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Abstract

We study images of equilibrium (Gibbs) states for a class of non-invertible transformations
associated to conformal iterated function systems with overlaps S. We prove exact dimension-
ality for these image measures, and find a dimension formula using their overlap numbers.

In particular, we obtain a geometric formula for the dimension of self-conformal measures
for iterated function systems with overlaps, in terms of the overlap numbers. This implies a
necessary and sufficient condition for dimension drop. If v = 7, is a self-conformal measure,
then HD(v) < % if and only if the overlap number o(S, 1) > 1. Examples are also discussed.
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1 Introduction and main results.

In this paper we study the thermodynamic formalism and dimension for images of equilib-
rium measures, for noninvertible transformations associated to conformal iterated function
systems with overlaps §. We prove exact dimensionality for this new class of image
measures; this implies that all the dimensions of these measures (Hausdorff, pointwise, box)
coincide. A formula for the dimension of these measures is obtained, in terms of their
entropy, Lyapunov exponent and overlap number (which represents the average rate of
growth of the number of generic self-intersections in the limit set A of S).

In particular, we prove the exact dimensionality of arbitrary self-conformal measures
for conformal iterated function systems with overlaps, and we determine a dimension for-
mula for self-conformal measures in terms of overlap numbers, entropy and Lyapunov ex-

ponents.
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When the iterated function system (IFS) satisfies Open Set Condition, the dimension of
the self-conformal measure v := m,u is equal to the value “entropy divided by Lyapunov
exponent” (see [§]). For IFS with overlaps we show that for a self-conformal measure

Vp = Tullp, HD(vp) = ‘ZEZ‘;Q if and only if the overlap number of up is equal to 1, and we

say in that case that the system S is separated pp-asymptotically. If 14 is the equally

(o)
Ix(10)l

distributed self-conformal measure, then HD(vy) = if and only if the topological
overlap number of S is equal to 1.

Thus for self-conformal measures, our results establish a necessary and sufficient condition
for the dimension drop of 7, from the value %, namely that the overlap number
o(S, ) > 1.

The exact dimensionality of self-conformal measures (and other measures) on limit sets of
finite conformal IF'S with overlaps was proved by Feng and Hu in the groundbreaking paper
[12], and a dimension formula was obtained by them in terms of the entropy, Lyapunov
exponent and projection entropy. Our proof of exact dimensionality is different, and it
follows from our general result for hyperbolic endomorphisms. The dimension formula that

we obtain is partially geometric, and we apply it to certain examples.

In the sequel, we study the analytic and stochastic properties for equilibrium measures
over lift spaces associated to conformal iterated systems with overlaps, and for a class of
their push-forward measures. In the process, we investigate also the intricate interlacing in
a typical trajectory in A of generic iterates and the gaps of non-generic iterates, and how
they influence the local densities of the measures. The general setting is the following:

Let & = {¢;,7 € I} be an arbitrary finite iterated function system of smooth conformal
injective contractions of a compact set with nonempty interior V".C R”, D > 1. We do not
assume any kind of separation condition for S (see for eg [7], [14], [I7] for some possible
separation conditions). The limit set of the system S is given by:

A= U 0 ¢uw,(V),

wes} n>0

where X} is the 1-sided symbolic space on |I| symbols, and w = (wy,...,wy,,...) € X7 is
arbitrary (see for eg [7], [14]). Denote by [w; ...w,] the cylinder on the first n elements of w,
and by ¢, i, := ¢, 0...0¢;,. The shift o : ©7 — X7 is given by 0(w) = (ws, w3, ...),w € X7.
We endow the space X7 x A with the product metric. Also let the canonical coding map,
T:3F = A 7(W) = Gy, (V)
Now consider the non-invertible skew product transformation on the metric space X7 x A,

: X N — X A, w,r) = (0w, dy, (7)), (w,x) € X
O:N xA—=XfxA P Doy Y7 x A

The endomorphism ® has a type of hyperbolic structure, since it is expanding in the first
coordinate and contracting in the second coordinate (due to the uniform contractions in S).



The pressure functional of o is defined for general continuous potentials g on X} as P, :
C(X}) — R (for eg [4], [15], [35]). Consider now a Holder continuous potential ¢ : X — R,
and let the functional Fi, defined on the space M(o) of o-invariant probability measures on
Y7 by
Fy: M(0) = R, Fy(p) = ho(p) + | ¢ dp,
Z:I

where h,(p) is the measure-theoretic entropy of p. Then the supremum of Fy is equal to the
pressure P, (1) of 1, and is attained at a unique measure, called the equilibrium measure of 1
and denoted by ;. Since ¥ was assumed to be Holder continuous, the notion of equilibrium
measure is equivalent to that of Gibbs measure (for eg [4], [15], [35]).

Let m; : 7 x A — X7 be the projection on the first coordinate. Define also the potential
Yi=1om : YT x A — R, which is Holder continuous. Let the functional F ; defined on the
space M(®) of ®-invariant probability measures on ¥} x A, be given by

Fy s M(®) > R, Fylp) = halp) + [ b dn

ETXA
where he(u) is the measure-theoretic entropy of p € M(®) with respect to ®. Then as @
has a hyperbolic structure, it can be shown similarly as in [I5] that F ; attains its supremum
P¢(d) at a unique measure on X7 X A, called the equilibrium measure of ’l/AJ, denoted by s,
or by fi,,. In this case, fi, is a Gibbs measure for ¢ with respect to ® on $F x A ([15], [35)]).
Notice that, my.fiy = py. If ¢ is fixed, denote also p, by p* and fi, by fi. The projection
to the second coordinate is:

T X X A= A m(w,z) =1

The main focus of this paper are the metric properties of the measures ji, and o, fi,.
Let us denote by,

Vig = (71' Oﬂl)*ﬂw, and Voo = Wg*ﬂw (1)

Since for any n > 1, the map " (w, z) = (0"w, ¢u,,..w, (¢)) reverses the order of wy, ..., wy,

in its second coordinate and since fi,, is ®"-invariant, we call

Vo = T2 flops (2)

an order-reversing projection measure. In general the measure vy, is different from
V94

Some important notions in Dimension Theory are those of lower /upper pointwise dimen-
sions of a measure, and the notion of exact dimensional measures (see [31]). In general, for
a probability Borel measure p on a metric space X, the lower pointwise dimension of u at
re X is:

i log p(B(x,7))



and the upper pointwise dimension of u at x € X is defined as:

= o log p(B(x, 7))
o(p) (@) := lim sup oz r

If 5(u)(x) = §(p)(z) then we call the common value the pointwise dimension of u at x,
denoted by o(p)(x). If for p-a.e x € X, the pointwise dimension 6(u)(z) exists and is
constant, we say that p is exact dimensional. In this case there is a value o € R s.t for u-a.e
re X,
O(p)(@) = () (x) = d(p)(z) = a

In [12], Feng and Hu defined the projection entropy for a o-invariant probability measure
p on X7, namely h.(o,u) = H,(Plo~'r~'y) — H,(P|x~'v), where 7 : ¥} — A is the
canonical coding map, P is the partition with O-cylinders {[i],7 € I} of X}, and ~ is the
o-algebra of Borel sets in R%. It was shown in [12] that if p is ergodic then for p-a.e w € X7,

_ hr(0, 1)
= Jsy log 4L, (row)| dp(w)’

hence 7, is exact dimensional. This is equivalent, in our notation, to the fact that 1y is

O(mep) (mw)

exact dimensional. Our approach and methods in the sequel are however different, as we
study the order-reversing image measure 7y, and the measure fi.
Denote the stable Lyapunov exponent of ® with respect to the measure i on X} x A by,

= [ gl (@)] diw. ) Q

For a shift-invariant measure p on 37, denote the Lyapunov exponent of p with respect to
S by,

X0 := [ Tog16L, (row)] du(v) (W

I
We will use the Jacobian in the sense of Parry [29]; consider the Jacobian Jg (i) of a
®-invariant measure 2 on X7 x A. Then Jg (1) > 1 for fra.e (w,z) € XF x A, and for ji-a.e
e (@(B((w.x).1)))
~ . W(e(B((w,x),r
T ) = I B, 0),1)
From the Chain Rule for Jacobians, Jgn(j1)(w, ) = Jo()(®"  (w,x)) - ... Jo(t)(w,z) for
n > 1, and from Birkhoff Ergodic Theorem applied to log Jo(f)(+, ), we have that for fi-a.e
(w,x) € BF x A,

log Jon (@) (W, x) log Ja (i) (n, ) dji(n. y) (5)

n n—o0 E}F <A

Ruelle introduced in [36], [37], the notion of folding entropy Fy(v) of a measure v invariant
with respect to an endomorphism f : X — X on a Lebesgue space X, as being the conditional
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entropy H,(e|f 'e), where € is the point partition of X and f~'e is the fiber partition. In
fact from [29], [36], Ff(v) = [y log J;(v)dv. Thus for the ®-invariant measure i on X7 x A,

Fa() = /E  log (i) di (6)

In our case, the folding entropy turns out to be related to the overlap number of i. The
notion of overlap number o(S, p,) for an equilibrium measure g, of a Holder continuous
potential g : 37 x A — R was introduced in [26], and represents an average asymptotic rate
of growth for the number of generic overlaps of order n in A. Namely, for any 7 > 0, let the
set of generic preimages with respect to u, having the same n-iterates as (w, x),

Sng (1,
Bul(2). 7o) 5= () € T3 € Ay = ), I [ g <,

where (w,z) € 2] x A and S,g(n,y) is the consecutive sum of g with respect to ®. Denote
by
bn((w, ), 7, pg) == CardA, ((w, ), T, pg)

Then, in [26] we showed that the following limit exists and defines the overlap number of p,,

1
o(S, 1g) = exp (lim lim — log b, ((w, @), T, ptg) dptg(w, x))

T—=0n—oco N EI+><A

Clearly o(S, pty) > 1. There is also a relation between overlap number and folding entropy,

o(S; pg) = exp(Fa(t1y)) (7)

If 41, = fip is the measure of maximal entropy of ® on X} x A, denote o(S, fiy) by o(S)
and call it the topological overlap number of S. All preimages are generic in this case. For
n>1,x el let

Bn(x) == Card{(j1,...,jn) €I", T € ¢j;0...00;,(A)} (8)
If 110 denotes the measure of maximal entropy on X7, then the topological overlap number
satisfies: .
o(8) = exp (fim - [ Tog B dpav), (9)
n—oo N Z;r

hence o(S) is an average rate of growth of the number of intersections between sets of type
¢Z12n(A)7 il, ... ,in € ] and n — oo.

Dynamics and dimension for dynamical systems with some form of hyperbolicity attracted
a lot of interest and were studied for eg in [3], [4], [6], [18], [20], [31], [32], [35], [37], [41], to
mention a few. Also endomorphisms (non-invertible maps) were studied for example in [19],



[21] - [25], [29], [32], [36] - [38]. The problem of dimension in conformal iterated function
systems with or without overlaps was studied in [2], [5], [9] - [14], [16] - [17], [26], [27], [28],
[30], [33], [39] - [40] to mention a few. Exact dimensionality and dimension formulas for
invariant measures were also intensely studied over the years. In [20] Manning showed that
for an Axiom A diffeomorphism of a surface preserving an ergodic measure pu, the entropy
h(w) is equal to the product of the positive Lyapunov exponent of p and the dimension of
the set of p-generic points in an unstable manifold. In [41] Young proved that the Hausdorff
dimension of a hyperbolic invariant measure p for a surface diffeomorphism is given by the

entropy and the Lyapunov exponents, HD(u) = h(u)(xul(u) — xSl(u))‘ In [18] Ledrappier and
Young proved a formula for the entropy of an invariant measure p for a diffeomorphism of
a compact Riemannian manifold, in terms of Lyapunov exponents and dimensions of y in
the respective stable/unstable directions. In [2I] Manning studied the dimension for the
maximal measure of a polynomial map. And in [19] Mane proved exact dimensionality for
ergodic measures invariant to rational maps. In [32] Pesin and Weiss verified the Eckmann-
Ruelle Conjecture ([6]) for equilibrium measures for Holder continuous conformal expanding
maps and conformal Axiom A (topologically hyperbolic) homeomorphims; and constructed
an Axiom A homeomorphism for which the measure of maximal entropy has different upper
and lower pointwise dimensions a.e, so in this case the Eckmann-Ruelle Conjecture is false.
Then, in [3] Barreira, Pesin and Schmeling showed that every hyperbolic measure p invariant
under a C'*¢ diffeomorphism of a smooth Riemannian manifold has asymptotically almost
local product structure and proved the Eckmann-Ruelle conjecture, namely the pointwise
dimension of u exists almost everywhere, thus p is exact dimensional. In [30] Peres and
Solomyak showed the existence of L?-dimensions and entropy dimension for self-conformal
measures. Feng and Hu proved in [I2] that the canonical projection of any ergodic measure
from the shift space for a finite conformal iterated function system with overlaps, is exact
dimensional on the limit set, and found the Hausdorff dimension of this projection measure
by using a notion of projection entropy. In [9] Falconer and Jin proved that the random
multiplicative cascade measures on self-similar sets and their projections and sections are
almost surely exact dimensional. For a class of hyperbolic endomorphisms it was shown
in [22] that the conditional measures of equilibrium measures on the stable manifolds are
geometric, and thus exact dimensional. For random countable iterated function systems with
arbitrary overlaps, Mihailescu and Urbanski showed in [27] that the projection of any ergodic
measure from the shift space which satisfies a finite entropy condition, is exact dimensional,
and found a formula for its dimension and gave applications. In [I] Barany and Kédenméki
studied some self-affine measures.

Our current result is different in the sense that it treats general conformal iterated func-
tion systems with overlaps and a class of invariant measures, including self-conformal mea-
sures, by relating the dimension of measures with their overlap numbers. Our formula has
a geometric character, and the proof uses different methods, coming from dynamics of en-



domorphisms. Also, we obtain a necessary and sufficient condition for dimension drop from
the value “entropy divided by Lyapunov exponent”. Related to the problem of dimension
drop Hochman [I3] showed for self-similar measures on R that if the dimension is strictly
smaller than the similarity dimension and 1, then there is a super-exponential concentration
of cylinders. Our results show that an arbitrary self-conformal measure v in R”, D > 1 has
a dimension drop if and only if, the overlap number of that measure is strictly larger than
1. We introduce also the notion of pp-asymptotically separated systems. The formula we
obtain can be used for dimension estimates in non-linear examples, including for instance
mixed Julia sets.

Our main results are the following:
First, in Theorem [1] we prove the exact dimensionality and dimension formula for the
general push-forward measure v; 4.

Theorem 1. Let S be a finite conformal iterated function system on a compact set with
non-empty interior V.C RP, D > 1, with limit set A, and 1 be a Hélder continuous potential
on X7 with equilibrium measure py, and let fuy be the equilibrium measure of o on X x A
with respect to ®. Denote vy y 1= Taufly. Then the measure vy, is exact dimensional on A,
and for vy y-a.e. v € A,

HD(vsy) = 8(vn.0)(x) = g (1) — log(0(S, fiy))
X (k)|

The proof of this Theorem has several parts. The proof for the lower bound for dimen-
sion is the most difficult of these parts and contains some new methods from dynamics of
endomorphisms. It is based on an intricate study of the interlacing of generic iterates with
respect to fi, and of the maximal lengths of “gaps” consisting of non-generic iterates in
trajectories, and how these are involved in computing local densities of v, ,,. We apply Borel
Density Lemma on leaves of type ¢;, ;. A to get measure estimates.

Then, we obtain applications of Theorem [I] to dimension formulas for several cases:

1. An important particular case is that of self-conformal measures for arbitrary
conformal iterated function systems with overlaps in R”, D > 1.

Let the IFS S as above, and a probability vector p = (p1,...,pj7), and pp be the
associated Bernoulli measure on X7. Any Bernoulli measure p, on X7 is the equilibrium
measure of some Holder continuous potential ¢p. Then denote by fip the lift of pp to
37 x A, which is obtained as the equilibrium measure of ¢, o ;. And denote by vy p, 2
the associated projected measures vy, 1. In this case we showed in [26] that

Vip = V2p;



s0 0(v1p) = 0(vap). Recall the definition of Lyapunov exponent x(up) from (). Let us
denote also the overlap number of pi, by,

0(87 :up) = 0(87 :&p) (10)
Then the dimension of an arbitrary self-conformal measure 14, is given by:

Theorem 2. Let § = {¢;,1 < i < m} be a system of injective conformal contractions on
a compact set with non-empty interior V.C RP, D > 1, with limit set A, and consider an
arbitrary probability vector p = (P1,...,Pm). Let also up be the Bernoulli measure on 3
associated to p, and v, = T, pip be its canonical projection on A. Then,

— > pilogp; —log(o(S, up))

1<i<m

HD () = )

From Theorem 2, we obtain a necessary and sufficient condition for dimension drop for
self-conformal measures in IFS with overlaps in R”, D > 1.

Corollary 1. In the setting of Theorem[2, a self-conformal measure v, satisfies:

h(pp)

HDWe) < 1)

Y

if and only if o(S, up) > 1.

Definition 1. In the above setting, let a Bernoulli measure pyp,. If oS, ptp) = 1, then we say
that the system & is separated p,-asymptotically.

It follows from Corollary [l that, HD(vp,) = zg’; 1‘3 if and only if the system S is separated
Hp-asymptotically.
Clearly, if S satisfies the Open Set Condition, then S is separated pp-asymptotically for

every [p.

2. Assume now we can bound the number of intersections between images of various
cylinders. These estimates apply to a class of non-linear examples, and are stable under
perturbations.

Let S = {¢;,1 < i < m} be a system of injective conformal contractions on a compact
set with non-empty interior V' C RP, D > 1, with limit set A. Assume there exists an integer
g > 1 and an open set W C V so that ¢;(W) C W,1 < i < m and the collection of initial
cylinders of length ¢ from X7 (i.e cylinders [iy, . .., 4,] with ¢; on position 1, ..., i, on position
q) can be partitioned into s subcollections:

Gi,....G,, (11)



so that for any C' = [j1...j,] € G; and C" = [j} ... j;] € G with i # 5,1 < i,j < s, we have
b1 jg (W) N B _jr (W) = 0.

However the images of cylinders from the same G; can intersect in any way. Denote by Uj
the union of all cylinders from G, for 1 < j <'s, and let

my = Card Gy, ...,ms = Card G, (12)

In the above notation, we obtain next a computable lower bound for the dimension of
Te-image measures, by using the Borel measurable function 6 : ¥F — R,

f(w) =logm;, forweU;;,1<j<s

Corollary 2. In the above setting, consider 1 : X — R a Hélder continuous potential, and
let py be its equilibrium measure with respect to o on ¥, and fiy be the equilibrium measure
of omy with respect to ® on Xt X A; recall also the above notation for the function 6. Then,

h(pg) = 3 Jsx 0 dpy
s (fiyp)]

For self-conformal measures, we obtain from Theorem 2] and Corollary 2] the following:

HD(ma.fiy) >

Corollary 3. In the setting of Corollary(2, let an arbitrary Bernoulli measure jip given by
the probability vector p, and denote its associated self-conformal measure vy, on the limit
set A. Recall the notation in (I2). Then the dimension of the self-conformal measure vy
satisfies:

— 2 pilogpi— - > logmi- X pi...pj,

1<i<m 1<i<s [91,--Jq) €EGi

As an example, consider the non-linear system given by the contractions

Fj(z) = v + ez’ + ex® + \j, j € {0,1,3},

where A € [1, 5] and € > 0 is sufficiently small. The limit set Ay of this system is contained

in the interval [0, 2 + 6(¢)], for some §(¢) — 0 when € — 0. Notice that only Fy(/,) and
Fi(I,) intersect, so in this case we can take ¢ = 1 for instance. This can be used in the
estimate from Corollary 2l above, with ¢ = 1, ky = 2, ky = 3. Thus for any probability vector
p = (p1,p2, p3), the self-conformal measure v, on A, . satisfies:

HD(v,) > —p1log p1 — p2log ps — p3log ps — log 2(p2 + p1)
P/ = | log A| + d(¢) ’

where d(¢) — 0. This estimate can be improved by increasing ¢ for fixed A.
e—
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3. Another application is to order-reversing me-projection measures on mixed Julia
sets. Mixed Julia sets appear as limit sets of iterated function systems formed with the
inverse branches of finitely many rational maps which are expanding on a common open
set V. C C. Indeed, let us consider m rational maps Ri,..., R, and assume that their
respective Julia sets J(R;),. .., J(R,,) are contained in V', and that all R; are expanding on
V, for j =1,...,m. Now assume the degree of R; is equal to d;, for j = 1,...,m and that
fik, kB =1,...,d; denote the inverse branches R]_,i of Rjon V, for j =1,...,m. Since we
assumed that the rational maps R; are expanding, we obtain a conformal iterated function

system consisting of contractions,
S:{fj,k,l S/{;de,l Sj Sm}

We obtain thus a limit set J(Ry, ..., R,,) of the system S, which we call a mixed Julia set.
Then if ) is a Hélder continuous potential on ¥ |, and fi is the equilibrium measure of
pomon B X J(Ry,. .., Ry), and if 15 is the mo-projection, vy = maufiy on J(Ry, ..., Ry),
then we obtain from Theorem 1 the exact dimensionality of v, 4 and its dimension:

Corollary 4. In the above setting, let R; be a rational map of degree d; for anyj =1,...,m,
and suppose that all the maps R; are expanding on their respective Julia sets which are
contained in an open set V C C. Consider the system formed by the inverse branches of the
maps R;,

S={fjr k=1,...,d;,7=1,...,m}

Let oy Holder continuous potential on X, and fi, be the equilibrium state of ¢ om. Then

m’

Vo 1= Taufly is ezact dimensional on J(Ry, ..., Ry,), and HD(vs ) is given by Theorem[1.

As an example, consider the rational maps
Ri(2) = vj2% +e12% 1 .. + €q,-12+ ¢, j=1,...,m

If |v;| = L and |e1], ..., |eq;-1], |¢;] are all small enough for 1 < j < m, then the rational maps
R; are expanding on an open neighbourhood V' of the unit circle S*, and thus we obtain
a contractive IFS consisting of their inverse branches on V, & = {fjx, k =1,...,d;,j =
1,...,m}. Now let us take a Holder continuous potential ¢ on 2:{1+de and let /i, be the
equilibrium measure of 1 o ;. Then the dimension of 15, on the mixed Julia set can be
computed by Corollary 4l

2 Proofs.

Recall the setting from Section 1, where v is a Holder continuous potential on X}, u* is the
equilibrium measure of ¢ on X}, and i denotes the equilibrium measure p 3 of 1& =1Yom

10



on X7 x A. Consider the measurable partition & of 3] x A with the fibers of the projection
m : X7 x A = A, and the associated conditional measures p,, of i = pi, defined for pt-a.e
w € X7 (see [34]); from above, ut = my,ji. For pt-a.e w € X7, the conditional measure
is defined on 7y 'w = {w} x A. Tt is clear that the factor space ¥ x A/¢ is equal to X7, and
the factor measure of fi satisfies,

fie(A) = fi(A x A) =t (4),
for any measurable set A C 7. Thus jig = pT. For any borelian set E in X7 x A we have,
iE) = [ ([ el @) = [ pEafel <0 die) 03
mE J{w}xA mE

For a Borel set A in A, we have for y*-a.e w € X7,

. afwy .. wn] x A)
pes(A) = nl_wo pt(jws .. wy))

(14)

Notation. Two quantities 1, Q)2 are called comparable, denoted by Q)1 ~ )5, if 3C' > 0
independent of parameters in @1, (2, with é@l < Qe <CQ,. U

The above conditional measures ,, are defined on {w} x A, so they can be considered on
A. We now compare p,(A) with g, (A).

Lemma 1. There exists a constant C' > 0 so that for u*-a.e w,n € X7 and any Borel set
A C A, Spy(A) < po(A) < Cuy(A). For any Borel sets Ay C Xf, Ay C A, and p*-a.e
w € X}, we have:

éxﬁ(z‘h) s (Az) < i Ay X Ag) < Cpt(Ar) - pro(As)

In particular there is a constant C' > 0 such that, for p*-a.e w € %7 and any Borel set

ACA,
1

che
Proof. First recall formula (I4]) for the conditional measure y,,. From the ®-invariance of /i,

ilwr - own] X A) = fi([iwy . .. wn] X ¢ A) (15)

el

(A) < 1n(A) < Cpu(A)

Now we can cover the set A with small disjoint balls (modulo /i), so it is enough to consider
such a small ball B = A C A. The general case will follow then from this.

Recall that for any #1,...,%2, € I.,n > 1, ¢, i, = @i, 0...0¢;. We have Bounded
Distortion Property, due to conformal contractions ¢;; i.e 3 a constant C' > 0 so that for any
T Y, My 01, ... dn, we have |@ . (z)] < Cl¢l , (y)|. Since the contractions ¢; are conformal,

11...0n 11...0n

let i1,...,7, € I such that (bi_pl . .(bi_llB = ¢! B is a ball B(zg, 1) of a fixed radius ry.

11...%

11



In this way we inflate B along any backward trajectory i = (iy,iz,...) € ¥} up to some

maximal order p(i) > 1, so that ¢; !, B contains a ball of radius Cyry and it is contained

21.. K (i)
in a ball of radius 7y, for a constant C'; independent of B,i. Then by using successively the

d-invariance of fi, relation (IH]) becomes:

ilwr - own] x B) = i(lipe) - iawr - wn] X 6, B) (16)

il

Without loss of generality one can assume that gb“ iy B s a ball of radius 7¢. Notice that

the set [ip) ... G1w1 ... wy] X gbi_l_l__ip@B is the Bowen ball [ . .. 91w1 . .. wy] X B(xg,70) for ®.

Since [ is the equilibrium state of ¢ o 1, and since Py (1) o m1) = P,(¢) := P(¢), we have:

ﬂ([lp(l) e z'lwl . ] Qb !

i1 ()

B) 2 exp(Sntp@) ¥ (ip) - - - 111 -+ wn) — (n+p(i)) P(¢)) ~
~ g (- onl) - il - - i2) X 671, B),

(17)
where the comparability constant does not depend on B, i1, . . ., i), n. For another (11,...,7,) €
I, take again for any i € X} the same indices iy, . . . yip(i) St gbi_l'l”ip(i)B is a ball of radius 7,
thus, )

[L([’ip@ .. .’élnl .. 'nn] X ¢i_1.1..ip(l-)B) =~ eXp(Sner@@b(z'p@ .. .i1771 .. 'nn) — (TL + p(@))P(@D))
~ (I mal) - il -] X 05, B,

(18)
where the comparability constant does not depend on B, iy, ..., iy, n. But the cover of A
with small balls of type B and the above process of inflating these balls along prehistories
i to balls of radius 1y, can be done along any trajectories w,n. Thus by (If) and using the
uniform estimates (I7), (I8) and (I4]), we obtain that there exists a constant C' > 0 such
that for pt-a.e w,n € X7,

GilA) < (4) < (4 (19)

From (I9) and (I3) for /i, 3 a constant C' so that for any Borel sets A; C X}, Ay C A,

() ol As) < (A X As) < Cp (A1) - ()

To finish the proof, recall that vo = ma.fi, so v2(A) = (2] x A), and use the last estimates.
]

Proof of Theorem [l

First, we prove the upper estimate for the pointwise dimension of v,. For any n >
L (w,x) € B x A, ®"(w,r) = (0"w, P, w, (7). From Birkhoff Ergodic Theorem applied
to the ®-invariant measure i, it follows that for fi-a.e (w,z) € XF X A,

10816l 1) — 3 / log |¢4(2)] di(w, ) = xs(A)

iel [i]x A
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On the other hand, from the Chain Rule for Jacobians, Birkhoff Ergodic Theorem and the
formula for folding entropy Fg(j ) it follows that for j-a.e (w,z) € BF x A,

log Jon (1) (w, l’)—)Fc}(,U)

Thus for a set of (w,z) € ¥ x A of full f-measure,

log\%n wil —>Z/ log ¢ ()| dfi(w, ) = Xs(f1), and — 10gJ<1>n( )W, x) — Fa(f1)

iel
We now want to prove that the Jacobian Jgn (j1)(w, ) depends basically only on wy, ..., wy,
i.e there exists a constant C' > 0 such that for every n > 1, and fi-a.e (n,2) € [wy...w,]| X A,
1 .
e (1) (n,2) < Jon (1) (w, 2) < Can () (n, 2) (20)

In order to prove this, notice that if » > 0, and p > 1 is such that diam|w; ... w,1p] = 7,
then

R A((I)n([ ...wn+p] X B(SL’,’/’))
J@" (:u) (w7 LL’) T_})lgi)oo ,u,([ . wn+p] X B(l’, T))

(21)
In our case, ®"([wy ... wn1p] X B(x,7)) = [Wnt1 - .wn+p] X Gy Blx,r). I € wy ... wy),

" (M1 .+ - Mngp) X B(x, 7)) = [Nns1 - Mntp) X Puon..on BT, 7)
But from Lemma [ there exists a constant C' > 0 such that for y™-a.e w € X}, and any
n,p 21,

1
5M+([wn+1 e Wngp) oo (P B(@, 7)) < fi([wngs -+ - Wip] X P B, 7)) <

< C’,u+([wn+1 e -Wn+p])ﬂw(¢wn...w13(x> T))’

and similarly for a([nn11 . Mntp) X Gw,..oy B(z,7)). Hence in view of ([2I)) and (22]), we have
only to compare the following quantities,

(22)

2 (Wit - W)+ oG B, 7)) and (st - - Mnp)) Mo B0y B(,7))

pr(wr - wnp]) - (B, 7)) P ) - g (B2, 7))
However recall that 1 € [w; ... w,], thus there exists a constant K > 0 such that
|Sptb(m e o) = Sp(wr e cwy )| < K (23)

since 1 is Holder continuous and o is expanding on ;. The same argument also implies
that Spip¥ (w1 ... Whip .. .) is determined in fact only by the first n + p coordinates (modulo
an additive constant). Since p* is the equilibrium measure of ¢ on X7, and thus a Gibbs

measure, we obtain:

P (Wit - - - Watyp)) ~ exp(Sp¥(Wn+1 - - - Wnp - - -) — pP(Y))
P ([wr - wnp)) exp(SppP (Wi - - Wnip) — (R +p)P())

P s gl XD (it - Mty -) = PP(Y))
(e o)) exp(Snip¥ (M -+ Mntp) — (R +p)P(VY))’

and,
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where the comparability constant does not depend on n, p, w, 7. But we have: S, ,¥(w1 .. .wpyp...) =
Sp(wr - wWnip ) + S0 (Wit - Wiy - - .). And similary for S, 9 (1 ... sy - - .). There-
fore, using (210), (22)), ([23)) and (24]), we obtain the Jacobians inequalites in (20).

Let us take now, for any n > 1 and € > 0, the Borel set in ] x A:

1 log Jon ([
Og‘(?w; wl( )‘ ’ |0g P E:ILJ,)(M,SL’) o (ﬂ)| <e,

- Xs(,&) <

A(n,e) = {(w,z) € BF x A,

and |%(w) — /wdu+| <e}

Then from Birkhoff Ergodic Theorem, for any € > 0, i(A(n,e)) — 1. From 20)), if (w, z) €
n—o0
A(n,e) and n € wy ...wy), then (n,z) € A(n,2¢), so for any § > 0,

pr{w e X7, va(m(Aln,e) Nwr .. wy] x A)) >1—46}) — 1
We have from (20) that [w; ... w,] xmA(n, ) C A(n,2¢e). Thus from Lemmalll for n > n(é),
a(An,2e) N jwy .. wy] X A) > C(1—0) - ia([wy ... .wy) X A) (25)

Let now 7, := 2¢|¢}, . (z)], for (w,z) € A(n,e) N[w;...wy] X A. With y = ¢y, ()
we have v5(B(y, 7)) = Va(Pu,..wy (T2(A(n,26) N [wy ... w,] X A)), and then since vy = mo,fi,
we obtain

va(B(y,rn)) > (2] x mo(P"(A(n,2e) N [wy .. .wy] x A))) > a(P"(A(n, &) Nfwr ... .wy) X A))

But ®" is injective on the cylinder [w; ...w,] X A since ¢, are injective. Thus we can apply
the Jacobian formula for the measure of the ®"-iterate in the last term of last inequality
above,

(Bl ) 2 A" (Al 2) 0 o] x 2) = [ Jan () df
A(n,e)Nwi..wn] XA

(26)
> exp (n(Fo(f) —€) - i(A(n, &) Nfwr ... wp) X A)
Recall that u"([wy ... wy]) = f([wr ... wy] X A). Then, from (26]) and (25) we obtain:
va(B(y, ) 2 exp(n(Fa(j)—¢))(1-0)Cp* ([ ... wy]) = C(1=0)e" W7D exp(S, 10 (w) —nP (),
(27)

where C' is independent of n,w,z,y, and P(¢) := P,(¢). Since u* is the equilibrium state

of ¥,
P(y) /w du*

But from the definition of A(n,¢), for any (w,z) € A(n,e), we have

"D > 1y = 20, ()] 2 €I thus, n(xs(f) +€) > logra > n(xs(i) — )
(28)
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From (27)), (28)) and the above formula for pressure, we obtain that for v,-a.e y € A,

< _ g lose(B(y: 7)) _ Fo(p) —h(p?) _ h(p") — Fo(R)
I T e ST @ )

: (29)
which proves the upper estimate for the (upper) pointwise dimension of vs.

Now, we prove the more difficult lower estimate for the pointwise dimension of vs.
Define for any m > 1 and € > 0, the following Borel set in X} X A,

- 1 R 1 . .
A(m,e) := {(w,z) € BF x A, |glog\¢’ ()| = xs(f1)] < e,and \glog Jon (1) (w, z) — Fon (1)] < &,

and |%Snw(w) — /@Dduﬂ <e, Vn>m}

We know from Birkhoff Ergodic Theorem that ji(A(m,€)) - 1, for any € > 0. So we obtain
vy (maA(m, €)) — 1. But ®"([iy...i,] X A) = 5T X ¢y, i, A, and from the ®-invariance of fi,
we have ﬂ(@"(r[nil coiip] X A) > a([ig .. .i,) X A). Moreover fi([iy .. .4,]) X A) > 0, since i is
the equilibrium measure of ¥ o my and [iy ...4,] X A is an open set. In conclusion,

vo(6i i A) = (ST % by i A) = (@ ([i .. in] x A) > jl[ir .. in] x A) >0 (30)

We present briefly the general strategy of the proof, which will be detailed in the sequel.
Since ™ ([iy .. .im] X A) =X X ¢y, i, A, and vy = T, i, we have:

Vo @iir N) = UET X Giyyin ) = (@™ ([i1 - -] X A)

Notice that a small ball B(x,r) can intersect many sets of type ¢;, i, A, for various m-tuples
(11, ..,%m) € 1™, and these image sets may also intersect one another. Thus when estimating
vo(B(z,71)), all of these sets must be considered; it is not enough in principle to consider
only one intersection B(x,r)N¢;,. i, A. However, we know from ([B0) that vo(¢;,, i, A) >0,
thus from the Borel Density Theorem (see [31]), it follows that for vy-a.e z € ¢;,,. ;, A, and

forall 0 < r < r(z),
I/Q(B(l’, ’l“) N QSZm“A)
va(B(x,r))

Hence, from the point of view of the measure vy, the intersection B(x,r) N ¢;,,. ;A contains

> 1/2

at least half of the vp-measure of the ball B(z,r). This hints that it is enough to consider
only one good image set of type ¢;, _;, A. Then since vy(moA(m, €)) — 1, we can consider only

Vo (i,,..i, (maA(m, €))), which can be estimated using the Jacobian Jgm (1) and the genericity

/
im.-.11

of points in A(m, £) with respect to log Jem (/1) and log |¢ |. Then we repeat this argument
whenever the iterate of a point belongs to the set of generic points fl(m, ¢). However not all
iterates of a point belong to this set, but it will be shown by a delicate estimate that "most”

of them hit A(m,¢e). For the iterates not in A(m, &), we use a different type of estimate.
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Then we repeat and combine these two estimates, by an interlacing procedure. We now
proceed with the full proof:

For any integer m > 1, consider the Borel set fl(m, e) defined above. Then for any o > 0
arbitrarily small, there exists an integer m(a) > 1 such that for any m > m(a), we have:

[(A(m,e)) > 1 -« (31)

Let us fix such an integer m > m(a)). Then from Birkhoff Ergodic Theorem applied to &
and X j(, ., we have that for ji-a.e (W', 2') € ¥ X A,

%Card{o <k<n, MW7) € A(m,e)} —s i(Alm, <))

n—o0

Hence, there exists an integer n(a) and a Borel set D(a) C X7 x A, with 4(D(a)) > 1 — a,
such that for (w',2') € D(a) and n > n(a), we have:

1 N
—Card{0 <k <n, @™ (' 2') € A(m,e)} >1—2a (32)
n

In other words a large proportion of the iterates of points (w’,2’) in D(«), belong to the set
of generic points A(m,e). So in the ®™-trajectory («’,z'), ®™ (', 2'), ..., "™ (', 2'), there
are at least (1 — 2a)n iterates in A(m, ).

For arbitrary indices 1, ...1,, € I, let us define now the Borel set in A,
Y(’il, . ,’lm) = QS,-l___ing(fl(m, 5))

Consider first the intersection of all these sets, namely (| Y(i1,...,%y). Then take the
i1, sim €1
intersections of these sets except only one of them, so consider the sets of type

Y (1, s dm) \Y (i1, .., 0m), for all (i1,...,4,) € I™. Then consider
(jl7---7jm)61m\{(i17---,7;m)}
the intersections of all the sets Y (j1, .. ., jm) excepting two of them, namely the intersections

of type N Y(jl,...,jm)\(Y(z’l,...,im)UY(i’l,...,z';n)),for all the

(jlv"wjm)elm\{(il7"'7im)7(i,17"'7i{rn)}
m-tuples (i1, ...,%m), (i},...,7,) € I"™. We continue this procedure until we exhaust all the

possible intersections of type

N YGu-im)\ | Y. im),
(G, dm)EI™\T (i15e-0rim)ET

for some arbitrary given set J of m-tuples from I™. Notice that in this way, by taking
all the subsets J C I™, we obtain by the above procedure mutually disjoint Borel sets
(some may be empty). Denote these mutually disjoint nonempty sets obtained above by
Zi(aym,e), ... Zymy(a;m, €).

Now if for some 1 < i < M(m), we know that v5(Z;(a;m,e)) > 0, then from the Borel
Density Theorem (see [31]), there exists a Borel subset G;(a;m,e) C Z;(a;m, €), with

va(Gi(asm,€)) 2 1a(Zi(a;m,€))(1 — ),
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and there exists r;(a;m,e) > 0, such that for any x € G;(a;m,¢e) and for any 0 < r <

Tz'(a; m, 5)7
v(B(x,r) N Zj(a;m,e))

>1—a. 33
v Bla.1) )
Now define the Borel subset of A,
G(a;m,e) = U Gi(a;m,e)
i=1

From the construction of the mutually disjoint sets Z;(a;m, ), it follows that,

> w(Zilesme) =w( U Y (i i) (34)

1<i<M (m)
But from definition of Y (iy,...,4,) and the disjointness of different m-cylinders, we have
that,
U Y(i,eooim)= U 1 ®™([im...01] X ma(A(m, €)))) =
i1, esim €1 i1y eyim €l
=m( U (i ia] x mA(m, €))) = ma(®"(SF x mA(m, <))
B1yeeylm

However since vy = 7o, /1, and using the ®-invariance of i and (BIl), it follows that:

s (ma (@ (SF X oA, <)) = (ST X ma(@™(SF X oA, <)) > A@(SF X myA(m, ) >
> (1(EF x mA(m, e)) > i(A(m,e)) > 1 — «

Thus from the last two displayed formulas, it follows that:

VQ(' U Y@ . im)>1-0a (35)

Hence from (34]) and (33]), we obtain:

210 U Zi(a;m,e)) > 1 -« (36)
1<i< M (m)
But the Borel sets Z;(a;m,€),1 <i < M(m) are mutually disjoint, and from (33]) we know
that G;(a;m,e) C Z;j(a;m,e) and that, for 1 <i < M(m),

ve(Gi(asm,e)) > vo(Zi(a;m,e))(1 — )

Hence from the definition of G(a;m,e) = |J  Gi(a;m,e) and from (30),
1<i<M (m)
vo(G(azm,e)) > (1 —a)? > 1 -2« (37)

Denote now the following intersection set by,

X(a;m,e) :== G(a;m,e) NmA(m, e)
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Then from the above estimate for v»(G(a;m,€)) and by using (31]), we obtain:
(X (a;m,e)) > 1 — 3 (38)

Now by applying the same argument as in ([32)) to the set A(m,e) N (Z}r X X (a;m, 5)),
we obtain that there exists a Borel set D(a;m,g) C A(m,e) C BF x A, with

f(D(a;m,e)) > 1 — 4a, (39)

and such that for any pair (i,2/) € D(a;m,e), at least a number of (1 — 3a)n of the
points mo(i, "), me®™ (i, 2), ..., mP"" (i, 2") belong to X (a;m,e). Moreover any point ( €
X (a;m,e) satisfies condition ([B3)) for all 0 < r < ri(a;m,e) if ¢ € Zi(a;m,¢), for some
1 <i < M(m). So denote

rm(a, €)== 132}?@) ri(a;m,e€)

Consider now (i,2') € D,,(a,e), and denote by = = ¢, i (2/) = m®"™(i,2'). So we
have the following backward trajectory of x with respect to ®™ determined by the sequence
¢ from above,

xz, ¢i(n,1)m...i1 (Zlf/), e gbim---il (l’,)’ Zlf/, (40)

and denote these points respectively by @, 2, ..., Z_nm-1)m,T—nm = 2. To see the next
argument, assume for simplicity that the first preimage of = in this trajectory, namely x_,, =
Dity_1ym..ir (z') belongs to X (a;m,e). Then from (B33), Lemma [ and the genericity of Jpm
on A(m,e),

n(Blx,1) < - 1 (B 1) N iyl €)) =
= T X (B 1) N By maA(m, ) <
< O (imry ] X (1A, 2) 1 (Gu ) Bl 7)) =
1 a Jom (1) dfi <

[i(nfl)m“'inm}X(W2A(m7€)m(¢inm<~’i(n,1)m)71B("E77‘))

L Fa . _
< Cme (Fé(u)+€)ﬂ+([Z(n—l)m---ian ’ Vz((qﬁinm“j(nfl)m) lB(xv T)) <
C

1l -«

< 6m(Fq> (ﬂ)+2a_h(u+))7/2((¢inm...i(n,1)m)_lB(I’ T)),

where the last inequality follows since p* is the equilibrium state of ¢ and P(¢) = h,+ +
[ wdpT. Thus we obtain from above the following estimate on the measure of B(x,r),

1

1l -«

vo(B(z,7)) < C

- e Fe () =h(ut)+2e) V(G 1ym)~ Bla,7)) (41)

This argument can be repeated until we reach in the above backward trajectory of = (40,
a preimage which is not in X (a;m,e). Denote then by k; > 1 the first integer k for which
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T_mr & X(a;m,e), and assume that the above process is interrupted for &} indices, namely
1T ks T4 1)s - o Ty k1) ) N X (@;m,e) = (). Then denote y := x_,1,, and let us
estimate V2((¢inm“-i(n7k1)m>_lB (x,r)). By definition of the push-forward measure vy,

V2((¢inm...i(n,kl)m)_1B(x>T)) = :&(Z.—Ti_ X (¢inm---i(n7k1)m)_1B(l”r))

By definition of ky, k], we have that x_,,u,1x;) € X(a;m,€). By repeating the estimate in
(410), we obtain an upper estimate for vo(B(x, 7)),

C

m 1)—h(pt -
Y. emiba (Fo () =h(ut)+22) V(i ym) 'B(x,7)) (42)

Now on the other hand from the ®-invariance of i and the definition of s,

Vo((Btnmitnryym) B@,1)) = AET X (@i i) B, 7)) =
O™ ST X (Bininry)B(,7)))
> ] X Oy it Ginmcin i) B, 7))

Gp€l1<p<mk}

(43)
Recall that the set of non-generic points satisfies,

A(E] x M)\ A(m,)) < a

We now compare the ji-measure of the set of generic points with respect to the ji-measure,

with the fi-measure of the set of non-generic points. There are 2 cases:
a) If,

- , 1 :
A(A@m, &) (VO 7™M(E] X (Ginneviu ) Bl2,1))) < SO X (Binn i) B 7)),

then non-generic points have more mass than the generic points, hence,

Vo((Binninoryn) B@ 1)) = T X (Ptrciguosyy) Bla,7)) < 20 << 1

By collecting all sets with the above property and taking av — 0, this case is then straight-

forward.

b) If,
~ e —m / _ 1 ~ —m / _
(A, )@ (ST X (G iyyn) B 1)) Z ST ET X (i) Bl 7)),
then using also ([43]) we obtain:
Vo (Ptrnituryyn)  B@1)) = ET X (Biniusyy) Bla,7)) =

/:L(¢_Tnki (Z;" X (gbinm---i(nfkl)m)_1B(I’ T)))
2 Z /:L(A(m’ E) m ([]1 tee ]mkll] X -7_77:zlk’1-]1 (gbinm---i(nfkl)m)_1B(I’ T)))

J generic

IN

(44)
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But for two generic histories j, j', i.e. for j,j' € m1(A(m,¢)), we know that for any (w,z) €
A(m7 8) m ([]1 .t ]mkll] X j_,,jklljl (¢inm---i(n7k;1)m)_1B(x7 /r) U []:/[ c ];nkll] XQS;;jk/l,,,ji(gbinm---i(nfkl)m)_IB(I’ T)),

JcI>’"k’1 (1) (w,2) € (em’“i(F<I>(/1)—€)7 emkll(Fq)(ﬂ)J’_E)).

Hence since @™ (A(mv 5) ﬂ [jl . jmkﬁ] X¢;7iki]1 (¢inm---i(n—k1)m>_1B(x7 T) - ¢inm---i(n7k1)m>_1B(x7 T)
and using the above estimate on the Jacobian of /i with respect to ®™*1, it follows that there

exists a constant factor C' > 1 such that the ratio of the fi-measures of the two preimage
type sets

A(m, e) ﬂ 1+ Gk | X j_ik,l...jl(¢inm...i(n,k1)m)_13($a7“)7 and,
A(m7 8) ﬂ [ji . ];nk’l] X ¢;1k, ]i (¢inm---i(n—k1)m)_1B(x’ T),
mEy

corresponding to generic j, Z’ , belongs to the interval (C’_le_m’flla, C’emklla).
Notice also that there are at most d™*1 sets of type [j; . . Jmke ] ><¢j_nik;~~jl (¢inm"'i(n7k1)m)_lB(l’, ),

where d := |I|. The maximality assumption for k] implies that ¢; 1( 1)t k,)(y) €
m{n— 'm(n—kq— 1
X (a;m, ), where y := x_,x,. Thus using the above discussion and (44)), we obtain:
— mk! (14 2 — —
V2((¢an2(n,k1)m) 1B(x7 T)) S Cd 1( +logd).V2( 7"ml(n7k171)Zm(nfklfkll)((élnmZ(”fkl)m) 1B(x7 T))
(45)

-1

bm(n—te St k,)(y) € X(a;m,¢), and we repeat the argument from
m(n—k1) " Ym(n—ky —k}

Now from above, ¢

(@2)) along the sequence ¢ until reaching another preimage of x which does not belong to
X (a;m,e); next, we apply again the argument from (45]), and so on, until reaching the nm-
preimage of z, namely x_,,, = ¢;> . (x). Recall from (@0) that 2’ := x_,,,. Consider now

Inm..-11

ro > 0 a fixed radius, and n = n(r) be chosen so that, due to the conformality of ¢;,i € I,

b B(x,r) = B(x_pm, o) = B2, 10) (46)

Inm.--11

On the backward m-trajectory (40) of = determined by i above, recall that we denoted

by k| the length of the first maximum “gap” consisting of preimages of x which are not

in X(a;m,e). Now let us denote in general the lengths of such maximal “gaps” in this

trajectory ([0), consisting of consecutive preimages which do not belong to X (a;m,¢), by
kb, More precisely, we have z_;, € X(a;m,e),0 < j < k; — 1, followed by

T ks - Ty k) —1) & Xons then T e 4r1), -+ o5 Tomry 44 +ha—1) € Xm(a, €), followed by

Ty £k k2 - - s Tom(ky 4k, +ha+ky—1) & X (;m, €); then,

T (kg ko kD) -+ - > Tk 4k +hatky+ks—1) € X (@M, €), and so on.

Denote by k1, ..., kpmy and k7, .. ., k;,(n) the integers obtained by this procedure, correspond-

ing to the sequence (40). Clearly,

ki +ky+ oA k) + ke =1
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Also p/(n) is equal either to p(n) or to p(n) — 1. Then from the properties of D,,(a,¢€) in

B9,
kit k) > n(l = 3a), and Ky +ky+ ...+ k) < 3an (47)

We apply ([42) for the generic preimages «, . .., £_pk,—1) from the trajectory (40), then apply
the estimate in (43]) for the nongeneric preimages ¥k, ; - - -, Tk, +4,-1), then again apply
(M for x_m(k1+k/1), ey x_m(k1+k/1+k2_1), followed by (lm) for x—m(k1+k’1+k2)u cey —m(k1+k'1+k2+ké—l)7
and so on. Hence applying succesively the estimates ([@2) and ([@3]), and recalling (46) and
the bound on the combined length of gaps k| + k3 + ...+ k) < 3an from [{T), we obtain:

C

11—«

VQ(B(JJ,’F)) < ( )n . d3amn(1+@) . 6(Fq>(ﬂ)_h(“+)+2€)'mn(l_3a)1/2(B(I/,TO)). (48)

But xs(f2) is the stable Lyapunov exponent of i, i.e y,(/ fz*m log ¢, (z)| dji(w, x). From
(G) it follows that r = r, = ro[¢;,  ; (2')], and recall that (i,2') € Dy,(a,¢). Therefore,

MO ()=8) < < enmlx(i)+e) (49)

Denote by X (a;m, ) := myDy(cv, €). Then since vy := mo,fi and fi( Dy, (a,€)) > 1 — 4o, we
obtain,
vo(X(a;m,e)) = A(Ef x X(aym,e)) 2 i D(a,)) 2 1 —da

From ([@8) and ({@J) it follows that by taking C’ = 2C > 1, then for every z € X (a;m,¢)
and for a sequence r, — 0, the following estimate holds:

C/ Fg(p)—h(ut)+2e
v(B(z,ry)) < (E et

) (1-3a)-

)" . d3amn(1+102g€d T

Thus,

Fo(i) — h(u* /
a (/1) h(fﬁ )+2€+nlog c
Xs(:u) I

logvs(B(z,1y)) < (1—3a)logr, -

2e
-1 1+—).
Oé+3amn og d( +logd)

(50)
But by using (49) and dividing in (50) by logr,, one obtains:

log vo(B(z, 1))

Fy(f) = h(p*) +2¢ | log o 2% . 3alogd
log r,,

- - (14+—)
Xs (1) m(xs(ft) +€) logd” xs(f1) + €
Now let us take some arbitrary radius p > 0, and assume that for some integer n, we have
Tni1 < p < 1y, where 1, is defined at (49). Then vo(B(z, p)) < vo(B(z,r,)), therefore

log vo(B(z, p)) S log vo(B(z,1,))
logp - log p

(51)

> (1—3a)

But log p > logr, 1, hence < 0, hence from above,

logp — log rn+

log ve(B(z, p)) S log vo(B(z,7,)) S log vo(B(z,7,))

52
log p - log Tn+1 - c+ log n ’ ( )
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since 1,11 > cry,, for some constant ¢ independent of n. Thus by letting p — 0, and using
(5I) and (52), we obtain the following lower estimate for the lower pointwise dimension of
Vy:

Fo(ii) = h(pt)+2:  log:&

Xs (1) m(xs(ft) +€)

But @ — 0 as m — oo, and v5(X (a;m,e)) — 1. So from last displayed estimate, for vy-a.e
x €A,

2e logd
log d’ x(ft) +

d(o)(z) > (1 — 3a) 3a(l+

Fo(ft) — h(p™) +2¢
Xs ()
Since ¢ is arbitrary, it follows from the above lower estimate and (29)) that, for y-a.e z € A,

_ Fo(p) — h(p")
X (1)

o(ra) () =

0(v2)(x)

From (), Fe(i1)) = logo(S, ft), so using the last formula we conclude the proof of Theorem
1l
U
Proof of Theorem [2.
From the Birkhoff Ergodic Theorem applied to the continuous potential x(w, z) = log |¢., ()|

on X7 x A, we see that xs(fip) = lim w, for fip-a.e (w,x). But from the Bounded
n—oo
Distortion Property, it does not matter which x we take in the limit above. Hence using

that p1p = m.flp and that pp is a Bernoulli measure, it follows that

i) = [ wlaldi = [ og|oL|(row)di
ETXA

E?XA
- / og |61, |(row)dpy = X(11p)
I

Thus from Theorem [Il we obtain the dimension formula.
O

Proof of Corollary [2.

First recall the definition of 5, (z) from () as being the number of multi-indices (i1, . .., 4,) €
{1,...,m}" so that x € ¢;,0...0¢;,(A). Recall that U; is the union of cylinders from the set
G;in [M), for 1 < j < s. If r = m(w) and the maps ¢;,. j, are grouped as in the statement,
and if 0%w € Uy, for 1 < ¢ < n, then using the notation in (I2)) we have the following bound
on By (),

Bgn(x) <mpy ..My, (53)

Recall now that 6 : ¥f — R, §(w) = logm;, when w € U; for some 1 < i < s. From the
definition, one sees that 6 is a Holder continuous potential on X7 . Also from (G3) we have,

10g fyn(1w) < S 4(0) (W),
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where S, ,(0)(w) is the consecutive sum of 6 with respect to 9. Without loss of generality,
assume ¢ = 1. From the definition of b,((w, x), T, 1), it follows that for any n > 1,7 >
0, (w,z) € 5} x A,

b"((w’ ZL’), T, :[WJ) < ﬁn(QSUJn---Wl (ZL’)) = ﬁn SNIPRS] (I)n(w, 513')

Hence,

/ IOg bn((wv LU), T, :&w) d:&w(wu .CL’) S/ IOg 5n O 7y O (I)n(wv x)dﬂd}(wv LE‘)
ok xA ok XA

(54)
:/ log By, © ma(w, x)d L.
oh XA

Now take the lift of , namely
d:uF x X vt xSt B(w,n) = (0w, win)

If ji, is the equilibrium state of 1 o m; : ¥t x Bt — R for @, then m.fiy = fiy. Let
o @ 20 x 3t — 3+ be the projection to second coordinate. Then for any (w,n) € X1 x Xt
one has 3, omw(n) = B, o ma(w, m(n)). Thus from above and continuing (54)), with ¢ assumed
to be 1,

[ tobioma) divwn) = [ logfyortdavn) < [ S,60) draiin)
ShxA DIRAD I8 PINN
(55)
Now let us see more closely what is the measure 7y .fi,,. For a cylinder [iy...7,] C 3},
we know that ®"([i1...4,] x ) = 5% X [i,,...41], s0 by the d-invariance of fi,, and since
7T17*,1~L¢ = M, it follows that ﬁ27*ﬁw([’én .. 21]) = ﬁw([ll .. Zn] X Z;) = ,uw([’&l .. Zn]) Now as
0 is constant on 1-cylinders (as ¢ = 1), it implies that when we compute the integral over
Y F (thus considering all the cylinders), we obtain:

$,0() s g / Su0()djig ) = / 0w djo()

=5

Therefore, from (B54]), (55) and the definition of the overlap number o(S, fi,,), we infer that:

logo(S. ) < [ 8()dus(w)
Z’!?L

In the general case, for arbitrary ¢ > 1, we obtain similarly,

1 1
ggoq—n/zilmlogﬁqn(ﬂw)dqu(w y) < nlgf)loq—n/E+ Sng(0)(w)dpy(w) = 5/+ 0(w)dpy(w).

m

Therefore it follows that,

1 . 1
log o(S, fiy) < exp( lim —/ log B, (mw)djiy(w,y)) < —/ O(w)dpiy(w).
XA qJsy

n—oo 1
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Hence from Theorem [Il and the last displayed inequality we obtain,

M) =1 iy 0(w) dpy(w)

HD(mo.fiy) > -
2 X ()]

O
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