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Abstract

The Macroscopic Fluctuation Theory is an effective framework to describe transports and
their fluctuations in classical out-of-equilibrium diffusive systems. Whether the Macroscopic
Fluctuation Theory may be extended to the quantum realm and which form this extension
may take is yet terra incognita but is a timely question. In this short introductory review,
I discuss possible questions that a quantum version of the Macroscopic Fluctuation The-
ory could address and how analysing Quantum Simple Exclusion Processes yields pieces of
answers to these questions.
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1 Introduction

Non-equilibrium phenomena, classical or quantum, are ubiquitous in Nature, but their under-
standing is more delicate, and thus yet less profound, than the equilibrium ones. Last decades
has witnessed important conceptual and practical progresses in this direction, both for classical
and quantum systems. For classical systems, these progresses started with the study of fluc-
tuating hydrodynamics of many particle systems [1, 2, 3, 4, 5, 6, 7], or with exact analysis of
simple model systems, such as the Symmetric or Asymetric Simple Exclusion Process (SSEP or
ASEP) [8, 9, 10]. They advanced with the understanding of fluctuation relations [11, 12, 13] and
their interplay with time reversal [14, 15], and culminated with the formulation of the Macro-
scopic Fluctuation Theory (MFT) which is an effective theory describing transports and their
fluctuations in diffusive classical systems [16, 17]. For quantum systems, a good understanding
of entanglement dynamics [18, 19, 20, 21] and quenched dynamics [22, 23, 24] in critical or
integrable models has been obtained. Substantial information on transport has been gained for
integrable many-body systems via the formulation of the Generalized Hydrodynamics (GHD)
[25, 26, 27]. The latter is however well adapted to describe transport but less fitted to elucidate
quantum interference phenomena. Furthermore, transports in these systems are mainly ballistic.

The questions whether Macroscopic Fluctuation Theory (MFT) may be extended to deal with
quantum systems and which form this extension would take are still open. If such theory can be
formulated, it should aim at describing not only diffusive transports and their fluctuations but
also quantum coherent phenomena, say the dynamics of quantum interferences or entanglement
spreading and their fluctuations, in out-of-equilibrium extended, diffusive, systems.

Pieces of information on a possible form of such theory has recently been obtained by studying
model systems based on random quantum circuits [28, 29, 30, 31, 32, 33] for which a membrane
picture [34, 35, 36, 37, 38] for entanglement production in many-body systems is emerging.

In parallel, stochastic dynamics in quantum extended systems such as noisy spin chains were
analysed [39, 40, 41, 42]. This leads us to introduce the Quantum Simple Exclusion Processes.
The closed Quantum Symmetric Simple Exclusion Process (Q-SSEP), was introduced in [43]
(under another name), its open version in [44], and its asymmetric analogue, the Quantum
Asymmetric Simple Exclusion Process (Q-ASEP), was proposed in [45]. Through decoherence,
the average dynamics in such models typically reduces to classical simple exclusion processes.
However, this quasi-classical reduction only applies to the average dynamics. Fluctuations are
beyond this quasi-classical regime and survive decoherence. They reveal patterns which are
possibly generic for mesoscopic diffusive quantum systems.

In this review, we first introduce basic notions about the MFT and pose a few questions
relevant to its extension to the quantum regime and, second, discuss possible routes for exploring
quantum extensions of the MFT and how these explorations lead to consider stochastic dynamics
in quantum many-body systems. While classical stochastic dynamics has been a well studied
domain for many decades, stochastic dynamics in quantum extended systems remained largely
unexplored, to the best of our knowledge. We then present a brief introduction to the Quantum
Simple Exclusion Processes and to some of the recently obtained results concerning their on-
going analysis. We have chosen to select a few claims, summarising these analysis in a necessarily
biased ways, but allowing for a comparison with classical MFT. For each topic, we also tried to
formulate a few questions left opened by these analysis.

As a side comment, we pose a question (or propose a conjecture) about ergodicity property
of monitored extended quantum systems.
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2 Why, What, and How ?

2.1 A glimpse on classical Macroscopic Fluctuation Theory

The Macroscopic Fluctuation Theory [16, 17] is an effective theory describing current and den-
sity fluctuations in classical out-of-equilibrium systems. It applies to locally diffusive systems
satisfying the Fourier-Fick’s law which asserts that the current is proportional to the density
gradient. The proportionality coefficient is called the diffusion constant. Whenever the current
does not vanish – a situation which reflects transport –, the physical system is out-of-equilibrium.
By the Fourier-Fick’s law, diffusive systems can be maintained out-of-equilibrium by imposing a
non-zero density gradient or by applying an external field. A standard set-up consists in putting
the system in contact with two reservoirs at different chemical potentials2. See Figure 1.

One of the formulation of MFT [16, 17] starts with stochastic differential equations (SDE)
for the density n(x, t) and the current j(x, t). In one dimension, they take the following form :

∂tn(x, t) + ∂xj(x, t) = 0 , (1a)

j(x, t) = −D(n)∂xn(x, t) + ε1/2 σ(n)1/2 ξ(x, t) , (1b)

with D(n) the diffusion constant, σ(n) the mobility and ξ(x, t) a Gaussian space-time white noise,
E[ξ(x, t)ξ(x′, t′)] = δ(x − x′)δ(t − t′). Here, E[·] refers to the statistical average and ε := a0/L
with a0 the short microscopic scale (an ultra-violet cut-off) and L the linear size of the system.
In particular, ε→ 0 in the large system size limit or in the scaling limit a0 → 0 at L fixed.

The first equation (1a) is a conservation law. The second one (1b) is a noisy version of
the Fourier-Fick’s law j(x, t) = −D(n)∂xn(x, t). The mobility quantifies the response of the
system to an external field E which, in the linear approximation, produces an extra current
jext = σ(n)∂xE. It also codes for the density fluctuations at equilibrium. Both the diffusion
constant and the mobility may depend non-linearly on the local density. They satisfy the
Einstein relation D(n) = σ(n) f ′′(n) with f(n) the equilibrium free energy per unit of volume.

The strength of the noise in eq.(1) gets smaller as the system size increases (or as the ultra-
violet cut-off is shrinked), so that analysing eq.(1) is actually a small noise problem [46]. This
reflects the physical fact that fluctuations in thermodynamical systems are small, sub-leading in
the system size. The MFT describes rare fluctuations in out-of-equilibrium macroscopic systems.

Through eq.(1), the statistical distribution of the noise induces that of the current and
density profiles. By integrating out the noise, the probability distribution can (formally) be
represented as a path integral with weight,

exp
(
− 1

ε

∫
dxdt

(
j(x, t) +D(n(x, t))∂xn(x, t)

)2
2σ(n(x, t))

)
, (2)

conditioned by the conservation law ∂tn(x, t) + ∂xj(x, t) = 0. In some cases, this weight can be
deduced from a simple, but elegant, additivity principle [47]. Configurations extremizing this
weight are the most probable. They correspond to the dominating non-fluctuating solutions of
the Fourier-Fick’s law depending on boundary conditions specific to the physical set-up.

Fluctuations around the dominating configurations are sub-leading in the system size. They
satisfy a large deviation principle. The large prefactor ε−1 = L/a0 in the weight (2) echoes
the weakness of the noise in eq.(1) for macroscopically large systems. It ensures that the large

2The discussion is here presented in terms of particle density and its current, but one may change the point
and discuss about transport of other physical quantities, say heat or temperature, simply by changing the names.
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Figure 1: Classical setup to drive a diffusive systems out-of-equilibrium (the two blue/red square
represent two reservoirs at different chemical potentials or temperatures).

deviation functions are computable through solutions of extremization problems (which may
nevertheless be difficult to solve) [17, 46, 47].

The MFT also emerged from studies of simple representative toy models. The iconic exemple
is the so-called symmetric simple exclusion process (SSEP). In its one dimensional version, it
describes particles moving along a chain3 with the exclusion that any given site cannot be
occupied by more than one particle at each instant. Particles are injected and extracted at the
two ends of the system interval. In the symmetric case the probability to move toward the left
or the right are equal (they are different in the asymmetric case). Any configuration is specified
by its occupation numbers nj at each site j, with nj = 0 for an empty site (represented as ø)
and nj = 1 for a full site (represented as •). The evolution from one configuration to another is
a Markovian random process, with probability transition per unit of time given by the following
Markov transition matrix :

Mssep(|øø|) = 0 ,

Mssep(|•ø|) = −|•ø|+ |ø•| , (3)

Mssep(|ø•|) = −|ø•|+ |•ø| ,
Mssep(|••|) = 0 .

The first and last equations simply express the absence of move either because there is no particle
or because the exclusion freezes the dynamics. The two middle ones code for symmetric moves
to the right or the left when the configurations allow. The evolution rules are modified at the
boundaries to reflect the rates at which particles are injected and extracted. This system is
known to be integrable and its steady states represented by matrix product states. There is a
vast literature on exact results for SSEP, see e.g. [48, 49, 50, 51].

The large deviation function for density fluctuations in SSEP were computed from its micro-
scopic definition [52, 53]. Let us consider a protocol as in Figure 1 in which one fixes the density
at the two ends of the interval [0, L], say na and nb. If na 6= nb the system is out-of-equilibrium,
with a non-zero mean current proportional to the density difference ∆n := nb−na. In the steady
state, the density statistics satisfies a large deviation principle in the sense that the distribution
of the density profiles behaves as follows4,

Prob[n(·) = n(·)] �ε→0 e
−ε−1 F [n] , (4)

with F [n] the so-called rate function. It plays a role analogue to the free energy but in non-
equilibrium situations, and reduces to it at equilibrium. Out-of-equilibrium, F [n] becomes a
non-linear non-local functional of the density profile coding for long range correlations.

3Variants of SSEP can be defined on any graph.
4The symbole � means logarithmic equivalence. Here, the limit ε→ 0 is meant as a0 → 0 at fixed L.

4



Equivalently, one can introduce the generating function of connected correlation functions
of the density E

[
eε
−1

∫
dxh(x)n(x)

]
, with h(x) some test function. By expanding in power of h,

it generates the density correlation functions. The large deviation principle (4) implies that it
scales as follows,

Essep

[
eε
−1

∫
dxh(x)n(x)

]
�ε→0 e

ε−1W [h] , (5)

for large system size. The two functions F [n] and W [h] are related by Legendre transform :
W [h] = max{n(x)}

[ ∫ 1
0 dxh(x)n(x)−F [n]

]
. Formula (5) implies that the cumulants of the density

of order P scale like εP−1 in the large system size limit.

For SSEP, the large deviation function W [h] is given as the solution of an extremization
problem :

W [h] =

∫ L

0
dx
[

log
(
1 + g(x)(eh(x) − 1)

)
− log(g′(x)L/∆n)

]
, (6)

with g(x) solution of the non-linear differential equation,(
1 + g(x)(eh(x) − 1)

)
g′′(x) = g′(x)2(eh(x) − 1) , (7)

with boundary conditions g(0) = na and g(L) = nb. This condition is the Euler-Lagrange
equation for W [h] to be extremal with respect to variations of g. Expanding W [h] in power of
h yields the first few density cumulants :

Essep[n(x)] = n̄(x) , Essep[n(x)n(y)]c = −ε (∆n)2 x(L− y)/L2 , for x < y, (8)

with n̄(x) the linear profile interpolating the two boundary densities, n̄(x) = (na(L − x) +
xnb)/L. In particular, the mean current j̄ = −∂xn̄ = −∆n/L, is proportional to the density
gradient. Eq.(8) reveals the presence of long range, but decreasing with the system size, density
correlations.

The SSEP large deviation function (6) was also shown to follow from the MFT [17]. In its
scaling limit, SSEP is mapped onto MFT with Dssep = 1, σssep(n) = n(1 − n), and free energy
fssep(n) = n log n + (1 − n) log(1 − n). The MFT has however a wider range of applications as
it applies to all classical, locally diffusive, systems. It is worth stressing that MFT, formulated
as an effective fluctuating hydrodynamics, depends only on two phenomenological coefficients :
the diffusion coefficient D(n) and the mobility σ(n), which are near equilibrium data.

2.2 What a Quantum Mesoscopic Fluctuation Theory could be aiming at ?

As the classical MFT, the Quantum Mesoscopic Fluctuation Theory (Q-MFT) should describe
transports and their fluctuations in out-of-equilibrium systems. To be applicable to quantum
systems, it should also address specifically quantum effects such as interference, coherence,
entanglement, etc.

The Q-MFT is expected to be applicable to locally diffusive but quantum systems. As a
consequence, for the systems to be diffusive, not ballistic, Q-MFT should be valid at scales
above the mean free path. For quantum effects not to be wash-out by decoherence, it should be
applicable at scales below the decoherence length. This intermediate scale domain is called the
mesoscopic domain.

At a sufficiently coarse-grained level, transports may usually be described by some hydro-
dynamic equations, even for genuinely quantum systems as in the Generalized Hydrodynamics
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(GHD) [25, 26] adapted to integrable systems. Since they refer to locally conserved quanti-
ties, these equations take the form of local conservation laws, say of the form ∂tn + ∂xj = 0,
completed with constitutive equations expressing the current j in terms of the density n plus
possible noise. This is also the way the classical MFT is formulated. Assuming decoherence,
hydrodynamics hypothesises some kind of local equilibrium so that the system density matrices,
reduced to the local hydrodynamic cells, are diagonal in the basis of the transported conserved
charges. However, the off-diagonal elements survive at mesoscopic scales, even-though they are
sub-leading compared to the diagonal ones. Usual hydrodynamics describes neither the structure
of coherence or entanglement, nor their statistics or their dynamics. Describing them requires
extracting information on the dynamics of the off-diagonal elements. Phrased differently, if Q-
MFT could be formulated, it is expected to go beyond standard fluctuating hydrodynamics to
include off-diagonal contributions.

At mesoscopic scales, quantum systems interact with extra noisy degrees of freedom leading
to diffusion. For large systems, decoherence is hence at play so that the average dynamics is
quasi-classical. Quantum interference effects echo fluctuating, non-classical, off-diagonal coher-
ences. To make them manifest thus requires an understanding of coherent fluctuations, which
cancel out on average and are sub-leading in the system size, and their noisy dynamics. For
large systems, the statistical properties of these fluctuations can often be described by large
deviation functions which code for rare fluctuations away from the typical value. Of particular
interest are the large deviation functions say for quantum expectations of operators sensitive to
quantum coherences or for entanglement entropies, which are specific to quantum systems, (see
exemples of such large deviation functions in the closed Q-SSEP in Section 3.3).

In the last few years, impressive progresses on closely related topics has been achieved in
critical or integrable quantum systems. A precise picture of entanglement and quenched dy-
namics has been obtained in terms of quasi-particle dynamics [22]. A good understanding of
transport and out-of-equilibrium phenomena in those systems has been achieved using the Gen-
eralized Hydrodynamics we alluded to above. GHD also lead to a good description of fluctuation
statistics of transport in integrable systems [54] (see [55] for similar studies in critical systems).
However, these understandings are restricted to predominantly ballistic systems, even-though
sub-leading diffusive effects have been incorporated [56].

A naive way to look for a quantum version of MFT is to quantize equations (1). Since
eq.(1b) is a constraint, expressing the current j in terms of the density n plus noise, a direct
quantization of eqs.(1) is however potentially difficult, because, in a quantum theory, a constraint
should be promoted to an operator identity. Following the strategy recently applied to GHD
[57], a possible route could amount to look for fluctuations above a classical solution (ncl, jcl) of
the MFT equations (1), say in form

n = ncl + ∂xϕ , j = jcl − ∂tϕ ,

to fulfil the continuity equation (1a), and to quantize the resulting Gaussian theory for the field
ϕ. Another route could consist in promoting eq.(1b) to a dynamical equation. For instance [39],
eq.(1b) could be upraised to a dynamical one by introducing a current friction, say

τf ∂tj = −D(n)∂xn− η j + ε1/2 σ(n)1/2 ξ ,

with η a dimensionless control parameter and τf a time scale parameter, so that the current
friction coefficient is η/τf . In the large friction limit, η j � τf∂tj, this equation reduces to
eq.(1b), but it can now be quantized.
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However, both approaches fail to answer questions about the nature of the noise Q-MFT
should incorporate. More importantly, there is also no a priori guarantee that such direct
quantization of the MFT appropriately describes quantum coherent effects and their fluctuations
in diffusive extended systems. Therefore, we will advocate below another route consisting in
analysing simple microscopic models, say quantum variants of the classical exclusion processes,
and in deducing, if possible, patterns for a Q-MFT applicable to a large class of mesoscopic
diffusive systems.

2.3 How do stochastic effects impact quantum systems ?

The previous discussion points towards analysing noisy dynamics in Quantum Mechanics, in
particular in extended systems. There are (at least) three main, interconnected, ways in which
probabilistic phenomena hit Quantum Mechanics :

• Intrinsically, as the results of measurements on quantum systems. Indeed, any information
extracted by monitoring a quantum system is random, as expressed by the Born’s rule of
Quantum Mechanics, and it impacts the quantum system by the principle of quantum
measurement back-action, even for weak measurements. As a consequence, the evolutions
of monitored quantum systems are stochastic. They are actually described by the so-
called quantum trajectories which are instrumental in controlling quantum systems, see
e.g. [58, 59].

• Extrinsically, as noise, providing stochastic models for environments interacting with quan-
tum systems. Any system interacting with an environment is subject to a noisy evolution.
Noise, classical or quantum, may be viewed as the collection of the degrees of freedom
of the – not precisely known and controlled – environments. As a consequence, random
dynamics arise in Quantum Mechanics as an efficient way of describing the evolution of
systems interacting with environments or external fields, as in the original model of bosonic
baths introduced by Caldeira and Leggett [60].

• Generically, as models for typical, alias generic, quantum states and operations. This is
for instance the principle underlying the use of random matrix theory (RMT) in Quantum
Mechanics or Quantum Information, as first advocated by Wigner, see e.g. [61]. More
recently, this is also the way random quantum circuits have been used to study universal
behaviours of quantum chaotic systems. By adding stochasticity, these systems ought to
lose their fine properties pertaining to particularities, such as specific symmetries, thus
allowing the emergence of generic properties.

Analysing quantum simple exclusion processes fits in the two last categories. The latter are
models of stochastic many-body dynamics incorporating diffusive effects and their fluctuations.
Although one may imagine experimental realisations5, the purpose of these model systems are,
as any toy model, to propose paradigmatic models, which for instance allow exact results to
be derived, and to reveal patterns which are potentially generic for mesoscopic diffusive quan-
tum systems. Maybe optimistically, the conclusions then obtained lead to a simple framework,
depending on only a few number of characteristics and parameters, as the MFT does, and
applicable to a large enough universality class of physical systems.

5One may look for spin chains subjected to strong noisy magnetic fields, since Q-SSEP describe the effect
dynamics of the latter in the limit of large magnetic fields.
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Considering the impact of monitoring on these systems is certainly important as it has been
recently done in quantum circuit models. We will however not discuss them in this short review.

2.4 How can stochastic fluctuations be observed ?

When observing or measuring a quantum system, one gets random outputs whose distribution
is encoded in the system density matrix ρ via Born’s rule : the probability for an output o is
po = Tr(ρΠo), if the measured observable is O and Πo its spectral projector on the eigenvalue o.
A way to measure these distributions is to prepare a large number N of copies of the system, say
N ≈ 103, 106 or bigger, and to repeat the measurement experiment under identical conditions.
The output histogram is then obtained by collecting the measurement outputs o1, o2, · · · , oN
and counting the number of times no a given output o appears in this list. Then no/N ' po for
N � 1. Given these data, one has access to the expectation of the observable O, or its higher
moments, via 〈Ok〉 =

∑
o o

kno/N = Tr(ρOk). This is nicely illustrated in Haroche’s photon box
experiment [62].

Suppose now that the system evolves in time and that its preparation or its evolution is
noisy, so that the system density matrix is time dependent and random. To make it explicit
(when needed), we shall write ρt(ω) with ω some variables representing possible events and
taking values in some probability space. When iterating measurement processes, two different
setups can be envisioned to get an estimation of the output histograms for an observable O :
– (i) either one has some control on the noise, so that one can prepare copies of the systems and
let them evolve under identical noisy conditions. Then the outputs o1, o2, · · · , oN are distributed
in a way depending on the noise sample, say ω, so that their histogram is

po(ω) = no(ω)/N ' Tr(ρt(ω) Πo) , for N � 1 , (9)

with no(ω) the numbers of time the value o appear in the output lists for all copies of the system6

under identical noisy conditions ω.
– (ii) or one does not control the noise so that the latter is sampled differently at each iteration
of the measurement process. Then, if the number of iterations N is large enough, and much
larger than in the previous setup, the noisy variables are sampled faithfully according to some
probability measure pω so that the output histogram is

p̄o = n̄o/N ' Tr(ρ̄t Πo) , ρ̄t :=
∑
ω

pωρt(ω) , N � 1 . (10)

Phrased differently, by not controlling the noise at the different iterations of the measurement
process, we only have access to the average density matrix, ρ̄t =

∑
ω pωρt(ω), and to the average

quantum expectation values :

E[〈O〉t] := Tr(ρ̄tO) =
∑
ω

pω Tr(ρ̄t(ω)O) . (11)

Under noisy conditions, the histograms po(ω) = no(ω)/N may fluctuate from one noise
realisation to the other. A way to quantify the fluctuations of the quantum expectation values
is to evaluate their correlations, say,

E[〈O(1)〉t〈O(2)〉t] :=
∑
ω

pω Tr(ρt(ω)O(1))Tr(ρt(ω)O(2)) , (12)

6This may alternatively be formulated in terms of conditioned probability as po(ω) is the probablity to observe
the value o conditioned on the noise being in the state ω.
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for two observables O(1) and O(2). This requires producing the two histograms p
(1)
o1 (ω) and

p
(2)
o2 (ω) by iterating measurements of the two observables O(1) and O(2) under identical noisy

conditions7.

Although controlling the noise may be difficult experimentally and even looks paradoxical
– since, more or less by definition, noise is a name for variables whose behaviors cannot be
controlled – this is not completely unimaginable. For instance, one may imagine placing copies
of the system under the umbrella of the same noise, say if the randomness arises from an
external random magnetic field8. Or, if the noise is artificially produced, say by random number
generators, one may simply ensure that the generators are implemented using identical seeds.
Or, if the fluctuations arise from variances in the initial state, one may control this initial state,
etc.

Nevertheless, as for classical systems, having a realistic, generic, controlled models for the
noise and the fluctuations it induces, allows to estimate the fluctuations due to noisy environ-
ments that are not controlled.

Taking the time evolution of the system into account, one may wonder how these fluctua-
tions evolve in time and whether they survive the large time limit and/or the large size limit,
especially for ergodic systems. A commonly used formulation of ergodicity, especially in the
physics literature on many-body physics, is to assume that the time averaged system density
matrix converges at large time to some steady density matrix ρ∞ (supposed to be unique for
simplicity)9:

lim
T→∞

1

T

∫ T

0
dsTr(ρsO) = Tr(ρ∞O) . (13)

for some appropriate set of observables O. If the system is noisy, one hypothesises self aver-
aging and extend the above definition to an almost sure convergence. Defining ergodicity via
eq.(13) leads to wonder (say, because of the measurement back-action) how the time integral∫ T
0 dsTr(ρsO) may be estimated experimentally. However, in the context of monitored systems

and their quantum trajectories [58, 59], such almost sure convergence is known to hold under
quite general hypothesis [63, 64].

At a classical level, if x→ xt is a dynamical flow on some space X, ergodocity w.r.t. to some
measure dν∞ on X is the property that limT→∞ T

−1 ∫ T
0 ds f(xs) =

∫
X dν∞(x) f(x), for appro-

priate functions f . At the quantum level, there are two options : (i) either one views quantum
observables as quantization of functions on some phase space and density matrices as quanti-
zation of measures on that space, then eq.(13) is a natural analogue of the classical ergodicity
(as long as measurements are not taken into account, see Appendix A); (ii) or one considers
the density matrices ρ as the dynamical variables, then one would like to apply ergodicity to
non-linear functions of ρ.

Considering density matrices as the dynamical variable, eq.(13) should better be called linear
ergodicity as it only tests linear functions of the system density matrix. More generally, to have

7Actually, this assertion is also true in classical physics where to estimate the correlations between two quan-
tities X and Y one has to sample their possible values x(ω) and y(ω) under identical noisy conditions in order to
estimate their correlations E[XY ] =

∑
ω pωx(ω)y(ω). However, the consequences of these samplings in quantum

mechanics is more dramatic due to the back-action of the measurement process on the system.
8A field frequency spectrum containing a few incommensurable frequencies would be generate a field whose

time evolution is closed enough to a good realisation of a white-noise.
9This notion of ergodicity is not that used in the mathematical literature, say on quantum billards, which is

grounded on semi-classical structures.
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a hand on fluctuations, one may consider more general functions and ask that the time averages
of say all polynomials in the density matrix (up to a given degree) converge, that is :

lim
T→∞

1

T

∫ T

0
dsTr(ρsO

(1)) · · ·Tr(ρsO
(p)) exist. (14)

Non-linear ergodicity would hold if there exists a steady measure E∞ on density matrices such
that these large time limits are the moments of the density matrix w.r.t. this measure, that is:

lim
T→∞

1

T

∫ T

0
dsTr(ρsO

(1)) · · ·Tr(ρsO
(p)) = E∞[Tr(ρO(1)) · · ·Tr(ρO(p))] , (15)

If the system evolution is noisy, one may require that this property holds almost surely. Of
course, we can also extend this definition by considering multi-time expectations.

Checking ergodicity experimentally, even at the linear level as in eq.(13), by producing the
appropriate measurement histograms requires double series of copies M×N of the system: N
copies to produce the measurement histograms at each given instant, repeatedM times to sam-
ple the time interval from 0 to T . The difficulties are comparable to those of the direct approach
to evaluate the noisy fluctuations (12). The situation is better if one imagines monitoring the
quantum system. See the Appendix A.

For extended systems, assuming that a steady regime is attained at large time, we expect the
measure E∞ to be peaked around a mean density matrix ρ̄∞, with fluctuations δρt decreasing
with the system size :

ρt ' ρ̄∞ + δρt , at large enough time, (16)

or more precisely, Tr(ρtO) ' Tr(ρ̄∞O) + Tr(δρtO), for appropriate observables O. These
fluctuations are expected to be small and to scale as 1/Lα, with L the macroscopic linear size of
the system and α > 0. The law of large number suggests α = 1

2 . As a consequence, we expect
that time averaging is unnecessary so that the density matrix, tested appropriately, converges
at large time,

lim
t→∞

Tr(ρtO) = Tr(ρ̄∞O) , in infinite volume, (17)

for an appropriate set of observables, say local observables. This is a stronger convergence than
that of linear ergodicity (13). This is the expected behaviour when thermalisation holds but
also in some non-equilibrium situations.

There are fluctuations, in time and from sample to sample, when approaching the asymptotic
state ρ̄∞. See Figure 2. At large time, but at finite (large) volume, they are expected to reach a
steady distribution coding for correlations between quantum expectation values (at large time),
say

E∞[Tr(ρO(1)) · · ·Tr(ρO(r))] .

Deviation from Tr(ρ̄∞O
(1)) · · ·Tr(ρ̄∞O

(r)) are sub-leading in the system size. At finite but large
enough volume, we may expect that their evolution acquires a universal status, so that they can
be described by some effective, universal, noisy dynamics. Having good noisy dynamical models
then provides a way to have a hand on those fluctuations and their time evolutions.

A natural question is then how could we estimate these fluctuations by looking at a single
time trajectory of the system state. A way to proceed could consist in slicing the time axis into
pieces of time duration of order τ , with τ an effective correlation time such that the average
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Figure 2: Schematic representation of the convergence of quantum expectation values to their
equilibrium values with sub-leading fluctuations ∆Ot := Tr(Oδρt) decreasing with the system
size.

over time scale of order τ smoothes out the fluctuations, i.e. ρ̄t := 1
τ

∫ t+τ
t ds ρs has a smooth

time evolution. This smoothed mean state ρ̄t at time t can be evaluated by sampling the time
interval [t, t+ τ ] at a large number of times t1, t2, · · · , tP , that is: Tr(ρ̄tO) = 1

P
∑P

j=1 Tr(ρtj O).
This sampling yields to an estimation of the fluctuations at time t via

1

P
P∑
j=1

Tr(ρtj O
(1)) · · ·Tr(ρtj O

(r)) ,

with all tj ∈ [t, t + τ ] and P large enough. We could then declare that the above mentioned
effective noisy dynamics is faithful if its moments coincide with these correlations, that is :

E[Tr(ρO
(1)
t ) · · ·Tr(ρO

(r)
t )]

?
=

1

P
P∑
j=1

Tr(ρtj O
(1)) · · ·Tr(ρtj O

(r)) ,

At the linear level, for t large enough, this reproduces the convergence condition (17) with ρ̄∞
the mean steady state of the effective dynamics.

3 Quantum Simple Exclusion Processes

The quantum simple exclusion processes are models of quantum many-body noisy dynamics
describing fermions hopping stochastically along a one dimensional chain10. The chain can be
closed with periodic boundary conditions, or open with injection and extraction of particles at
its two ends. The processes can be symmetric (resp. asymmetric) depending whether the ampli-
tudes to move to the right or to the left are equal (resp. different). The exclusion constraint is
implemented by the fermionic character of the degrees of freedom. They are quantum extensions
of the classical simple exclusion processes.

3.1 Q-SSEP and Q-ASEP

• Closed Q-SSEP.
In the closed symmetric setup, the system dynamics is unitary but noisy. The system density

10Quantum simple exclusion processes can be defined on any graph.
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Figure 3: Schematic representation of Q-SSEP or Q-ASEP. Periodic boundary conditions are
imposed in the closed case (no reservoirs). In the open case, injection/extraction processes at
the two ends represent contact with two reservoirs, here depicted in red or blue.

matrix ρt evolves unitarily, ρt+dt = e−idHtρt e
idHt , with dHt the hamiltonian increment between

time t and t+ dt. For Q-SSEP, the hamiltonian increment is defined as11

dHt :=
√
J

N∑
j=1

(
c†j+1cj dW

j
t + c†jcj+1 dW

j
t

)
, (18)

where cj and c†j are canonical fermionic operators, one pair for each site of the chain, with

{cj , c†k} = δj;k, and W j
t and W

j
t are pairs of complex conjugated Brownian motions, one pair for

each edge along the chain, with zero mean, E[dW j
t ] = E[dW

j
t ] = 0, and covariance E[dW j

t dW
k
t ] =

δj;k dt. Here, N is the number of sites on the chain and J a bare coupling constant, with the
dimension of a frequency. For the closed Q-SSEP, periodic boundary conditions are assumed.
See Figure 3.

Upon discretizing the time evolution, this model can be viewed as a random quantum circuit
with Gaussian two-site gates. In this discrete setting, after n time steps, each of duration δt,
the system density matrix ρn is unitary up-dated according to ρn → ρn+1 = UnρnU

†
n with

Un = V 1
n V

0
n where the V e

n ’s (with e = 0, 1 for even and odd) are products of gates acting on
adjacent sites (for N = 2M) :

V e
n = W

(n)
e+1,e+2W

(n)
e+3,e+4 · · ·W

(n)
e+N−1,e+N , (19)

W
(n)
j,j+1 = exp

(
c†j+1cj ξ

(n)
j + c†jcj+1 ξ̄

(n)
j

)
,

with ξ
(n)
j independent identically distributed (i.i.d.) Gaussian variables with zero mean and vari-

ance E[ξ
(n)
j ξ̄

(m)
k ] = δn;mδj;k Jδt. This discretization yields to simple numerical implementations

of the dynamics. In the following we shall however stick to the time continuous formulation
(which is better adapted to analytical descriptions).

Since ρt+dt = e−idHtρt e
idHt , the equation of motion for the system density matrix reads

(with Itô convention) :

dρt = −i[dHt, ρt]−
1

2
[dHt, [dHt, ρt]] . (20)

These equations are classical stochastic differential equations (SDE) but on quantum density
matrices. The double commutator in eq.(20) is an echo of the fact that the Brownian increments
dW j

t scale as
√
dt. The equation of motion for the observables, say O, are defined from eq.(20)

by duality: Tr(ρtO) = Tr(ρOt). In particular, the equation of motion for the local particle

11This definition can be generalized by including cc or c†c† terms not preserving the particle number but still
quadratic. However, transport is associated to locally conserved quantities and such models might not be well
adapted to study transport.
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number operators, n̂j := c†jcj , reads

dn̂j = J ∆n̂j dt+
√
J
(
dV̂js − dV̂j−1s

)
, (21)

with ∆ the discrete Laplacian, ∆n̂j := n̂j+1− 2n̂j + n̂j−1, and dV̂jt := i
(
c†jcj+1dW

j −h.c.
)

noisy
operators. Eq.(21) indeed codes for stochastic diffusion for quantum observables. The Q-SSEP
is one of the simplest model of pure, quantum, noisy, diffusive dynamics.

Since information is lost when averaging over the realizations of the noise, the average dy-
namics is not unitary but dissipative. In particular, the average number operator E[n̂j ] satisfy to
pure diffusion: ∂tE[n̂j ] = J E[∆n̂j ]. By the Markov property of the Brownian motions, the aver-
age dynamics defines a semi-group generated by a Lindbladian which is obtained by averaging
eq.(20) :

∂tρ̄t = Lssep(ρ̄t) , (22)

with ρ̄t := E[ρt] the average density matrix. The Lindbladian Lssep is the sum of local Lind-

bladians, one for each edge of the chain, Lssep = J
∑N

j=1 Lj;j+1. Each of them decomposes as

Lj;j+1 =
−→L j;j+1 +

←−L j;j+1, where

−→L j;j+1(ρ) := `−j ρ `
+
j −

1

2
(`+j `

−
j ρ+ ρ `+j `

−
j ) , (23a)

←−L j;j+1(ρ) := `+j ρ `
−
j −

1

2
(`−j `

+
j ρ+ ρ `−j `

+
j ) , (23b)

with `+j := c†j+1cj and `−j := c†jcj+1. The local Lindbladians
−→L j;j+1 (resp.

←−L j;j+1) describe
jumps of the fermions to the right (resp. left). Higher moments of the density matrix, say its
quadratic fluctuations E[ρt ⊗ ρt], also satisfy Lindblad dynamics [65]. One of the motivation
for studying Q-SSEP is to get a good description of quantum diffusive dynamics, beyond the
average dynamics, including fluctuations. See below section 3.2.

The name Q-SSEP is inherited from the fact that the mean dynamics, when reduced to an
appropriate sector, is that of the classical SSEP. At each site along the chain, the empty |•〉 and
full |ø〉 states, with respectively one and zero fermion, form a basis of states and diagonalize the
particule number operator (with eigen-value 1 or 0). The states |n〉 diagonalising all the particle
numbers along the chain are thus indexed by the classical configurations n = (ν1, · · · , νN ), with
νj = 0, 1, the particle number at site j. A density matrix diagonal in this particle number
basis specifies a probability measure on classical configurations since it can be written as ρdiag =∑

nQn Πn, with Πn := |n〉〈n| and Qn a probability measure on n :
∑

nQn = 1, Qn ≥ 0.
The mean Q-SSEP dynamics (22) preserves diagonal density matrices and thus defines a flow –
a Markov chain – on probability measures on classical configurations. This flow is identical to
that of the classical SSEP since

Lssep(|øø〉〈øø|) = 0 ,

Lssep(|ø•〉〈ø•|) = J(−|ø•〉〈ø•|+ |•ø〉〈•ø|) ,
Lssep(|•ø〉〈•ø|) = J(+|ø•〉〈ø•| − |•ø〉〈•ø|) ,
Lssep(|••〉〈••|) = 0 .

This can be compared with the Markov transition matrix of classical SSEP in eqs.(3). As a
consequence, the generating function of the steady fluctuations of the classical SSEP occupancies
nj can be expressed as a quantum expectation value w.r.t. the steady average Q-SSEP density
matrix :

Essep[e
∑
j hjnj ] = E

[
Tr
(
ρ e

∑
i hin̂i

)]
= Tr

(
ρ̄ e

∑
i hin̂i

)
,
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with n̂i = c†ici the quantum number operators, ρ̄ = E[ρ] the mean Q-SSEP state, averaged w.r.t.
the Q-SSEP steady measure.

The quantum Q-SSEP is however an extension of the classical SSEP as this correspondance
only applies to the average dynamics of diagonal density matrices. For instance, while only
classical configurations are considered in classical SSEP, cats like states made of superpositions
of classical configurations are allowed in the Q-SSEP, say

| · · · øø••ø•øø• · · · 〉+ | · · · •ø•øø•ø•• · · · 〉+ · · · ,

even-though the states describe identical density profiles at a coarse-grained level. These states
could interfere and Q-SSEP describes their statistics and dynamics.

• Open Q-SSEP.
The open Q-SSEP is defined similarly except that the chain interval is now open (no periodic
boundary conditions) and the dynamics is modified by including injection and extraction pro-
cesses at the two ends of the chain. These processes are represented by dissipative, deterministic,
Lindblad dynamics. As a consequence, the equations of motion for the system density matrix
read :

dρt = −i[dHt, ρt]−
1

2
[dHt, [dHt, ρt]] + Lbdry(ρt)dt , (24)

with dHt as above in eq.(18), and Lbdry a boundary Lindbladian acting on sites 1 and N , with
Lbdry = α1L+1 + β1L−1 + αNL+N + βNL−N and

L+j (?) = c†j ? cj −
1

2
(cjc

+
j ?+ ? cjc

†
j) , (25a)

L−j (?) = cj ? c
†
j −

1

2
(c†jcj ?+ ? c†jcj) , (25b)

where the parameters αj (resp. βj) are the injection (resp. extraction) rates. These boundary
processes drive the system out-of-equilibrium by enforcing a non-trivial current through the
system.

General comments about Q-SSEP apply to the open case, if the boundary terms are taken
into account appropriately. In particular, the average dynamics is also of Lindblad type, with
contributions from the boundary Linbladians. On diagonal density matrices, it reduces to that of
the open SSEP, including the boundary terms. Higher moments also follow a Lindblad dynamics
[65]. Despite the presence of boundary dynamics, the open Q-SSEP preserves gaussianity of the
states and it is thus particularly adapted to exact studies. Duality property of such model
systems were pointed out in [42].

• Closed and open Q-ASEP.
The Q-ASEP is slightly different from the Q-SSEP because the noise the chain is coupled to is
not classical but quantum. The hamiltonian increments dHt are of the same form as in eq.(18),
namely,

dHt :=
√
J

N∑
j=1

(
c†j+1cj dW

j
t + c†jcj+1 dW

j
t

)
, (26)

but where W j
t and W

j
t are now quantum Gaussian processes with zero mean and covariance,

E[dW j
t dW

k
t ] = p δj;k dt , E[dW

j
t dW

k
t ] = q δj;k dt , (27)
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with p, q, (p ≥ q), two real positive parameters. The Q-ASEP correspond to p 6= q, and the

Q-TASEP to either p = 0 or q = 0. The two processes W j
t and W

k
t are then non-commuting

quantum operators,

[dW j
t , dW

k
t ] = (p− q) δj;k dt . (28)

There are two physical ways to construct this noise. Either one may view them as the scaling
limit of series of two-state probes, say Q-bit or spin half probes, recursively interacting with the
system [66], in a way similar to the photon box experiment [62]. This construction is parallel to
that of the classical Brownian motion as a scaling limit of random walks. Or, these noise can
be directly constructed in the continuum, as in the theory of quantum stochastic differential
equations [67]. In physical terms, the noise Hilbert space is the tensor product of noise Hilbert

spaces attached to each edge of the chain, Hnoise = ⊗jH(j)
noise. Each of them is a Fock space, over

the space of square integrable functions on the line, on which complex bosonic fields, ϕj(s) and
ϕ̄j(s), are acting, with canonical commutation relations,[

ϕj(s), ϕ̄k(s′)
]

= δj;kδ(s− s′) . (29)

The noise expectation values are defined as quantum expectation values w.r.t. a particular
state Ωnoise on the noise Hilbert space. Averaging over the noise amounts to trace over the
noise degrees of freedom, E[(· · · )] := Tr(Ωnoise(· · · )]. The noise is chosen to be thermal so that
E[ϕ̄j(s)ϕk(s′)] = n δj;kδ(s − s′) with n some filling factor. The quantum Brownian motions are
then defined by

W j
t = λ

∫ t

0
dsϕj(s) , W

j
t = λ

∫ t

0
ds ϕ̄j(s) . (30)

Their increments are dW j
t = W j

t+dt−W
j
t . They satisfy eqs.(27) with q = λ2n and p = λ2(1 +n).

Noise expectation values are computed using Wick’s theorem. The Brownian increments dW j
t

and the portion of the noise Fock space associated to the fields ϕj(s) between time t and t+ dt
represent the scaling limit of all probes which have interacted with the system during the time
interval [t, t+ dt).

The noisy dynamics of observables, say O, generated by the hamiltonian increments (26) are

dOt = +i[dHt, O]t −
1

2
[dHt, [dHt, O]]t , (31)

up to boundary terms in the case of an open chain. These are quantum stochastic differential
equations as defined in [67]. For O an observable on the system, its average w.r.t. the noise,
Ōt := E[Ot], satisfy a Lindblad equation

∂tŌt = L†asep(Ō)t , (32)

with dual Lindbladian L†asep = J
∑N

j=1

(
p
−→L †j;j+1 + q

←−L †j;j+1

)
, with

−→L †j;j+1 and
←−L †j;j+1 the duals

of the Lindbladians (23). This average dynamics was actually considered in [68, 69]. Higher
moments also satisfy a Lindblad dynamics [65].

Since the two Lindbladians
−→L j;j+1 and

←−L j;j+1 code respectively for left and right moves,
the total Lindbladian Lasep codes for asymmetric moves as in the classical ASEP. The exclusion
principle is taken into account by the fermionic character of the particles. Restricted to diagonal
density matrices, the average of Q-ASEP is that of the classical ASEP [45]. Q-ASEP is however
an extension of the classical ASEP as it describes off-diagonal fluctuations and coherences.

In the following we restrict our discussion to the closed and open Q-SSEP.
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3.2 Closed Q-SSEP : Fluctuations at equilibrium

Q-SSEP is particularly adapted to exact analytic results because it is a quadratic model12,
for each realization of the noise. In particular it preserves gaussianity of the system density
matrix, again for each realization of the noise (not in average). The dynamics and statistics
of such density matrices are encoded into that of their matrices of two-point functions Gij :=

Tr(ρtc
†
jci). Hence, analysing Q-SSEP reduces to studying the statistics and dynamics of its

two-point functions. This reduces the number of degrees of freedoms from 2N to N2. For the
closed Q-SSEP, the time evolution of the matrix G is also unitary,

Gt+dt = e−idht Gt e
idht , (33)

with dht the so-called one-particle hamiltonian, dht =
√
J
∑N

j=1(|j + 1〉〈j| dW j
t + h.c.

)
, or

equivalently, with Gi;j = 〈i|Gt|j〉 the matrix elements of the matrix Gt (we suppress the index
t to lighten the notation),

dGi;j = −2J Gi;jdt+ J(Gi+1;i+1 +Gi−1;i−1)δi;jdt (34)

+ i
√
J
(
Gi;j−1dW

j−1
t +Gi;j+1dW

j
t −Gi−1;jdW i−1

t −Gi+1;jdW
i
t

)
,

This is a matrix valued stochastic differential equation (SDE). The matrix G satisfies a closed
set of equations. In particular, the mean density nj := E[Gj;j ] evolves diffusively, ∂tnj = J ∆nj
with ∆ the discrete Laplacian.

At large time, the matrix G reaches a steady distribution, which we shall denote E∞[·]. Since
it is unitary, the dynamics (33) is isospectral, and all quantities Nk := Tr(Gk) are constants of
motion fixed by the initial condition G0. We set Nk = mkN . The steady measure depends on
this data. To compute the moments of G in the steady measure is a linear problem specified by
eq.(34). Let us compute the first few.

For the mean, we find
E∞[Gi;j ] = m1 δi;j . (35)

This reflects :
(a) decoherence as the off-diagonal elements vanish in average at large time,
(b) equilibrium as the mean density profile is uniform along the chain. (Recall that Gi;i is the
quantum expectation value of the particle number at site i).

For the quadratic cumulants, we find (with i 6= j) [43],

E∞[|Gi;i|2]c =
(∆2m)2

N + 1
, E∞[Gi;iGj;j ]

c = −(∆2m)2

N2 − 1
, (36a)

E∞[|Gi;j |2]c =
N(∆2m)2

N2 − 1
' (∆2m)2

N
, (36b)

with (∆2m)2 := m2−m2
1. We thus learn that fluctuations of the density at coincident points are

of order 1/
√
N , as expected for diffusive systems, but at order 1/N at non coincident points.

More importantly, we observe that, although vanishing in average, coherences, represented by
the off-diagonal elements of G, are of order 1/

√
N (provided the mk scale as O(N0)). That

is : decoherence is at work in average but there are non-zero fluctuating coherences, sub-leading
with the system size.

12But it is a non-trivial model because of the presence of noise.
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Suppose that the system is initially prepared in a factorized state, so that its initial two
point functions are diagonal, Tr(ρ0c

†
icj) = ni δi;j , with ni the initial local particle density at site

i. Then, m1 =
∑

i ni/N is the mean density, and m2 =
∑

i n
2
i /N , so that (∆2m)2 is the variance

of the initial density13. Eqs.(36) tell us that, despite the absence of initial coherences, these are
progressively, randomly, generated by the hopping process (18) and they survive the long time
limit if the initial density is inhomogeneous. Phrased differently : fluctuating coherences are
dynamically produced from the inhomogeneities of the density profile.

Higher cumulants can be recursively computed. Assuming that the initial state is such that
all mk = Tr(Gk0)/N scale as O(N0) for large N , all cumulants of order P scale as 1/NP−1. Let
W [A] := logZ[A] with Z[A] := E∞

[
eTr(AG)

]
, with A a generic test matrix, be their generating

function. We have, order by order in power of A (recall that (∆2m)2 = m2 −m2
1) :

W (A) = m1 TrA+
1

2

N(∆2m)2

N2 − 1
TrA2 − 1

2

(∆2m)2

N2 − 1
(TrA)2 +O(||A||3) . (37)

This formula has a simple interpretation : To leading order in the system size, the matrix of
two point functions converges to the non random, uniform, matrix Geq = m1I, proportional to
the identity, reflecting convergence toward equilibrium. There are sub-leading fluctuations, so
that we can write,

G ' Geq + δG , Geq = m1I , δG ' O(1/
√
N) , (38)

where the fluctuations δG decrease with the system size. Alternatively, the system density
matrix converges to the equilibrium Gibbs state, up to fluctuations,

ρ ' ρeq + δρ , ρeq =
1

Zeq
e−µ N̂tot , δρ ' O(1/

√
N) , (39)

with N̂tot =
∑

j c
†
jcj the total particle number, µ the chemical potential, related to the density

via m1 = 1/(1 + eµ) and Zeq the equilibrium partition function, Zeq = (1 + e−µ)N . Recall that
the number of particles is the only conserved quantity under the dynamics (18) (for any fixed
realization of the noise).

Hence, for large system sizes, the steady measure E∞ is peaked around the equilibrium
density matrix ρeq, with fluctuations δρ sub-leading in the system size. It is interesting to
compare with eq.(16). Q-SSEP gives access to these rare sub-leading fluctuations and yields to
a precise description of their statistics.

3.3 Closed Q-SSEP : Where are we ?

• Steady fluctuations and large deviation

The closed Q-SSEP is actually ergodic, in any sector with a fixed number of particles, in the
sense that the steady measure E∞ is SU(N) invariant. This follows from the fact that iterated
products of the form

e−idht1 e−idht2 · · · e−idhtn ,
with dhtk the one-particle hamiltonian increment (33), for any collection of time increments dtk,
visit densely the group SU(N) (because the matrices Ej;j+1 := |j〉〈j + 1| and their adjoints
form a system of simple root generators for su(N)). The dynamics generated by successive

13If the initial state is not factorized, there are possible corrections to m2 due to initial coherences.
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iterations of the infinitesimal group elements e−idht is thus ergodic enough to cover the group
SU(N), and this implies that the generating function, Z[A] := E∞

[
eTr(AG)

]
, is SU(N) invariant :

Z[UAU †] = Z[A] for any U ∈ SU(N). As a consequence, it admits an integral representation,

Z[A] =

∫
dV eTr(AV

†G0V ) , (40)

where the integral is taken over the unitary group U(N) with the invariant Haar measure. This
integral is known as the Harish-Chandra-Itzykson-Zuber (HC-IZ) integral in random matrix
theory (RMT) [70, 71].

The proof is simple, using the SU(N) invariance and the iso-spectral property of the Q-SSEP
flow :

Z[A] =

∫
dV Z[V AV †] = E∞

[∫
dV eTr(AV

†GV )
]

=

∫
dV eTr(AV

†G0V ) .

In the first equality we use the SU(N) invariance, in the second we insert the definition of Z as
the generating function for E∞ and we permute integration and averaging, and in the last we
use the property that the spectrum of G is conserved by the flow, and thus non random, so that∫
dV eTr(AV

†G0V ) can be pulled out from the expectation with respect to E∞.

Alternatively, the system Hilbert, which is the Fock space of N fermions, decomposes into
the sum of sectors ΛM of fixed particle number, say M = 0, · · · , N :

Hsys = Λ0 ⊕ Λ1 ⊕ · · · ⊕ ΛN ,

Each of the subspaces ΛM form a U(N) irreducible representation (isomorphic to rank M an-
tisymmetric tensors in dimension N). Since, for each realisation of the noise, the Q-SSEP
dynamics preserves the total number of particles, each of those sectors is stable under the Q-
SSEP dynamics, and the invariant measure on each of them is that induced by the SU(N) Haar
measure. This is the measure we would get if we were sampling the states uniformly, according
to the Haar measure, in the corresponding SU(N) orbit. Thus, the system is ergodic in each
sector with a fixed number of particles.

The generating function Z[A], represented as a HC-IZ integral, can be analysed using tools
from RMT. It depends on the spectrum of G0 and hence on mk := TrGk0/N . Assuming that
mk = O(N0) for all k, then w[A] := limN→∞

1
N logZ[NA] is finite, order by order in power of

A, or alternatively,
E∞
[
eN Tr(AG)

]
�N→∞ eN w[A] . (41)

From eq.(37), the first few terms are

w[A] = m1 TrA+
1

2
(∆2m)2 TrA2 +

1

3
(∆3m)3 TrA3 +O(||A||4) , (42)

with (∆2m)2 = m2 − m2
1 and (∆3m)3 := m3 − 3m2m1 + 2m3

1. This expansion suggests that
w[A] can be written as a series expansion in TrAk only : w[A] =

∑
k

1
k fkTrAk, where fk stands

for the large N limit of N (k−1)E∞[Gi1i2Gi2i3 · · ·Giki1 ] with i1, · · · , ik all distincts. This type of
expectations, for connected products of G’s with indices ik placed along a loop, are going be
also important in the study of the open Q-SSEP, since they are going to be the dominating
ones. Intuitively, this indicates the emergence of a thermodynamic limit in which correlation
functions factorize on dominating connected components.
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Eq.(41) equivalently means that the steady probability distribution for G satisfies a large
deviation principle (compare with eq.(4)14 with ε = 1/N),

Prob∞[G = g] �N→∞ e−N I(g) , (43)

with rate function I(g), the Legendre transform of w[A]. Its series expansion around its minimum
reads :

I(g) =
Tr(g −m1I)2

2(∆2m)2
− Tr(g −m1I)3

3(∆2m)3
(∆3m)3

(∆2m)3
+O(||g −m1I||4) . (44)

To leading order, G is Gaussian with mean m1I and variance of order (∆2m)/N1/2. But they
are higher cumulants. Clearly, there is a need for a better, more complete, non perturbative,
description of this large deviation function (however see [72]).

• Fluctuation dynamics

The time evolution of fluctuations is governed by the stochastic equation (20) for the density
matrix, or eq.(34) for the two-point functions. For the average density matrix, ρ̄t = E[ρt], it leads
to the Lindblad equation eq.(22). For higher moments, say E[ρt⊗ · · · ⊗ ρt], made of products of
R replicas of the density matrix, the dynamics is also given by a Lindblad equation,

∂tE[ρt ⊗ · · · ⊗ ρt] = L(R)
ssep(E[ρt ⊗ · · · ⊗ ρt]) , (45)

with a Lindbladian L(R)
ssep similar to that for one replica, as in eq.(23), but with the jump operators

`±j replaced by their sum over the various replicas, `±j →
∑

a `
±
a;j , where the index a labels the

replicas and the individual operators `±a;j only acts on the a-th replica.

As shown in [65], eq.(45) can be mapped to a spin chain dynamics, with underlying gl(2R)

symmetry algebra. Namely, the Lindbladian L(R)
ssep can be written as follows,

L(R)
ssep = J

N∑
j=1

(∑
A,B

GABj+1G
BA
j − 1

2
(Cj+1 + Cj + 2R)

)
, (46)

where the GABj ’s, with A = 1, · · · , 2R, form a set of super-operators (i.e. linear maps acting on
operators), acting locally on site j, with commutation relations,[

GABj , GCDk
]

= δj,k(δ
BCGADj − δDAGCBj ) , (47)

and Cj + R :=
∑

AG
AA
j . The super-operators GABj act on any operator X by left or right

multiplications of X by fermionic creation or annihilation operators. They form a representation
of the Lie algebra gl(2R) on the space of operators localized at site j, which is is isomorphic to
the exterior algebra in dimension 2R. This operator space is also isomorphic to the direct sum
of all fundamental representations of sl(2R). Thus, the Lindblad dynamics (46) is that of a spin
chain with local degree of freedom in the fundamental representations of sl(2R).

This observation allows to borrow information and techniques from spin chain studies. In
particular, it allows to study steady or low lying states. The integrability for one replica has
been shown in [73] and in some higher replica sectors. The question whether it is integrable in all
sectors, for any number of replicas, is still open [65]. Lindblad integrable dynamics have recently

14To compare with eq.(4), note that if a0 is the mesh of the lattice and L the size of the system, then L = Na0

and ε := a0/L = 1/N .
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been analysed [69, 74, 75, 76, 77, 78, 79, 80, 81] but finding a series of integrable Lindbladians
coding for all replicas dynamics is still an open question.

It also allows to study the dynamics in the continuous scaling limit. Let a0 be the mesh of
lattice, i.e. the size of the elementary edges, so that the total length of the chain is L = Na0.
The scaling limit is the limit,

a0 → 0, N →∞, J →∞, with L := a0N, D := Ja20, x := ja0 fixed, (48)

with J the coupling constant in eq.(18) and j the position of the insertion point. This amounts
to impose a diffusive scaling relation between time and space. D has the dimension of diffusion
constant. We set ε := a0/L = 1/N , as in MFT.

The discrete diffusion equation for the local particle number has a simple scaling. Let n(x, t)
be the scaling limit of the density, n(x, t) = nj(t) for nj(t) = E[Gjj(t)]. As a consequence of
eq.(34), it evolves diffusively,

∂tn(x, t) = D∇2
x n(x, t) , (49)

as expected since, in average, the Q-SSEP dynamics is purely diffusive (by construction). At
large time, n(x, t) reach its uniform steady value n = m1.

Let us now look at the dynamics of the quadratic fluctuations in the scaling limit. We
follow the analysis performed in [65] and define the scaling limits of the density correlations and
coherence fluctuations :

g+(x, y, t) := lim
scaling

E[Gjj(t)Gkk(t)] , (50a)

g−(x, y, t) := lim
scaling

E[Gjk(t)Gkj(t)] . (50b)

They admit an ε-expansion:

gσ(x, y, t) = g(0)σ (x, y, t) + ε g(1)σ (x, y, t) +O(ε2) . (51)

They satisfy a hierarchy of linear evolution equations, with a triangular structure. The leading

terms g
(0)
σ (x, y, t) evolve diffusively,

∂tg
(0)
σ (x, y, t) = D(∇2

x +∇2
y)g

(0)
σ (x, y, t) . (52)

In absence of long range order in the initial state, the off-diagonal coherences initially vanish at
leading order in the scaling limit, while the density correlations are initially factorized. Since
they are diffusively transported, this holds true at any time, and

g
(0)
+ (x, y, t) = n(x, t)n(y, t) , g

(0)
− (x, y, t) = 0 . (53)

The first relation expresses the fact that density fluctuations are sub-leading in the system
size, so that the density is self-averaging at leading order as expected (cf. the above discussion
of the steady measure). The second relation echoes that coherences are also sub-leading in
the system size as imposed by decoherence. These properties can be checked on their large
time steady values, since eqs.(35,36) read E∞[GjjGkk] = m2

1 + 1
N (∆2m)2δjk and E∞[GjkGkj ] =

m2
1δjk+ 1

N (∆2m)2 with m1 = n. Furthermore, if the average densities are initially uncorrelated15,

then g
(1)
+ (x, y, t) = 0, so that the density cumulants are actually of second order in ε.

15which is always the case if the system is initially prepared in a given state
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Figure 4: [Left]: Comparison between g−(L/2, 3L/8; t) as a function of Jt/L2 on a ring of L = 48
(blue dashed), L = 96 (yellow dotted), L = 192 (gree dot-dashed) sites with domain wall initial

conditions and g
(1)
− (x, y, t) (red solid). The continuum limit result is approached throughout

the depicted time range as L increases. [Right]: Comparison between g−(L/2, 23L/48; t) as a
function of Jt/L2 on a ring of L = 96 (blue dashed) sites with domain wall initial conditions

and g
(1)
− (x, y, t) (red solid). The dotted drown line is the result of pure diffusion only, without

the source term h+(x, y, t). Figures taken from [65].

Remarkably, as a consequence of eq.(34), the time evolution of the (sub-leading) coherence
fluctuations is essentially diffusive but sourced by the density in-homogeneities [65],

∂tg
(1)
− (x, y, t) = D(∇2

x +∇2
y)g

(1)
− (x, y, t) + h+(x, y, t) , (54)

with h+(x, y, t) = 2DL∇x∇y
(
δ(x− y)n(x, t)n(y, t)

)
.

Higher order correlations satisfy similar equations.

The validity of the scaling evolution equations (49,52,53,54) over a significant range of time
and space scales has been numerically checked in [65], for various initial configurations. In
particular, these numerical results show that the source term h+ in eq.(54) is relevant in this
scaling range (so that the evolution of the coherences is not purely diffusive but modified by the
interaction reflected in local density in-homogeneities). See Figure 4.

The structure of the evolution equations (49,52,53,54) is similar to that of the fundamental
MFT equations (1). In both cases, the evolution is mainly diffusive and non-random at leading
order, as dictated by the Fourier-Fick’s law, but with relevant corrections for fluctuations at
sub-leading order in ε. In MFT these corrections are encoded into the Langevin equation (1). It
would be interesting to know, in the case of Q-SSEP, whether there exits an effective stochastic
process or an effective field theory describing them. If the answer is positive, this would provide
the first step in constructing the Quantum Mesoscopic Fluctuation tTheory (Q-MFT).

• Entanglement statistics and dynamics

Exact results on the statistics of entanglement can be obtained by borrowing techniques from
RMT. Let us assume that the system is initially prepared in a state |ψM 〉 with M particles, with
density n = M/N . Since purity and particle number are conserved by the Q-SSEP dynamics, it
will remain in a pure state |ψM (t)〉 with M particles at any time. Following [82], let us consider
the entanglement of a subsystem A` = {1, . . . , `}, as measured by the Rényi-q entropies,

Sq(t) := (1− q)−1 log Trρ`(t)
q , (55)

where ρ` is the system density matrix reduced to A` : ρ`(t) := TrN\`(|ψM (t)〉〈ψM (t)|). We
assume A` to be extensive and set ξ = `/N . The Rényi entropies are then typically extensive
Sq ∼ ` s, with 0 ≤ s ≤ log 2. We are interested in their statistics at large time.
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Figure 5: [Left]: Rate function for the Rényi-2 entropy, for m = 1/2, and different values of ξ.
For ξ < m and ξ = m respectively, two and three phases appear, which correspond to different
colors. [Right]: Analytic predictions for the derivative I ′2(s) (solid lines), against numerical data
from Monte Carlo simulations for ` = 32, L = `/ξ and M = L/2 (dots). The numerical error
is not visible at the scales of the plot. Figures taken from [82].

As shown in [82], in the large size limit, (N , `, M large with fixed ratios ξ = `/N , n = M/N),
the Rényi entropies satisfy a large deviation principle, w.r.t. the invariant measure E∞,

Prob∞[Sq = ` s] �N→∞ e−`
2 Iq(s) , (56)

with a rate function Iq(s), which depends on the initial density n and on the fraction of volume
ξ occupied by the sub-system. Compare with eq.(4).

This rate function can be evaluated using RMT techniques (since the invariant measure on
the space of fixed number of particles is that induced by the Haar measure on U(N)). The
computation is mapped to an extremization problem. It takes three different analytic forms in
three different regions [82]:

• For low values of the entropy, 0 < s < s− for some s− depending on ξ and n, the rate
function is dominated by contributions from pure states, and diverges when s → 0+. In
particular, Iq=2(s) = −1

2 log s+O(s) as s→ 0+.

• The intermediate region, s− < s < s+, contains the minimum s̄ of the rate function,
which is the most-probable value of the entropy. In particular, for q = 2 it is Gaussian,
Iq=2(s) = 1

2γ (s− s̄)2 with γ a computable constant.

• For high values of the entropy, s+ < s < smax = log 2 for some s+, the rate function is
dominated by contributions from maximally mixed states, and diverges when s → smax.
In particular, Iq=2(s) = −1

2 log |s− smax|+O(s− smax) as s→ s−max.

The transitions between these different regimes are non-analytic, signalling phase transitions.
See Figure 5.

Clearly, it is worth understanding the entanglement dynamics and its scaling limit. The na-
ture of the spreading of entanglement in this class of models is yet unknown. On one hand, local
quantities spread diffusively, with possible sub-leading relevant corrections, see eqs.(49,53,54).
One the other hand, the numerical analysis of [40] done on noisy spin chains (which are noisy
many-body models, similar to Q-SSEP while not identical) suggests dynamical scaling exponents
compatible with those of the Kadar-Parisi-Zhang (KPZ) class. Comparing the resulting hydro-
dynamics description of entanglement spreading with the membrane picture [34, 35, 36, 37, 38]
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which recently emerged from studies of random unitary circuits will also be interesting. This
will provide another step toward the construction of a Q-MFT. We hope to report soon on this
problem [83].

3.4 Open Q-SSEP : Fluctuations out-of-equilibrium

To simplify the notation, we now set the system length to unity, L = 1. Thus, the lattice mesh
is a0 = 1/N and the small dimensionless scaling parameter is ε := a0/L = 1/N .

Contrary to the closed version, the open Q-SSEP involves injection and extraction processes
at the two ends of the system interval, as specified in eq.(24). Due to the boundary processes,
this evolution is not unitary. Nevertheless, for each realisation of the noise, the model is still
quadratic and can be analysed by studying its two-point functions, Gi;j = Tr(ρtc

†
jci). The latter

satisfy the following stochastic differential equation (SDE) :

dGi;j = −2J Gi;jdt+ J(Gi+1;i+1 +Gi−1;i−1)δi;jdt (57)

+ i
√
J
(
Gi;j−1dW

j−1
t +Gi;j+1dW

j
t −Gi−1;jdW i−1

t −Gi+1;jdW
i
t

)
+

∑
p∈{1,N}

(
αpδi,pδi;j −

1

2
(αp + βp)(δi,p + δj,p)Gi;j

)
dt ,

Compared to eq.(34) valid in the closed set-up, eq.(57) contains boundary terms reflecting the
injection and extraction processes with rates α1,N and β1,N , as illustrated in the evolution
equation for the mean occupation numbers, nj := E[Gj;j ] :

∂tnj = J∆nj +
∑

p∈{1,N}

δj;p
(
αp(1− np)− βpnp

)
, (58)

with ∆ the discrete Laplacian.

In average, and in the diagonal sector (diagonal w.r.t. the particle number operators), the
open Q-SSEP dynamics reproduce the open classical SSEP with injection and extraction of
particles at its two ends.

As for the closed case, the two-point functions reach a steady distribution at large time.
Since eq.(57) is linear, moments of G can be recursively computed, at least for the first of them.
For the mean, from eq.(58) we get,

E∞[Gi;j ] =
na(N + b− j) + nb(j + a− 1)

N + b+ a− 1
δi;j , (59)

with na := α1
α1+β1

, nb := αN
αN+βN

, a := J
α1+β1

, b := J
αN+βN

. In the scaling limit, N → ∞ at
x = j/N fixed (with na, nb, a, b fixed), the average profile becomes,

n∗(x) = na + x(nb − na) . (60)

It interpolates linearly between the two boundary occupations na and nb. The average current,
which is proportional to the gradient of the density by the Fourier-Fock’s, is thus non-vanishing,
provided the two boundary occupations are un-balanced. The system is hence out-of-equilibrium.

Higher moments of the two-point functions, w.r.t. the steady measure E∞, were analysed
in [44, 84]. It has been shown that, in the large size limit, the leading multi-point cumu-
lants of order P , say E∞[Gi1j1 · · ·GiP jP ]c, come from the expectation values of cyclic products
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Gi1iP · · ·Gi3i2Gi2i1 . They scale proportionally to 1/NP−1 in the large N limit. This may be
compared to the analysis of the large deviation function in the closed case, see eqs.(37,42). Other
cumulants of Gji’s are sub-leading at large N . For instance, in the limit N →∞ with x = i/N ,
y = j/N fixed, one has (for x < y),

E∞[GijGji]
c =

1

N
(∆n)2 x(1− y) +O(N−2) , (61a)

E∞[G2
ii]
c =

1

N
(∆n)2 x(1− x) +O(N−2) , (61b)

E∞[GiiGjj ]
c = − 1

N2
(∆n)2 x(1− y) +O(N−3) , (61c)

with ∆n := nb − na. As in the closed case, quadratic coherence fluctuations scale as O(1/N) in
the thermodynamic limit, while the quadratic density correlations at distinct positions scale as
O(1/N2) and hence are sub-leading.

The statistics is however not Gaussian as it can be seen by computing the leading cumulants
with three points (with x < y < z):

E∞[GikGkjGij ]
c =

1

N2
(∆n)3 x(1− 2y)(1− z) +O(N−3) , (62)

in the scaling limit N →∞ with x = i/N , y = j/N and z = k/N fixed.

More generally, moments of cyclic products Gi1iP · · ·Gi3i2Gi2i1 depend on whether the or-
dering of the points xk = ik/N along the chain and along the cycles defined by these products
coincide or not. Fixing an order along the chain interval, the different orderings along these cyclic
products are indexed by single cycle permutations of P elements. The rule for this correspon-
dence is that by turning around the oriented loop indexed by a permutation σ one successively
encounters the points labeled as i1, iσ(1), iσ2(1), · · · , up to closing the loop back to iσP (1) = i1.
We can thus choose 0 ≤ x1 < · · · < xP ≤ 1, with xk = ik/N , and index these cyclic cumulants
by single cycle permutation σ. The claim is [44, 84] :

E[Gi1iσP−1(1)
· · ·Giσ2(1)iσ(1)Giσ(1)i1 ]c =

(∆n)P

NP−1 g
(P )
σ (x1, · · · , xP ) +O(

1

NP
) , (63)

For instance, for x1 < x2 < x3 < x4, we have :

E∞[Gi1i4Gi4i3Gi3i2Gi2i1 ]c = N−3(∆n)4 x1(1− 3x2 − 2x3 + 5x2x3)(1− x4) +O(N−4) ,

E∞[Gi1i2Gi2i4Gi4i3Gi3i1 ]c = N−3(∆n)4 x1(1− 3x2 − 2x3 + 5x2x3)(1− x4) +O(N−4) ,

E∞[Gi1i4Gi4i2Gi2i3Gi3i1 ]c = N−3(∆n)4 x1(1− 4x2 − x3 + 5x2x3)(1− x4) +O(N−4) ,

with xk = ik/N . A few other cumulants can be directly computed. They are all polynomials of
degree at most one in each of their variables.

Hence, although decoherence is at play in the average open Q-SSEP behaviour, fluctuating
quantum coherences survive at large time, although sub-leading. Their statistics possesses a
rich and intriguing structure. The scalings of their cumulants with the system size is such they
satisfy a large deviation principle. The open Q-SSEP seems thus to be an appropriate quantum
extension the open classical SSEP.

3.5 Open Q-SSEP : Where are we ?

• Steady fluctuations and large deviation
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The scaling of these cumulants with N signals the existence of a large deviation function,
with small parameter ε = 1/N as for the MFT, see (41). But, no explicit, or even implicit,
formula for this large deviation function is presently known. In particular, it is not yet known
whether this large deviation function derives from a minimization principle as its analogue (6)
in MFT does. The answer to this question would be an important step towards constructing a
Q-MFT.

However, a procedure to compute all cyclic cumulants of the two-point functions, in the
steady measure, has been proposed in [84]. It is based on an interplay between permutations
and polynomials and in introducing appropriate generating functions. Let us just present it in
the simplest case of so-called regular cyclic cumulants for which the order of the points along
the cycle and the chain coincide. Let ωP (x1, ·, xP ) be the corresponding scaled cumulants,

E∞[Gi1iP · · ·Gi3i2Gi2i1 ] = N1−P (∆n)P ωP (x1, · · · , xP ) +O(N−P ) . (64)

with xk = ik/N and 0 ≤ x1 ≤ · · · ≤ xP ≤ 1. Let us then define generating functions Ck(z),
made of multiple derivatives of these cumulants, via the formal power series,

Ck(z) :=
∑
P≥0

zP ∇xP+1 · · · ∇x1ωP+k+1(x1, · · · , xP+k+1) , (65)

Since all ωP+k+1 are polynomials of degree at most one in each of its variables, the term propor-
tional to zP in the function Ck(z) depends only on the remaining k variables xP+k+1, · · · , xP+2

on which the derivatives are not acting. To stabilize the notation, we renamed them as yl :=
xP+k+1−l for l = 1, · · · , k, so that Ck(z) depend only on y0, · · · , yk−1. Surprisingly, the conditions
for the stationarity of the measure E∞ can be recasted into the following recursion relation :

Ck+1(z) =
[(
c(z) +

yk
z

)
Ck(z)

]
+
, (66)

where
[
· · ·
]
+

means the part of the Laurent series with positive degrees and c(z) :=
(√

1 + 4z−
1
)
/2z = 1 − z + 2z2 − 5z3 + · · · is the generating function of alternating Catalan numbers.

This allows to compute them recursively, say C0(z) = c(z), C1(z) = c(z)2(1 − y0), C2(z) =(
c(z)3 + y1z

−1(c(z)2− 1)
)
(1− y0), etc. The cumulants ωP are then recovered from the functions

CP−1(z) by evaluating them at z = 0 and by renaming back the y’s in terms of the x positions :

ωP (x1, x2, · · · ) = x1 CP−1(0)|(y0=xP ,y1=xP−1,··· ,yP−1=x2) . (67)

For instance,

C3(0) =
(
5 y1 y2 − 3 y2 − 2 y1 + 1

)
(1− y0) ,

C4(0) =
(
− 14 y1 y2 y3 + 9 y2 y3 + 7 y1 y3 + 5 y1 y2 − 4 y3 − 3 y2 − 2 y1 + 1

)
(1− y0) , (68)

C5(0) =
(
42 y1 y2 y3 y4 − 28 y2 y3 y4 − 23 y1 y3 y4 − 19 y1 y2 y4 − 14 y1 y2 y3 + 14 y3 y4

+12 y2 y4 + 9 y1 y4 + 9 y2 y3 + 7 y1 y3 + 5 y1 y2 − 5 y4 − 4 y3 − 3 y2 − 2 y1 + 1
)
(1− y0).

A stabilization phenomena occurs such that Ck(0) = Ck+1(0)|yk=0. A similar construction applies

to all scaled cyclic cumulants g
(P )
σ (x1, · · · , xP ). See [84] for more details.

However, this construction leaves a few questions open. What is the algebraic structure
underlying it ? Is it related to any known structure in integrable systems ? Can it be made
more explicit to give a better control on all cumulants for all single cycle permutations ? As
pointed out above, the scalings of these cumulants with the system size is such that it ensures

25



the (formal) existence of a large deviation function. Can they be resumed to yield access to
this large deviation function ? Does this large deviation function derives from an extremization
problem ? Etc.

• Fluctuation dynamics, entanglement statistics and dynamics

The time evolution of fluctuations is governed by the stochastic equation (24). Clearly, it
can be also recasted as a spin chain dynamics, as in eq.(46) for the closed case, once applied to
any number of replicas. Since the boundary terms are quadratic in the fermions, they will add
boundary terms to eq.(46) linear in the gl(2R) generators (47).

For one replica, this spin chain has been shown to be integrable [73]. However, as for the
closed case, it is still an open question whether it is integrable for any number of replicas.

The scaling limit of the quadratic fluctuations can be studied as in eq.(51) for the closed
case. Clearly, their bulk evolution equations (54) will be unchanged by the boundary processes,
and the extra boundary terms in the discrete SDE (57) will lead to extra boundary contact
terms completing these bulk evolution equations.

As for the closed case, it is important to get a good understanding of entropy statistics and
dynamics, either for entanglement entropies or for mutual information of sub-systems relative
to their complements. These questions are yet unexplored. In particular, describing accurately
the steady statistics of those entropies requires having a good control on the invariant measure.

• Un-reasonable connexions with combinatorics

As it is apparent in the explicit examples, say in eqs.(68), all scaled cumulants g
(P )
σ (w.r.t.

the invariant measure E∞) are polynomials with integer coefficients. This is remarkable, but it
lacks an a priori explanation.

Since the cumulants involve integer numbers, one may wonder whether they have a combina-
torial meaning. And indeed they do. Let us specialize them to coincident points, say xk = −t,
for all k. Then, we have,

ωn+1|{xk=−t} = −tΦn(t) (1 + t),

with Φn(t) polynomials of degree n−1 and positive integer coefficients. For instance, cf. eq.(68),

Φ2(t) = 1 + 2t,

Φ3(t) = 1 + 5t+ 5t2, (69)

Φ4(t) = 1 + 9t+ 21t2 + 14t3,

Φ5(t) = 1 + 14t+ 56t2 + 84t3 + 42t4.

These polynomials are known to count the (n − k) dimensional faces in the associahedron of
order n [85]. This is indeed surprising. There is yet no good understanding of this connection
except that both structures are related to the moduli spaces of configurations of particles on the
line. The observation that the recursion relation (66) produces the generating functions of the

associahedron has been recently proved [86]. However, the scaled cumulants g
(P )
σ , without eval-

uating them at coincident points, yields refinements of the associahedron generating functions
(indexed by single cycle permutations), and it remains an open question to understand whether
their coefficients have natural combinatorial interpretations.
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4 Conclusion

We have reviewed recent on-going progresses in studies of Quantum Simple Exclusion Processes
and their possible connexions with a putative extension of the Macroscopic Fluctuation Theory
to the quantum regime, called the Quantum Mesoscopic Fluctuation Theory. These processes
have a rich, interesting but intriguing, structure which is yet to be fully understood. Many
questions about the lessons these quantum processes may teach us, or about their structure,
remain open. Some of these questions have been formulated all along the review, at the end of
each Sections or sub-points they refer to.

A Appendix : Does ETH imply ergodicity of quantum trajec-
tories ?

Checking linear ergodicity, as written in eq.(13), limT→∞ T
−1 ∫ T

0 dsTr(ρsO) = Tr(ρ∞O), re-
quires information on the system density matrix ρs for all time s ∈ [0, T ]. If not continuously
monitoring the system, this requires preparing it, observing it, and reconstructing its state, at
sufficiently different times to sample the time interval [0, T ]. This may be not exactly what is
done is practice...

The situation is better if one is monitoring the quantum system, because recursively extract-
ing information on the system allows to estimate its state and hence the linear (13) or non-linear
(15) time averages. It is also more physical because one expects to be able to observe regularly
extended systems, without disturbing them too much, and having ergodicity for generic enough
thermodynamical systems.

Monitoring a quantum system is however at the prize of back-acting on it and, as a con-
sequence, its time evolution becomes stochastic. The time evolution of a monitored quantum
system is governed by a stochastic differential equation whose solutions are called quantum tra-
jectories, see e.g. [58, 59]. For simplicity, for so-called homodyne detections of an observable O,
the evolution equation is

dρt = −i[H, ρt] dt+ ηLO(ρt) dt+
√
η
(
Oρt + ρtO − 2ρtTr(Oρt)

)
dBt , (70)

with LO(ρt) = −1
2 [O, [O, ρt]] and H the hamiltonian of the system in absence of measurement16.

Here, η is the rate at which information is extracted and Bt is a Brownian motion related to the
output signal Yt obtained from monitoring the system :

dYt = 2
√
ηTr(Oρt) + dBt . (71)

Reading this signal yields an estimation of the instantaneous values of the quantum expectation
Tr(Oρt). One may extend this equation to cases with multiple monitored observables, say O(a).
Monitoring enough observables allow to estimate the density matrix at any time. Not recording
the output signals of the measurements amounts to average the quantum trajectories. The
average density matrix ρ̄t then satisfies the following dissipative Lindblad equation : ∂tρ̄t =
−i[H, ρ̄t] + ηLO(ρ̄t).

Eq.(70) is a well-posed SDE on density matrices. Its linear ergodicity property has been
established sometime ago [63, 64]. Assuming the uniqueness of the average steady state ρ̄∞,

16One may also add an intrinsic Lindbladian if the system is open.
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solution of ηLO(ρ̄∞) = i[H, ρ̄∞] or its generalization with multiple observables, then [63, 64]

lim
T→∞

T−1
∫ T

0
dsTr(ρsO) = Tr(ρ̄∞O) , almost surely. (72)

The almost sure convergence here means that eq.(72) holds for all output records, except maybe
for a set of measure zero.

The non-linear ergodicity (15) is then a well-posed problem for the processes (70). Not so
many results about the ergodicity of the quantum trajectories are known, except, of course,
when the invariant measure of the SDE (70) is known to be unique. However, the only known
(at least to the author) rigorous results about constructing this invariant measure are those of
[87, 88]. The latter were proved under assumptions whose physical interpretation is not very
transparent, in particular in the case of many-body extended systems.

On the other hand, the Eigenstate Thermalisation Hypothesis (ETH) [89, 90, 91] has recently
been taken as a sign, if not as a definition, of ergodicity in many-body physics. ETH asserts that
the matrix elements of any say local observable O, in the energy eigenbasis, take the following
form :

Oij = DO(Eij)δij + σ(Eij)
− 1

2 fO(Eij , ωij)R
O
ij , (73)

with σ(E) the density of energy eigenstate and Eij = 1
2(Ei + Ej) and ωij = 1

2(Ei − Ej), with
Ei the eigen-energies. Here, DO and fO are assumed to be smooth functions, fastly decreasing
with ω, and ROij matrices of order one with erratically varying elements in the range of energy
around E, with zero mean and unit variance,

ROij = 0, ROijR
O
kl = δjkδil .

Schematically, this means that the matrix Oij can approximatively be thought of as a band
matrix. Its width is governed by the decay rate of fO(E,ω) as a function of ω and it is estimated
to be of the order of the temperature 1/βE at the energy E. The function fO(E,ω) is expected
to be approximatively constant on an energy scale of the order the Thouless energy ET , which is
the inverse of the diffusion time, ET := ~D/L2, with D the diffusion constant and L the linear
size of the system. The “statistics” of the off-diagonal elements ROij , around an energy E, are
in practice defined by sampling its elements in an energy window around E. There is of course
some arbitrariness in choosing the size of this window, but the Thouless energy ET is a natural
choice since fO(E,ω) is close to a constant on this scale. Even though ET decreases with the
volume size, there is still an exponentially large number of eigen-energy in this window since
eigen-energies are exponentially close (so there is enough energy eigen-states to accurately do the
statistics). It is known that higher moments of the off-diagonal elements have to be non-trivial
[92].

By construction [89, 90, 91], ETH ensures linear ergodicity. Indeed, suppose that the system
is prepared in a pure state in the micro-canonical energy window E up to δE, say

|ψ〉 =
∑
i

ci |Ei〉,
∑
i

|ci|2 = 1 ,

with coefficients ci, smooth and non-vanishing only in the energy window δE around the energy
E. The time evolved state is |ψ(t)〉 =

∑
i ci e

−iEit |Ei〉 and the quantum expectation value of an
observable O is 〈O〉t = 〈ψ(t)|O|ψ(t)〉 or 〈O〉t =

∑
i,j Oij cic

∗
je
i(Ej−Ei)t. It is then clear that time
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averaging this expectation value projects it on its diagonal matrix elements, which are smooth
by the ETH, so that [91]

lim
T→∞

1

T

∫ T

0
dt〈O〉t =

∑
i

Oii|ci|2 ' Tr(ρ
(E)
microO) , (74)

with ρ
(E)
micro the micro-canonical Gibbs state at energy E. Thus, assuming ETH, linear ergodicity

w.r.t. to the micro-canonical ensemble holds.

Assuming that ETH implies ergodicity of extended many-body systems, as it is often done in
the physics literature, it is hence natural to wonder whether (or to conjecture that) ETH ensures
ergodicity – say as formulated in eq.(15) – of the quantum trajectories (70), or their generalisation
with multiple monitored observables, for a large enough set of monitored observables.
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