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Abstract

We study images of equilibrium (Gibbs) states for a class of non-invertible transformations

associated to conformal iterated function systems with overlaps S. We prove exact dimension-

ality for these image measures, and find a dimension formula using their overlap numbers.

In particular, we obtain a geometric formula for the dimension of self-conformal measures

for iterated function systems with overlaps, in terms of the overlap numbers. This implies a

necessary and sufficient condition for dimension drop. If ν = π∗µ is a self-conformal measure,

then HD(ν) < h(µ)
|χ(µ)| if and only if the overlap number o(S, µ) > 1. Examples are also discussed.
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1 Introduction and main results.

In this paper we study the thermodynamic formalism and dimension for images of equilib-

rium measures, for noninvertible transformations associated to conformal iterated function

systems with overlaps S. We prove exact dimensionality for this new class of image

measures; this implies that all the dimensions of these measures (Hausdorff, pointwise, box)

coincide. A formula for the dimension of these measures is obtained, in terms of their

entropy, Lyapunov exponent and overlap number (which represents the average rate of

growth of the number of generic self-intersections in the limit set Λ of S).

In particular, we prove the exact dimensionality of arbitrary self-conformal measures

for conformal iterated function systems with overlaps, and we determine a dimension for-

mula for self-conformal measures in terms of overlap numbers, entropy and Lyapunov ex-

ponents.
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When the iterated function system (IFS) satisfies Open Set Condition, the dimension of

the self-conformal measure ν := π∗µ is equal to the value “entropy divided by Lyapunov

exponent” (see [8]). For IFS with overlaps we show that for a self-conformal measure

νp = π∗µp, HD(νp) =
h(µp)
|χ(µp)|

if and only if the overlap number of µp is equal to 1, and we

say in that case that the system S is separated µp-asymptotically. If ν0 is the equally

distributed self-conformal measure, then HD(ν0) = h(µ0)
|χ(µ0)|

if and only if the topological

overlap number of S is equal to 1.

Thus for self-conformal measures, our results establish a necessary and sufficient condition

for the dimension drop of π∗µ from the value h(µ)
|χ(µ)|

, namely that the overlap number

o(S, µ) > 1.

The exact dimensionality of self-conformal measures (and other measures) on limit sets of

finite conformal IFS with overlaps was proved by Feng and Hu in the groundbreaking paper

[12], and a dimension formula was obtained by them in terms of the entropy, Lyapunov

exponent and projection entropy. Our proof of exact dimensionality is different, and it

follows from our general result for hyperbolic endomorphisms. The dimension formula that

we obtain is partially geometric, and we apply it to certain examples.

In the sequel, we study the analytic and stochastic properties for equilibrium measures

over lift spaces associated to conformal iterated systems with overlaps, and for a class of

their push-forward measures. In the process, we investigate also the intricate interlacing in

a typical trajectory in Λ of generic iterates and the gaps of non-generic iterates, and how

they influence the local densities of the measures. The general setting is the following:

Let S = {φi, i ∈ I} be an arbitrary finite iterated function system of smooth conformal

injective contractions of a compact set with nonempty interior V ⊂ RD, D ≥ 1. We do not

assume any kind of separation condition for S (see for eg [7], [14], [17] for some possible

separation conditions). The limit set of the system S is given by:

Λ = ∪
ω∈Σ+

I

∩
n≥0

φω1...ωn
(V ),

where Σ+
I is the 1-sided symbolic space on |I| symbols, and ω = (ω1, . . . , ωn, . . .) ∈ Σ+

I is

arbitrary (see for eg [7], [14]). Denote by [ω1 . . . ωn] the cylinder on the first n elements of ω,

and by φi1...ip := φi1◦. . .◦φip. The shift σ : Σ+
I → Σ+

I is given by σ(ω) = (ω2, ω3, . . .), ω ∈ Σ+
I .

We endow the space Σ+
I × Λ with the product metric. Also let the canonical coding map,

π : Σ+
I → Λ, π(ω) := φω1ω2...(V )

Now consider the non-invertible skew product transformation on the metric space Σ+
I ×Λ,

Φ : Σ+
I × Λ → Σ+

I × Λ, Φ(ω, x) = (σω, φω1(x)), (ω, x) ∈ Σ+
I × Λ

The endomorphism Φ has a type of hyperbolic structure, since it is expanding in the first

coordinate and contracting in the second coordinate (due to the uniform contractions in S).
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The pressure functional of σ is defined for general continuous potentials g on Σ+
I as Pσ :

C(Σ+
I ) → R (for eg [4], [15], [35]). Consider now a Hölder continuous potential ψ : Σ+

I → R,

and let the functional Fψ defined on the space M(σ) of σ-invariant probability measures on

Σ+
I by

Fψ : M(σ) → R, Fψ(µ) := hσ(µ) +

∫

Σ+
I

ψ dµ,

where hσ(µ) is the measure-theoretic entropy of µ. Then the supremum of Fψ is equal to the

pressure Pσ(ψ) of ψ, and is attained at a unique measure, called the equilibrium measure of ψ

and denoted by µψ. Since ψ was assumed to be Hölder continuous, the notion of equilibrium

measure is equivalent to that of Gibbs measure (for eg [4], [15], [35]).

Let π1 : Σ
+
I ×Λ → Σ+

I be the projection on the first coordinate. Define also the potential

ψ̂ := ψ ◦ π1 : Σ
+
I ×Λ → R, which is Hölder continuous. Let the functional Fψ̂ defined on the

space M(Φ) of Φ-invariant probability measures on Σ+
I × Λ, be given by

Fψ̂ : M(Φ) → R, Fψ̂(µ) = hΦ(µ) +

∫

Σ+
I
×Λ

ψ̂ dµ,

where hΦ(µ) is the measure-theoretic entropy of µ ∈ M(Φ) with respect to Φ. Then as Φ

has a hyperbolic structure, it can be shown similarly as in [15] that Fψ̂ attains its supremum

PΦ(ψ̂) at a unique measure on Σ+
I × Λ, called the equilibrium measure of ψ̂, denoted by µψ̂

or by µ̂ψ. In this case, µ̂ψ is a Gibbs measure for ψ̂ with respect to Φ on Σ+
I ×Λ ([15], [35]).

Notice that, π1∗µ̂ψ = µψ. If ψ is fixed, denote also µψ by µ+ and µ̂ψ by µ̂. The projection

to the second coordinate is:

π2 : Σ
+
I × Λ → Λ, π2(ω, x) = x

The main focus of this paper are the metric properties of the measures µ̂ψ and π2∗µ̂ψ.

Let us denote by,

ν1,ψ := (π ◦ π1)∗µ̂ψ, and ν2,ψ := π2∗µ̂ψ (1)

Since for any n ≥ 1, the map Φn(ω, x) = (σnω, φωn...ω1(x)) reverses the order of ω1, . . . , ωn
in its second coordinate and since µ̂ψ is Φn-invariant, we call

ν2,ψ = π2,∗µ̂ψ, (2)

an order-reversing projection measure. In general the measure ν1,ψ is different from

ν2,ψ.

Some important notions in Dimension Theory are those of lower/upper pointwise dimen-

sions of a measure, and the notion of exact dimensional measures (see [31]). In general, for

a probability Borel measure µ on a metric space X , the lower pointwise dimension of µ at

x ∈ X is:

δ(µ)(x) := lim inf
r→0

log µ(B(x, r))

log r
,
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and the upper pointwise dimension of µ at x ∈ X is defined as:

δ(µ)(x) := lim sup
r→0

log µ(B(x, r))

log r

If δ(µ)(x) = δ(µ)(x) then we call the common value the pointwise dimension of µ at x,

denoted by δ(µ)(x). If for µ-a.e x ∈ X , the pointwise dimension δ(µ)(x) exists and is

constant, we say that µ is exact dimensional. In this case there is a value α ∈ R s.t for µ-a.e

x ∈ X ,

δ(µ)(x) := δ(µ)(x) = δ(µ)(x) = α

In [12], Feng and Hu defined the projection entropy for a σ-invariant probability measure

µ on Σ+
I , namely hπ(σ, µ) := Hµ(P|σ−1π−1γ) − Hµ(P|π−1γ), where π : Σ+

m → Λ is the

canonical coding map, P is the partition with 0-cylinders {[i], i ∈ I} of Σ+
I , and γ is the

σ-algebra of Borel sets in Rd. It was shown in [12] that if µ is ergodic then for µ-a.e ω ∈ Σ+
I ,

δ(π∗µ)(πω) =
hπ(σ, µ)

−
∫

Σ+
I

log |φ′
ω1
(πσω)| dµ(ω)

,

hence π∗µ is exact dimensional. This is equivalent, in our notation, to the fact that ν1 is

exact dimensional. Our approach and methods in the sequel are however different, as we

study the order-reversing image measure π2∗µ and the measure µ̂.

Denote the stable Lyapunov exponent of Φ with respect to the measure µ̂ on Σ+
I × Λ by,

χs(µ̂) :=

∫

Σ+
I
×Λ

log |φ′
ω1
(x)| dµ̂(ω, x) (3)

For a shift-invariant measure µ on Σ+
I , denote the Lyapunov exponent of µ with respect to

S by,

χ(µ) :=

∫

Σ+
I

log |φ′
ω1
(πσω)| dµ(ω) (4)

We will use the Jacobian in the sense of Parry [29]; consider the Jacobian JΦ(µ̂) of a

Φ-invariant measure µ̂ on Σ+
I × Λ. Then JΦ(µ̂) ≥ 1 for µ̂-a.e (ω, x) ∈ Σ+

I × Λ, and for µ̂-a.e

(ω, x) ∈ Σ+
I × Λ,

JΦ(µ̂)(ω, x) = lim
r→0

µ̂(Φ(B((ω, x), r)))

µ̂(B((ω, x), r))

From the Chain Rule for Jacobians, JΦn(µ̂)(ω, x) = JΦ(µ̂)(Φ
n−1(ω, x)) · . . . · JΦ(µ̂)(ω, x) for

n ≥ 1, and from Birkhoff Ergodic Theorem applied to log JΦ(µ̂)(·, ·), we have that for µ̂-a.e

(ω, x) ∈ Σ+
I × Λ,

log JΦn(µ̂)(ω, x)

n
−→
n→∞

∫

Σ+
I
×Λ

log JΦ(µ̂)(η, y) dµ̂(η, y) (5)

Ruelle introduced in [36], [37], the notion of folding entropy Ff (ν) of a measure ν invariant

with respect to an endomorphism f : X → X on a Lebesgue spaceX , as being the conditional
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entropy Hν(ǫ|f
−1ǫ), where ǫ is the point partition of X and f−1ǫ is the fiber partition. In

fact from [29], [36], Ff(ν) =
∫

X
log Jf(ν)dν. Thus for the Φ-invariant measure µ̂ on Σ+

I ×Λ,

FΦ(µ̂) =

∫

Σ+
I
×Λ

log JΦ(µ̂) dµ̂ (6)

In our case, the folding entropy turns out to be related to the overlap number of µ̂. The

notion of overlap number o(S, µg) for an equilibrium measure µg of a Hölder continuous

potential g : Σ+
I ×Λ → R was introduced in [26], and represents an average asymptotic rate

of growth for the number of generic overlaps of order n in Λ. Namely, for any τ > 0, let the

set of generic preimages with respect to µg having the same n-iterates as (ω, x),

∆n((ω, x), τ, µg) := {(η1, . . . , ηn) ∈ In, ∃y ∈ Λ, φωn...ω1(x) = φηn...η1(y), |
Sng(η, y)

n
−

∫

Σ+
I
×Λ

g dµψ| < τ},

where (ω, x) ∈ Σ+
I × Λ and Sng(η, y) is the consecutive sum of g with respect to Φ. Denote

by

bn((ω, x), τ, µg) := Card∆n((ω, x), τ, µg)

Then, in [26] we showed that the following limit exists and defines the overlap number of µg,

o(S, µg) = exp
(

lim
τ→0

lim
n→∞

1

n

∫

Σ+
I
×Λ

log bn((ω, x), τ, µg) dµg(ω, x)
)

Clearly o(S, µg) ≥ 1. There is also a relation between overlap number and folding entropy,

o(S, µg) = exp(FΦ(µg)) (7)

If µg = µ̂0 is the measure of maximal entropy of Φ on Σ+
I × Λ, denote o(S, µ̂0) by o(S)

and call it the topological overlap number of S. All preimages are generic in this case. For

n ≥ 1, x ∈ Λ, let

βn(x) := Card{(j1, . . . , jn) ∈ In, x ∈ φj1 ◦ . . . ◦ φjn(Λ)} (8)

If µ0 denotes the measure of maximal entropy on Σ+
I , then the topological overlap number

satisfies:

o(S) = exp
(

lim
n→∞

1

n

∫

Σ+
I

log βn(πω) dµ0(ω)
)

, (9)

hence o(S) is an average rate of growth of the number of intersections between sets of type

φi1...in(Λ), i1, . . . , in ∈ I and n→ ∞.

Dynamics and dimension for dynamical systems with some form of hyperbolicity attracted

a lot of interest and were studied for eg in [3], [4], [6], [18], [20], [31], [32], [35], [37], [41], to

mention a few. Also endomorphisms (non-invertible maps) were studied for example in [19],
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[21] - [25], [29], [32], [36] - [38]. The problem of dimension in conformal iterated function

systems with or without overlaps was studied in [2], [5], [9] - [14], [16] - [17], [26], [27], [28],

[30], [33], [39] - [40] to mention a few. Exact dimensionality and dimension formulas for

invariant measures were also intensely studied over the years. In [20] Manning showed that

for an Axiom A diffeomorphism of a surface preserving an ergodic measure µ, the entropy

h(µ) is equal to the product of the positive Lyapunov exponent of µ and the dimension of

the set of µ-generic points in an unstable manifold. In [41] Young proved that the Hausdorff

dimension of a hyperbolic invariant measure µ for a surface diffeomorphism is given by the

entropy and the Lyapunov exponents, HD(µ) = h(µ)( 1
χu(µ)

− 1
χs(µ)

). In [18] Ledrappier and

Young proved a formula for the entropy of an invariant measure µ for a diffeomorphism of

a compact Riemannian manifold, in terms of Lyapunov exponents and dimensions of µ in

the respective stable/unstable directions. In [21] Manning studied the dimension for the

maximal measure of a polynomial map. And in [19] Mañe proved exact dimensionality for

ergodic measures invariant to rational maps. In [32] Pesin and Weiss verified the Eckmann-

Ruelle Conjecture ([6]) for equilibrium measures for Hölder continuous conformal expanding

maps and conformal Axiom A (topologically hyperbolic) homeomorphims; and constructed

an Axiom A homeomorphism for which the measure of maximal entropy has different upper

and lower pointwise dimensions a.e, so in this case the Eckmann-Ruelle Conjecture is false.

Then, in [3] Barreira, Pesin and Schmeling showed that every hyperbolic measure µ invariant

under a C1+ε diffeomorphism of a smooth Riemannian manifold has asymptotically almost

local product structure and proved the Eckmann-Ruelle conjecture, namely the pointwise

dimension of µ exists almost everywhere, thus µ is exact dimensional. In [30] Peres and

Solomyak showed the existence of Lq-dimensions and entropy dimension for self-conformal

measures. Feng and Hu proved in [12] that the canonical projection of any ergodic measure

from the shift space for a finite conformal iterated function system with overlaps, is exact

dimensional on the limit set, and found the Hausdorff dimension of this projection measure

by using a notion of projection entropy. In [9] Falconer and Jin proved that the random

multiplicative cascade measures on self-similar sets and their projections and sections are

almost surely exact dimensional. For a class of hyperbolic endomorphisms it was shown

in [22] that the conditional measures of equilibrium measures on the stable manifolds are

geometric, and thus exact dimensional. For random countable iterated function systems with

arbitrary overlaps, Mihailescu and Urbański showed in [27] that the projection of any ergodic

measure from the shift space which satisfies a finite entropy condition, is exact dimensional,

and found a formula for its dimension and gave applications. In [1] Barany and Käenmäki

studied some self-affine measures.

Our current result is different in the sense that it treats general conformal iterated func-

tion systems with overlaps and a class of invariant measures, including self-conformal mea-

sures, by relating the dimension of measures with their overlap numbers. Our formula has

a geometric character, and the proof uses different methods, coming from dynamics of en-
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domorphisms. Also, we obtain a necessary and sufficient condition for dimension drop from

the value “entropy divided by Lyapunov exponent”. Related to the problem of dimension

drop Hochman [13] showed for self-similar measures on R that if the dimension is strictly

smaller than the similarity dimension and 1, then there is a super-exponential concentration

of cylinders. Our results show that an arbitrary self-conformal measure ν in RD, D ≥ 1 has

a dimension drop if and only if, the overlap number of that measure is strictly larger than

1. We introduce also the notion of µp-asymptotically separated systems. The formula we

obtain can be used for dimension estimates in non-linear examples, including for instance

mixed Julia sets.

Our main results are the following:

First, in Theorem 1 we prove the exact dimensionality and dimension formula for the

general push-forward measure ν2,ψ.

Theorem 1. Let S be a finite conformal iterated function system on a compact set with

non-empty interior V ⊂ RD, D ≥ 1, with limit set Λ, and ψ be a Hölder continuous potential

on Σ+
I with equilibrium measure µψ, and let µ̂ψ be the equilibrium measure of ψ◦π1 on Σ+

I ×Λ

with respect to Φ. Denote ν2,ψ := π2∗µ̂ψ. Then the measure ν2,ψ is exact dimensional on Λ,

and for ν2,ψ-a.e. x ∈ Λ,

HD(ν2,ψ) = δ(ν2,ψ)(x) =
hσ(µψ)− log(o(S, µ̂ψ))

|χs(µ̂ψ)|
.

The proof of this Theorem has several parts. The proof for the lower bound for dimen-

sion is the most difficult of these parts and contains some new methods from dynamics of

endomorphisms. It is based on an intricate study of the interlacing of generic iterates with

respect to µ̂ψ and of the maximal lengths of “gaps” consisting of non-generic iterates in

trajectories, and how these are involved in computing local densities of ν2,ψ. We apply Borel

Density Lemma on leaves of type φi1...imΛ to get measure estimates.

Then, we obtain applications of Theorem 1 to dimension formulas for several cases:

1. An important particular case is that of self-conformal measures for arbitrary

conformal iterated function systems with overlaps in RD, D ≥ 1.

Let the IFS S as above, and a probability vector p = (p1, . . . , p|I|), and µp be the

associated Bernoulli measure on Σ+
I . Any Bernoulli measure µp on Σ+

I is the equilibrium

measure of some Hölder continuous potential ψp. Then denote by µ̂p the lift of µp to

Σ+
I × Λ, which is obtained as the equilibrium measure of ψp ◦ π1. And denote by ν1,p, ν2,p

the associated projected measures ν1, ν2. In this case we showed in [26] that

ν1,p = ν2,p,
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so δ(ν1,p) = δ(ν2,p). Recall the definition of Lyapunov exponent χ(µp) from (4). Let us

denote also the overlap number of µp by,

o(S, µp) := o(S, µ̂p) (10)

Then the dimension of an arbitrary self-conformal measure νp is given by:

Theorem 2. Let S = {φi, 1 ≤ i ≤ m} be a system of injective conformal contractions on

a compact set with non-empty interior V ⊂ RD, D ≥ 1, with limit set Λ, and consider an

arbitrary probability vector p = (p1, . . . ,pm). Let also µp be the Bernoulli measure on Σ+
m

associated to p, and νp = π∗µp be its canonical projection on Λ. Then,

HD(νp) =

−
∑

1≤i≤m

pi log pi − log(o(S, µp))

|χ(µp)|
.

From Theorem 2, we obtain a necessary and sufficient condition for dimension drop for

self-conformal measures in IFS with overlaps in RD, D ≥ 1.

Corollary 1. In the setting of Theorem 2, a self-conformal measure νp satisfies:

HD(νp) <
h(µp)

|χ(µp)|
,

if and only if o(S, µp) > 1.

Definition 1. In the above setting, let a Bernoulli measure µp. If o(S, µp) = 1, then we say

that the system S is separated µp-asymptotically.

It follows from Corollary 1 that, HD(νp) =
h(µp)
χ(µp)

if and only if the system S is separated

µp-asymptotically.

Clearly, if S satisfies the Open Set Condition, then S is separated µp-asymptotically for

every µp.

2. Assume now we can bound the number of intersections between images of various

cylinders. These estimates apply to a class of non-linear examples, and are stable under

perturbations.

Let S = {φi, 1 ≤ i ≤ m} be a system of injective conformal contractions on a compact

set with non-empty interior V ⊂ RD, D ≥ 1, with limit set Λ. Assume there exists an integer

q ≥ 1 and an open set W ⊂ V so that φi(W ) ⊂ W, 1 ≤ i ≤ m and the collection of initial

cylinders of length q from Σ+
m (i.e cylinders [i1, . . . , iq] with i1 on position 1, . . . , iq on position

q) can be partitioned into s subcollections:

G1, . . . , Gs, (11)
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so that for any C = [j1 . . . jq] ∈ Gi and C
′ = [j′1 . . . j

′
q] ∈ Gj with i 6= j, 1 ≤ i, j ≤ s, we have

φj1...jq(W ) ∩ φj′1...j′q(W ) = ∅.

However the images of cylinders from the same Gi can intersect in any way. Denote by Uj
the union of all cylinders from Gj, for 1 ≤ j ≤ s, and let

m1 := Card G1, . . . , ms := Card Gs (12)

In the above notation, we obtain next a computable lower bound for the dimension of

π2-image measures, by using the Borel measurable function θ : Σ+
m → R,

θ(ω) = logmj , for ω ∈ Uj , 1 ≤ j ≤ s

Corollary 2. In the above setting, consider ψ : Σ+
m → R a Hölder continuous potential, and

let µψ be its equilibrium measure with respect to σ on Σ+
m, and µ̂ψ be the equilibrium measure

of ψ◦π1 with respect to Φ on Σ+
m×Λ; recall also the above notation for the function θ. Then,

HD(π2∗µ̂ψ) ≥
h(µψ)−

1
q

∫

Σ+
m
θ dµψ

|χs(µ̂ψ)|
.

For self-conformal measures, we obtain from Theorem 2 and Corollary 2 the following:

Corollary 3. In the setting of Corollary 2, let an arbitrary Bernoulli measure µp given by

the probability vector p, and denote its associated self-conformal measure νp on the limit

set Λ. Recall the notation in (12). Then the dimension of the self-conformal measure νp

satisfies:

HD(νp) ≥

−
∑

1≤i≤m

pi log pi −
1
q
·
∑

1≤i≤s

logmi ·
∑

[j1,...,jq]∈Gi

pj1 . . . pjq

|χ(µp)|
.

As an example, consider the non-linear system given by the contractions

Fj(x) = λx+ εx2 + εx3 + λj, j ∈ {0, 1, 3},

where λ ∈ [1
4
, 1
3
] and ε ≥ 0 is sufficiently small. The limit set Λλ,ε of this system is contained

in the interval [0, 3λ
1−λ

+ δ(ε)], for some δ(ε) → 0 when ε → 0. Notice that only F0(Iλ) and

F1(Iλ) intersect, so in this case we can take q = 1 for instance. This can be used in the

estimate from Corollary 2 above, with q = 1, k1 = 2, k2 = 3. Thus for any probability vector

p = (p1, p2, p3), the self-conformal measure νp on Λλ,ε satisfies:

HD(νp) ≥
−p1 log p1 − p2 log p2 − p3 log p3 − log 2(p2 + p1)

| log λ|+ δ(ε)
,

where δ(ε)−→
ε→0

0. This estimate can be improved by increasing q for fixed λ.
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3. Another application is to order-reversing π2-projection measures on mixed Julia

sets. Mixed Julia sets appear as limit sets of iterated function systems formed with the

inverse branches of finitely many rational maps which are expanding on a common open

set V ⊂ C. Indeed, let us consider m rational maps R1, . . . , Rm and assume that their

respective Julia sets J(R1), . . . , J(Rm) are contained in V , and that all Rj are expanding on

V , for j = 1, . . . , m. Now assume the degree of Rj is equal to dj , for j = 1, . . . , m and that

fj,k, k = 1, . . . , dj denote the inverse branches R−1
j,k of Rj on V , for j = 1, . . . , m. Since we

assumed that the rational maps Rj are expanding, we obtain a conformal iterated function

system consisting of contractions,

S = {fj,k, 1 ≤ k ≤ dj, 1 ≤ j ≤ m}

We obtain thus a limit set J(R1, . . . , Rm) of the system S, which we call a mixed Julia set.

Then if ψ is a Hölder continuous potential on Σ+
d1+...+dm

and µ̂ψ is the equilibrium measure of

ψ◦π1 on Σ+
m×J(R1, . . . , Rm), and if ν2,ψ is the π2-projection, ν2,ψ = π2∗µ̂ψ on J(R1, . . . , Rm),

then we obtain from Theorem 1 the exact dimensionality of ν2,ψ and its dimension:

Corollary 4. In the above setting, let Rj be a rational map of degree dj for any j = 1, . . . , m,

and suppose that all the maps Rj are expanding on their respective Julia sets which are

contained in an open set V ⊂ C. Consider the system formed by the inverse branches of the

maps Rj,

S = {fj,k, k = 1, . . . , dj, j = 1, . . . , m}

Let ψ Hölder continuous potential on Σ+
m, and µ̂ψ be the equilibrium state of ψ ◦ π1. Then

ν2,ψ := π2∗µ̂ψ is exact dimensional on J(R1, . . . , Rm), and HD(ν2,ψ) is given by Theorem 1.

As an example, consider the rational maps

Rj(z) = γjz
dj + ε1z

dj−1 + . . .+ εdj−1z + cj , j = 1, . . . , m

If |γj| = 1 and |ε1|, . . . , |εdj−1|, |cj| are all small enough for 1 ≤ j ≤ m, then the rational maps

Rj are expanding on an open neighbourhood V of the unit circle S1, and thus we obtain

a contractive IFS consisting of their inverse branches on V , S = {fj,k, k = 1, . . . , dj, j =

1, . . . , m}. Now let us take a Hölder continuous potential ψ on Σ+
d1+...dm

and let µ̂ψ be the

equilibrium measure of ψ ◦ π1. Then the dimension of ν2,ψ on the mixed Julia set can be

computed by Corollary 4.

2 Proofs.

Recall the setting from Section 1, where ψ is a Hölder continuous potential on Σ+
I , µ

+ is the

equilibrium measure of ψ on Σ+
I , and µ̂ denotes the equilibrium measure µψ̂ of ψ̂ := ψ ◦ π1
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on Σ+
I ×Λ. Consider the measurable partition ξ of Σ+

I ×Λ with the fibers of the projection

π1 : Σ
+
I × Λ → Λ, and the associated conditional measures µω of µ̂ = µψ̂ defined for µ+-a.e

ω ∈ Σ+
I (see [34]); from above, µ+ = π1∗µ̂. For µ+-a.e ω ∈ Σ+

I , the conditional measure µω

is defined on π−1
1 ω = {ω}×Λ. It is clear that the factor space Σ+

I ×Λ/ξ is equal to Σ+
I , and

the factor measure of µ̂ satisfies,

µ̂ξ(A) = µ̂(A× Λ) = µ+(A),

for any measurable set A ⊂ Σ+
I . Thus µ̂ξ = µ+. For any borelian set E in Σ+

I × Λ we have,

µ̂(E) =

∫

π1E

(

∫

{ω}×Λ

χEdµω) dµ
+(ω) =

∫

π1E

µω(E ∩ {ω} × Λ) dµ+(ω) (13)

For a Borel set A in Λ, we have for µ+-a.e ω ∈ Σ+
I ,

µω(A) = lim
n→∞

µ̂([ω1 . . . ωn]× A)

µ+([ω1 . . . ωn])
(14)

Notation. Two quantities Q1, Q2 are called comparable, denoted by Q1 ≈ Q2, if ∃C > 0

independent of parameters in Q1, Q2, with
1
C
Q1 ≤ Q2 ≤ CQ1. �

The above conditional measures µω are defined on {ω}×Λ, so they can be considered on

Λ. We now compare µω(A) with µη(A).

Lemma 1. There exists a constant C > 0 so that for µ+-a.e ω, η ∈ Σ+
I and any Borel set

A ⊂ Λ, 1
C
µη(A) ≤ µω(A) ≤ Cµη(A). For any Borel sets A1 ⊂ Σ+

I , A2 ⊂ Λ, and µ+-a.e

ω ∈ Σ+
I , we have:

1

C
µ+(A1) · µω(A2) ≤ µ̂(A1 ×A2) ≤ Cµ+(A1) · µω(A2)

In particular there is a constant C > 0 such that, for µ+-a.e ω ∈ Σ+
I and any Borel set

A ⊂ Λ,
1

C
µω(A) ≤ ν2(A) ≤ Cµω(A)

Proof. First recall formula (14) for the conditional measure µω. From the Φ-invariance of µ̂,

µ̂([ω1 . . . ωn]×A) =
∑

i∈I

µ̂([iω1 . . . ωn]× φ−1
i A) (15)

Now we can cover the set A with small disjoint balls (modulo µ̂), so it is enough to consider

such a small ball B = A ⊂ Λ. The general case will follow then from this.

Recall that for any i1, . . . , in ∈ I, n ≥ 1, φi1...in := φi1 ◦ . . . ◦ φin . We have Bounded

Distortion Property, due to conformal contractions φi; i.e ∃ a constant C > 0 so that for any

x, y, n, i1, . . . , in, we have |φ
′
i1...in

(x)| ≤ C|φ′
i1...in

(y)|. Since the contractions φi are conformal,

let i1, . . . , ip ∈ I such that φ−1
ip
. . . φ−1

i1
B = φ−1

i1...ip
B is a ball B(x0, r0) of a fixed radius r0.
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In this way we inflate B along any backward trajectory i = (i1, i2, . . .) ∈ Σ+
I up to some

maximal order p(i) ≥ 1, so that φ−1
i1...ip(i)

B contains a ball of radius C1r0 and it is contained

in a ball of radius r0, for a constant C1 independent of B, i. Then by using successively the

Φ-invariance of µ̂, relation (15) becomes:

µ̂([ω1 . . . ωn]×B) =
∑

i∈I

µ̂
(

[ip(i) . . . i1ω1 . . . ωn]× φ−1
i1...ip(i)

B
)

(16)

Without loss of generality one can assume that φ−1
i1...ip(i)

B is a ball of radius r0. Notice that

the set [ip(i) . . . i1ω1 . . . ωn]×φ
−1
i1...ip(i)

B is the Bowen ball [ip(i) . . . i1ω1 . . . ωn]×B(x0, r0) for Φ.

Since µ̂ is the equilibrium state of ψ ◦ π1, and since PΦ(ψ ◦ π1) = Pσ(ψ) := P (ψ), we have:

µ̂([ip(i) . . . i1ω1 . . . ωn]× φ−1
i1...ip(i)

B) ≈ exp(Sn+p(i)ψ(ip(i) . . . i1ω1 . . . ωn)− (n + p(i))P (ψ)) ≈

≈ µ+([ω1 . . . ωn]) · µ̂([ip(i) . . . i1]× φ−1
i1...ip(i)

B),

(17)

where the comparability constant does not depend onB, i1, . . . , ip(i), n. For another (η1, . . . , ηn) ∈

In, take again for any i ∈ Σ+
I the same indices i1, . . . , ip(i) s.t φ

−1
i1...ip(i)

B is a ball of radius r0,

thus,

µ̂([ip(i) . . . i1η1 . . . ηn]× φ−1
i1...ip(i)

B) ≈ exp(Sn+p(i)ψ(ip(i) . . . i1η1 . . . ηn)− (n+ p(i))P (ψ))

≈ µ+([η1 . . . ηn]) · µ̂([ip(i) . . . i1]× φ−1
i1...ip(i)

B),

(18)

where the comparability constant does not depend on B, i1, . . . , ip(i), n. But the cover of A

with small balls of type B and the above process of inflating these balls along prehistories

i to balls of radius r0, can be done along any trajectories ω, η. Thus by (16) and using the

uniform estimates (17), (18) and (14), we obtain that there exists a constant C > 0 such

that for µ+-a.e ω, η ∈ Σ+
I ,

1

C
µη(A) ≤ µω(A) ≤ Cµη(A) (19)

From (19) and (13) for µ̂, ∃ a constant C so that for any Borel sets A1 ⊂ Σ+
I , A2 ⊂ Λ,

1

C
µ+(A1) · µω(A2) ≤ µ̂(A1 ×A2) ≤ Cµ+(A1) · µω(A2)

To finish the proof, recall that ν2 = π2∗µ̂, so ν2(A) = µ̂(Σ+
I ×A), and use the last estimates.

Proof of Theorem 1.

First, we prove the upper estimate for the pointwise dimension of ν2. For any n ≥

1, (ω, x) ∈ Σ+
I × Λ, Φn(ω, x) = (σnω, φωn...ω1(x)). From Birkhoff Ergodic Theorem applied

to the Φ-invariant measure µ̂, it follows that for µ̂-a.e (ω, x) ∈ Σ+
I × Λ,

1

n
log |φ′

ωn...ω1
|(x)−→

n

∑

i∈I

∫

[i]×Λ

log |φ′
i(x)| dµ̂(ω, x) = χs(µ̂)
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On the other hand, from the Chain Rule for Jacobians, Birkhoff Ergodic Theorem and the

formula for folding entropy FΦ(µ̂), it follows that for µ̂-a.e (ω, x) ∈ Σ+
I × Λ,

1

n
log JΦn(µ̂)(ω, x)−→

n
FΦ(µ̂)

Thus for a set of (ω, x) ∈ Σ+
I × Λ of full µ̂-measure,

1

n
log |φ′

ωn...ω1
|(x)−→

n

∑

i∈I

∫

[i]×Λ

log |φ′
i(x)| dµ̂(ω, x) = χs(µ̂), and

1

n
log JΦn(µ̂)(ω, x)−→

n
FΦ(µ̂)

We now want to prove that the Jacobian JΦn(µ̂)(ω, x) depends basically only on ω1, . . . , ωn,

i.e there exists a constant C > 0 such that for every n ≥ 1, and µ̂-a.e (η, x) ∈ [ω1 . . . ωn]×Λ,

1

C
JΦn(µ̂)(η, x) ≤ JΦn(µ̂)(ω, x) ≤ CJΦn(µ̂)(η, x) (20)

In order to prove this, notice that if r > 0, and p > 1 is such that diam[ω1 . . . ωn+p] = r,

then

JΦn(µ̂)(ω, x) = lim
r→0,p→∞

µ̂(Φn([ω1 . . . ωn+p]×B(x, r))

µ̂([ω1 . . . ωn+p]× B(x, r))
(21)

In our case, Φn([ω1 . . . ωn+p]×B(x, r)) = [ωn+1 . . . ωn+p]× φωn...ω1B(x, r). If η ∈ [ω1 . . . ωn],

Φn([η1 . . . ηn+p]× B(x, r)) = [ηn+1 . . . ηn+p]× φωn...ω1B(x, r)

But from Lemma 1 there exists a constant C > 0 such that for µ+-a.e ω ∈ Σ+
I , and any

n, p ≥ 1,

1

C
µ+([ωn+1 . . . ωn+p])µω(φωn...ω1B(x, r)) ≤ µ̂([ωn+1 . . . ωn+p]× φωn...ω1B(x, r)) ≤

≤ Cµ+([ωn+1 . . . ωn+p])µω(φωn...ω1B(x, r)),
(22)

and similarly for µ̂([ηn+1 . . . ηn+p]× φωn...ω1B(x, r)). Hence in view of (21) and (22), we have

only to compare the following quantities,

µ+([ωn+1 . . . ωn+p]) · µω(φωn...ω1B(x, r))

µ+([ω1 . . . ωn+p]) · µω(B(x, r))
and

µ+([ηn+1 . . . ηn+p]) · µω(φωn...ω1B(x, r))

µ+([η1 . . . ηn+p]) · µω(B(x, r))

However recall that η ∈ [ω1 . . . ωn], thus there exists a constant K > 0 such that

|Snψ(η1 . . . ηn . . .)− Snψ(ω1 . . . ωn . . .)| ≤ K, (23)

since ψ is Hölder continuous and σ is expanding on Σ+
I . The same argument also implies

that Sn+pψ(ω1 . . . ωn+p . . .) is determined in fact only by the first n+ p coordinates (modulo

an additive constant). Since µ+ is the equilibrium measure of ψ on Σ+
I , and thus a Gibbs

measure, we obtain:

µ+([ωn+1 . . . ωn+p])

µ+([ω1 . . . ωn+p])
≈

exp(Spψ(ωn+1 . . . ωn+p . . .)− pP (ψ))

exp(Sn+pψ(ω1 . . . ωn+p)− (n+ p)P (ψ))
and,

µ+([ηn+1 . . . ηn+p])

µ+([η1 . . . ηn+p])
≈

exp(Spψ(ηn+1 . . . ηn+p . . .)− pP (ψ))

exp(Sn+pψ(η1 . . . ηn+p)− (n+ p)P (ψ))
,

(24)
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where the comparability constant does not depend on n, p, ω, η. But we have: Sn+pψ(ω1 . . . ωn+p . . .) =

Snψ(ω1 . . . ωn+p . . .) + Spψ(ωn+1 . . . ωn+p . . .). And similary for Sn+pψ(η1 . . . ηn+p . . .). There-

fore, using (21), (22), (23) and (24), we obtain the Jacobians inequalites in (20).

Let us take now, for any n > 1 and ε > 0, the Borel set in Σ+
I × Λ:

A(n, ε) := {(ω, x) ∈ Σ+
I × Λ,

∣

∣

log |φ′
ωn...ω1

(x)|

n
− χs(µ̂)

∣

∣ < ε, |
log JΦn(µ̂)(ω, x)

n
− FΦ(µ̂)| < ε,

and |
Snψ(ω)

n
−

∫

ψdµ+| < ε}

Then from Birkhoff Ergodic Theorem, for any ε > 0, µ̂(A(n, ε)) −→
n→∞

1. From (20), if (ω, x) ∈

A(n, ε) and η ∈ [ω1 . . . ωn], then (η, x) ∈ A(n, 2ε), so for any δ > 0,

µ+({ω ∈ Σ+
I , ν2(π2(A(n, ε) ∩ [ω1 . . . ωn]× Λ)) > 1− δ})−→

n
1

We have from (20) that [ω1 . . . ωn]×π2A(n, ε) ⊂ A(n, 2ε). Thus from Lemma 1, for n > n(δ),

µ̂(A(n, 2ε) ∩ [ω1 . . . ωn]× Λ) > C(1− δ) · µ̂([ω1 . . . ωn]× Λ) (25)

Let now rn := 2ε|φ′
ωn...ω1

(x)|, for (ω, x) ∈ A(n, ε) ∩ [ω1 . . . ωn]× Λ. With y = φωn...ω1(x)

we have ν2(B(y, rn)) ≥ ν2(φωn...ω1(π2(A(n, 2ε) ∩ [ω1 . . . ωn]× Λ)), and then since ν2 = π2∗µ̂,

we obtain

ν2(B(y, rn)) ≥ µ̂(Σ+
I × π2(Φ

n(A(n, 2ε) ∩ [ω1 . . . ωn]× Λ))) ≥ µ̂(Φn(A(n, ε) ∩ [ω1 . . . ωn]× Λ))

But Φn is injective on the cylinder [ω1 . . . ωn]× Λ since φj are injective. Thus we can apply

the Jacobian formula for the measure of the Φn-iterate in the last term of last inequality

above,

ν2(B(y, rn)) ≥ µ̂(Φn(A(n, ε) ∩ [ω1 . . . ωn]× Λ)) =

∫

A(n,ε)∩[ω1...ωn]×Λ

JΦn(µ̂) dµ̂

≥ exp
(

n(FΦ(µ̂)− ε) · µ̂(A(n, ε) ∩ [ω1 . . . ωn]× Λ
)

(26)

Recall that µ+([ω1 . . . ωn]) = µ̂([ω1 . . . ωn]× Λ). Then, from (26) and (25) we obtain:

ν2(B(y, rn)) ≥ exp(n(FΦ(µ̂)−ε))(1−δ)Cµ
+([ω1 . . . ωn]) ≥ C(1−δ)en(FΦ(µ̂)−ε) exp(Snψ(ω)−nP (ψ)),

(27)

where C is independent of n, ω, x, y, and P (ψ) := Pσ(ψ). Since µ+ is the equilibrium state

of ψ,

P (ψ) = h(µ+) +

∫

ψ dµ+

But from the definition of A(n, ε), for any (ω, x) ∈ A(n, ε), we have

en(χs(µ̂)+ε) ≥ rn = 2ε|φωn...ω1(x)| ≥ en(χs(µ̂)−ε), thus, n(χs(µ̂) + ε) ≥ log rn ≥ n(χs(µ̂)− ε)

(28)
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From (27), (28) and the above formula for pressure, we obtain that for ν2-a.e y ∈ Λ,

δ(ν2)(y) = lim
r→0

log ν2(B(y, r))

log r
≤
FΦ(µ̂)− h(µ+)

χs(µ̂)
=
h(µ+)− FΦ(µ̂)

|χs(µ̂)|
, (29)

which proves the upper estimate for the (upper) pointwise dimension of ν2.

Now, we prove the more difficult lower estimate for the pointwise dimension of ν2.

Define for any m ≥ 1 and ε > 0, the following Borel set in Σ+
I × Λ,

Ã(m, ε) :=
{

(ω, x) ∈ Σ+
I × Λ, |

1

n
log |φ′

ωn...ω1
(x)| − χs(µ̂)| < ε, and |

1

n
log JΦn(µ̂)(ω, x)− FΦn(µ̂)| < ε,

and |
1

n
Snψ(ω)−

∫

ψdµ+| < ε, ∀n ≥ m
}

We know from Birkhoff Ergodic Theorem that µ̂(Ã(m, ε))→
m
1, for any ε > 0. So we obtain

ν2(π2Ã(m, ε))→
m
1. But Φn([i1 . . . in] × Λ) = Σ+

I × φin...i1Λ, and from the Φ-invariance of µ̂,

we have µ̂(Φn([i1 . . . in] × Λ) ≥ µ̂([i1 . . . in] × Λ). Moreover µ̂([i1 . . . in] × Λ) > 0, since µ̂ is

the equilibrium measure of ψ ◦ π1 and [i1 . . . in]× Λ is an open set. In conclusion,

ν2(φin...i1Λ) = µ̂(Σ+
I × φin...i1Λ) = µ̂(Φn([i1 . . . in]× Λ) ≥ µ̂([i1 . . . in]× Λ) > 0 (30)

We present briefly the general strategy of the proof, which will be detailed in the sequel.

Since Φm([i1 . . . im]× Λ) = Σ+
I × φim...i1Λ, and ν2 = π2∗µ̂, we have:

ν2(φim...i1Λ) = µ̂(Σ+
I × φim...i1Λ) = µ̂(Φm([i1 . . . im]× Λ)

Notice that a small ball B(x, r) can intersect many sets of type φim...i1Λ, for various m-tuples

(i1, . . . , im) ∈ Im, and these image sets may also intersect one another. Thus when estimating

ν2(B(x, r)), all of these sets must be considered; it is not enough in principle to consider

only one intersection B(x, r)∩ φim...i1Λ. However, we know from (30) that ν2(φim...i1Λ) > 0,

thus from the Borel Density Theorem (see [31]), it follows that for ν2-a.e x ∈ φim...i1Λ, and

for all 0 < r < r(x),
ν2(B(x, r) ∩ φim...i1Λ)

ν2(B(x, r))
> 1/2

Hence, from the point of view of the measure ν2, the intersection B(x, r)∩ φim...i1Λ contains

at least half of the ν2-measure of the ball B(x, r). This hints that it is enough to consider

only one good image set of type φim...i1Λ. Then since ν2(π2Ã(m, ε))→
m
1, we can consider only

ν2(φim...i1(π2Ã(m, ε))), which can be estimated using the Jacobian JΦm(µ̂) and the genericity

of points in Ã(m, ε) with respect to log JΦm(µ̂) and log |φ′
im...i1

|. Then we repeat this argument

whenever the iterate of a point belongs to the set of generic points Ã(m, ε). However not all

iterates of a point belong to this set, but it will be shown by a delicate estimate that ”most”

of them hit Ã(m, ε). For the iterates not in Ã(m, ε), we use a different type of estimate.
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Then we repeat and combine these two estimates, by an interlacing procedure. We now

proceed with the full proof:

For any integer m > 1, consider the Borel set Ã(m, ε) defined above. Then for any α > 0

arbitrarily small, there exists an integer m(α) > 1 such that for any m > m(α), we have:

µ̂(Ã(m, ε)) > 1− α (31)

Let us fix such an integer m > m(α). Then from Birkhoff Ergodic Theorem applied to Φm

and χÃ(m,ε), we have that for µ̂-a.e (ω′, x′) ∈ Σ+
I × Λ,

1

n
Card{0 ≤ k ≤ n, Φkm(ω′, x′) ∈ Ã(m, ε)} −→

n→∞
µ̂(Ã(m, ε))

Hence, there exists an integer n(α) and a Borel set D(α) ⊂ Σ+
I × Λ, with µ̂(D(α)) > 1− α,

such that for (ω′, x′) ∈ D(α) and n ≥ n(α), we have:

1

n
Card{0 ≤ k ≤ n, Φmk(ω′, x′) ∈ Ã(m, ε)} > 1− 2α (32)

In other words a large proportion of the iterates of points (ω′, x′) in D(α), belong to the set

of generic points Ã(m, ε). So in the Φm-trajectory (ω′, x′),Φm(ω′, x′), . . . ,Φnm(ω′, x′), there

are at least (1− 2α)n iterates in Ã(m, ε).

For arbitrary indices i1, . . . im ∈ I, let us define now the Borel set in Λ,

Y (i1, . . . , im) := φi1...imπ2(Ã(m, ε))

Consider first the intersection of all these sets, namely
⋂

i1,...,im∈I

Y (i1, . . . , im). Then take the

intersections of these sets except only one of them, so consider the sets of type
⋂

(j1,...,jm)∈Im\{(i1,...,im)}

Y (j1, . . . , jm) \Y (i1, . . . , im), for all (i1, . . . , im) ∈ Im. Then consider

the intersections of all the sets Y (j1, . . . , jm) excepting two of them, namely the intersections

of type
⋂

(j1,...,jm)∈Im\{(i1,...,im),(i′1,...,i
′

m)}

Y (j1, . . . , jm) \
(

Y (i1, . . . , im)∪Y (i′1, . . . , i
′
m)

)

, for all the

m-tuples (i1, . . . , im), (i
′
1, . . . , i

′
m) ∈ Im. We continue this procedure until we exhaust all the

possible intersections of type
⋂

(j1,...,jm)∈Im\J

Y (j1, . . . , jm) \
⋃

(i1,...,im)∈J

Y (i1, . . . , im),

for some arbitrary given set J of m-tuples from Im. Notice that in this way, by taking

all the subsets J ⊂ Im, we obtain by the above procedure mutually disjoint Borel sets

(some may be empty). Denote these mutually disjoint nonempty sets obtained above by

Z1(α;m, ε), . . . , ZM(m)(α;m, ε).

Now if for some 1 ≤ i ≤ M(m), we know that ν2(Zi(α;m, ε)) > 0, then from the Borel

Density Theorem (see [31]), there exists a Borel subset Gi(α;m, ε) ⊂ Zi(α;m, ε), with

ν2(Gi(α;m, ε)) ≥ ν2(Zi(α;m, ε))(1− α),
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and there exists ri(α;m, ε) > 0, such that for any x ∈ Gi(α;m, ε) and for any 0 < r <

ri(α;m, ε),
ν2(B(x, r) ∩ Zi(α;m, ε))

ν2(B(x, r))
> 1− α. (33)

Now define the Borel subset of Λ,

G(α;m, ε) :=

M(m)
⋃

i=1

Gi(α;m, ε)

From the construction of the mutually disjoint sets Zi(α;m, ε), it follows that,
∑

1≤i≤M(m)

ν2(Zi(α;m, ε)) = ν2( ∪
i1,...,im∈I

Y (i1, . . . , im)) (34)

But from definition of Y (i1, . . . , im) and the disjointness of different m-cylinders, we have

that,

∪
i1,...,im∈I

Y (i1, . . . , im) = ∪
i1,...,im∈I

π2(Φ
m([im . . . i1]× π2(Ã(m, ε)))) =

= π2( ∪
i1,...,im∈I

Φm([im . . . i1]× π2Ã(m, ε))) = π2(Φ
m(Σ+

I × π2Ã(m, ε)))

However since ν2 = π2∗µ̂, and using the Φ-invariance of µ̂ and (31), it follows that:

ν2
(

π2(Φ
m(Σ+

I × π2Ã(m, ε)))
)

= µ̂(Σ+
I × π2(Φ

m(Σ+
I × π2Ã(m, ε)))) ≥ µ̂(Φm(Σ+

I × π2Ã(m, ε))) ≥

≥ µ̂(Σ+
I × π2Ã(m, ε)) ≥ µ̂(Ã(m, ε)) > 1− α

Thus from the last two displayed formulas, it follows that:

ν2(
⋃

i1,...,im∈I

Y (i1, . . . , im)) > 1− α (35)

Hence from (34) and (35), we obtain:

ν2
(

⋃

1≤i≤M(m)

Zi(α;m, ε)
)

> 1− α (36)

But the Borel sets Zi(α;m, ε), 1 ≤ i ≤ M(m) are mutually disjoint, and from (33) we know

that Gi(α;m, ε) ⊂ Zi(α;m, ε) and that, for 1 ≤ i ≤ M(m),

ν2(Gi(α;m, ε)) ≥ ν2(Zi(α;m, ε))(1− α)

Hence from the definition of G(α;m, ε) =
⋃

1≤i≤M(m)

Gi(α;m, ε) and from (36),

ν2(G(α;m, ε)) > (1− α)2 > 1− 2α (37)

Denote now the following intersection set by,

X(α;m, ε) := G(α;m, ε) ∩ π2Ã(m, ε)
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Then from the above estimate for ν2(G(α;m, ε)) and by using (31), we obtain:

ν2(X(α;m, ε)) > 1− 3α (38)

Now by applying the same argument as in (32) to the set Ã(m, ε) ∩
(

Σ+
I ×X(α;m, ε)

)

,

we obtain that there exists a Borel set D̃(α;m, ε) ⊂ Ã(m, ε) ⊂ Σ+
I × Λ, with

µ̂(D̃(α;m, ε)) > 1− 4α, (39)

and such that for any pair (i, x′) ∈ D̃(α;m, ε), at least a number of (1 − 3α)n of the

points π2(i, x
′), π2Φ

m(i, x′), . . . , π2Φ
nm(i, x′) belong to X(α;m, ε). Moreover any point ζ ∈

X(α;m, ε) satisfies condition (33) for all 0 < r < ri(α;m, ε) if ζ ∈ Zi(α;m, ε), for some

1 ≤ i ≤M(m). So denote

rm(α, ε) := min
1≤i≤M(m)

ri(α;m, ε)

Consider now (i, x′) ∈ D̃m(α, ε), and denote by x = φinm...i1(x
′) = π2Φ

nm(i, x′). So we

have the following backward trajectory of x with respect to Φm determined by the sequence

i from above,

x, φi(n−1)m...i1(x
′), . . . , φim...i1(x

′), x′, (40)

and denote these points respectively by x, x−m, . . . , x−(n−1)m, x−nm = x′. To see the next

argument, assume for simplicity that the first preimage of x in this trajectory, namely x−m =

φi(n−1)m...i1(x
′) belongs to X(α;m, ε). Then from (33), Lemma 1, and the genericity of JΦm

on Ã(m, ε),

ν2(B(x, r)) ≤
1

1− α
ν2(B(x, r) ∩ φinm...i(n−1)m

π2Ã(m, ε)) =

=
1

1− α
µ̂(Σ+

I × (B(x, r) ∩ φinm...i(n−1)m
π2Ã(m, ε))) ≤

≤
1

1− α
µ̂(Φm([i(n−1)m . . . inm]× (π2Ã(m, ε) ∩ (φinm...i(n−1)m

)−1B(x, r)))) =

=
1

1− α

∫

[i(n−1)m...inm]×(π2Ã(m,ε)∩(φinm...i(n−1)m
)−1B(x,r))

JΦm(µ̂) dµ̂ ≤

≤ C
1

1− α
em(FΦ(µ̂)+ε)µ+([i(n−1)m...inm

]) · ν2((φinm...i(n−1)m
)−1B(x, r)) ≤

≤
C

1− α
em(FΦ(µ̂)+2ε−h(µ+))ν2((φinm...i(n−1)m

)−1B(x, r)),

where the last inequality follows since µ+ is the equilibrium state of ψ and P (ψ) = hµ+ +
∫

ψdµ+. Thus we obtain from above the following estimate on the measure of B(x, r),

ν2(B(x, r)) ≤ C
1

1− α
· em(FΦ(µ̂)−h(µ+)+2ε) · ν2((φinm...i(n−1)m

)−1B(x, r)) (41)

This argument can be repeated until we reach in the above backward trajectory of x (40),

a preimage which is not in X(α;m, ε). Denote then by k1 ≥ 1 the first integer k for which
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x−mk /∈ X(α;m, ε), and assume that the above process is interrupted for k′1 indices, namely

{x−mk1 , x−m(k1+1), . . . , x−m(k1+k′1−1)} ∩ X(α;m, ε) = ∅. Then denote y := x−mk1 , and let us

estimate ν2((φinm...i(n−k1)m
)−1B(x, r)). By definition of the push-forward measure ν2,

ν2((φinm...i(n−k1)m
)−1B(x, r)) = µ̂(Σ+

I × (φinm...i(n−k1)m
)−1B(x, r))

By definition of k1, k
′
1, we have that x−m(k1+k′1)

∈ X(α;m, ε). By repeating the estimate in

(41), we obtain an upper estimate for ν2(B(x, r)),

ν2(B(x, r)) ≤ (
C

1− α
)k1 · emk1(FΦ(µ̂)−h(µ

+)+2ε) · ν2((φinm...i(n−k1)m
)−1B(x, r)) (42)

Now on the other hand from the Φ-invariance of µ̂ and the definition of ν2,

ν2((φinm...i(n−k1)m
)−1B(x, r)) = µ̂(Σ+

I × (φinm...i(n−k1)m
)−1B(x, r)) =

= µ̂(φ−mk′1(Σ+
I × (φinm...i(n−k1)m

)−1B(x, r)))

=
∑

jp∈I,1≤p≤mk′1

µ̂([j1 . . . jmk′1 ]× φ−1
jmk′

1
...j1

(φinm...i(n−k1)m
)−1B(x, r))

(43)

Recall that the set of non-generic points satisfies,

µ̂((Σ+
I × Λ) \ Ã(m, ε)) < α

We now compare the µ̂-measure of the set of generic points with respect to the µ̂-measure,

with the µ̂-measure of the set of non-generic points. There are 2 cases:

a) If,

µ̂
(

Ã(m, ε)
⋂

Φ−mk′1(Σ+
I ×(φinm...i(n−k1)m

)−1B(x, r))
)

<
1

2
µ̂(Φ−mk′1(Σ+

I ×(φinm...i(n−k1)m
)−1B(x, r))),

then non-generic points have more mass than the generic points, hence,

ν2((φinm...i(n−k1)m
)−1B(x, r)) = µ̂(Σ+

I × (φinm...i(n−k1)m
)−1B(x, r)) < 2α << 1

By collecting all sets with the above property and taking α → 0, this case is then straight-

forward.

b) If,

µ̂
(

Ã(m, ε)∩Φ−mk′1(Σ+
I ×(φinm...i(n−k1)m

)−1B(x, r))
)

≥
1

2
µ̂(Φ−mk′1(Σ+

I ×(φinm...i(n−k1)m
)−1B(x, r))),

then using also (43) we obtain:

ν2((φinm...i(n−k1)m
)−1B(x, r)) = µ̂(Σ+

I × (φinm...i(n−k1)m
)−1B(x, r)) =

= µ̂(Φ−mk′1(Σ+
I × (φinm...i(n−k1)m

)−1B(x, r)))

≤ 2
∑

j generic

µ̂
(

Ã(m, ε) ∩
(

[j1 . . . jmk′1 ]× φ−1
jmk′

1
...j1

(φinm...i(n−k1)m
)−1B(x, r)

))

(44)
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But for two generic histories j, j′, i.e. for j, j′ ∈ π1(Ã(m, ε)), we know that for any (ω, z) ∈

Ã(m, ε)
⋂
(

[j1 . . . jmk′1 ]×φ
−1
jmk′

1
...j1

(φinm...i(n−k1)m
)−1B(x, r)

⋃

[j′1 . . . j
′
mk′1

]×φ−1
j′
mk′

1
...j′1

(φinm...i(n−k1)m
)−1B(x, r)

)

,

J
Φmk′

1
(µ̂)(ω, z) ∈

(

emk
′

1(FΦ(µ̂)−ε), emk
′

1(FΦ(µ̂)+ε)
)

.

Hence since Φmk
′

1(Ã(m, ε)
⋂

[j1 . . . jmk′1 ]×φ
−1
jmk′1

...j1
(φinm...i(n−k1)m

)−1B(x, r) ⊂ φinm...i(n−k1)m
)−1B(x, r)

and using the above estimate on the Jacobian of µ̂ with respect to Φmk
′

1 , it follows that there

exists a constant factor C > 1 such that the ratio of the µ̂-measures of the two preimage

type sets

Ã(m, ε)
⋂

[j1 . . . jmk′1 ]× φ−1
jmk′

1
...j1

(φinm...i(n−k1)m
)−1B(x, r), and,

Ã(m, ε)
⋂

[j′1 . . . j
′
mk′1

]× φ−1
j′
mk′1

...j′1
(φinm...i(n−k1)m

)−1B(x, r),

corresponding to generic j, j′, belongs to the interval
(

C−1e−mk
′

1ε, Cemk
′

1ε
)

.

Notice also that there are at most dmk
′

1 sets of type [j1 . . . jmk′1 ]×φ
−1
jmk′1

...j1
(φinm...i(n−k1)m

)−1B(x, r),

where d := |I|. The maximality assumption for k′1 implies that φ−1
im(n−k1)

...im(n−k1−k′
1
)
(y) ∈

X(α;m, ε), where y := x−mk1 . Thus using the above discussion and (44), we obtain:

ν2((φinm...i(n−k1)m
)−1B(x, r)) ≤ Cdmk

′

1(1+
2ε

log d
)·ν2(φ

−1
im(n−k1−1)...im(n−k1−k′

1
)
(φinm...i(n−k1)m

)−1B(x, r))

(45)

Now from above, φ−1
im(n−k1)

...im(n−k1−k′1)
(y) ∈ X(α;m, ε), and we repeat the argument from

(42) along the sequence i until reaching another preimage of x which does not belong to

X(α;m, ε); next, we apply again the argument from (45), and so on, until reaching the nm-

preimage of x, namely x−nm = φ−1
inm...i1

(x). Recall from (40) that x′ := x−nm. Consider now

r0 > 0 a fixed radius, and n = n(r) be chosen so that, due to the conformality of φi, i ∈ I,

φ−1
inm...i1

B(x, r) = B(x−nm, r0) = B(x′, r0) (46)

On the backward m-trajectory (40) of x determined by i above, recall that we denoted

by k′1 the length of the first maximum “gap” consisting of preimages of x which are not

in X(α;m, ε). Now let us denote in general the lengths of such maximal “gaps” in this

trajectory (40), consisting of consecutive preimages which do not belong to X(α;m, ε), by

k′1, k
′
2, . . .. More precisely, we have x−jm ∈ X(α;m, ε), 0 ≤ j ≤ k1 − 1, followed by

x−mk1 , . . . , x−m(k1+k′1−1) /∈ Xm; then x−m(k1+k′1)
, . . . , x−m(k1+k′1+k2−1) ∈ Xm(α, ε), followed by

x−m(k1+k′1+k2)
, . . . , x−m(k1+k′1+k2+k

′

2−1) /∈ X(α;m, ε); then,

x−m(k1+k′1+k2+k
′

2)
, . . . , x−m(k1+k′1+k2+k

′

2+k3−1) ∈ X(α;m, ε), and so on.

Denote by k1, . . . , kp(n) and k
′
1, . . . , k

′
p′(n) the integers obtained by this procedure, correspond-

ing to the sequence (40). Clearly,

k1 + k′1 + . . .+ kp(n) + k′p(n) = n
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Also p′(n) is equal either to p(n) or to p(n) − 1. Then from the properties of D̃m(α, ε) in

(39),

k1 + . . .+ kp(n) ≥ n(1− 3α), and k′1 + k′2 + . . .+ k′p′(n) ≤ 3αn (47)

We apply (42) for the generic preimages x, . . . , x−m(k1−1) from the trajectory (40), then apply

the estimate in (45) for the nongeneric preimages x−mk1 , . . . , x−m(k1+k′1−1), then again apply

(42) for x−m(k1+k′1)
, . . . , x−m(k1+k′1+k2−1), followed by (45) for x−m(k1+k′1+k2)

, . . . , x−m(k1+k′1+k2+k
′

2−1),

and so on. Hence applying succesively the estimates (42) and (45), and recalling (46) and

the bound on the combined length of gaps k′1 + k′2 + . . .+ k′p′(n) ≤ 3αn from (47), we obtain:

ν2(B(x, r)) ≤ (
C

1− α
)n · d3αmn(1+

ε
log d

) · e(FΦ(µ̂)−h(µ
+)+2ε)·mn(1−3α)ν2(B(x′, r0)). (48)

But χs(µ̂) is the stable Lyapunov exponent of µ̂, i.e χs(µ̂) =
∫

Σ+
I
×Λ

log |φ′
ω1
(x)| dµ̂(ω, x). From

(46) it follows that r = rn = r0|φ
′
inm...i1

(x′)|, and recall that (i, x′) ∈ D̃m(α, ε). Therefore,

enm(χs(µ̂)−ε) ≤ rn ≤ enm(χs(µ̂)+ε). (49)

Denote by X̃(α;m, ε) := π2D̃m(α, ε). Then since ν2 := π2∗µ̂ and µ̂(D̃m(α, ε)) > 1 − 4α, we

obtain,

ν2(X̃(α;m, ε)) = µ̂(Σ+
I × X̃(α;m, ε)) ≥ µ̂(D̃m(α, ε)) ≥ 1− 4α

From (48) and (49) it follows that by taking C ′ = 2C > 1, then for every x ∈ X̃(α;m, ε)

and for a sequence rn → 0, the following estimate holds:

ν2(B(x, rn)) ≤ (
C ′

1− α
)n · d3αmn(1+

2ε
log d

) · r
(1−3α)·

FΦ(µ̂)−h(µ+)+2ε

χs(µ̂)
n .

Thus,

log ν2(B(x, rn)) ≤ (1−3α) log rn ·
FΦ(µ̂)− h(µ+) + 2ε

χs(µ̂)
+n log

C ′

1− α
+3αmn · log d(1+

2ε

log d
).

(50)

But by using (49) and dividing in (50) by log rn, one obtains:

log ν2(B(x, rn))

log rn
≥ (1−3α)

FΦ(µ̂)− h(µ+) + 2ε

χs(µ̂)
+

log C′

1−α

m(χs(µ̂) + ε)
+(1+

2ε

log d
)
3α log d

χs(µ̂) + ε
. (51)

Now let us take some arbitrary radius ρ > 0, and assume that for some integer n, we have

rn+1 ≤ ρ ≤ rn, where rn is defined at (49). Then ν2(B(x, ρ)) ≤ ν2(B(x, rn)), therefore

log ν2(B(x, ρ))

log ρ
≥

log ν2(B(x, rn))

log ρ

But log ρ ≥ log rn+1, hence
1

log ρ
≤ 1

log rn+1
< 0, hence from above,

log ν2(B(x, ρ))

log ρ
≥

log ν2(B(x, rn))

log rn+1
≥

log ν2(B(x, rn))

c+ log rn
, (52)

21



since rn+1 > crn, for some constant c independent of n. Thus by letting ρ → 0, and using

(51) and (52), we obtain the following lower estimate for the lower pointwise dimension of

ν2:

δ(ν2)(x) ≥ (1− 3α)
FΦ(µ̂)− h(µ+) + 2ε

χs(µ̂)
+

log C′

1−α

m(χs(µ̂) + ε)
+ 3α(1 +

2ε

log d
)

log d

χs(µ̂) + ε

But α → 0 as m → ∞, and ν2(X̃(α;m, ε)) → 1. So from last displayed estimate, for ν2-a.e

x ∈ Λ,

δ(ν2)(x) ≥
FΦ(µ̂)− h(µ+) + 2ε

χs(µ̂)

Since ε is arbitrary, it follows from the above lower estimate and (29) that, for ν2-a.e x ∈ Λ,

δ(ν2)(x) =
FΦ(µ̂)− h(µ+)

χs(µ̂)

From (7), FΦ(µ̂)) = log o(S, µ̂), so using the last formula we conclude the proof of Theorem

1.

�

Proof of Theorem 2.

From the Birkhoff Ergodic Theorem applied to the continuous potential κ(ω, x) = log |φ′
ω1
(x)|

on Σ+
I ×Λ, we see that χs(µ̂p) = lim

n→∞

log |φ′ωn...ω1
(x)|

n
, for µ̂p-a.e (ω, x). But from the Bounded

Distortion Property, it does not matter which x we take in the limit above. Hence using

that µp = π1∗µ̂p and that µp is a Bernoulli measure, it follows that

χs(µ̂p) =

∫

Σ+
I
×Λ

κ(ω, x)dµ̂p =

∫

Σ+
I
×Λ

log |φ′
ω1
|(πσω)dµ̂p

=

∫

Σ+
I

log |φ′
ω1
|(πσω)dµp = χ(µp)

Thus from Theorem 1 we obtain the dimension formula.

�

Proof of Corollary 2.

First recall the definition of βn(x) from (8) as being the number of multi-indices (i1, . . . , in) ∈

{1, . . . , m}n so that x ∈ φi1 ◦ . . .◦φin(Λ). Recall that Uj is the union of cylinders from the set

Gj in (11), for 1 ≤ j ≤ s. If x = π(ω) and the maps φj1...jq are grouped as in the statement,

and if σqℓω ∈ Ukℓ for 1 ≤ ℓ ≤ n, then using the notation in (12) we have the following bound

on βqn(x),

βqn(x) ≤ mk1 . . .mkn (53)

Recall now that θ : Σ+
m → R, θ(ω) = logmj , when ω ∈ Uj for some 1 ≤ i ≤ s. From the

definition, one sees that θ is a Hölder continuous potential on Σ+
m. Also from (53) we have,

log βqn(πω) ≤ Sn,q(θ)(ω),
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where Sn,q(θ)(ω) is the consecutive sum of θ with respect to σq. Without loss of generality,

assume q = 1. From the definition of bn((ω, x), τ, µ̂ψ), it follows that for any n ≥ 1, τ >

0, (ω, x) ∈ Σ+
m × Λ,

bn((ω, x), τ, µ̂ψ) ≤ βn(φωn...ω1(x)) = βn ◦ π2 ◦ Φ
n(ω, x)

Hence,
∫

Σ+
m×Λ

log bn((ω, x), τ, µ̂ψ) dµ̂ψ(ω, x) ≤

∫

Σ+
m×Λ

log βn ◦ π2 ◦ Φ
n(ω, x)dµ̂ψ(ω, x)

=

∫

Σ+
m×Λ

log βn ◦ π2(ω, x)dµ̂ψ.

(54)

Now take the lift of Φ, namely

Φ̃ : Σ+
m × Σ+

m → Σ+
m × Σ+

m, Φ̃(ω, η) = (σω, ω1η)

If µ̃ψ is the equilibrium state of ψ ◦ π1 : Σ+
m × Σ+

m → R for Φ̃, then π1∗µ̃ψ = µ̂ψ. Let

π̃2 : Σ
+
m×Σ+

m → Σ+
m be the projection to second coordinate. Then for any (ω, η) ∈ Σ+

m×Σ+
m,

one has βn ◦ π(η) = βn ◦ π2(ω, π(η)). Thus from above and continuing (54), with q assumed

to be 1,
∫

Σ+
m×Λ

log βn ◦ π2(ω, x) dµ̂ψ(ω, x) =

∫

Σ+
m×Σ+

m

log βn ◦ π(η)dµ̃ψ(ω, η) ≤

∫

Σ+
m

Snθ(η) dπ̃2,∗µ̃ψ(η)

(55)

Now let us see more closely what is the measure π̃2,∗µ̃ψ. For a cylinder [i1 . . . in] ⊂ Σ+
m,

we know that Φ̃n([i1 . . . in] × Σ+
m) = Σ+

m × [in . . . i1], so by the Φ̃-invariance of µ̃ψ and since

π1,∗µ̃ψ = µψ, it follows that π̃2,∗µ̃ψ([in . . . i1]) = µ̃ψ([i1 . . . in] × Σ+
m) = µψ([i1 . . . in]). Now as

θ is constant on 1-cylinders (as q = 1), it implies that when we compute the integral over

Σ+
m (thus considering all the cylinders), we obtain:

∫

Σ+
m

Snθ(ω)dπ̃2,∗µ̃ψ(ω) =

∫

Σ+
m

Snθ(ω)dµψ(ω) = n

∫

Σ+
m

θ(ω)dµψ(ω)

Therefore, from (54), (55) and the definition of the overlap number o(S, µ̂ψ), we infer that:

log o(S, µ̂ψ) ≤

∫

Σ+
m

θ(ω)dµψ(ω).

In the general case, for arbitrary q ≥ 1, we obtain similarly,

lim
n→∞

1

qn

∫

Σ+
m×Λ

log βqn(πω)dµ̂ψ(ω, y) ≤ lim
n→∞

1

qn

∫

Σ+
m

Sn,q(θ)(ω)dµψ(ω) =
1

q

∫

Σ+
m

θ(ω)dµψ(ω).

Therefore it follows that,

log o(S, µ̂ψ) ≤ exp( lim
n→∞

1

n

∫

Σ+
m×Λ

log βn(πω)dµ̂ψ(ω, y)) ≤
1

q

∫

Σ+
m

θ(ω)dµψ(ω).
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Hence from Theorem 1 and the last displayed inequality we obtain,

HD(π2∗µ̂ψ) ≥
h(µψ)−

1
q

∫

Σ+
m
θ(ω) dµψ(ω)

|χs(µ̂ψ)|
.

�

Acknowledgements: This work was supported by grant PN-III-P4-ID-PCE-2020-2693

from Ministry of Research and Innovation, CNCS/CCCDI - UEFISCDI Romania. The

author also thanks Yakov Pesin for discussions during a visit at Penn State University.

References
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