behavior leaves a very clear mark on the scree
plot. Fitting the lower modes to a power law λk ∼ kα,
results in two distinct regions. For 3 < k < 20, a power
of α = 2.5 fits well, while 50 < k < 1000, suggests α =
1. Intuitively, one would guess that modes 3 < k < 20
correspond to longer energy scales for which E > ET
while k < 50 to shorter energy scales. Nevertheless, one
would like to confirm this assertion.

There has been much work devoted to studying the ex-
pression of the statistics of local fluctuations on the power
spectrum of these fluctuations. It has been shown that
the power spectrum of the local fluctuation of chaotic sys-
tems is different than the power spectrum of integrable
systems17,29–32. Specifically, the power spectrum of the
local fluctuations for each realization is defined as:

F ik =

∣∣∣∣∣∣1r
r∑
j=1

δij exp

(
−2πikj

r

)∣∣∣∣∣∣
2

, (2)

and averaging over all realizations Fk = 〈F ik〉. For chaotic
systems Fk ∼ k−1, while for integrable (localized) sys-
tems Fk ∼ k−2. The power spectrum of the local fluc-
tuations for the 3D case of size L = 28 is presented in
Fig. 3. As for the singular value modes, two regimes
are apparent. The high frequencies follow a power law
Fk ∼ k−γ , with γ = 1.1, while after a crossover a range
of low frequencies fit to γ = 2.5. Thus the high fre-
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FIG. 3. The power spectrum Fk for the ensemble studied
in Fig. 2. Low frequencies (4 < k < 15, corresponding to
large energy scales) follow a power law Fk ∼ kγ , with γ =
2.5, while high frequencies (k > 50, corresponding to small
energies), γ = 1.1, within the expected slope for Wigner-
Dyson statistics.

quencies (k > 50, corresponding to small energies), the
behavior of the power spectrum is close to what was ob-
served in other chaotic (GOE) systems17,29–32. There are
a couple of interesting observations that one can draw
from the behavior of the low frequencies. The first has
to do with the equivalence between the power laws of
the SVD scree plot for low modes and for the for the
power law at low frequencies, i.e., α = γ = 2.5, and for
the high modes and frequencies α ∼ γ ∼ 1. Such cor-
respondence between the power law of the SVD modes
and power spectrum frequencies has been noted for the
energy spectrum in Refs. 19–22, and elucidated in Ref.
33. The correspondence also determines the energy scale
of the singular values. The k-th Fourier transform fre-
quency corresponds to an energy scale P∆/2k, thus the
region for which GOE statistics holds is of order of 40∆,
not to far from the estimation of the Thouless energy ob-
tained via the number variance. As can be seen in Fig.
2, also the singular value modes follow the GOE expecta-
tion (α = 1) up to k = 50. Moreover, both curves show a
similar behavior and one may assume that the scree plot
depicts the same physics as the power spectrum of the
globally unfolded energy spectrum and that the energy
scales probed by the modes of the SVD are similar to the
energy scales of the Fourier transform.

In order to substantiate the proposed connection be-
tween the energy scale and the SVD mode number, we
split the the contribution the modes into two parts:

δ
i(I)
j =

∑30
k=3 σkX

(k)
i,j and δ

i(II)
j =

∑r
k=31 σkX

(k)
i,j . As can

be seen in Fig. 4a for the same realization presented in

the inset of Fig. 2, δ
i(I)
j indeed depicts longer range fluc-

tuations, while δ
i(II)
j portrays short scale fluctuations.

This could be confirmed by the power spectrum of the

fluctuations δ
i(I,II)
j . For the low singular value modes the
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FIG. 4. (a) The contribution of the lower modes (3 < k < 30)

δ
i=1(I)
j and the higher modes (31 < k < r) δ

i=1(II)
j to the j-

th eigenvalue of a particular realization i = 1. The dashed
magenta line indicates a ±∆ (averaged level spacing). A clear
difference between the low modes which encode long range
fluctuations and the higher modes which represent short range

fluctuations is apparent. (b) The power spectrum F
(I,II)
k of

δ
i(I,II)
j . The low modes power spectrum F

(I)
k show a slope

of γ = 2.5 for the low frequencies (4 < k < 20) and tappers

of for higher frequencies. The power spectrum F
(II)
k for the

higher modes reveals that these modes correspond to high
frequencies at the range k > 100, with a slope γ = 0.9.

corresponding power spectrum (see Fig. 4b) frequencies
are in the range of 4 < k < 20 with the same power law
α = γ = 2.5, while for the higher modes the correspond-
ing frequencies are at k > 100 with a slope γ = 0.9. Thus
one can reasonable conclude that low modes in the SVD
probe the large energy scales of the spectrum.

Another observation is that both for the power spec-
trum and for the SVD scree plot the lower frequen-
cies/modes exhibit a power law with a slope of 1 + d/2.
The slope of the power spectrum could be generally as-
sociated to the value of the power of the variance34,35.
As detailed in the appendix, indeed, the expected value
of the power spectrum γ = 1 + d/2 can be analytically
explained. In the next sub-section we will further sub-
stantiate these observation.

C. Scree Plot

As we have previously seen the scree plot of the sin-
gular values characterize the behavior of the large en-
ergy scale by showing a power law behavior of the low
modes corresponding to 1 + d/2 power, clearly distinct
from α = 1 seen for higher modes. Here we would like
to check whether this behavior is robust for different sys-
tem sizes, disorder strength, ranges of the spectrum and
dimentionality.

First we continue to present results for the SVD modes
scree plot for 3D samples in Fig. 5. All results are for an
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FIG. 5. The SVD modes scree plot for 3D systems where an
ensemble of M = 3000 realizations of disorder and sizes L =
20, 24, 28 are considered. In all cases P = L3/2 eigenvalues
around the center of the band are taken into account. Two
different strength of disorder W = 5 and W = 10 for all sizes
are presented. Lines depict different slopes λk = k−α, with
α = 2.5, 2.3, 1.

ensemble of M = 3000 different realizations at each size
and disorder strength. Three different sizes L = 20, 24, 28
are considered, each for two different strength of disorder
W = 5 (as we saw corresponds to n(ET ) = g = 20) and
W = 10 (n(ET ) = g = 5, makes sense since ET ∼ 1/W 2).
Thus, for the W = 5 samples we are deep in the metallic
regime where the Altshuler and Shklovskii’s predictions
are expected to hold, while for W = 10 we are already
closer to the localized regime (g = 1). Indeed, one can
see that the range of modes for which the GOE behavior
holds(α ∼ 1) is much lager for the weaker disorder. The
weak disorder singular values fall on top of each other
for the lower modes, with a slope of α = 2.5 = 1 + d/2.
Then for higher modes the slope switches to the GOE
behavior (α ∼ 1) where the value of k for which the
switch occurs is higher as the system size increases. We
speculate that this is the result of the fact that for larger
systems there are more eigenvalues in the range of L3/2.
We shall further substantiate this assertion shortly. A
similar behavior is seen for the stronger disorder (W =
10) although the slope deviates a bit from α = 1 + d/2
and is closer to α = 2.3. This is not surprising since the
prediction in Ref. 7 were obtained using diagrammatic
reasoning, strictly valid only deep in the metallic regime
(g � 1).

In Fig. 6 we examine the influence of the change in the
range of the eigenvalues, P on λk. Indeed, the main influ-
ence of narrowing the range of P is to shift the crossover
from the α = 2.5 slope to the GOE α = 1 slope to
lower values of k. This makes sense, since the smaller
the range, the smaller is the number of energies larger
than the Thouless energy in this range. Thus, when one
wants to focus on energies beyond the Thouless energies,
and there is a limit on the ensemble size M , one should

10 100 1000
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1

10

100

λ k

P=L
3
/2

P=L
3
/4

P=M

α=2.5
α=1

FIG. 6. The SVD modes scree plot for 3D systems (M =
4096 realizations) of size L = 28. Three different ranges of
eigenvalues straddling the center of the band are presented:
P = L3/2 = 10976, P = L3/4 = 5488, and P = M . ac-
count. The qualitative behavior of the slopes, i.e., α = 2.5
(magenta line) for low modes and α = 1 for higher modes
(cyan line), does not change, although the crossover occurs at
smaller values of k as P becomes smaller.

expand P to the largest available range, even if P �M .

The number of the realizations taken in the ensemble,
M , also plays a role in the behavior of the SVD modes.
As can be seen in Fig. 7 the slope for the low mode does
not depend on the number of realizations in the ensemble
M and remains α = 2.5 for all values of M . On the other
hand, for the high modes the slope varies from α = 0.85
at M = 1000 to α = 1 for the largest number of real-
izations M = 8000, in line with the predictions for the
Wigner-Dyson statistics. Such behavior has been previ-
ously seen in the study of the generalized Rosenzweig-
Porter where the scree plot of the SVD modes for large
k (the GOE regime) also follow a slope of α ∼ 0.822 for
small values of M . This behavior was attributed there
to the fact that there M << P . This fits well with our
current results where as M grows α is closer to one.

Finally, we wish to examine the dependence on dimen-
sionality of the SVD modes. As we have seen for d = 3
and argued analytically, we expect to observe a slope of
α = 1 + d/2 for the lower modes crossing over to a slope
of α = 1 at higher modes. Indeed, the scree plot shown
in Fig 8 confirms that the slope of the low modes cor-
responds to α = 3, and α = 3.5 for d = 4 and d = 5,
as expected from the number variance behavior at large
energies predicted in Ref. 7. Higher modes show a slope
of α = 0.95 for both d = 4 and d = 5, close to the ex-
pected value of α = 1, except for the largest length at
each dimensionality for which the number of realizations
M = 1000 is smaller than for the other length, and the
slope is α = 0.83. This is in line with the behavior shown
in Fig. 7.
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FIG. 7. The SVD modes scree plot for 3D systems of
size L = 28 and a different number of realizations M =
1000, 2000, 4000, 8000 for the same P = L3/2 = 10976. The
behavior of the low mode slopes is not sensitive to to the en-
semble size and a slope of α = 2.5 is seen for all values of
M . Lower modes are more suscept to the number of realiza-
tions. For small values of M = 1000 the slope fits α = 0.85
for M = 1000 at higher modes, while it shifts to α = 1 at
M = 8000.

V. DISCUSSION

The detection of the Thouless energy in the spec-
trum of weakly disordered chaotic systems has long been
achieved by detecting the deviation from the expected
Wigner Dyson logarithmic dependence of the number
variance. Thus, it could be assumed that the number
variance will also reveal the behavior of the spectrum
at energy scales beyond the Thouless energy derived by
Altshuler and Shklovskii7. Indeed a stronger than lin-
ear dependence has been frequently observed, neverthe-
less, extracting the expected power law behavior from the
number variance after local unfolding has turned out to
be far from trivial. As has been shown here, the number
variance does indeed show a 〈n2(E)〉 ∼ 〈n(E)〉β behavior
for a significant range of levels. Although the value of β
rises as the size of sample increases towards the expected
d/2 value, it remains hard to extrapolate a value with
the largest samples we are able to compute.

By taking the route of the SVD, it is possible to over-
come these difficulties. The SVD essentially decompose
the spectrum to modes, where the low modes (large am-
plitudes) capture the longer range features. As we have
shown, the SV modes are in a sense similar to the Fourier
transform frequencies, and show similar regularities of
the frequencies and modes. Nevertheless, the SVD saves
the need to first unfold and then perform a power anal-
ysis over all realizations and finally average, thus it is
a much more concise method. Moreover, since the con-
tribution of the lowest modes (eij) filtered out is custom
set for each realization i, one overcomes the problem of
individual realization global variations raised in Ref. 18.
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α=0.95
α=0.83

(a)
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α=0.95
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(b)

FIG. 8. The SVD modes scree plot for 4D (a) and 5D (b)
systems (M = 3000 realizations except for the largest size in
each case where M = 1000) of sizes L = 9, 10, 11, 12, 13 for
the 4D case and L = 6, 7, 8 for 5D realizations of disorder
W = 5 (4D) and W = 10 (5D). The number of eigenvalues
P = L3/2. For both dimesnsionalities the low modes slopes
follow a 1 + d/2 behavior, i.e., α = 3 for d = 4 and α = 3.5
for d = 5, and a slope close to one (α = 0.95) for the higher
modes except at the largest sizes where α = 0.83.

Thus, either by unfolding with SVD and then performing
a power spectrum, or by directly examining the singular
values using the scree plot, it is possible to extract the
properties of the energy spectra beyond the Thouless en-
ergy and to see the predictions of Ref. 7 clearly hold.

This success might encourage the application of the
SVD method to other systems for which interesting long
range properties of the energy spectrum are expected
such as the SYK model and systems which show many
body localization.

Appendix: Connection between the number variance
and the power spectrum

Here we aim to show that the relation between the
slope of the power spectrum 〈Fk〉 ∝ k−γ and the slope of
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the number variance 〈δ2n(E)〉 ∝ 〈n(E)〉d/2 is γ = 1+d/2.

Following McDowel et. al.34 the local fluctuations δ̃ij =

δij/∆ may be rewritten as:

δ̃ij =
1

kmax − kmin

kmax∑
k=kmin

√
2F ik cos(Kj + φik),(A.1)

where kmin, kmax is the range for which the power spec-
trum exhibits a particular power law behavior with slope
γ, K = 2πk/r, and φi is a phase. The number variance
δ2nij(E) for a particular realization i where the energy
window E starts at the energy of the averaged jth eigen-
value j∆ and ends at (j+ l)∆ (E = l∆) could be written
as:

δ̃2nij(l∆) = (δ̃ij+l − δ̃ij)2. (A.2)

Substituting δ̃ij by Eq. (A.1) and averaging over the be-
ginning of the energy window j and the phase φk one
obtains:

〈δ2n(l∆)〉 = 1
r−l
∑r−l
j=1

1
(kmax−kmin)2

(A.3)∑kmax

k=kmin

∑kmax

k′=kmin

2Fk

(2π)2

∫ 2π

0
dφkdφk′(

cos(K(j + l) + φk)− cos(Kj + φk)
)(

cos(K(j + l) + φk′)− cos(Kj + φk′)
)
,

resulting in:

〈δ2n(l∆)〉 = 1
r−l
∑r−l
j=1

1
kmax−kmin

∑kmax

k=kmin
(A.4)

2Fk

2π

∫ 2π

0
dφk

(
cos2(K(j + l) + φk) + cos2(Kj + φk)

− 2 cos(K(j + l) + φk) cos(Kj + φk)
)
.

Performing the integration over φk and summation over
j retaining only the l dependent part one obtains:

〈δ2n(l∆)〉 ∼ 1

kmax − kmin

kmax∑
k=kmin

Fk cos(Kl). (A.5)

Replacing the summation with an integration and using
the power law dependence of the power spectrum leads
to:

〈δ2n(l∆)〉 ∼
∫ Kmax

Kmin

dKK−γ cos(Kl) ∼ lγ−1. (A.6)

Thus since followin Altshuler and Shklovskii7

〈δ2n(l∆)〉 ∼ ld/2, one concludes that the power
spectrum should exhibit a slope γ = d/2 + 1.
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