
ar
X

iv
:2

10
7.

04
47

9v
1 

 [
cs

.L
G

] 
 9

 J
ul

 2
02

1

Convergence analysis for gradient flows in the training

of artificial neural networks with ReLU activation

Arnulf Jentzen1,2 and Adrian Riekert3

1 Applied Mathematics: Institute for Analysis and Numerics,
University of Münster, Germany, e-mail: ajentzen a○uni-muenster.de

2 School of Data Science and Shenzhen Research Institute of Big Data,
The Chinese University of Hong Kong, Shenzhen, China, e-mail: ajentzen a○cuhk.edu.cn

3 Applied Mathematics: Institute for Analysis and Numerics,
University of Münster, Germany, e-mail: ariekert a○uni-muenster.de

February 14, 2022

Abstract

Gradient descent (GD) type optimization schemes are the standard methods to train
artificial neural networks (ANNs) with rectified linear unit (ReLU) activation. Such schemes
can be considered as discretizations of gradient flows (GFs) associated to the training of
ANNs with ReLU activation and most of the key difficulties in the mathematical convergence
analysis of GD type optimization schemes in the training of ANNs with ReLU activation
seem to be already present in the dynamics of the corresponding GF differential equations.
It is the key subject of this work to analyze such GF differential equations in the training
of ANNs with ReLU activation and three layers (one input layer, one hidden layer, and one
output layer). In particular, in this article we prove in the case where the target function is
possibly multi-dimensional and continuous and in the case where the probability distribution
of the input data is absolutely continuous with respect to the Lebesgue measure that the risk
of every bounded GF trajectory converges to the risk of a critical point. In addition, in this
article we show in the case of a 1-dimensional affine linear target function and in the case
where the probability distribution of the input data coincides with the standard uniform
distribution that the risk of every bounded GF trajectory converges to zero if the initial risk
is sufficiently small. Finally, in the special situation where there is only one neuron on the
hidden layer (1-dimensional hidden layer) we strengthen the above named result for affine
linear target functions by proving that that the risk of every (not necessarily bounded) GF
trajectory converges to zero if the initial risk is sufficiently small.

Contents

1 Introduction 2

2 Properties of the risk function and its gradient 5
2.1 Mathematical description of artificial neural networks (ANNs) . . . . . . . . . . . 6
2.2 An upper bound for the norm of the gradient of the risk function . . . . . . . . . 7
2.3 Continuous dependence of active neuron regions on ANN parameters . . . . . . . 8
2.4 Differentiability of the risk function . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Lower semicontinuity of the norm of the gradient of the risk function . . . . . . . 14

3 Convergence of the risk of gradient flows (GFs) in the training of ANNs 16
3.1 Convergence of the risk of GFs to the risk of a critical point . . . . . . . . . . . . 17
3.2 Convergence of the risk of GFs to the minimal risk . . . . . . . . . . . . . . . . . 17

1

http://arxiv.org/abs/2107.04479v1


3.3 Risks of critical points for affine linear target functions . . . . . . . . . . . . . . . 18
3.4 Convergence of the risk of GFs to the minimal risk for affine linear target functions 19

4 A priori estimates for GFs in the training of ANNs 19
4.1 Lyapunov type functions for GFs . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 A priori estimates for GFs with large risk . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Invariant quantities for GFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Properties of ANN parametrizations with small risk and one hidden neuron 22
5.1 Mean square approximations through constant functions . . . . . . . . . . . . . . 23
5.2 Mathematical description of ANNs with one hidden neuron . . . . . . . . . . . . 24
5.3 Properties of ANNs with small risk and one hidden neuron . . . . . . . . . . . . 25

6 Convergence of the risk of GFs in the training of ANNs with one hidden
neuron 28
6.1 A priori estimates for GFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Properties of ANN parameters for convergent sequences of ANN realizations . . . 31
6.3 Convergence of the risk of GFs to zero for affine linear target functions . . . . . . 32
6.4 Uniform convergence of realizations of GFs for affine linear target functions . . . 35

1 Introduction

Gradient descent (GD) type optimization schemes are the standard tools in the training of
feedforward fully connected artificial neural networks (ANNs) with rectified linear unit (ReLU)
activation. Such GD type optimization schemes can be considered as temporal discretization
methods for the associated gradient flow (GF) differential equations and most of the key diffi-
culties which arise in the mathematical convergence analysis of GD type optimization schemes
in the training of ANNs with ReLU activation already arise in the mathematical convergence
analysis of the corresponding GFs. It is the key subject of this article to analyze such GFs
arising in the training of ANNs with ReLU activation and, in particular, to prove that the risk
of every bounded GF trajectory converges in the training of ANNs with ReLU activation to
the risk of a critical point. We are particularly interested in the mathematical convergence
analysis of GF trajectories instead of time discrete GD optimization schemes since, on the one
hand, most of the key difficulties which arise in the mathematical analysis of GD type optimiza-
tion schemes in the training of ANNs with ReLU activation already arise in the mathematical
analysis of the corresponding GFs and since, on the other hand, the consideration of such GF
trajectories allows us to focus on precisely such key difficulties.

In the scientific literature there are several quite promising approaches regarding the math-
ematical convergence analysis for GD type optimization schemes and GFs, respectively. For
instance, we point to [11, 13, 15, 17] for results on the convergence of GF in the training of
ANNs in the overparametrized regime, where the number of neurons has to be sufficiently large
when compared to the number of used input-output data pairs. Another promising idea is
to view the neurons of an ANN as interacting particles and consider the limit of the associ-
ated empirical measures as the number of neurons increases to infinity. The limiting process
of the corresponding GFs is known in the scientific literature as Wasserstein gradient flow; cf.,
e.g., [5, 9, 10], the overview article [14], and the references mentioned therein. Most convergence
results for the Wasserstein gradient flow require smoothness assumptions on the considered risk
function, which are not satisfied for ANNs with ReLU activation. To overcome this issue, a
different parametrization for ReLU networks has been proposed in [10, Section 4.2]. In [2, 8] GF
processes have been considered in the context of training deep linear neural networks, in which
the employed activation function is the identity. The behavior of the realization functions of
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ANNs with one hidden layer and ReLU activation under the GF dynamics has been investigated
in more detail in [19, 23]. Another recent idea is to consider only very special target functions
and we refer, in particular, to [6, 18] for convergence results for GF and GD processes in the
case of constant target functions. In the more general case of affine linear target functions, the
critical points of the risk function were characterized in [7] and parts of the analysis in this
article exploit this characterization. For further abstract convergence results on GF processes
we point, e.g., to [1, 4, 16, 22] and the references mentioned therein.

It is the key topic of this article to provide some first basics steps regarding the mathematical
convergence analysis of GFs arising in the training of ANNs with ReLU activation. Specifically,
in one of main results of this article, see item (iv) in Theorem 1.1 in this introductory section, we
prove that the risk of every bounded GF trajectory converges in the training of ANNs with one
hidden layer and ReLU activation to the risk of a critical point. In Theorem 1.1 below we study
fully connected feedfoward ANNs with a d-dimensional input layer (with d ∈ N = {1, 2, 3, ...}
neurons on the input layer), with an H-dimensional hidden layer (with H ∈ N neurons on
the hidden layer), and with a 1-dimensional output layer (with one neuron on the output
layer). There are thus Hd scalar real weight parameters and H scalar real bias parameters
to describe the affine linear transformation in between the d-dimensional input layer and the
H-dimensional hidden layer and there are thus H scalar real weight parameters and 1 scalar
real bias parameter to describe the affine linear transformation in between the H-dimensional
hidden layer and the 1-dimensional output layer. Overall the ANNs in Theorem 1.1 thus consist
of precisely d = dH + 2H + 1 scalar real ANN parameters.

In Theorem 1.1 we study fully connected feedfoward ANNs with the ReLU activation func-
tion R ∋ x 7→ max{x, 0} ∈ R (which is also referred to as rectifier function) as the activation
function. The ReLU activation function R ∋ x 7→ max{x, 0} ∈ R fails to be differentiable and
can thus not be used to specify gradients in GD type optimization schemes and GFs, respec-
tively. A common procedure to overcome this issue (cf. [18] and [6]) is to approximate the
ReLU activation function R ∋ x 7→ max{x, 0} ∈ R through appropriate continuously differen-
tiable functions which converge pointwise to the ReLU activation function and whose derivatives
converge pointwise to the left derivative of the ReLU activation function. In Theorem 1.1 the
function R∞ : R → R specifies the ReLU activation function and the functions Rr : R → R,
r ∈ N, serve as such continuously differentiable approximations of the ReLU activation func-
tion; see (1) in Theorem 1.1.

The finite measure µ : [a,b]d → [0,∞] in Theorem 1.1 specifies up to a normalization con-
stant the probability distribution of the input data of the supervised learning problem considered
in Theorem 1.1. In Theorem 1.1 we assume that the measure µ : [a,b]d → [0,∞] is absolutely
continuous with respect to the Lebesgue measure. The functions Lr : Rd → R, r ∈ N ∪ {∞},
in Theorem 1.1 describe the risk functions associated to the considered ANNs in the sense that
for all r ∈ N ∪ {∞} we have that Lr : Rd → R is the risk function associated to the target
function f : [a,b]d → R and the fully connected feedforward ANNs with the activation function
Rr : R → R; see (2) in Theorem 1.1 for details.

The function ‖·‖ : Rd → R in Theorem 1.1 is nothing else but the standard norm on the
ANN parameter space R

d = R
dH+2H+1. The function G : Rd → R

d in Theorem 1.1 specifies
the generalized gradients of the risk function L∞ : Rd → R using the continuously differentiable
approximations Rr : R → R, r ∈ N.

Item (i) in Theorem 1.1 asserts that the generalized gradient function G : Rd → R
d is locally

bounded and measurable. This statement is provided to ensure that for every continuous
function Θ = (Θt)t∈[0,∞) : [0,∞) → R

d and every t ∈ [0,∞) we have that the Lebesgue integral
∫ t
0 G(Θs) ds makes sense (cf. items (iv) and (v) in Theorem 1.1).

Item (ii) in Theorem 1.1 reveals that the generalized gradient function G : Rd → R
d is lower

semicontinuous. In the case of ANNs with smooth activation functions it follows directly from
Lebesgue’s theorem of dominated convergence that the gradient function of the risk function
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is continuous. In the case of ANNs with ReLU activation, however, the generalized gradient
function G : Rd → R

d fails to be continuous but in item (ii) in Theorem 1.1 we prove that this
generalized gradient function is instead lower semicontinuous.

Item (iii) in Theorem 1.1 connects the generalized gradient function G : Rd → R
d with

standard gradients of the risk function L∞ : Rd → R by demonstrating that there exists an
open set U ⊆ R

d with full Lebesgue measure such that L∞ restricted to U is continuously
differentiable with G|U : U → R

d being the gradient of (L∞)|U : U → R.
Item (iv) in Theorem 1.1 establishes that the risk of every bounded GF trajectory converges

in the training of the considered ANNs to the risk of a critical point. Item (v) in Theorem 1.1
reveals that the risk of every bounded GF trajectory with sufficiently small initial risk converges
in the training of the considered ANNs to the risk of the global minima of L∞ : Rd → R. We
now present the precise statement of Theorem 1.1.

Theorem 1.1. Let d,H, d ∈ N, a ∈ R, b ∈ (a,∞), f ∈ C([a,b]d,R) satisfy d = dH + 2H+ 1,
let Rr ∈ C(R,R), r ∈ N ∪ {∞}, satisfy for all x ∈ R that (

⋃

r∈N{Rr}) ⊆ C1(R,R), R∞(x) =
max{x, 0}, supr∈N supy∈[−|x|,|x|](|Rr(y)| + |(Rr)

′(y)|) <∞, and

lim supr→∞
(

|Rr(x) −R∞(x)| + |(Rr)
′(x) − 1(0,∞)(x)|

)

= 0, (1)

let µ : B([a,b]d) → [0,∞] be a finite measure, let Lr : Rd → R, r ∈ N ∪ {∞}, satisfy for all
r ∈ N ∪ {∞}, θ = (θ1, . . . , θd) ∈ R

d that

Lr(θ) =

∫

[a,b]d

(

f(x1, . . . , xd)

− θd −
∑H

i=1 θH(d+1)+i

[

Rr(θHd+i +
∑d

j=1 θ(i−1)d+jxj)
])2

µ(d(x1, . . . , xd)), (2)

let ‖·‖ : Rd → R satisfy for all x = (x1, . . . , xd) ∈ R
d that ‖x‖ = [

∑d
i=1|xi|2]1/2, let G : Rd → R

d

satisfy for all θ ∈ {ϑ ∈ R
d : ((∇Lr)(ϑ))r∈N is convergent} that G(θ) = limr→∞(∇Lr)(θ), and

assume that µ is absolutely continuous with respect to the Lebesgue measure on [a,b]d. Then

(i) it holds that Rd ∋ θ 7→ G(θ) ∈ R
d is locally bounded and measurable,

(ii) it holds that Rd ∋ θ 7→ ‖G(θ)‖ ∈ R is lower semicontinuous,

(iii) there exists an open U ⊆ R
d which satisfies

∫

Rd\U 1 dx = 0, (L∞)|U ∈ C1(U,R), and

∇((L∞)|U ) = G|U ,

(iv) it holds for all Θ ∈ C([0,∞),Rd) with supt∈[0,∞)‖Θt‖ < ∞ and ∀ t ∈ [0,∞) : Θt =

Θ0 −
∫ t
0 G(Θs) ds that there exists ϑ ∈ G−1({0}) such that lim supt→∞ L∞(Θt) = L∞(ϑ),

and

(v) it holds for all Θ ∈ C([0,∞),Rd) with supt∈[0,∞)‖Θt‖ < ∞, ∀ t ∈ [0,∞) : Θt = Θ0 −
∫ t
0 G(Θs) ds, and ∀ θ ∈ G−1({0}) ∩ (L∞)−1((infϑ∈Rd L∞(ϑ),∞)) : L∞(Θ0) < L∞(θ) that

lim supt→∞ L∞(Θt) = infϑ∈Rd L∞(ϑ). (3)

Item (i) in Theorem 1.1 is a direct consequence of Corollary 2.4 below, item (ii) in Theo-
rem 1.1 is a direct consequence of Corollary 2.16 below, item (iii) in Theorem 1.1 is a direct
consequence of Corollary 2.17 below, item (iv) in Theorem 1.1 is a direct consequence of Theo-
rem 3.2 below, and item (v) in Theorem 1.1 is a direct consequence of Corollary 3.3 below.

In Theorem 1.2 below we specialise the setup in Theorem 1.1 to the specific situation where
there the input is 1-dimensional (where there is only one neuron on the input layer), where
the measure µ : B([a,b]) → [0,∞] coincides with the Lebesgue–Borel measure, and where the
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target function f : [a,b] → R is affine linear in the sense that there exist α, β ∈ R such that for
all x ∈ [a,b] it holds that

f(x) = αx+ β (4)

to establish that the risk of every (bounded) GF trajectory with sufficiently small initial risk
converges to zero. Specifically, in the specific situation of (4) we prove in Theorem 1.2 that for
every continuous GF trajectory Θ: [0,∞) → R

3H+1 with

supt∈[0,∞)((H − 1)‖Θt‖) <∞ (5)

and

L∞(Θ0) <
α2(b−a)3

12(2⌊H/2⌋ + 1)4
(6)

we have that lim supt→∞ L∞(Θt) = 0. In this specific situation of a 1-dimensional input d = 1
(in this specific situation where there is only one neuron on the input layer) we observe that
the ANN parameter space R

d simplifies to R
d = R

dH+2H+1 = R
3H+1. Moreover, we note that

in Theorem 1.2 below and in (5) above, respectively, we assume in the case where the number
H ∈ N of neurons on the hidden layer is strictly bigger than 1 (in the case where H > 1) that
the GF trajectory is bounded. We now present the precise statement of Theorem 1.2.

Theorem 1.2. Let H, d ∈ N, α, β,a ∈ R, b ∈ (a,∞) satisfy d = 3H + 1, let Rr ∈ C(R,R),
r ∈ N ∪ {∞}, satisfy for all x ∈ R that (

⋃

r∈N{Rr}) ⊆ C1(R,R), R∞(x) = max{x, 0},
supr∈N supy∈[−|x|,|x|](|Rr(y)| + |(Rr)

′(y)|) <∞, and

lim supr→∞
(

|Rr(x) −R∞(x)| + |(Rr)
′(x) − 1(0,∞)(x)|

)

= 0, (7)

let Lr : Rd → R, r ∈ N ∪ {∞}, satisfy for all r ∈ N ∪ {∞}, θ = (θ1, . . . , θd) ∈ R
d that

Lr(θ) =

∫ b

a

(

αx+ β − θd −
∑H

i=1 θ2H+i

[

Rr(θH+i + θix)
])2

dx, (8)

let ‖·‖ : Rd → R satisfy for all x = (x1, . . . , xd) ∈ R
d that ‖x‖ = [

∑n
i=1|xi|2]1/2, let G : Rd → R

d

satisfy for all θ ∈ {ϑ ∈ R
d : ((∇Lr)(ϑ))r∈N is convergent} that G(θ) = limr→∞(∇Lr)(θ), and let

Θ ∈ C([0,∞),Rd) satisfy supt∈[0,∞)((H − 1)‖Θt‖) < ∞, ∀ t ∈ [0,∞) : Θt = Θ0 −
∫ t
0 G(Θs) ds,

and L∞(Θ0) <
α2(b−a)3

12(2⌊H/2⌋+1)4 . Then lim supt→∞ L∞(Θt) = 0.

Theorem 1.2 is a direct consequence of Corollary 3.5 (in the case H > 1) and Corollary 6.8 (in
the case H = 1) below. The remainder of this article is organized as follows. In Section 2 below
we establish certain regularity properties for the generalized gradient function G : Rd → R

d in
Theorem 1.1 above. In Section 3 below we employ the regularity properties for the generalized
gradient function G : Rd → R

d from Section 2 to prove items (iv) and (v) in Theorem 1.1
and to prove Theorem 1.2 under the more restrictive assumption that supt∈[0,∞)‖Θt‖ < ∞;
cf. (5) above. In Section 4 below we establish suitable a priori bounds for GF trajectories. In
Sections 5 and 6 we employ the a priori bounds from Section 4 to prove Theorem 1.2 under the
more general assumption that supt∈[0,∞)((H − 1)‖Θt‖) <∞; cf. (5) above.

2 Properties of the risk function and its gradient

In this section we establish several regularity properties for the risk function associated to the
considered supervised learning problem; see (2) above. In particular, in Proposition 2.11 in
Subsection 2.4 below we provide in (40) a sufficient condition to ensure that the risk function
is differentiable and in Corollary 2.16 in Subsection 2.5 below we prove that the standard
norm of the generalized gradient function G : Rd → R

d associated to the risk function is lower
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semicontinuous. In the scientific literature results similar to Proposition 2.11 can, e.g., be found
in Cheridito et al. [7]. In particular, in the case of only one neuron on the input layer (in the
case of a 1-dimensional input) results similar to Proposition 2.11 have been shown in [7, Lemma
3.4 and Lemma 3.7].

Our proof of Proposition 2.11 employs the known representation result for the generalized
gradient function G : Rd → R

d in Proposition 2.2 in Subsection 2.2 below, the well known local
Lipschitz continuity result for the risk function in Lemma 2.9 in Subsection 2.4, the elementary
Lipschitz type estimate for certain affine linear functions in Lemma 2.10 in Subsection 2.4, and
the fact that appropriate active neuron regions depend continuously on the ANN parameters
which we establish in Corollary 2.8 in Subsection 2.3 below. Our proof of Corollary 2.16 employs
the fact that the absolute value of every component of the generalized gradient function G : Rd →
R
d is lower semicontinuous which we establish in Corollary 2.15 in Subsection 2.5. Our proof

of Corollary 2.15 uses the regularity results for the absolute values of the components of the
generalized gradient function G : Rd → R

d in Lemma 2.12, Lemma 2.13, and Lemma 2.14 in
Subsection 2.5. Our proof of Corollary 2.8 uses the appropriate continuity result for active
neuron regions in Lemma 2.5 and the well-known results on absolutely continuous measures
in Lemma 2.6 and Corollary 2.7. In the scientific literature Lemma 2.6 can, e.g., be found in
Rudin [21, Theorem 6.11].

In Setting 2.1 in Subsection 2.1 below we present the mathematical framework which we
frequently employ in Sections 2–4 to formulate ANNs with one hidden layer and ReLU activation
and the corresponding risk functions (see (11) and (12) in Setting 2.1), in the elementary
regularity result in Lemma 2.3 in Subsection 2.2 we establish an elementary a priori bound for
the norm of the generalized gradient function G : Rd → R

d, and in the elementary regularity
result in Corollary 2.4 in Subsection 2.2 we demonstrate that the generalized gradient function
G : Rd → R

d is locally bounded and measurable. Lemma 2.3 is used in the proof of Corollary 2.4
in Subsection 2.2 and Corollary 2.4 is employed in Section 3 and in item (i) in Theorem 1.1.
Only for completeness we include in this section detailed proofs for Proposition 2.2, Lemma 2.3,
Corollary 2.4, Lemma 2.6, Corollary 2.7, and Lemma 2.9.

2.1 Mathematical description of artificial neural networks (ANNs)

Setting 2.1. Let d,H, d ∈ N, a ∈ R, b ∈ (a,∞), f ∈ C([a,b]d,R) satisfy d = dH + 2H + 1,
let w = ((wθ

i,j)(i,j)∈{1,...,H}×{1,...,d})θ∈Rd : Rd → R
H×d, b = ((bθ1, . . . , b

θ
H))θ∈Rd : Rd → R

H , v =

((vθ1, . . . , v
θ
H))θ∈Rd : Rd → R

H , and c = (cθ)θ∈Rd : Rd → R satisfy for all θ = (θ1, . . . , θd) ∈ R
d,

i ∈ {1, 2, . . . ,H}, j ∈ {1, 2, . . . , d} that

wθ
i,j = θ(i−1)d+j , bθi = θHd+i, vθi = θH(d+1)+i, and cθ = θd, (9)

let Rr ∈ C1(R,R), r ∈ N, satisfy for all x ∈ R that

lim supr→∞
(

|Rr(x) − max{x, 0}| + |(Rr)
′(x) − 1(0,∞)(x)|

)

= 0 (10)

and supr∈N supy∈[−|x|,|x|]|(Rr)
′(y)| < ∞, let µ : B([a,b]d) → [0,∞] be a finite measure, let

N = (Nθ)θ∈Rd : Rd → C(Rd,R) and L : Rd → R satisfy for all θ ∈ R
d, x = (x1, . . . , xd) ∈ R

d

that
Nθ(x) = cθ +

∑H
i=1 v

θ
i max

{

bθi +
∑d

j=1w
θ
i,jxj, 0

}

(11)

and L(θ) =
∫

[a,b]d(f(y) −Nθ(y))2 µ(dy), let Lr : Rd → R, r ∈ N, satisfy for all r ∈ N, θ ∈ R
d

that

Lr(θ) =

∫

[a,b]d

(

f(y1, . . . , y2) − cθ −∑H
i=1 v

θ
i

[

Rr(b
θ
i +

∑d
j=1w

θ
i,jyj)

])2
µ(d(y1, . . . , yd)), (12)

let λ : B([a,b]d) → [0,∞] be the Lebesgue–Borel measure on [a,b]d, let ‖·‖ :
(
⋃

n∈NR
n
)

→ R

and 〈·, ·〉 :
(
⋃

n∈N(Rn ×R
n)
)

→ R satisfy for all n ∈ N, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n

6



that ‖x‖ = [
∑n

i=1|xi|
2]1/2 and 〈x, y〉 =

∑n
i=1 xiyi, let I

θ
i ⊆ R

d, θ ∈ R
d, i ∈ {1, 2, . . . ,H}, satisfy

for all θ ∈ R
d, i ∈ {1, 2, . . . ,H} that

Iθi =
{

x = (x1, . . . , xd) ∈ [a,b]d : bθi +
∑d

j=1w
θ
i,jxj > 0

}

, (13)

and let G = (G1, . . . ,Gd) : Rd → R
d satisfy for all θ ∈ {ϑ ∈ R

d : ((∇Lr)(ϑ))r∈N is convergent}
that G(θ) = limr→∞(∇Lr)(θ).

2.2 An upper bound for the norm of the gradient of the risk function

Proposition 2.2. Assume Setting 2.1 and let θ ∈ R
d, i ∈ {1, 2, . . . ,H}, j ∈ {1, 2, . . . , d}. Then

(i) it holds for all r ∈ N that Lr ∈ C1(Rd,R),

(ii) it holds that lim supr→∞|Lr(θ) − L(θ)| = 0,

(iii) it holds that lim supr→∞‖(∇Lr)(θ) − G(θ)‖ = 0, and

(iv) it holds that

G(i−1)d+j(θ) = 2vθi

∫

Iθi

xj(N
θ(x) − f(x))µ(dx),

GHd+i(θ) = 2vθi

∫

Iθi

(Nθ(x) − f(x))µ(dx),

GH(d+1)+i(θ) = 2

∫

[a,b]d

[

max
{

bθi +
∑d

k=1w
θ
i,kxk, 0

}]

(Nθ(x) − f(x))µ(dx),

and Gd(θ) = 2

∫

[a,b]d
(Nθ(x) − f(x))µ(dx).

(14)

Proof of Proposition 2.2. Throughout this proof we assume without loss of generality that
µ([a,b]d) > 0. Observe that [18, Proposition 2.3] (applied with a x a, b x b, µ x

(B([a,b]d) ∋ A 7→ µ(A)[µ([a,b]d)]−1 ∈ [0, 1]) in the notation of [18, Proposition 2.3]) es-
tablishes items (i), (ii), (iii), and (iv). The proof of Proposition 2.2 is thus complete.

Lemma 2.3. Assume Setting 2.1 and let a ∈ R, θ ∈ R
d satisfy a = max{|a|, |b|, 1}. Then

‖G(θ)‖2 ≤ 4L(θ)
(

a2(d+ 1)‖θ‖2 + 1
)

µ([a,b]d). (15)

Proof of Lemma 2.3. Throughout this proof assume without loss of generality that µ([a,b]d) >
0. Note that Proposition 2.2, [18, Proposition 2.3] (applied with a x a, b x b, µ x

(B([a,b]d) ∋ A 7→ µ(A)[µ([a,b]d)]−1 ∈ [0, 1]) in the notation of [18, Proposition 2.3]), and [18,
Lemma 2.5] (applied with ax a, bx b, µx (B([a,b]d) ∋ A 7→ µ(A)[µ([a,b]d)]−1 ∈ [0, 1]) in
the notation of [18, Lemma 2.5]) establish (15). The proof of Lemma 2.3 is thus complete.

Corollary 2.4. Assume Setting 2.1. Then it holds that G is locally bounded and measurable.

Proof of Corollary 2.4. Observe that item (ii) in Proposition 2.2 ensures that for all r ∈ N it
holds that R

d ∋ θ 7→ (∇Lr)(θ) ∈ R
d is measurable. Combining this with item (iii) in Proposi-

tion 2.2 demonstrates that G is measurable. Moreover, note that Lemma 2.9 and Lemma 2.3
assure that G is locally bounded. This completes the proof of Corollary 2.4.
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2.3 Continuous dependence of active neuron regions on ANN parameters

Lemma 2.5. Let d ∈ N, a ∈ R, b ∈ (a,∞), let Iu ⊆ [a,b]d, u ∈ R
d+1, satisfy for all

u = (u1, . . . , ud+1) ∈ R
d+1 that Iu = {x = (x1, . . . , xd) ∈ [a,b]d : ud+1 +

∑d
i=1 uixi > 0}, for

every n ∈ N let λn : B(Rn) → [0,∞] be the Lebesgue–Borel measure on R
n, and let v ∈ R

d+1\{0}.
Then

lim supRd+1∋u→v λd(I
u∆Iv) = 0. (16)

Proof of Lemma 2.5. Throughout this proof let ‖·‖ :
(
⋃

n∈NR
n
)

→ R satisfy for all n ∈ N,

x = (x1, . . . , xn) ∈ R
n that ‖x‖ = [

∑n
i=1|xi|

2]1/2. Observe that the fact that for all y ∈ R it
holds that y ≥ −|y| ensures that for all u = (u1, . . . , ud+1) ∈ R

d+1, i ∈ {1, 2, . . . , d + 1} with
‖u− v‖ < |vi| it holds that

uivi = (vi)
2 + (ui − vi)vi ≥ |vi|2 − |ui − vi||vi| ≥ |vi|2 − ‖u− v‖|vi| > 0. (17)

In the following we distinguish between the case maxi∈{1,2,...,d}|vi| = 0, the case (maxi∈{1,2,...,d}|vi|,
d) ∈ (0,∞) × [2,∞), and the case (maxi∈{1,2,...,d}|vi|, d) ∈ (0,∞) × {1}. We first prove (16) in
the case

maxi∈{1,2,...,d}|vi| = 0. (18)

Note that (18) and the assumption that v ∈ R
d+1\{0} imply that vd+1 6= 0. Moreover, observe

that (18) shows that for all u = (u1, . . . , ud+1) ∈ R
d+1, x ∈ Iu∆Iv we have that

∣

∣

([
∑d

i=1 uixi
]

+ ud+1

)

−
([
∑d

i=1 vixi
]

+ vd+1

)∣

∣

=
∣

∣

[
∑d

i=1 uixi
]

+ ud+1

∣

∣ +
∣

∣

[
∑d

i=1 vixi
]

+ vd+1

∣

∣ ≥
∣

∣

[
∑d

i=1 vixi
]

+ vd+1

∣

∣ = |vd+1|.
(19)

In addition, note that for all u = (u1, . . . , ud+1) ∈ R
d+1, x ∈ [a,b]d it holds that

∣

∣

([
∑d

i=1 uixi
]

+ ud+1

)

−
([
∑d

i=1 vixi
]

+ vd+1

)∣

∣ ≤
[
∑d

i=1|ui − vi||xi|
]

+ |ud+1 − vd+1|
≤ max{|a|, |b|}

[
∑d

i=1|ui − vi|
]

+ |ud+1 − vd+1| ≤ (1 + dmax{|a,b|})‖u − v‖.
(20)

Combining this with (19) shows that for all u ∈ R
d+1 with ‖u− v‖ < |vd+1|

1+dmax{|a,b|} it holds that

Iu∆Iv = ∅. Hence, we obtain that lim supRd+1∋u→v λd(I
u∆Iv) = 0. This establishes (16) in

the case maxi∈{1,2,...,d}|vi| = 0. In the next step we prove (16) in the case

(maxi∈{1,2,...,d}|vi|, d) ∈ (0,∞) × [2,∞). (21)

For this we assume without loss of generality that v1 6= 0. In the following let Ju,wx ⊆ R,
x ∈ [a,b]d−1, u,w ∈ R

d+1, satisfy for all x = (x2, . . . , xd) ∈ [a,b]d−1, u,w ∈ R
d+1 that

Ju,wx = {y ∈ [a,b] : (y, x2, . . . , xd) ∈ Iu\Iw}. Next observe that Fubini’s theorem and the fact
that for all u ∈ R

d+1 it holds that Iu is measurable show that for all u ∈ R
d+1 we have that

λd(I
u∆Iv) =

∫

[a,b]d
1Iu∆Iv(x)λd(dx) =

∫

[a,b]d

(

1Iu\Iv(x) + 1Iv\Iu(x)
)

λd(dx)

=

∫

[a,b]d−1

∫

[a,b]

(

1Iu\Iv(y, x2, . . . , xd) + 1Iv\Iu(y, x2, . . . , xd)
)

λ1(dy)λd−1(d(x2, . . . , xd))

=

∫

[a,b]d−1

∫

[a,b]

(

1Ju,v
x

(y) + 1Jv,u
x

(y)
)

λ1(dy)λd−1(dx)

=

∫

[a,b]d−1

(λ1(Ju,vx ) + λ1(J
v,u
x ))λd−1(dx).

(22)
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Moreover, note that for all x = (x2, . . . , xd) ∈ [a,b]d−1, u = (u1, . . . , ud+1), w = (w1, . . . , wd+1) ∈
R
d+1, s ∈ {−1, 1} with min{su1, sw1} > 0 it holds that

Ju,wx = {y ∈ [a,b] : (y, x2, . . . , xd) ∈ Iu\Iw}

=
{

y ∈ [a,b] : u1y +
[
∑d

i=2 uixi
]

+ ud+1 > 0 ≥ w1y +
[
∑d

i=2wixi
]

+ wd+1

}

=
{

y ∈ [a,b] : − s
u1

([
∑d

i=2 uixi
]

+ ud+1

)

< sy ≤ − s
w1

([
∑d

i=2wixi
]

+ wd+1

)

}

.

(23)

Hence, we obtain for all x = (x2, . . . , xd) ∈ [a,b]d−1, u = (u1, . . . , ud+1), w = (w1, . . . , wd+1) ∈
R
d+1, s ∈ {−1, 1} with min{su1, sw1} > 0 that

λ1(Ju,wx ) ≤
∣

∣

∣

s
u1

([
∑d

i=2 uixi
]

+ ud+1

)

− s
w1

([
∑d

i=2wixi
]

+ wd+1

)

∣

∣

∣

≤
[

∑d
i=2

∣

∣

ui
u1

− wi

w1

∣

∣|xi|
]

+
∣

∣

∣

ud+1

u1
− wd+1

w1

∣

∣

∣

≤ max{|a|, |b|}
[

∑d
i=2

∣

∣

ui
u1

− wi

w1

∣

∣

]

+
∣

∣

∣

ud+1

u1
− wd+1

w1

∣

∣

∣
.

(24)

Furthermore, observe that (17) demonstrates for all u = (u1, . . . , ud+1) ∈ R
d+1 with ‖u− v‖ <

|v1|
2 that u1v1 > 0. This implies that for all u = (u1, . . . , ud+1) ∈ R

d+1 with ‖u − v‖ < |v1|
2

there exists s ∈ {−1, 1} such that min{su1, sv1} > 0. Combining this with (24) proves that

there exists C ∈ R such that for all x ∈ [a,b]d−1, u ∈ R
d+1 with ‖u − v‖ < |v1|

2 we have that
λ1(J

u,v
x ) +λ1(J

v,u
x ) ≤ C‖u− v‖. This and (22) establish (16) in the case (maxi∈{1,2,...,d}|vi|, d) ∈

(0,∞) × [2,∞). Finally, we prove (16) in the case

(maxi∈{1,2,...,d}|vi|, d) ∈ (0,∞) × {1}. (25)

Note that (25) assures that |v1| > 0. In addition, observe that for all u = (u1, u2), w =
(w1, w2) ∈ R

2, s ∈ {−1, 1} with min{su1, sw1} > 0 it holds that

Iw\Iu = {y ∈ [a,b] : w1y + w2 > 0 ≥ u1y + u2} =
{

y ∈ [a,b] : − sw2
w1

< sy ≤ − su2
u1

}

⊆
{

y ∈ R : − sw2
w1

< sy ≤ − su2
u1

}

.
(26)

Hence, we obtain for all u = (u1, u2), w = (w1, w2) ∈ R
2, s ∈ {−1, 1} with min{su1, sw1} > 0

that
λ1(I

w\Iu) ≤
∣

∣

∣

(

− su2
u1

)

−
(

− sw2
w1

)
∣

∣

∣
=

∣

∣

∣

u2
u1

− w2
w1

∣

∣

∣
. (27)

Furthermore, note that (17) ensures for all u = (u1, u2) ∈ R
2 with ‖u− v‖ < |v1| that u1v1 > 0.

This proves that for all u = (u1, u2) ∈ R
2 with ‖u − v‖ < |v1| there exists s ∈ {−1, 1} such

that min{su1, sv1} > 0. Combining this with (27) demonstrates for all u = (u1, u2) ∈ R
2 with

‖u− v‖ < |v1| that

λ1(I
u∆Iv) = λ1(Iu\Iv) + λ1(Iv\Iu) ≤ 2

∣

∣

∣

u2
u1

− v2
v1

∣

∣

∣
. (28)

Hence, we obtain that
lim supR2∋u→v λ1(Iv∆Iu) = 0. (29)

This establishes (16) in the case (maxi∈{1,2,...,d}|vi|, d) ∈ (0,∞) × {1}. The proof of Lemma 2.5
is thus complete.

Lemma 2.6. Let (E, E) be a measurable space, let µ : E → [0,∞] and ν : E → [0,∞] be measures,
assume µ ≪ ν and µ(E) < ∞, and let ε ∈ (0,∞). Then there exists δ ∈ (0,∞) such that for
all A ∈ E with ν(A) < δ it holds that µ(A) < ε.
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Proof of Lemma 2.6. Throughout this proof assume for the sake of contradiction that there
exists A = (An)n∈N : N → E which satisfies for all n ∈ N that ν(An) < 2−n and µ(An) ≥ ε and
let Bn ∈ E , n ∈ N, and C ∈ E satisfy for all n ∈ N that Bn =

⋃∞
k=nAk and C =

⋂∞
k=1Bk.

Observe that the fact that for all n ∈ N it holds that ν(An) < 2−n ensures that for all n ∈ N

we have that

ν(Bn) = ν(
⋃∞
k=nAk) ≤

∑∞
k=n ν(Ak) ≤

∑∞
k=n 2−k = 2−n

(
∑∞

k=0 2−k
)

= 21−n. (30)

This implies that

ν(C) = ν(
⋂∞
k=1Bk) ≤ infk∈N ν(Bk) ≤ infk∈N(21−k) = 0. (31)

The assumption that µ≪ ν hence shows that

µ(C) = 0. (32)

Moreover, note that the fact that for all n ∈ N it holds that µ(An) ≥ ε proves that for all n ∈ N

we have that µ(Bn) = µ(
⋃∞
k=nAk) ≥ ε. Combining this and (32) with the fact that for all

n ∈ N it holds that Bn ⊇ Bn+1 and the fact that µ(B1) ≤ µ(E) <∞ demonstrates that

0 = µ(C) = µ(
⋂∞
k=1Bk) = limk→∞ µ(Bk) ≥ ε > 0. (33)

This is a contradiction. The proof of Lemma 2.6 is thus complete.

Corollary 2.7. Let (E, E) be a measurable space, let µ : E → [0,∞] and ν : E → [0,∞] be
measures, assume µ≪ ν and µ(E) <∞, and let An ∈ E, n ∈ N, satisfy lim supn→∞ ν(An) = 0.
Then lim supn→∞ µ(An) = 0.

Proof of Corollary 2.7. Throughout this proof let ε ∈ (0,∞). Observe that Lemma 2.6 proves
that there exists δ ∈ (0,∞) such that for all B ∈ E with ν(B) < δ it holds that µ(B) < ε.
Furthermore, note that the assumption that lim supn→∞ ν(An) = 0 ensures that there exists
N ∈ N such that for all n ∈ N ∩ [N,∞) it holds that ν(An) < δ. Hence, we obtain for all
n ∈ N ∩ [N,∞) that µ(An) < ε. The proof of Corollary 2.7 is thus complete.

Corollary 2.8. Assume Setting 2.1, let θ ∈ R
d, i ∈ {1, 2, . . . ,H} satisfy |bθi | +

∑d
j=1|wθ

i,j | > 0,

and assume µ≪ λ. Then lim supRd∋ϑ→θ µ(Iθi ∆Iϑi ) = 0.

Proof of Corollary 2.8. Throughout this proof let ϑ = (ϑn)n∈N : N → R
d satisfy lim supn→∞‖ϑn−

θ‖ = 0. Observe that Lemma 2.5 and the assumption that |bθi | +
∑d

j=1|wθ
i,j| > 0 establish

that lim supn→∞ λ(Iθi ∆Iϑni ) = 0. Combining this, the assumption that µ ≪ λ, the fact that
µ([a,b]d) <∞, and Corollary 2.7 implies that lim supn→∞ µ(Iθi ∆Iϑni ) = 0. The proof of Corol-
lary 2.8 is thus complete.

2.4 Differentiability of the risk function

Lemma 2.9. Let d,H, d ∈ N, a ∈ R, b ∈ (a,∞), f ∈ C([a,b]d,R) satisfy d = dH + 2H + 1,
let N = (Nθ)θ∈Rd : Rd → C(Rd,R) satisfy for all θ = (θ1, . . . , θd) ∈ R

d, x = (x1, . . . , xd) ∈ R
d

that
Nθ(x) = θd +

∑H
i=1 θH(d+1)+i max

{

θHd+i +
∑d

j=1 θ(i−1)d+jxj , 0
}

, (34)

let µ : B([a,b]d) → [0,∞] be a finite measure, let ‖·‖ : Rd → R and L : Rd → R satisfy for all
θ = (θ1, . . . , θd) ∈ R

d that ‖θ‖ = [
∑d

i=1|θi|
2]1/2 and L(θ) =

∫

[a,b]d(Nθ(x) − f(x))2 µ(dx), and

let K ⊆ R
d be compact. Then there exists ℒ ∈ R such that for all θ, ϑ ∈ K it holds that

(

supx∈[a,b]d|Nθ(x) −Nϑ(x)|
)

+ |L(θ) − L(ϑ)| ≤ ℒ‖θ − ϑ‖. (35)
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Proof of Lemma 2.9. Throughout this proof we distinguish between the case µ([a,b]d) = 0 and
the case µ([a,b]d) > 0. We first prove (35) in the case

µ([a,b]d) = 0. (36)

Note that (36) ensures that for all θ ∈ R
d it holds that L(θ) = 0. Furthermore, observe that [18,

Lemma 2.4] (applied with ax a, bx b, µx (B([a,b]d) ∋ A 7→ 1A(a, a, . . . , a) ∈ [0, 1]) in the
notation of [18, Lemma 2.4]) proves that there exists ℒ ∈ R such that for all θ, ϑ ∈ K it holds
that (supx∈[a,b]d|Nθ(x)−Nϑ(x)|) ≤ ℒ‖θ−ϑ‖. This establishes (35) in the case µ([a,b]d) = 0.

In the next step we prove (35) in the case µ([a,b]d) > 0. Note that [18, Lemma 2.4] (applied
with a x a, b x b, µ x (B([a,b]d) ∋ A 7→ µ(A)[µ([a,b]d)]−1 ∈ [0, 1]) in the notation of
[18, Lemma 2.4]) establishes (35) in the case µ([a,b]d) > 0. The proof of Lemma 2.9 is thus
complete.

Lemma 2.10. Let d ∈ N, w1, w2 ∈ R
d, b1, b2,a ∈ R, b ∈ (a,∞), let ‖·‖ : Rd → R and

〈·, ·〉 : R
d × R

d → R satisfy for all x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ R
d that ‖x‖ =

[
∑d

i=1|xi|
2]1/2 and 〈x, y〉 =

∑d
i=1 xiyi, let Ik ⊆ [a,b]d, k ∈ {1, 2}, satisfy for all k ∈ {1, 2}

that Ik = {x ∈ [a,b]d : 〈wk, x〉 + bk > 0}, and let x ∈ I1∆I2. Then

max
k∈{1,2}

|〈wk, x〉 + bk| ≤ |〈w1 − w2, x〉 + b1 − b2| ≤ max{|a|, |b|}
√
d‖w1 − w2‖ + |b1 − b2|. (37)

Proof of Lemma 2.10. Throughout this proof assume without loss of generality that x ∈ I1\I2.
Observe that the fact that 〈w2, x〉 + b2 ≤ 0 < 〈w1, x〉 + b1 demonstrates that

〈w2 − w1, x〉 + b2 − b1 < 〈w2, x〉 + b2 ≤ 0 < 〈w1, x〉 + b1 ≤ 〈w1 − w2, x〉 + b1 − b2. (38)

Hence, we obtain that maxk∈{1,2}|〈wk, x〉 + bk| ≤ |〈w1 − w2, x〉 + b1 − b2|. Furthermore, note

that the Cauchy-Schwarz inequality and the fact that x ∈ [a,b]d assure that

|〈w1−w2, x〉+ b1− b2| ≤ ‖x‖‖w1−w2‖+ |b1− b2| ≤ max{|a|, |b|}
√
d‖w2−w1‖+ |b2− b1|. (39)

This completes the proof of Lemma 2.10.

Proposition 2.11. Assume Setting 2.1, assume µ≪ λ, and let θ ∈ R
d satisfy

L(θ)
(
∑H

i=1|vθi |1{0}
(

|bθi | +
∑d

j=1|wθ
i,j|

))

= 0. (40)

Then

(i) it holds that L is differentiable at θ and

(ii) it holds that (∇L)(θ) = G(θ).

Proof of Proposition 2.11. Throughout this proof let M ∈ R satisfy

M = inf
{

m ∈ R : µ
(

{x ∈ [a,b]d : |Nθ(x) − f(x)| > m}
)

= 0
}

(41)

and let C ∈ R satisfy
C = 1 + dmax{|a|, |b|}. (42)

We will prove items (i) and (ii) by showing that

lim supRd\{0}∋h→0

[

‖h‖−1|L(θ + h) − L(θ) − 〈G(θ), h〉|
]

= 0. (43)
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Observe that Proposition 2.2 ensures that for all h ∈ R
d it holds that

〈G(θ), h〉 = 2

[

H
∑

i=1

∫

Iθi

(

bhi +
∑d

j=1w
h
i,jxj

)

vθi (N
θ(x) − f(x))µ(dx)

]

+ 2

[

H
∑

i=1

vhi

∫

[a,b]d
max

{

bθi +
∑d

j=1w
θ
i,jxj , 0

}

(Nθ(x) − f(x))µ(dx)

]

+ 2ch
∫

[a,b]d
(Nθ(x) − f(x))µ(dx).

(44)

Combining this and the fact that for all x,y, z ∈ R it holds that

(x− z)2 − (y− z)2 = (x− y)(x + y− 2z) = (x− y)((x− y) + 2(y− z))

= (x− y)2 + 2(x− y)(y− z)
(45)

demonstrates that for all h ∈ R
d it holds that

L(θ + h) − L(θ) − 〈G(θ), h〉

=

∫

[a,b]d
(Nθ+h(x) −Nθ(x))2 µ(dx)

+ 2

∫

[a,b]d
(Nθ+h(x) −Nθ(x))(Nθ(x) − f(x))µ(dx) − 〈G(θ), h〉

=

∫

[a,b]d
(Nθ+h(x) −Nθ(x))2 µ(dx)

+ 2

∫

[a,b]d

(

ch +
∑H

i=1

[

(vθi + vhi ) max
{

bθi + bhi +
∑d

j=1(w
θ
i,j + wh

i,j)xj , 0
}

−vθi max
{

bθi +
∑d

j=1w
θ
i,jxj , 0

}]

)

(Nθ(x) − f(x))µ(dx)

− 2

[

H
∑

i=1

∫

Iθi

(

bhi +
∑d

j=1w
h
i,jxj

)

vθi (N
θ(x) − f(x))µ(dx)

]

− 2

[

H
∑

i=1

vhi

∫

[a,b]d
max

{

bθi +
∑d

j=1w
θ
i,jxj , 0

}

(Nθ(x) − f(x))µ(dx)

]

− 2ch
∫

[a,b]d
(Nθ(x) − f(x))µ(dx).

(46)

This shows for all h ∈ R
d that

L(θ + h) − L(θ) − 〈G(θ), h〉 =

∫

[a,b]d
(Nθ+h(x) −Nθ(x))2 µ(dx)

+ 2

[

H
∑

i=1

∫

[a,b]d
(vθi + vhi )

(

bθi + bhi +
∑d

j=1(w
θ
i,j + wh

i,j)xj
)

(Nθ(x) − f(x))1Iθ+h
i

(x)µ(dx)

]

− 2

[

H
∑

i=1

∫

[a,b]d
vθi
(

bθi +
∑d

j=1w
θ
i,jxj

)

(Nθ(x) − f(x))1Iθi (x)µ(dx)

]

− 2

[

H
∑

i=1

∫

[a,b]d
vθi
(

bhi +
∑d

j=1w
h
i,jxj

)

(Nθ(x) − f(x))1Iθi (x)µ(dx)

]

− 2

[

H
∑

i=1

∫

[a,b]d
vhi

(

bθi +
∑d

j=1w
θ
i,jxj

)

(Nθ(x) − f(x))1Iθi (x)µ(dx)

]

.

(47)
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Hence, we obtain for all h ∈ R
d that

L(θ + h) − L(θ) − 〈G(θ), h〉 =

∫

[a,b]d
(Nθ+h(x) −Nθ(x))2 µ(dx)

+ 2

[

H
∑

i=1

∫

[a,b]d
vhi

(

bhi +
∑d

j=1w
h
i,jxj

)

(Nθ(x) − f(x))1Iθ+h
i

(x)µ(dx)

]

+ 2

[

H
∑

i=1

∫

[a,b]d
vθi
(

bhi +
∑d

j=1w
h
i,jxj

)

(Nθ(x) − f(x))(1Iθ+h
i

(x) − 1Iθi
(x))µ(dx)

]

+ 2

[

H
∑

i=1

∫

[a,b]d
(vθi + vhi )

(

bθi +
∑d

j=1w
θ
i,jxj

)

(Nθ(x) − f(x))(1Iθ+h
i

(x) − 1Iθi
(x))µ(dx)

]

.

(48)

Combining this with the triangle inequality and (41) proves that for all h ∈ R
d\{0} we have

that

|L(θ + h) −L(θ) − 〈G(θ), h〉|
‖h‖ ≤ ‖h‖−1

∫

[a,b]d
(Nθ+h(x) −Nθ(x))2 µ(dx)

+ 2M‖h‖−1

[

H
∑

i=1

∫

[a,b]d

∣

∣vhi
(

bhi +
∑d

j=1w
h
i,jxj

)
∣

∣

1Iθ+h
i

(x)µ(dx)

]

+ 2M

[

H
∑

i=1

|vθi |
∫

[a,b]d
‖h‖−1

∣

∣bhi +
∑d

j=1w
h
i,jxj

∣

∣

1Iθi ∆I
θ+h
i

(x)µ(dx)

]

+ 2M

[

H
∑

i=1

|vθi + vhi |
∫

[a,b]d
‖h‖−1

∣

∣bθi +
∑d

j=1w
θ
i,jxj

∣

∣

1Iθi ∆I
θ+h
i

(x)µ(dx)

]

.

(49)

Next note that Lemma 2.9 ensures that there exists ℒ ∈ R such that for all x ∈ [a,b]d, h ∈ R
d

with ‖h‖ ≤ 1 it holds that
|Nθ+h(x) −Nθ(x)| ≤ ℒ‖h‖. (50)

Furthermore, observe that Lemma 2.10 (applied for every i ∈ {1, 2, . . . ,H}, h ∈ R
d, x ∈

Iθ+hi ∆Iθi with d x d, w1 x (wθ+h
i,1 , . . . ,wθ+h

i,d ), w2 x (wθ
i,1, . . . ,w

θ
i,d), b1 x bθ+hi , b2 x bθi ,

a x a, b x b, I1 x Iθ+hi , I2 x Iθi , xx x in the notation of Lemma 2.10) and (42) show that
for all i ∈ {1, 2, . . . ,H}, h ∈ R

d, x ∈ Iθ+hi ∆Iθi it holds that

∣

∣bθi +
∑d

j=1w
θ
i,jxj

∣

∣ ≤
∣

∣bhi +
∑d

j=1w
h
i,jxj

∣

∣ ≤ |bhi | + max{|a|, |b|}
[
∑d

j=1|wh
i,j |

]

≤ ‖h‖ + dmax{|a|, |b|}‖h‖ = C‖h‖.
(51)

Moreover, note that (42) implies that for all i ∈ {1, 2, . . . ,H}, h ∈ R
d\{0}, x ∈ [a,b]d it holds

that

‖h‖−1
∣

∣vhi
(

bhi +
∑d

j=1w
h
i,jxj

)
∣

∣ ≤ |bhi | + max{|a|, |b|}
[
∑d

j=1|wh
i,j |

]

≤ ‖h‖ + dmax{|a|, |b|}‖h‖ = C‖h‖.
(52)

This, (49), (50), (51), and the triangle inequality demonstrate that for all h ∈ R
d\{0} with
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‖h‖ ≤ 1 it holds that

|L(θ + h) − L(θ) − 〈G(θ), h〉|
‖h‖

≤ ℒ2‖h‖
[

µ([a,b]d)
]

+ 2M

[

H
∑

i=1

∫

[a,b]d
‖h‖−1

∣

∣vhi
(

bhi +
∑d

j=1w
h
i,jxj

)∣

∣µ(dx)

]

+ 2CM

[

H
∑

i=1

(|vθi | + |vθi + vhi |)
[

µ(Iθ+hi ∆Iθi )
]

]

≤ ℒ2‖h‖
[

µ([a,b]d)
]

+ 2MHC‖h‖
[

µ([a,b]d)
]

+ 2CM

[

H
∑

i=1

(2|vθi | + |vhi |)
[

µ(Iθ+hi ∆Iθi )
]

]

≤ (ℒ2 + 2MHC)‖h‖
[

µ([a,b]d)
]

+ 2CM

[

H
∑

i=1

(

2|vθi |
[

µ(Iθ+hi ∆Iθi )
]

+ ‖h‖
[

µ([a,b]d)
]

)

]

= (ℒ2 + 4MHC)‖h‖
[

µ([a,b]d)
]

+ 4CM

[

H
∑

i=1

|vθi |
[

µ(Iθ+hi ∆Iθi )
]

]

.

(53)

Hence, we obtain that

lim sup
Rd\{0}∋h→0

[ |L(θ + h) − L(θ) − 〈G(θ), h〉|
‖h‖

]

≤ 4CM

[

H
∑

i=1

|vθi |
(

lim sup
Rd\{0}∋h→0

µ(Iθ+hi ∆Iθi )

)

]

. (54)

In the following we distinguish between the case L(θ) = 0 and the case L(θ) > 0. We first prove
(43) in the case

L(θ) = 0. (55)

Observe that (55) implies that for µ-almost every x ∈ [a,b]d it holds that Nθ(x) = f(x). This
and (42) show that M = 0. Combining this with (54) establishes (43) in the case L(θ) = 0. In
the next step we prove (43) in the case

L(θ) > 0. (56)

Note that (40) and (56) ensure that for all i ∈ {1, 2, . . . ,H} with |vθi | > 0 it holds that |bθi | +
∑d

j=1|wθ
i,j| > 0. Corollary 2.8 hence proves that for all i ∈ {1, 2, . . . ,H} with |vθi | > 0 we

have that lim supRd∋h→0 µ(Iθ+hi ∆Iθi ) = 0. Combining this with (54) establishes (43) in the case
L(θ) > 0. The proof of Proposition 2.11 is thus complete.

2.5 Lower semicontinuity of the norm of the gradient of the risk function

Lemma 2.12. Assume Setting 2.1 and let j ∈ N ∩ (H(d + 1), d]. Then it holds that Rd ∋ θ 7→
Gj(θ) ∈ R is continuous.

Proof of Lemma 2.12. Throughout this proof let ϑ ∈ R
d and let θ = (θn)n∈N : N → R

d satisfy
lim supn→∞‖θn − ϑ‖ = 0. Observe that Lemma 2.9 and the fact that R ∋ x 7→ max{x, 0} ∈ R

is continuous prove that for all i ∈ {1, 2, . . . ,H}, x = (x1, . . . , xd) ∈ [a,b]d it holds that

lim
n→∞

([

max
{

bθni +
∑d

k=1w
θn
i,kxk, 0

}]

(Nθn(x) − f(x))
)

=
[

max
{

bϑi +
∑d

k=1w
ϑ
i,kxk, 0

}]

(Nϑ(x) − f(x))
(57)

and
lim
n→∞

(Nθn(x) − f(x)) = Nϑ(x) − f(x). (58)

Combining (14) and Lebesgue’s dominated convergence theorem therefore establishes that
lim supn→∞|Gj(θn) − Gj(ϑ)| = 0. The proof of Lemma 2.12 is thus complete.
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Lemma 2.13. Assume Setting 2.1, assume µ ≪ λ, and let θ ∈ R
d, i ∈ {1, 2, . . . ,H} satisfy

|bθi | +
∑d

j=1|wθ
i,j | > 0. Then

(i) it holds for all j ∈ {1, 2, . . . , d} that Rd ∋ ϑ 7→ G(i−1)d+j(ϑ) ∈ R is continuous at θ and

(ii) it holds that Rd ∋ ϑ 7→ GHd+i(ϑ) ∈ R is continuous at θ.

Proof of Lemma 2.13. Throughout this proof let j ∈ {1, 2, . . . , d}. Note that (14) implies that
for all ϑ ∈ R

d, v ∈ {0, 1} we have that

∣

∣

∣

∣

∣

[

∫

Iϑi

(xj)
v(Nϑ(x) − f(x))µ(dx)

]

−
[

∫

Iθi

(xj)
v(Nθ(x) − f(x))µ(dx)

]∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

[a,b]d
(xj)

v(Nϑ(x) −Nθ(x))1Iϑi (x)µ(dx)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

[a,b]d
(xj)

v(Nθ(x) − f(x))(1Iθi (x) − 1Iϑi
(x))µ(dx)

∣

∣

∣

∣

∣

≤
[

supx∈[a,b]d|(xj)v(Nϑ(x) −Nθ(x))|
]

µ([a,b]d)

+
[

supx∈[a,b]d|(xj)v(Nθ(x) − f(x))|
]

µ(Iθi ∆Iϑi ).

(59)

Next observe that Lemma 2.9 establishes that for all v ∈ {0, 1} it holds that

lim supRd∋ϑ→θ

(

supx∈[a,b]d|(xj)v(Nϑ(x) −Nθ(x))|
)

= 0. (60)

Moreover, note that the assumption that µ ≪ λ, the assumption that |bθi | +
∑d

k=1|wθ
i,k| > 0,

and Corollary 2.8 imply that lim supRd∋ϑ→θ µ(Iθi ∆Iϑi ) = 0. Combining this with (59) and (60)
shows that for all v ∈ {0, 1} it holds that

R
d ∋ ϑ 7→

∫

Iϑi

(xj)
v(Nϑ(x) − f(x))µ(dx) ∈ R (61)

is continuous at θ. This and (14) establish that G(i−1)d+j and GHd+i are continuous at θ. The
proof of Lemma 2.13 is thus complete.

Lemma 2.14. Assume Setting 2.1 and let θ ∈ R
d, i ∈ {1, 2, . . . ,H} satisfy |bθi |+

∑d
j=1|wθ

i,j | = 0.
Then

(i) it holds for all j ∈ {1, 2, . . . , d} that Rd ∋ ϑ 7→ |G(i−1)d+j(ϑ)| ∈ R is lower semicontinuous
at θ and

(ii) it holds that Rd ∋ ϑ 7→ |GHd+i(ϑ)| ∈ R is lower semicontinuous at θ.

Proof of Lemma 2.14. Observe that the assumption that |bθi | +
∑d

j=1|wθ
i,j | = 0 proves that

Iθi = ∅. Combining this with (14) shows that for all j ∈ {1, 2, . . . , d} it holds that G(i−1)d+j(θ) =
GHd+i(θ) = 0. Therefore, we obtain for all j ∈ {1, 2, . . . , d} and all ϑ = (ϑn)n∈N : N → R

d with
lim supn→∞‖ϑn − θ‖ = 0 that

|G(i−1)d+j(θ)| = 0 ≤ lim infn→∞|G(i−1)d+j(ϑn)| (62)

and
|GHd+i(θ)| = 0 ≤ lim infn→∞|GHd+i(ϑn)|. (63)

Hence, we have for all j ∈ {1, 2, . . . , d} that R
d ∋ ϑ 7→ |G(i−1)d+j(ϑ)| ∈ R and R

d ∋ ϑ 7→
|GHd+i(ϑ)| ∈ R are lower semicontinuous at θ. The proof of Lemma 2.14 is thus complete.
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Corollary 2.15. Assume Setting 2.1, assume µ ≪ λ, and let k ∈ {1, 2, . . . , d}. Then it holds
that Rd ∋ θ 7→ |Gk(θ)| ∈ R is lower semicontinuous.

Proof of Corollary 2.15. Note that Lemma 2.12 assures that for all k ∈ N ∩ (H(d + 1), d] it
holds that R

d ∋ θ 7→ |Gk(θ)| ∈ R is lower semicontinuous. Moreover, observe that Lemmas 2.13
and 2.14 prove that for all k ∈ N ∩ [1,H(d + 1)] it holds that R

d ∋ θ 7→ |Gk(θ)| ∈ R is lower
semicontinuous. The proof of Corollary 2.15 is thus complete.

Corollary 2.16. Assume Setting 2.1 and assume µ≪ λ. Then it holds that Rd ∋ θ 7→ ‖G(θ)‖ ∈
R is lower semicontinuous.

Proof of Corollary 2.16. Throughout this proof let ϑ ∈ R
d and let θ = (θn)n∈N : N → R

d

satisfy lim supn→∞‖θn − ϑ‖ = 0. Note that Corollary 2.15 and the fact that for all v =
(vk,n)(k,n)∈{1,2}×N : {1, 2} ×N → [0,∞) it holds that

lim infn→∞(v1,n + v2,n) ≥ (lim infn→∞ v1,n) + (lim infn→∞ v2,n) (64)

ensure that

lim inf
n→∞

‖G(θn)‖2 = lim inf
n→∞

[

∑d
j=1|Gj(θn)|2

]

≥ ∑d
j=1

[

lim infn→∞|Gj(θn)|2
]

≥ ∑d
j=1|Gj(ϑ)|2 = ‖G(ϑ)‖2.

(65)

Hence, we obtain that ‖G(ϑ)‖ ≤ lim infn→∞‖G(θn)‖. The proof of Corollary 2.16 is thus com-
plete.

Corollary 2.17. Assume Setting 2.1 and assume µ ≪ λ. Then there exists an open U ⊆ R
d

such that
∫

Rd\U 1 dx = 0, L|U ∈ C1(U,R), and ∇(L|U ) = G|U .

Proof of Corollary 2.17. Throughout this proof let U ⊆ R
d satisfy

U =
{

θ ∈ R
d :

[

∀ i ∈ {1, 2, . . . ,H} :
(

|bθi | +
∑d

j=1|wθ
i,j | > 0

)]}

. (66)

Observe that (66) ensures that U ⊆ R
d is open. Moreover, note that the fact that R

d\U ⊆
(
⋃H
i=1{θ ∈ R

d : bθi = 0}
)

assures that
∫

Rd\U 1 dx = 0. Furthermore, observe that Proposi-

tion 2.11 demonstrates that for all θ ∈ U it holds that L is differentiable at θ with (∇L)(θ) =
G(θ). In addition, note that Lemma 2.12 and Lemma 2.13 prove that for all θ ∈ U , i ∈
{1, 2, . . . , d} it holds that R

d ∋ ϑ 7→ Gi(ϑ) ∈ R is continuous at θ. Hence, we obtain that
L|U ∈ C1(U,R). This completes the proof of Corollary 2.17.

3 Convergence of the risk of gradient flows (GFs) in the training

of ANNs

In this section we establish in Theorem 3.2 in Subsection 3.1 below, in Corollary 3.3 in Subsec-
tion 3.2 below, and in Corollary 3.5 in Subsection 3.4 below convergence results for the risk of
GFs. In particular, in Theorem 3.2 we establish that the risk of every bounded GF trajectory
converges to the risk of a critical point. Our proof of Theorem 3.2 employs the fundamental
theorem of calculus type result for the risk of GFs in Lemma 3.1 in Subsection 3.1 and the
fundamental fact that the standard norm of the generalized gradient function G : Rd → R

d is
lower semicontinuous, which we established in Corollary 2.16 above. The proof of Lemma 3.1
is entirely analogous to the proof of [6, Lemma 3.5]. In Corollary 3.3 we establish that the risk
of every bounded GF trajectory with sufficiently small initial risk converges to the risk of the
global minima of the risk function. In Corollary 3.5 we employ the characterization result for
criticial points for affine linear target functions in Cheridito et al. [7] to specialize Corollary 3.3
to the situation of affine linear target functions.

16



3.1 Convergence of the risk of GFs to the risk of a critical point

Lemma 3.1. Assume Setting 2.1, let T ∈ (0,∞), and let Θ ∈ C([0, T ],Rd) satisfy for all
t ∈ [0, T ] that Θt = Θ0 −

∫ t
0 G(Θs) ds (cf. Corollary 2.4). Then it holds for all t ∈ [0, T ] that

L(Θt) = L(Θ0) −
∫ t
0‖G(Θs)‖2 ds.

Proof of Lemma 3.1. The proof of Lemma 3.1 is entirely analogous to the proof of [6, Lemma
3.5].

Theorem 3.2. Assume Setting 2.1, assume µ ≪ λ, and let Θ ∈ C([0,∞),Rd) satisfy for all
t ∈ [0,∞) that sups∈[0,∞)‖Θs‖ <∞ and

Θt = Θ0 −
∫ t

0
G(Θs) ds (67)

(cf. Corollary 2.4). Then there exists ϑ ∈ G−1({0}) such that lim supt→∞ L(Θt) = L(ϑ).

Proof of Theorem 3.2. Observe that Lemma 3.1 implies that
∫∞
0 ‖G(Θs)‖2 ds < ∞. Hence, we

have that lim inft→∞‖G(Θt)‖ = 0. This proves that there exists τ = (τn)n∈N : N → [0,∞) which
satisfies lim infn→∞ τn = ∞ and

lim supn→∞‖G(Θτn)‖ = 0. (68)

Note that the fact that supn∈N‖Θτn‖ ≤ supt∈[0,∞)‖Θt‖ < ∞ ensures that there exist ϑ ∈ R
d

and a strictly increasing n : N → N which satisfies

lim supk→∞‖Θτn(k)
− ϑ‖ = 0. (69)

Observe that (68), (69), and Corollary 2.16 demonstrate that

‖G(ϑ)‖ ≤ lim infk→∞‖G(Θτn(k)
)‖ = 0. (70)

Furthermore, note that Lemma 3.1 assures that [0,∞) ∋ t 7→ L(Θt) ∈ R is non-increasing.
Combining this and (69) with Lemma 2.9 proves that lim supt→∞L(Θt) = limk→∞L(Θτn(k)

) =
L(ϑ). The proof of Theorem 3.2 is thus complete.

3.2 Convergence of the risk of GFs to the minimal risk

Corollary 3.3. Assume Setting 2.1, assume µ ≪ λ, let m ∈ R satisfy m = infθ∈Rd L(θ), and
let Θ ∈ C([0,∞),Rd) satisfy supt∈[0,∞)‖Θt‖ < ∞, ∀ t ∈ [0,∞) : Θt = Θ0 −

∫ t
0 G(Θs) ds, and

∀ θ ∈ G−1({0}) ∩ L−1((m,∞)) : inft∈[0,∞)L(Θt) < L(θ) (cf. Corollary 2.4). Then

lim supt→∞ L(Θt) = m. (71)

Proof of Corollary 3.3. Observe that Theorem 3.2 assures that there exists ϑ ∈ R
d which sat-

isfies G(ϑ) = 0 and lim supt→∞ L(Θt) = L(ϑ). In the following we prove (71) by contradiction.
We thus assume that

L(ϑ) >m. (72)

Note that (72) and the assumption that ∀ θ ∈ G−1({0})∩L−1((m,∞)) : inft∈[0,∞)L(Θt) < L(θ)
imply that

inft∈[0,∞) L(Θt) < L(ϑ). (73)

Moreover, observe that Lemma 3.1 proves that [0,∞) ∋ t 7→ L(Θt) ∈ R is non-increasing.
Combining this with (73) shows that

L(ϑ) = lim supt→∞ L(Θt) = inft∈[0,∞)L(Θt) < L(ϑ). (74)

This is a contradiction. The proof of Corollary 3.3 is thus complete.
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3.3 Risks of critical points for affine linear target functions

Proposition 3.4. Assume Setting 2.1, assume d = 1, and let α, β ∈ R, ρ ∈ (0,∞) satisfy for
all E ∈ B([a,b]), x ∈ [a,b] that µ(E) = ρλ1(E) and f(x) = αx+ β. Then

(i) there exists ϑ ∈ R
d such that L(ϑ) = infθ∈Rd L(θ) = 0 and

(ii) it holds for all θ ∈ G−1({0}) ∩ L−1((0,∞)) that L(θ) ≥ ρα2(b−a)3

12(2⌊H/2⌋+1)4
.

Proof of Proposition 3.4. Note that the assumption that d = 1 implies that d = 3H + 1. Let
ψ ∈ R

3H+1 satisfy w
ψ
1,1 = 1, bψ1 = −a, vψ1 = α, cψ1 = β + αa, and ∀ i ∈ N ∩ (1,H] : wψ

i,1 = b
ψ
i =

v
ψ
i = 0. Observe that for all x ∈ [a,b] we have that

Nψ(x) = αmax{x−a, 0} + β + αa = α(x−a) + αa + β = αx+ β = f(x). (75)

This shows that L(ψ) = 0. Combining this with the fact that for all θ ∈ R
d it holds that L(θ) ≥ 0

establishes item (i). We now prove item (ii). For this assume in the following without loss of
generality that α 6= 0 and let G = (G1, . . . ,Gd) : Rd → R

d satisfy for all θ ∈ R
d, i ∈ {1, 2, . . . ,H}

that

Gi(θ) = 2vθi

∫ b

a

x(Nθ(x) − f(x))1[0,∞)(w
θ
i,1x+ bθi ) dx,

GH+i(θ) = 2vθi

∫ b

a

(Nθ(x) − f(x))1[0,∞)(w
θ
i,1x+ bθi ) dx,

G2H+i(θ) = 2

∫ b

a

[

max{wθ
i,1x+ bθi , 0}

]

(Nθ(x) − f(x)) dx,

and Gd(θ) = 2

∫ b

a

(Nθ(x) − f(x)) dx

(76)

(cf., e.g., [7, Lemma 3.5]). Note that (14) and the assumption that for all E ∈ B([a,b]) it
holds that µ(E) = ρλ1(E) show that for all θ ∈ R

d, i ∈ {1, 2, . . . ,H} it holds that G2H+i(θ) =
ρ−1G2H+i(θ) and Gd(θ) = ρ−1Gd(θ). In the following let θ ∈ R

3H+1 satisfy L(θ) > 0 = ‖G(θ)‖
and let ϑ ∈ R

3H+1 satisfy for all i ∈ {1, 2, . . . ,H} that

wϑ
i,1 = wθ

i,1, bϑi = bθi , vϑi = vθi1(0,∞)(|wθ
i,1| + |bθi |), and cϑ = cθ. (77)

Observe that (77) ensures that

Nϑ = Nθ, L(ϑ) = L(θ), and G(ϑ) = G(θ) = 0. (78)

Furthermore, note that the fact that for all i ∈ {1, 2, . . . ,H} it holds that G2H+i(ϑ) = ρ−1G2H+i(ϑ)
and Gd(ϑ) = ρ−1Gd(ϑ) assures that for all i ∈ {1, 2, . . . ,H} it holds that

G2H+i(ϑ) = Gd(ϑ) = 0. (79)

Next observe that the fact that for all i ∈ {1, 2, . . . ,H} with |wϑ
i,1| + |bϑi | = 0 it holds that

vϑi = 0 implies that for all i ∈ {1, 2, . . . ,H} with |wϑ
i,1| + |bϑi | = 0 we have that

Gi(ϑ) = GH+i(ϑ) = 0. (80)

In addition, note that for all i ∈ {j ∈ {1, 2, . . . ,H} : |wϑ
j,1| + |bϑj | > 0} and almost all x ∈ [a,b]

it holds that 1[0,∞)(w
ϑ
i,1x + bϑi ) = 1(0,∞)(w

ϑ
i,1x + bϑi ) = 1Iϑi

(x). This shows that for all i ∈
{1, 2, . . . ,H} with |wϑ

i,1| + |bϑi | > 0 it holds that

Gi(ϑ) = ρ−1Gi(ϑ) = 0 and GH+i(ϑ) = ρ−1GH+i(ϑ) = 0. (81)
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Combining (79)–(81) demonstrates that G(ϑ) = 0. Cheridito et al. [7, Corollary 2.7] hence
proves that there exists n ∈ {0, 2, 4, . . .} ∩ (0,H] which satisfies

L(θ) = L(ϑ) = ρ

∫ b

a

(Nϑ(x) − (αx+ β))2 dx =
ρα2(b−a)3

12(n + 1)4
. (82)

Observe that the fact that n
2 ∈ Z and the fact that n ≤ H assure that n ≤ 2⌊H/2⌋. Combining

this with (82) shows that

L(θ) =
ρα2(b−a)3

12(n + 1)4
≥ ρα2(b−a)3

12(2⌊H/2⌋ + 1)4
. (83)

This establishes item (ii). The proof of Proposition 3.4 is thus complete.

3.4 Convergence of the risk of GFs to the minimal risk for affine linear target
functions

Corollary 3.5. Assume Setting 2.1, assume d = 1, let α, β ∈ R, ρ ∈ (0,∞) satisfy for all E ∈
B([a,b]), x ∈ [a,b] that µ(E) = ρλ1(E) and f(x) = αx+ β, and let Θ ∈ C([0,∞),Rd) satisfy

supt∈[0,∞)‖Θt‖ < ∞, ∀ t ∈ [0,∞) : Θt = Θ0 −
∫ t
0 G(Θs) ds, and inft∈[0,∞) L(Θt) <

ρα2(b−a)3

12(2⌊H/2⌋+1)4

(cf. Corollary 2.4). Then
lim supt→∞ L(Θt) = 0. (84)

Proof of Corollary 3.5. Note that item (i) in Proposition 3.4 implies that infθ∈Rd L(θ) = 0.
Moreover, observe that item (ii) in Proposition 3.4 demonstrates that for all θ ∈ G−1({0}) ∩
L−1((0,∞)) we have that

L(θ) ≥ ρα2(b −a)3

12(2⌊H/2⌋ + 1)4
> inf

t∈[0,∞)
L(Θt). (85)

Combining this and Corollary 3.3 (applied with m x 0 in the notation of Corollary 3.3)
establishes that lim supt→∞ L(Θt) = 0. The proof of Corollary 3.5 is thus complete.

4 A priori estimates for GFs in the training of ANNs

In this section we establish in Proposition 4.1 in Subsection 4.1 below, in Corollary 4.2 in
Subsection 4.1, in Corollary 4.3 in Subsection 4.2 below, and in Proposition 4.4 in Subsection 4.3
several general a priori estimates for GF trajectories. In particular, Corollary 4.2 demonstrates
that the limit value of the risk of every GF trajectory is bounded by the squared L2-error
infξ∈R[

∫

[a,b]d(f(x)−ξ)2 µ(dx)] of constant approximations of the target function f : [a,b]d → R.
Our proof of Corollary 4.2 is based on an application of the a priori estimate in Proposition 4.1.
Corollary 4.3, in particular, proves that the norm of every GF trajectory is bounded until the first
time where the risk is smaller than infξ∈R[

∫

[a,b]d(f(x) − ξ)2 µ(dx)]. Our proof of Corollary 4.3
also employs an application of Proposition 4.1. A result similar to Proposition 4.1 has been
obtained in [6, Lemma 3.2] in the special situation where the measure µ is the Lebesgue–Borel
measure on [0, 1] and where the target function f is a constant function, and our proof of
Proposition 4.1 uses similar ideas as the proof of [6, Lemma 3.2].

In Proposition 4.4 we identify appropriate invariant quantities for the GF dynamics. In the
scientific literature Proposition 4.4 has already been asserted and proved in Williams et al. [23,
Lemma 3] in the case where the measure µ is chosen in a way so that the function L : Rd → R

describes the empirical risk and where the input is 1-dimensional (where d = 1). Moreover, a
result similar to Proposition 4.4 has also been established in Du et al. [12, Theorem 2.1] in the
situation of deep ANNs without biases.

19



4.1 Lyapunov type functions for GFs

Proposition 4.1. Assume Setting 2.1, let ξ ∈ R, let V : Rd → R satisfy for all θ ∈ R
d that

V (θ) = ‖θ‖2 + |cθ − 2ξ|2, and let Θ ∈ C([0,∞),Rd) satisfy for all t ∈ [0,∞) that Θt =
Θ0 −

∫ t
0 G(Θs) ds (cf. Corollary 2.4). Then it holds for all t ∈ [0,∞) that

V (Θt) = V (Θ0) − 8

∫ t

0
L(Θs) ds− 8

∫ t

0

[

∫

[a,b]d
(f(x) − ξ)(NΘs(x) − f(x))µ(dx)

]

ds

≤ V (Θ0) + 4

∫ t

0

[

∫

[a,b]d
(f(x) − ξ)2 µ(dx) − L(Θs)

]

ds.

(86)

Proof of Proposition 4.1. Note that for all θ ∈ R
d it holds that

(∇V )(θ)

= 2
(

wθ
1,1, . . . ,w

θ
1,d,w

θ
2,1, . . . ,w

θ
2,d, . . . ,w

θ
H,1, . . . ,w

θ
H,d, b

θ
1, . . . , b

θ
H , v

θ
1, . . . , v

θ
H , 2c

θ − 2ξ
)

.
(87)

This and (14) imply that for all θ ∈ R
d it holds that

〈(∇V )(θ),G(θ)〉

= 4

[

H
∑

i=1

vθi

∫

[a,b]d

(

bθi +
∑d

j=1w
θ
i,jxj

)

(Nθ(x) − f(x))1(0,∞)

(

bθi +
∑d

j=1w
θ
i,jxj

)

µ(dx)

]

+ 4

[

H
∑

i=1

vθi

∫

[a,b]d

[

max
{

bθi +
∑d

j=1w
θ
i,jxj , 0

}]

(Nθ(x) − f(x))µ(dx)

]

+ 8(cθ − ξ)

[

∫

[a,b]d
(Nθ(x) − f(x))µ(dx)

]

.

(88)

Hence, we obtain for all θ ∈ R
d that

〈(∇V )(θ),G(θ)〉

= 8

[

∫

[a,b]d

(

∑H
i=1 v

θ
i

[

max
{

bθi +
∑d

j=1w
θ
i,jxj, 0

}]

)

(Nθ(x) − f(x))µ(dx)

]

+ 8(cθ − ξ)

[

∫

[a,b]d
(Nθ(x) − f(x))µ(dx)

]

= 8

∫

[a,b]d
(Nθ(x) − ξ)(Nθ(x) − f(x))µ(dx)

= 8

∫

[a,b]d
(Nθ(x) − f(x))2 µ(dx) + 8

∫

[a,b]d
(f(x) − ξ)(Nθ(x) − f(x))µ(dx)

= 8L(θ) + 8

∫

[a,b]d
(f(x) − ξ)(Nθ(x) − f(x))µ(dx).

(89)

Next observe that the Cauchy-Schwarz inequality implies that for all θ ∈ R
d it holds that

∫

[a,b]d
(f(x) − ξ)(Nθ(x) − f(x))µ(dx)

≥ −
[

∫

[a,b]d
(f(x) − ξ)2 µ(dx)

]1/2[
∫

[a,b]d
(Nθ(x) − f(x))2 µ(dx)

]1/2

= −
[

∫

[a,b]d
(f(x) − ξ)2 µ(dx)

]1/2
√

L(θ).

(90)
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Combining this with the fact that for all a, b ∈ R it holds that ab ≤ a2+b2

2 demonstrates that
for all θ ∈ R

d we have that

∫

[a,b]d
(f(x) − ξ)(Nθ(x) − f(x))µ(dx) ≥ −1

2

[

∫

[a,b]d
(f(x) − ξ)2 µ(dx)

]

− L(θ)

2
. (91)

This, (89), the fact that V ∈ C∞(Rd,R), and, e.g., [6, Lemma 3.1] show for all t ∈ [0,∞) that

V (Θt) − V (Θ0) = −
∫ t

0
〈(∇V )(Θs),G(Θs)〉ds

= −8

∫ t

0
L(Θs) ds− 8

∫ t

0

[

∫

[a,b]d
(f(x) − ξ)(NΘs(x) − f(x))µ(dx)

]

ds

≤ −8

∫ t

0
L(Θs) ds+ 4

∫ t

0

[

∫

[a,b]d
(f(x) − ξ)2 µ(dx) + L(Θs)

]

ds

= 4

∫ t

0

[

∫

[a,b]d
(f(x) − ξ)2 µ(dx) − L(Θs)

]

ds.

(92)

The proof of Proposition 4.1 is thus complete.

Corollary 4.2. Assume Setting 2.1 and let Θ ∈ C([0,∞),Rd) satisfy for all t ∈ [0,∞) that
Θt = Θ0 −

∫ t
0 G(Θs) ds (cf. Corollary 2.4). Then

lim sup
t→∞

L(Θt) ≤ inf
ξ∈R

[

∫

[a,b]d
(f(x) − ξ)2 µ(dx)

]

. (93)

Proof of Corollary 4.2. Throughout this proof let m, ξ, ν ∈ R satisfy m = lim supt→∞ L(Θt)
and ν =

∫

[a,b]d(f(x) − ξ)2 µ(dx). Note that Lemma 3.1 implies that [0,∞) ∋ t 7→ L(Θt) ∈ R

is non-increasing. This assures that inft∈[0,∞)L(Θt) = m. Proposition 4.1 hence demonstrates
that for all t ∈ [0,∞) it holds that

0 ≤ V (Θt) ≤ V (Θ0) + 4

∫ t

0
(ν − L(Θs)) ds

≤ V (Θ0) + 4

∫ t

0
(ν −m) ds = V (Θ0) − 4t(m− ν).

(94)

Therefore, we obtain for all t ∈ (0,∞) that m− ν ≤ V (Θ0)
4t . This shows that

m ≤ lim supt→∞
[

V (Θ0)
4t + ν

]

= ν. (95)

The proof of Corollary 4.2 is thus complete.

4.2 A priori estimates for GFs with large risk

Corollary 4.3. Assume Setting 2.1, let ν, ξ ∈ R satisfy ν =
∫

[a,b]d(f(x) − ξ)2 µ(dx), and let

Θ ∈ C([0,∞),Rd) satisfy for all t ∈ [0,∞) that Θt = Θ0−
∫ t
0 G(Θs) ds (cf. Corollary 2.4). Then

supt∈[0,∞),L(Θt)≥ν1(0,∞)(t)‖Θt‖ ≤ 3‖Θ0‖2 + 8|ξ|2 <∞. (96)

Proof of Corollary 4.3. Throughout this proof let V : Rd → [0,∞) satisfy for all θ ∈ R
d that

V (Θ) = ‖θ‖2 + |cθ − 2ξ|2 and let t ∈ (0,∞) satisfy L(Θt) ≥ ν. Observe that Lemma 3.1 implies
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that [0,∞) ∋ s 7→ L(Θs) ∈ R is non-increasing. This shows that for all s ∈ [0, t] it holds that
L(Θs) ≥ L(Θt) ≥ ν. Combining this with Proposition 4.1 demonstrates that

‖Θt‖ ≤ V (Θt) ≤ V (Θ0) + 4

∫ t

0
(ν − L(Θs)) ds ≤ V (Θ0). (97)

Furthermore, note that the fact that for all x, y ∈ R it holds that (x+ y)2 ≤ 2(x2 + y2) ensures
that for all θ ∈ R

d it holds that

V (θ) = ‖θ‖2 + |cθ − 2ξ|2 ≤ ‖θ‖2 + 2(|cθ|2 + |2ξ|2) ≤ 3‖θ‖2 + 8|ξ|2. (98)

Combining this with (97) proves that ‖Θt‖ ≤ 3‖Θ0‖2 + 8|ξ|2 < ∞. This completes the proof
of Corollary 4.3.

4.3 Invariant quantities for GFs

Proposition 4.4. Assume Setting 2.1, let Wi : R
d → R, i ∈ {1, 2, . . . ,H}, satisfy for all θ ∈ R

d,
i ∈ {1, 2, . . . ,H} that Wi(θ) =

[
∑d

j=1(w
θ
i,j)

2
]

+ (bθi )
2 − (vθi )

2, and let Θ ∈ C([0,∞),Rd) satisfy

for all t ∈ [0,∞) that Θt = Θ0 −
∫ t
0 G(Θs) ds (cf. Corollary 2.4). Then

(i) it holds for all t ∈ [0,∞), i ∈ {1, 2, . . . ,H} that Wi(Θt) = Wi(Θ0) and

(ii) it holds for all t ∈ [0,∞) that
∑H

i=1Wi(Θt) =
∑H

i=1Wi(Θ0).

Proof of Proposition 4.4. Observe that the assumption that for all θ ∈ R
d, i ∈ {1, 2, . . . ,H} it

holds that Wi(θ) =
[
∑d

j=1(w
θ
i,j)

2
]

+ (bθi )
2 − (vθi )

2 and (14) demonstrate that for all θ ∈ R
d,

i ∈ {1, 2, . . . ,H} we have that

〈(∇Wi)(θ),G(θ)〉

= 4vθi

∫

[a,b]d

(

bθi +
∑d

j=1w
θ
i,jxj

)

(Nθ(x) − f(x))1(0,∞)

(

bθi +
∑d

j=1w
θ
i,jxj

)

µ(dx)

− 4vθi

∫

[a,b]d

[

max
{

bθi +
∑d

j=1w
θ
i,jxj , 0

}]

(Nθ(x) − f(x))µ(dx) = 0.

(99)

This, the fact that for all i ∈ {1, 2, . . . ,H} it holds that Wi ∈ C∞(Rd,R), and, e.g., [6, Lemma
3.1] show for all i ∈ {1, 2, . . . ,H}, t ∈ [0,∞) that

Wi(Θt) = Wi(Θ0) −
∫ t

0
〈(∇Wi)(Θs),G(Θs)〉ds = Wi(Θ0). (100)

This proves item (i). Next note that item (i) establishes item (ii). The proof of Proposition 4.4
is thus complete.

5 Properties of ANN parametrizations with small risk and one
hidden neuron

In Theorem 6.7 in Section 6 below we establish in the case where the measure µ (see Setting 2.1)
is up to a constant the Lebesgue–Borel measure on [a,b], where the hidden layer consists of
only one neuron (where H = 1), and where the target function f : [a,b] → R is affine linear
that the risk of every not necessarily bounded GF trajectory converges to zero. Our proof
of Theorem 6.7 employs, among other things, the a priori bounds for GF trajectories with
sufficiently small initial risk in Lemma 6.2 in Subsection 6.1 below, the well known mean square
approximation results in Lemma 5.1 and Corollary 5.2 in Subsection 5.1 below, the lower bound
for the product of the slope of the target function and its ANN approximations in Corollary 5.6
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in Subsection 5.3 below, and appropriate lower bounds for the transformation between the input
and hidden layer of the considered ANN in Lemma 5.7 in Subsection 5.3.

In Lemma 5.1 in Subsection 5.1 we recall the elementary fact that the mean value of a given
continuous function on a compact real interval is the best constant mean square approximation
of the considered continuous function. Corollary 5.2 in Subsection 5.1 specializes Lemma 5.1
to the case where the considered continuous function is affine linear. Lemma 5.1 follows, e.g.,
from [3, Lemma 2.1] and only for completeness we include in this section detailed proofs for
Lemma 5.1 and Corollary 5.2.

In Setting 5.3 in Subsection 5.2 below we specialize Setting 2.1 from Subsection 2.1 above
and present the mathematical framework which we frequently employ in Sections 5 and 6 to
formulate ANNs with ReLU activation, one hidden layer, one neuron on the input layer (corre-
sponding to the case d = 1 in Setting 2.1), and one neuron on the hidden layer (corresponding
to the case H = 1 in Setting 2.1) and the corresponding risk functions (see (106) in Setting 5.3).

In Subsection 5.3 we study realizations of ANNs whose risk is strictly smaller than the risk
which can be achieved by the best constant approximation (cf. Lemma 5.1). Our proof of the
a priori bound result for GF trajectories with sufficiently small initial risk in Lemma 6.2 in
Subsection 6.1 employs Lemma 3.1 from Subsection 3.1, Lemma 5.1 and Corollary 5.2 from
Subsection 5.1 and Lemma 5.4, Corollary 5.6, and Proposition 5.8 from Subsection 5.3. The
elementary result in Lemma 5.4 in Subsection 5.3 shows that for every ANN with parameter
vector θ = (θ1, . . . , θ4) ∈ R

4 we have that the realization associated to θ is Lipschitz continuous
with the Lipschitz constant |θ1θ3|.

Corollary 5.6 in Subsection 5.3 demonstrates in the case where there exist α, β ∈ R such
that the target function satisfies for all x ∈ [a,b] that f(x) = αx+β that for every ANN whose
risk is strictly smaller than the risk which can be achieved by the best constant approximation
(cf. Lemma 5.1) with parameter vector θ = (θ1, . . . , θ4) ∈ R

4 we have that the slope α of the
target function and the slope θ1θ3 of the realization of the ANN must have the same sign in
the sense that αθ1θ3 > 0. Our proof of Corollary 5.6 employs an application of Lemma 5.5 in
Subsection 5.3. Lemma 5.5, in turn, establishes the statement of Corollary 5.6 in the special
case where the slope α of the target function is assumed to be strictly positive in the sense that
α > 0.

Lemma 5.7 in Subsection 5.3 establishes that for every ANN whose risk is strictly smaller
than the risk which can be achieved by the best constant approximation (cf. Lemma 5.1) with
parameter vector θ = (θ1, . . . , θ4) ∈ R

4 we have that the hidden neuron of this ANN cannot
be inactive and we must have that max{θ1a + θ2, θ1b + θ2} > 0. This simply follows from the
fact that if the neuron was inactive in the sense that max{θ1a + θ2, θ1b + θ2} ≤ 0, then the
realization function associated to θ would be constant which would result in a larger risk.

Finally, Proposition 5.8 in Subsection 5.3, the main result of Section 5, loosely speaking,
reveals that for every ANN whose risk is strictly smaller than the risk which can be achieved by
the best constant approximation (cf. Lemma 5.1) with parameter vector θ = (θ1, . . . , θ4) ∈ R

4

we have that the slope of the realization of the ANN θ is uniformly bounded from below and
from above.

5.1 Mean square approximations through constant functions

Lemma 5.1. Let ξ,a ∈ R, b ∈ (a,∞), f ∈ C([a,b],R). Then
∫ b

a

(f(x) − ξ)2 dx ≥
∫ b

a

(

f(x) − 1
b−a

[∫ b

a
f(y) dy

]

)2
dx. (101)

Proof of Lemma 5.1. Throughout this proof let µ ∈ R satisfy µ = (b−a)−1
∫ b

a
f(y) dy. Observe

that for all u ∈ R it holds that
∫ b

a

(f(x) − u)2 dx =

∫ b

a

(f(x))2 dx− 2uµ(b−a) + u2(b−a). (102)
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Hence, we obtain that

∫ b

a

(f(x) − ξ)2 dx−
∫ b

a

(

f(x) − 1
b−a

[∫ b

a
f(y) dy

]

)2
dx

=

∫ b

a

(f(x) − ξ)2 dx−
∫ b

a

(f(x) − µ)2 dx

= −2ξµ(b−a) + ξ2(b−a) + 2µ2(b −a) − µ2(b−a)

= (b−a)(ξ2 − 2ξµ+ µ2) = (b−a)(ξ − µ)2 ≥ 0.

(103)

This completes the proof of Lemma 5.1.

Corollary 5.2. Let ξ, α, β,a ∈ R, b ∈ (a,∞). Then

∫ b

a

(αx+ β − ξ)2 dx ≥
∫ b

a

(

(αx+ β) − (α[a+b
2 ] + β)

)2
dx =

α2(b −a)3

12
. (104)

Proof of Corollary 5.2. Note that
∫ b

a
(αx+β) dx = α(b2−a2)

2 +β(b−a) = (b−a)(α[b+a
2 ] +β).

Lemma 5.1 hence shows that

∫ b

a

(αx+ β − ξ)2 dx ≥
∫ b

a

(

(αx+ β) − (α[b+a
2 ] + β)

)2
dx =

∫ b

a

α2(x− [b+a
2 ])2 dx

=
[

α2

3

(

x− [b+a
2 ]

)3
]x=b

x=a
=
α2

3

[

(

b−a

2

)3

−
(

a− b

2

)3
]

=
α2

24

[

(b−a)3 − (a− b)3
]

=
α2(b−a)3

12
.

(105)

The proof of Corollary 5.2 is thus complete.

5.2 Mathematical description of ANNs with one hidden neuron

Setting 5.3. Let a ∈ R, b ∈ (a,∞), ρ ∈ (0,∞), f ∈ C([a,b],R), w, b, v, c ∈ C(R4,R)
satisfy for all θ = (θ1, . . . , θ4) ∈ R

4 that wθ = θ1, bθ = θ2, vθ = θ3, and cθ = θ4, let N =
(Nθ)θ∈R4 : R4 → C(R,R) and L : R4 → R satisfy for all θ ∈ R

4, x ∈ R that

Nθ(x) = vθ max
{

wθx + bθ, 0
}

+ cθ (106)

and L(θ) = ρ
∫ b

a
(Nθ(y) − f(y))2 dy, let Rr ∈ C1(R,R), r ∈ N, satisfy for all x ∈ R that

lim supr→∞
(

|Rr(x) − max{x, 0}| + |(Rr)
′(x) − 1(0,∞)(x)|

)

= 0 (107)

and supr∈N supy∈[−|x|,|x|](|Rr(y)| + |(Rr)
′(y)|) < ∞, let Lr : R4 → R, r ∈ N, satisfy for all

r ∈ N, θ ∈ R
4 that

Lr(θ) = ρ

∫ b

a

(

vθ
[

Rr(w
θx+ bθ)

]

+ cθ − f(x)
)2

dx, (108)

let ‖·‖ :
(
⋃

n∈NR
n
)

→ R and 〈·, ·〉 :
(
⋃

n∈N(Rn ×R
n)
)

→ R satisfy for all n ∈ N, x = (x1, . . . , xn),

y = (y1, . . . , yn) ∈ R
n that ‖x‖ = [

∑n
i=1|xi|

2]1/2 and 〈x, y〉 =
∑n

i=1 xiyi, let λ : B(R) →
[0,∞] be the Lebesgue–Borel measure on R, let Iθ ⊆ R, θ ∈ R

4, satisfy for all θ ∈ R
4

that Iθ = {x ∈ [a,b] : wθx + bθ > 0}, and let G = (G1, . . . ,G4) : R4 → R
4 satisfy for all

θ ∈ {ϑ ∈ R
4 : ((∇Lr)(ϑ))r∈N is convergent} that G(θ) = limr→∞(∇Lr)(θ).
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5.3 Properties of ANNs with small risk and one hidden neuron

Lemma 5.4. Assume Setting 5.3 and let θ ∈ R
4. Then it holds for all x, y ∈ R that

|Nθ(x) −Nθ(y)| ≤ |wθvθ||x− y|. (109)

Proof of Lemma 5.4. Observe that (106) ensures that for all x, y ∈ R it holds that

|Nθ(x) −Nθ(y)| = |vθ max{wθx + bθ, 0} − vθ max{wθy + bθ, 0}|
= |vθ||max{wθx+ bθ, 0} − max{wθy + bθ, 0}|
≤ |vθ||(wθx + bθ) − (wθy + bθ)| = |wθvθ||x− y|.

(110)

The proof of Lemma 5.4 is thus complete.

Lemma 5.5. Assume Setting 5.3, let α ∈ (0,∞), β ∈ R satisfy for all x ∈ [a,b] that f(x) =

αx+ β, and let θ ∈ R
4 satisfy L(θ) < ρα2(b−a)3

12 . Then

wθvθ > 0. (111)

Proof of Lemma 5.5. We prove (111) by contradiction. We thus assume that

wθvθ ≤ 0. (112)

Note that (112) ensures that for all x, y ∈ [a,b] with x ≤ y it holds that

Nθ(x) ≥ Nθ(y). (113)

In the following we distinguish between the case Nθ(b) ≥ f(b), the case Nθ(a) ≤ f(a), and
the case min{f(b) − Nθ(b),Nθ(a) − f(a)} > 0. We first establish the contradiction in the
case

Nθ(b) ≥ f(b). (114)

Observe that (113) and (114) imply for all x ∈ [a,b] that Nθ(x) ≥ Nθ(b) ≥ f(b) ≥ f(x).

Combining this with Corollary 5.2 proves that ρα2(b−a)3

12 > L(θ) ≥ ρ
∫ b

a
(f(b) − f(x))2 dx ≥

ρα2(b−a)3

12 , which is a contradiction. In the next step we establish the contradiction in the case

Nθ(a) ≤ f(a). (115)

Note that (113) and (115) show for all x ∈ [a,b] that Nθ(x) ≤ Nθ(a) ≤ f(a) ≤ f(x). This

and Corollary 5.2 imply that ρα2(b−a)3

12 > L(θ) ≥ ρ
∫ b

a
(f(a) − f(x))2 dx ≥ ρα2(b−a)3

12 , which is
a contradiction. Finally, we establish the contradiction in the case

min{f(b) −Nθ(b),Nθ(a) − f(a)} > 0. (116)

Observe that (116) and intermediate value theorem assure that there exists u ∈ [a,b] such that
Nθ(u) = f(u). This and (113) prove that ∀x ∈ [a, u] : Nθ(x) ≥ Nθ(u) = f(u) ≥ f(x) and
∀x ∈ [u,b] : Nθ(x) ≤ Nθ(u) = f(u) ≤ f(x). Combining this with Corollary 5.2 demonstrates
that

ρα2(b −a)3

12
> L(θ) = ρ

∫ u

a

(Nθ(x) − f(x))2 dx+ ρ

∫ b

u
(Nθ(x) − f(x))2 dx

≥ ρ

∫ u

a

(f(u) − f(x))2 dx+ ρ

∫ b

u
(f(x) − f(u))2 dx

= ρ

∫ b

a

(f(x) − f(u))2 dx ≥ ρα2(b−a)3

12
.

(117)

This is a contradiction. The proof of Lemma 5.5 is thus complete.
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Corollary 5.6. Assume Setting 5.3, let α, β ∈ R satisfy for all x ∈ [a,b] that f(x) = αx+ β,

and let θ ∈ R
4 satisfy L(θ) < ρα2(b−a)3

12 . Then

αwθvθ > 0. (118)

Proof of Corollary 5.6. Note that the assumption that L(θ) < ρα2(b−a)3

12 assures that α 6= 0. In
the following we distinguish between the case α > 0 and the case α < 0. First observe that
Lemma 5.5 establishes (118) in the case α > 0. In the next step we prove (118) in the case
α < 0. Note that

ρα2(b−a)3

12
> L(θ) = ρ

∫ b

a

(

vθ max{wθx+ bθ, 0} + cθ − (αx+ β)
)2

dx

= ρ

∫ b

a

(

(−vθ) max{wθx+ bθ, 0} + (−cθ) − (−αx− β)
)2

dx.

(119)

Combining this, the fact that −α > 0, and Lemma 5.5 (applied with θ x (wθ, bθ,−vθ,−cθ),
αx −α, β x −β in the notation of Lemma 5.5) demonstrates that αwθvθ = (−α)wθ(−vθ) > 0.
This establishes (118) in the case α < 0. The proof of Corollary 5.6 is thus complete.

Lemma 5.7. Assume Setting 5.3, let m ∈ R satisfy m = ρ
∫ b

a
(f(x)−(b−a)−1

∫ b

a
f(y) dy)2 dx,

and let θ ∈ R
4 satisfy L(θ) < m. Then max{wθa + bθ,wθb + bθ} > 0.

Proof of Lemma 5.7. We prove Lemma 5.7 by contradiction. We thus assume that

max{wθa + bθ,wθb + bθ} ≤ 0. (120)

Observe that (120) ensures that for all x ∈ [a,b] we have that

wθx+ bθ =
[

b−x
b−a

]

(wθa + bθ) +
[

x−a
b−a

]

(wθb + bθ) ≤ 0. (121)

This implies for all x ∈ [a,b] that max{wθx+bθ, 0} = 0. Therefore, we obtain for all x ∈ [a,b]
that Nθ(x) = cθ. Combining this with Lemma 5.1 proves that L(θ) ≥ m. This is a contradiction.
The proof of Lemma 5.7 is thus complete.

Proposition 5.8. Assume Setting 5.3 and let m ∈ R, ε ∈ (0,∞) satisfy m = ρ
∫ b

a
(f(x) − (b−

a)−1
∫ b

a
f(y) dy)2 dx. Then there exists C ∈ (0,∞) such that for all θ ∈ {ϑ ∈ R

4 : L(ϑ) ≤ m−ε}
it holds that C−1 ≤ |wθvθ| ≤ C.

Proof of Proposition 5.8. Throughout this proof assume without loss of generality that ε ≤ m,
assume without loss of generality that {ϑ ∈ R

4 : L(ϑ) ≤ m − ε} 6= ∅, and let M ∈ R satisfy
M = max{1, supx∈[a,b]|f(x)|}. We first prove that there exists C ∈ (0,∞) such that for all

θ ∈ {ϑ ∈ R
4 : L(ϑ) ≤ m− ε} it holds that

C−1 ≤ |wθvθ|. (122)

Note that Lemma 5.4 implies for all θ ∈ R
4, x ∈ [a,b] that |Nθ(x)−Nθ(a)| ≤ |wθvθ||x−a| ≤

|wθvθ|(b−a). Combining this, Lemma 5.1, and Minkowski’s inequality establishes for all θ ∈ R
4

that

√

L(θ) =

[

ρ

∫ b

a

(Nθ(x) − f(x))2 dx

]1/2

≥
[

ρ

∫ b

a

(Nθ(a) − f(x))2 dx

]1/2

−
[

ρ

∫ b

a

(Nθ(x) −Nθ(a))2 dx

]1/2

≥ inf
ξ∈R

[

ρ

∫ b

a

(f(x) − ξ)2 dx

]1/2

−
[

ρ

∫ b

a

|wθvθ|2|b−a|2 dx

]1/2

=
√
m− |wθvθ|

√

ρ(b−a)3.

(123)
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This implies for all θ ∈ R
4 that

|wθvθ| ≥
√
m−

√
L(θ)√

ρ(b−a)3
. (124)

Hence, we obtain for all θ ∈ {ϑ ∈ R
4 : L(ϑ) ≤ m− ε} that

|wθvθ| ≥
√
m−

√
L(θ)√

ρ(b−a)3
≥

√
m−

√
m−ε√

ρ(b−a)3
> 0. (125)

This establishes (122). In the next step we verify that there exists C ∈ (0,∞) such that for all
θ ∈ {ϑ ∈ R

4 : L(ϑ) ≤ m− ε} it holds that

|wθvθ| ≤ C. (126)

We prove (126) by contradiction. In the following we thus assume that

supθ∈{ϑ∈R4 : L(ϑ)≤m−ε}|wθvθ| = ∞. (127)

Observe that (127) ensures that there exist θn ∈ {ϑ ∈ R
4 : L(ϑ) ≤ m− ε}, n ∈ N, which satisfy

for all n ∈ N that
|wθnvθn | ≥ 2(n+ 1)2M > 0. (128)

Roughly speaking, we next establish that for all sufficiently large n it holds that the function
[a,b] ∋ x 7→ Nθn(x) ∈ R is almost constant in the sense that lim supn→∞ λ(Iθn) = 0 and,
thereafter, we use this to prove (126). Note that (106) ensures that for all n ∈ N, x ∈ Iθn it
holds that Nθn(x) = wθnvθnx+ (bθnvθn + cθn). Combining this with (128) and the fact that for
all α, β, c ∈ R with α 6= 0 it holds that

λ({x ∈ [a,b] : |αx+ β| ≤ |c|}) ≤ λ({x ∈ R : |αx+ β| ≤ |c|})

= λ
({

x ∈ R :
∣

∣x+ β
α

∣

∣ ≤ |c|
|α|

})

= λ
([

−β
α − |c|

|α| ,−
β
α + |c|

|α|
])

= 2|c|
|α|

(129)

implies that for all n ∈ N we have that

λ
(

{

x ∈ Iθn : |Nθn(x)| ≤ (n+ 1)M
}

)

≤ min
{

λ(Iθn), 2(n+1)M
|wθnvθn |

}

≤ min
{

λ(Iθn), 1
n+1

}

. (130)

Hence, we obtain for all n ∈ N that

λ
(

{

x ∈ Iθn : |Nθn(x)| > (n+ 1)M
}

)

= λ(Iθn) − λ
(

{

x ∈ Iθn : |Nθn(x)| ≤ (n+ 1)M
}

)

≥ λ(Iθn) − min
{

λ(Iθn), 1
n+1

}

= max
{

0, λ(Iθn) − 1
n+1

}

.

(131)

Furthermore, observe that for all x ∈ Iθn with |Nθn(x)| > (n+ 1)M it holds that

|Nθn(x) − f(x)| ≥ |Nθn(x)| − |f(x)| ≥ |Nθn(x)| −M > (n + 1)M −M = nM. (132)

Combining this with (128) and (131) implies that for all n ∈ N it holds that

m > m− ε ≥ L(θn) ≥ n2M2 max
{

0, λ(Iθn) − 1
n+1

}

. (133)

Hence, we obtain that

0 ≤ lim sup
n→∞

[λ(Iθn)] = lim sup
n→∞

[

λ(Iθn) − 1
n+1

]

≤ lim sup
n→∞

[

max
{

0, λ(Iθn) − 1
n+1

}]

≤ lim sup
n→∞

[

m
n2M2

]

= 0.
(134)
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Next note that (106) ensures that for all n ∈ N, x ∈ [a,b]\Iθn it holds that Nθn(x) = cθn . This
implies for all n ∈ N that

L(θn) ≥ ρ

∫

[a,b]\Iθn
(f(x) −Nθn(x))2 dx ≥ inf

ξ∈R

[

ρ

∫

[a,b]\Iθn
(f(x) − ξ)2 dx

]

. (135)

Furthermore, observe that for all n ∈ N it holds that

[a,b]\Iθn = {x ∈ [a,b] : wθnx+ bθn ≤ 0} = {x ∈ [a,b] : wθnx ≤ −bθn}

=























[a,b] : bθn ≤ wθn = 0

∅ : bθn > wθn = 0

[a,b] ∩ (−∞,− bθn

wθn
] : wθn > 0

[a,b] ∩ [− bθn

wθn
,∞) : wθn < 0.

(136)

Lemma 5.1 hence proves that for all n ∈ N it holds that

inf
ξ∈R

[

ρ

∫

[a,b]rIθn
(f(x) − ξ)2 dx

]

= inf
ξ∈[−M,M ]

[

ρ

∫

[a,b]rIθn
(f(x) − ξ)2 dx

]

. (137)

This, (135), (136), and Lemma 5.1 demonstrate for all n ∈ N that

L(θn) ≥ inf
ξ∈[−M,M ]

[

ρ

∫

[a,b]rIθn
(f(x) − ξ)2 dx

]

= inf
ξ∈[−M,M ]

[

ρ

∫

[a,b]
(f(x) − ξ)2 dx− ρ

∫

Iθn
(f(x) − ξ)2 dx

]

≥ inf
ξ∈[−M,M ]

[

ρ

∫

[a,b]
(f(x) − ξ)2 dx− ρ

∫

Iθn
(|f(x)| + |ξ|)2 dx

]

≥ inf
ξ∈[−M,M ]

[

ρ

∫

[a,b]
(f(x) − ξ)2 dx− ρ

∫

Iθn
(2M)2 dx

]

≥
[

inf
ξ∈[−M,M ]

ρ

∫ b

a

(f(x) − ξ)2 dx

]

− 4ρM2λ(Iθn)

= m− 4ρM2λ(Iθn).

(138)

Combining this with (133) and (134) shows that

m > m− ε ≥ lim infn→∞L(θn) ≥ m. (139)

This is a contradiction. The proof of Proposition 5.8 is thus complete.

6 Convergence of the risk of GFs in the training of ANNs with
one hidden neuron

The main result of this section, Theorem 6.7 in Subsection 6.3 below, demonstrates in the
special situation where the measure µ (see Setting 2.1) is up to a constant the Lebesgue–Borel
measure on [a,b], where the hidden layer consists of only one neuron (where H = 1), and
where the target function f : [a,b] → R is affine linear that the risk of every not necessarily
bounded GF trajectory converges to zero. Our proof of Theorem 6.7 employs some of the results
in Sections 3 and 5, the a priori bounds for GF trajectories with sufficiently small initial risk
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in Lemma 6.2 in Subsection 6.1 below, the convergence properties of ANNs with uniformly
convergent realization functions in Lemma 6.4 in Subsection 6.2, and the well-known fact for
integral equations in Lemma 6.6 in Subsection 6.3. Only for completeness we include in this
section a detailed proof for Lemma 6.6.

In our proof of Theorem 6.7 we first employ Lemma 3.1 in Subsection 3.1 to obtain that
[0,∞) ∋ t 7→ G(Θt) ∈ R

4 is L2-integrable. This allows us to extract a subsequence along which
the standard norm of the generalized gradient converges to zero. In the next step Lemma 6.2
enables us to conclude that the realization functions of the corresponding ANNs are uniformly
equicontinuous. This, in turn, allows us to bring the Arzela-Ascoli theorem into play to obtain
that along some sub-subsequence the realization functions converge uniformly on [a,b]. It
then remains to prove that the limit of these uniformly convergent ANN realization functions
coincides with the affine linear target function. We verify this by employing Lemma 6.4 in
combination with a careful analysis of the gradient given by (158).

As a consequence of Theorem 6.7, we prove in Corollary 6.9 in the special situation where the
measure µ (see Setting 2.1) is up to a constant the Lebesgue–Borel measure on [a,b], where
the hidden layer consists of only one neuron (where H = 1), and where the target function
f : [a,b] → R is affine linear that the realization functions of the GF trajectory converge to
the target function not only in L2-sense (Theorem 6.7) but even uniformly in the set of all
continuous functions C([a,b],R) from [a,b] to R.

Our formulations of the statements in Lemma 6.2, Corollary 6.3, Theorem 6.7, and Corol-
lary 6.9 also exploit the elementary regularity result in Lemma 6.1 in Subsection 6.1. Lemma 6.1
clarifies in the framework of Setting 5.3 that the generalized gradient function G : R4 → R

4 is
locally bounded and measurable and, thereby, in particular ensures for every continuous func-
tion Θ: [0,∞) → R

4 and every t ∈ [0,∞) that the Lebesgue integral
∫ t
0 G(Θs) ds is well-defined.

Lemma 6.1 is an immediate consequence of the more general result in Corollary 2.4 from Sub-
section 2.2 above.

6.1 A priori estimates for GFs

Lemma 6.1. Assume Setting 5.3. Then it holds that G is locally bounded and measurable.

Proof of Lemma 6.1. Note that Corollary 2.4 establishes that G is locally bounded and mea-
surable. The proof of Lemma 6.1 is thus complete.

Lemma 6.2. Assume Setting 5.3, let Θ ∈ C([0,∞),R4) satisfy for all t ∈ [0,∞) that Θt =

Θ0 −
∫ t
0 G(Θs) ds, let m ∈ R satisfy m = ρ

∫ b

a
(f(x) − (b − a)−1

∫ b

a
f(y) dy)2 dx, and assume

L(Θ0) < m (cf. Lemma 6.1). Then

(i) it holds that supt∈[0,∞)|wΘtvΘt| <∞,

(ii) it holds that

supt∈[0,∞)|wΘt | ≤
[

supt∈[0,∞) max
{

1, |wΘ0 |2 + |bΘ0 |2 − |vΘ0 |2 + |wΘtvΘt |2
}]1/2

<∞,
(140)

(iii) it holds for all t ∈ [0,∞) that

supx∈[a,b]|NΘt(x)| ≤ 2
[

supx∈[a,b]|f(x)|
]

+ (b−a)|wΘtvΘt | <∞, (141)

and

(iv) it holds for all α, β ∈ R with ∀x ∈ [a,b] : f(x) = αx+ β that inft∈[0,∞) αw
ΘtvΘt > 0.
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Proof of Lemma 6.2. Throughout this proof let w = (wt)t∈[0,∞), b = (bt)t∈[0,∞), v = (vt)t∈[0,∞),
c = (ct)t∈[0,∞) ∈ C([0,∞),R) satisfy for all t ∈ [0,∞) that

wt = wΘt , bt = bΘt, vt = vΘt , and ct = cΘt , (142)

let M ∈ R satisfy M = supx∈[a,b]|f(x)|, let A ∈ R satisfy A = |w0|2 + |b0|2 − |v0|2, and let
C ∈ [0,∞] satisfy C = supt∈[0,∞)|wtvt|. Observe that Lemma 3.1 demonstrates for all t ∈ [0,∞)
that L(Θt) ≤ L(Θ0) < m. Corollary 5.2, Corollary 5.6, and Proposition 5.8 hence establish
items (i) and (iv).

In the next step we prove item (ii). Note that Proposition 4.4 implies for all t ∈ [0,∞) that

|wt|2 − |vt|2 ≤ |wt|2 + |bt|2 − |vt|2 = |w0|2 + |b0|2 − |v0|2 = A. (143)

Combining this with the fact that supt∈[0,∞)|wtvt| = C < ∞ ensures for all t ∈ [0,∞) with
|wt| ≥ 1 that

|wt|2 ≤ A+ |vt|2 ≤ A+ C2

|wt|2 ≤ A+ C2. (144)

Hence, we obtain for all t ∈ [0,∞) that |wt|2 ≤ max{A+C2, 1} <∞. This establishes item (ii).

Finally, we prove item (iii). Observe that Lemma 5.1 implies that m ≤ ρ
∫ b

a
(f(y))2 dy ≤

ρ(b−a)M2. Combining this with Lemma 3.1 assures that for all t ∈ [0,∞) we have that

ρ

∫ b

a

(NΘt(y) − f(y))2 dy = L(Θt) ≤ L(Θ0) ≤ m ≤ ρ(b −a)M2. (145)

This shows that there exists x = (xt)t∈[0,∞) : [0,∞) → [a,b] which satisfies for all t ∈ [0,∞)
that

|NΘt(xt) − f(xt)| ≤M. (146)

In addition, note that Lemma 5.4 ensures that for all t ∈ [0,∞), x, y ∈ [a,b] it holds that
|NΘt(x) −NΘt(y)| ≤ |wtvt||x− y|. Hence, we obtain for all t ∈ [0,∞), y ∈ [a,b] that

|NΘt(y)| ≤ |NΘt(xt)| + |NΘt(y) −NΘt(xt)|
≤ |f(xt)| + |NΘt(xt) − f(xt)| + |wtvt||y − xt|
≤M +M + |wtvt|(b −a) = 2M + |wtvt|(b −a).

(147)

This establishes item (iii). The proof of Lemma 6.2 is thus complete.

Corollary 6.3. Assume Setting 5.3 and let Θ ∈ C([0,∞),R4) satisfy for all t ∈ [0,∞) that
Θt = Θ0 −

∫ t
0 G(Θs) ds (cf. Lemma 6.1). Then

(i) it holds that supt∈[0,∞)|wΘtvΘt| <∞ and

(ii) it holds that supt∈[0,∞)|wΘt | <∞.

Proof of Corollary 6.3. Throughout this proof let m ∈ R satisfy

m = ρ
∫ b

a

(

f(x) − (b−a)−1
∫ b

a
f(y) dy

)2
dx. (148)

In the following we distinguish between the case inft∈[0,∞) L(Θt) ≥ m and the case inft∈[0,∞)L(Θt)
< m. We first establish items (i) and (ii) in the case

inft∈[0,∞)L(Θt) ≥ m. (149)

Observe that (149) and Corollary 4.3 show that

supt∈[0,∞)‖Θt‖ ≤ 3‖Θ0‖2 + 8
∣

∣(b −a)−1
∫ b

a
f(y) dy

∣

∣

2
<∞. (150)
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This establishes items (i) and (ii) in the case inft∈[0,∞) L(Θt) ≥ m. In the next step we prove
items (i) and (ii) in the case

inft∈[0,∞)L(Θt) < m. (151)

Note that (151) assures that there exists T ∈ [0,∞) which satisfies that L(ΘT ) < m. Observe
that the fact that Θ: [0,∞) → R

4 is continuous implies that supt∈[0,T ]|wΘtvΘt| < ∞ and

supt∈[0,T ]|wΘt | <∞. Next let Θ ∈ C([0,∞),R4) satisfy for all t ∈ [0,∞) that Θt = ΘT+t. Note
that the integral transformation theorem ensures for all t ∈ [0,∞) that L(Θ0) = L(ΘT ) < m
and

Θt = ΘT+t = Θ0 −
∫ T+t

0
G(Θs) ds =

[

Θ0 −
∫ T

0
G(Θs) ds

]

−
∫ T+t

T
G(Θs) ds

= ΘT −
∫ t

0
G(ΘT+s) ds = Θ0 −

∫ t

0
G(Θs) ds.

(152)

Lemma 6.2 hence proves that supt∈[T,∞)|wΘtvΘt| = supt∈[0,∞)|wΘtvΘt| <∞ and supt∈[T,∞)|wΘt |
= supt∈[0,∞)|wΘt | < ∞. This establishes items (i) and (ii) in the case inft∈[0,∞)L(Θt) < m.
The proof of Corollary 6.3 is thus complete.

6.2 Properties of ANN parameters for convergent sequences of ANN real-
izations

Lemma 6.4. Assume Setting 5.3, let (θn)n∈N ⊆ R
4, h ∈ C([a,b],R) satisfy

lim supn→∞ supx∈[a,b]|Nθn(x) − h(x)| = 0, (153)

and assume that h is not constant. Then

(i) there exists ϑ ∈ R
4 which satisfies Nϑ|[a,b] = h,

(ii) it holds that lim supn→∞|wθnvθn −wϑvϑ| = 0, and

(iii) it holds that lim supn→∞ λ(Iθn∆Iϑ) = 0.

Proof of Lemma 6.4. Observe that [20, Theorem 3.8] ensures that there exists ϑ ∈ R
4 which

satisfies Nϑ|[a,b] = h. This establishes item (i).

In the next step we prove that lim supn→∞ λ(Iϑ\Iθn) = 0. Note that the assumption that
h is not constant implies that λ(Iϑ) > 0 and wϑvϑ 6= 0. Moreover, observe that (106) ensures
that for all n ∈ N, x ∈ [a,b]\Iθn it holds that Nθn(x) = cθn . This, the fact that for all x ∈ Iϑ

it holds that Nϑ(x) = wϑvϑx + vϑbϑ + cϑ, and Corollary 5.2 imply that for all n ∈ N we have
that

∫ b

a

|Nθn(x) −Nϑ(x)|2 dx ≥
∫

Iϑ\Iθn
(h(x) − cθn)2 dx ≥ |wϑvϑ|2(λ(Iϑ\Iθn))3

12
. (154)

Furthermore, note that (153) assures that

lim sup
n→∞

[

∫ b

a

|Nθn(x) −Nϑ(x)|2 dx

]

= 0. (155)

This, (154), and the fact that wϑvϑ 6= 0 demonstrate that lim supn→∞ λ(Iϑ\Iθn) = 0. Hence,
we have that lim supn→∞|λ(Iϑ ∩ Iθn) − λ(Iϑ)| = 0. Next observe that (106) shows that for all
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n ∈ N, x ∈ Iϑ∩Iθn it holds that Nθn(x)−Nϑ(x) = (wθnvθn−wϑvϑ)x+(vθnbθn +cθn−vϑbϑ−cϑ).
Combining this and Corollary 5.2 proves for all n ∈ N that

∫ b

a

|Nθn(x) −Nϑ(x)|2 dx ≥
∫

Iϑ∩Iθn
|Nθn(x) −Nϑ(x)|2 dx

≥ |wθnvθn −wϑvϑ|2(λ(Iϑ ∩ Iθn))3

12
.

(156)

This, (155), and the fact that limn→∞ λ(Iϑ∩Iθn) = λ(Iϑ) > 0 ensure that lim supn→∞|wθnvθn−
wϑvϑ| = 0, which establishes item (ii).

It remains to prove that lim supn→∞ λ(Iθn\Iϑ) = 0. Note that (106) implies that for all
x ∈ [a,b]\Iϑ it holds that Nϑ(x) = cϑ. This, the fact that for all n ∈ N, x ∈ Iθn we have that
Nθn(x) = wθnvθnx+ vθnbθn + cθn , and Corollary 5.2 show that for all n ∈ N it holds that

∫ b

a

|Nθn(x) −Nϑ(x)|2 dx ≥
∫

Iθn\Iϑ
|Nθn(x) − cϑ|2 dx ≥ |wθnvθn |2(λ(Iθn\Iϑ))3

12
. (157)

Combining this and (155) with the fact that limn→∞wθnvθn = wϑvϑ 6= 0 demonstrates that
lim supn→∞ λ(Iθn\Iϑ) = 0. This proves item (iii). The proof of Lemma 6.4 is thus complete.

6.3 Convergence of the risk of GFs to zero for affine linear target functions

Proposition 6.5. Assume Setting 5.3 and let θ ∈ R
d. Then

G1(θ) = 2ρvθ
∫

Iθ
x(Nθ(x) − f(x)) dx,

G2(θ) = 2ρvθ
∫

Iθ
(Nθ(x) − f(x)) dx,

G3(θ) = 2ρ

∫ b

a

[

max{wθx+ bθ, 0}
]

(Nθ(x) − f(x)) dx,

and G4(θ) = 2ρ

∫ b

a

(Nθ(x) − f(x)) dx.

(158)

Proof of Proposition 6.5. Observe that Proposition 2.2 establishes (158). The proof of Propo-
sition 6.5 is thus complete.

Lemma 6.6. Let a ∈ R, b ∈ (a,∞), α1, α2, β1, β2 ∈ R satisfy

∫ b

a

x((α1x+ β1) − (α2x+ β2)) dx =

∫ b

a

((α1x + β1) − (α2x+ β2)) dx = 0. (159)

Then α1 = α2 and β1 = β2.

Proof of Lemma 6.6. Note that (159) assures that

0 = (α1 − α2)

[

∫ b

a

x((α1x+ β1) − (α2x+ β2)) dx

]

+ (β1 − β2)

[

∫ b

a

((α1x+ β1) − (α2x + β2)) dx

]

=

∫ b

a

((α1 − α2)x + (β1 − β2))((α1x+ β1) − (α2x+ β2)) dx

=

∫ b

a

((α1 − α2)x + (β1 − β2))2 dx.

(160)
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This and the fact that for all x ∈ [a,b] it holds that ((α1 − α2)x + (β1 − β2))2 ≥ 0 show
that for all x ∈ [a,b] it holds that ((α1 − α2)x + (β1 − β2)) = 0. Hence, we obtain that
α1 − α2 = β1 − β2 = 0. The proof of Lemma 6.6 is thus complete.

Theorem 6.7. Assume Setting 5.3, let α, β ∈ R satisfy for all x ∈ [a,b] that f(x) = αx+β, and

let Θ ∈ C([0,∞),R4) satisfy for all t ∈ [0,∞) that Θt = Θ0−
∫ t
0 G(Θs) ds and L(Θ0) <

ρα2(b−a)3

12
(cf. Lemma 6.1). Then lim supt→∞ L(Θt) = 0.

Proof of Theorem 6.7. Throughout this proof let w = (wt)t∈[0,∞), b = (bt)t∈[0,∞), v = (vt)t∈[0,∞),
c = (ct)t∈[0,∞) ∈ C([0,∞),R) satisfy for all t ∈ [0,∞) that

wt = wΘt , bt = bΘt , vt = vΘt , and ct = cΘt (161)

and let It ⊆ [a,b], t ∈ [0,∞), satisfy for all t ∈ [0,∞) that It = IΘt . Observe that Lemma 3.1
implies that [0,∞) ∋ t 7→ L(Θt) ∈ R is non-increasing. Hence, we obtain that

lim supt→∞ L(Θt) = lim inft→∞ L(Θt) = inft∈[0,∞)L(Θt). (162)

Next note that Lemma 3.1 proves that
∫∞
0 ‖G(Θs)‖2 ds <∞. This demonstrates that lim inft→∞

‖G(Θt)‖ = 0. Therefore, we obtain that there exist τn ∈ [0,∞), n ∈ N, which satisfy
lim infn→∞ τn = ∞ and lim supn→∞‖G(Θτn)‖ = 0. Observe that Lemma 6.2 implies that

supn∈N|wτnvτn | <∞ and supn∈N supx∈[a,b]|NΘτn (x)| <∞. (163)

Combining this and Lemma 5.4 proves that there exists C ∈ R such that for all x, y ∈ [a,b],
n ∈ N it holds that |NΘτn (x) − NΘτn (y)| ≤ C|x − y| and |NΘτn (x)| ≤ C. The Arzela-Ascoli
theorem hence shows that there exist h ∈ C([a,b],R) and a strictly increasing k : N → N which
satisfy

lim supn→∞ supx∈[a,b]|N
Θτk(n) (x) − h(x)| = 0. (164)

Combining this with (162) and the assumption that L(Θ0) <
ρα2(b−a)3

12 implies that

ρ

∫ b

a

(f(x) − h(x))2 dx = lim supn→∞ L(Θτk(n)
) = inft∈[0,∞) L(Θt) <

ρα2(b−a)3

12
. (165)

This and Corollary 5.2 assure that h is not constant. Lemma 6.4 hence ensures that there
exists ϑ ∈ R

4 which satisfies Nϑ|[a,b] = h. Combining this and (165) with Corollary 5.2,

Corollary 5.6, and Lemma 5.7 demonstrates that αwϑvϑ > 0 and Iϑ 6= ∅. In addition, note
that (158) and (164) show that

0 =
1

2ρ

[

lim
n→∞

G4(Θτk(n)
)
]

= lim
n→∞

[

∫ b

a

(N
Θτk(n) (x) − (αx+ β)) dx

]

=

∫ b

a

(Nϑ(x) − (αx+ β)) dx.

(166)

Furthermore, observe that (164) and Lemma 6.4 prove that lim supn→∞ λ(Iτk(n)
∆Iϑ) = 0.

Combining this and the fact that lim supn→∞ supx∈[a,b]|N
Θτk(n) (x)−Nϑ(x)| = 0 demonstrates

that

lim sup
n→∞

∣

∣

∣

∣

∣

∫

Iτk(n)

x(N
Θτk(n) (x) − (αx+ β)) dx−

∫

Iϑ
x(Nϑ(x) − (αx+ β)) dx

∣

∣

∣

∣

∣

= 0 (167)

and

lim sup
n→∞

∣

∣

∣

∣

∣

∫

Iτk(n)

(N
Θτk(n) (x) − (αx+ β)) dx−

∫

Iϑ
(Nϑ(x) − (αx+ β)) dx

∣

∣

∣

∣

∣

= 0. (168)
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Moreover, note that the fact that lim supn→∞‖G(Θτk(n)
)‖ = 0 and (158) imply that

lim sup
n→∞

∣

∣

∣

∣

∣

vτk(n)

∫

Iτk(n)

x(N
Θτk(n) (x) − (αx+ β)) dx

∣

∣

∣

∣

∣

= lim sup
n→∞

∣

∣

∣

∣

∣

vτk(n)

∫

Iτk(n)

(N
Θτk(n) (x) − (αx+ β)) dx

∣

∣

∣

∣

∣

= 0.

(169)

In the next step we show that

∣

∣

∣

∣

∫

Iϑ
x(Nϑ(x) − (αx+ β)) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Iϑ
(Nϑ(x) − (αx+ β)) dx

∣

∣

∣

∣

= 0. (170)

We prove (170) by contradiction. We thus assume that

∣

∣

∣

∣

∫

Iϑ
x(Nϑ(x) − (αx+ β)) dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Iϑ
(Nϑ(x) − (αx+ β)) dx

∣

∣

∣

∣

> 0. (171)

Observe that (167)–(169) and (171) prove that lim supn→∞|vτk(n)
| = 0. In addition, note that

Lemma 6.4 assures that limn→∞(wτk(n)
vτk(n)

) = wϑvϑ 6= 0. Combining this with item (ii) in
Lemma 6.2 demonstrates that ∞ = lim infn→∞|wτk(n)

| < ∞. This contradiction establishes

(170). Next observe that for all x ∈ Iϑ it holds that Nϑ(x) = wϑvϑx + vϑbϑ + cϑ. Combining
this, (170), and Lemma 6.6 ensures that for all x ∈ Iϑ it holds that

Nϑ(x) = αx+ β. (172)

Note that for all q ∈ (a,b) with Iϑ = (q,b] it holds that ∀x ∈ [a, q] : Nϑ(x) = Nϑ(q) = αq+β.
This, (166), and (170) imply that for all q ∈ (a,b) with Iϑ = (q,b] we have that

0 =

∫ b

a

(Nϑ(x) − (αx+ β)) dx =

∫ q

a

(Nϑ(x) − (αx+ β)) dx

=

∫ q

a

(αq − αx) dx = α

∫ q

a

(q − x) dx =
α(q −a)2

2
6= 0.

(173)

Furthermore, observe that for all q ∈ (a,b) with Iϑ = [a, q) we have that ∀x ∈ [q,b] : Nϑ(x) =
Nϑ(q) = αq + β. This, (166), and (170) ensure that for all q ∈ (a,b) with Iϑ = [a, q) it holds
that

0 =

∫ b

a

(Nϑ(x) − (αx+ β)) dx =

∫ b

q
(Nϑ(x) − (αx+ β)) dx

=

∫ b

q
(αq − αx) dx = α

∫ b

q
(q − x) dx = −α(b − q)2

2
6= 0.

(174)

Combining this, (173), and the fact that λ(Iϑ) > 0 shows that Iϑ ∈ {[a,b], (a,b], [a,b)}. This
implies that (a,b) ⊆ Iϑ. Combining this with (172) assures that for all x ∈ (a,b) we have
that Nϑ(x) = αx+ β = f(x). Hence, we obtain that

∫ b

a

(f(x) − h(x))2 dx =

∫ b

a

(f(x) −Nϑ(x))2 dx = 0. (175)

This, (162), and (165) imply that limt→∞ L(Θt) = L(ϑ) = 0. The proof of Theorem 6.7 is thus
complete.

34



Corollary 6.8. Let α, β,a ∈ R, b ∈ (a,∞), let Rr ∈ C(R,R), r ∈ N∪{∞}, satisfy for all x ∈
R that (

⋃

r∈N{Rr}) ⊆ C1(R,R), R∞(x) = max{x, 0}, supr∈N supy∈[−|x|,|x|](|Rr(y)| + |(Rr)
′(y)|)

<∞, and
lim supr→∞

(

|Rr(x) −R∞(x)| + |(Rr)
′(x) − 1(0,∞)(x)|

)

= 0, (176)

let Lr : R4 → R, r ∈ N ∪ {∞}, satisfy for all r ∈ N ∪ {∞}, θ = (θ1, . . . , θ4) ∈ R
4 that

Lr(θ) =

∫ b

a

(

αx+ β − θ4 − θ3Rr(θ2 + θ1x)
)2

dx, (177)

let G : R4 → R
4 satisfy for all θ ∈ {ϑ ∈ R

4 : ((∇Lr)(ϑ))r∈N is convergent} that G(θ) = limr→∞(∇Lr)(θ),
let Θ ∈ C([0,∞),R4) satisfy for all t ∈ [0,∞) that Θt = Θ0 −

∫ t
0 G(Θs) ds, and assume

L∞(Θ0) < α2(b−a)3

12 . Then lim supt→∞L∞(Θt) = 0.

Proof of Corollary 6.8. Note that Theorem 6.7 (applied with ρ x 1 in the notation of Theo-
rem 6.7) shows that lim supt→∞ L∞(Θt) = 0. The proof of Corollary 6.8 is thus complete.

6.4 Uniform convergence of realizations of GFs for affine linear target func-
tions

Corollary 6.9. Assume Setting 5.3, let α, β ∈ R satisfy for all x ∈ [a,b] that f(x) = αx+ β,
and let Θ ∈ C([0,∞),R4) satisfy for all t ∈ [0,∞) that Θt = Θ0 −

∫ t
0 G(Θs) ds and L(Θ0) <

ρα2(b−a)3

12 (cf. Lemma 6.1). Then

lim supt→∞
(

supx∈[a,b]|NΘt(x) − (αx+ β)|
)

= 0. (178)

Proof of Corollary 6.9. Observe that Lemma 6.2 assures that there exists C ∈ (0,∞) such that
for all t ∈ [0,∞) it holds that |wΘtvΘt | ≤ C. We now prove (178) by contradiction. In the
following we thus assume that

lim supt→∞
(

supx∈[a,b]|NΘt(x) − (αx+ β)|
)

> 0. (179)

Note that (179) assures that there exist ε ∈ (0,∞) and τn ∈ [0,∞), n ∈ N, which satisfy
lim inft→∞ τn = ∞ and

infn∈N
(

supx∈[a,b]|NΘτn (x) − (αx+ β)|
)

> ε. (180)

Observe that (180) shows that there exist xn ∈ [a,b], n ∈ N, which satisfy for all n ∈ N

that |NΘτn (xn) − (αxn + β)| ≥ ε. Moreover, note that Lemma 5.4 proves that for all n ∈ N,
y, z ∈ [a,b] it holds that

|[NΘτn (y) − (αy + β)] − [NΘτn (z) − (αz + β)]| ≤ |NΘτn (y) −NΘτn (z)| + |α||y − z|
≤ (C + |α|)|y − z|.

(181)

Next let δ ∈ (0,∞) satisfy δ = ε
2(C+|α|) . Observe that (181) ensures that for all n ∈ N,

y ∈ [xn − δ, xn + δ] ∩ [a,b] it holds that

|NΘτn (y) − (αy + β)|
≥ |NΘτn (xn) − (αxn + β)| − |[NΘτn (xn) − (αxn + β)] − [NΘτn (y) − (αy + β)]|
≥ ε− (C + |α|)|xn − y| ≥ ε− (C + |α|)δ = ε− ε

2 = ε
2 .

(182)

Furthermore, note that for all n ∈ N we have that λ([xn − δ, xn + δ] ∩ [a,b]) ≥ min{δ,b −a}.
This demonstrates that for all n ∈ N it holds that

L(Θτn) ≥ ρ

∫

[xn−δ,xn+δ]∩[a,b]
|NΘτn (y) − (αy + β)|2 dy ≥ ρε2 min{δ,b −a}

4
. (183)

Combining this with Theorem 6.7 shows that

0 = lim supt→∞ L(Θt) ≥ lim supn→∞L(Θτn) ≥ ρε2 min{δ,b−a}
4 > 0. (184)

This is a contradiction. The proof of Corollary 6.9 is thus complete.
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