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Abstract

In preimplantation mammalian embryos, the second cell fate decision introduces spatial patterns
of embryonic and extra-embryonic precursor cells. The transcription factors NANOG and GATA6
are the earliest markers for the two cell types and interact between cells via the fibroblast growth
factor signaling pathway. Computational models have been used to mimic the patterns and cell
type proportions found in experimental studies. However, these models are always phenomenological
in nature and lack a proper physical explanation. We derive a cell fate decision model motivated
by the ideas of statistical mechanics. The model incorporates intra- and intercellular interactions
of NANOG and GATA6. A detailed mathematical analysis on the resulting dynamical system is
presented. We find that our model is capable of generating tissue wide spatial patterns of the two
cell types. Its advantages are revealed in the simple physical and biological interpretation of the
parameters and their interactions. In numerical simulations, we showcase the ability to replicate
checkerboard patterns of different cell type proportions varying only a single parameter. The tight
control of the system as well as the ease of use and the direct expandability to other signaling types
provide solid reasons for the continued use of our model. We are convinced that our approach presents
an exciting perspective in relation to cell fate decisions. Moreover, the concepts are generalizable to
questions regarding cell signaling beyond the mammalian embryo.

1 Introduction

In mammalian preimplantation development, cell differentiation plays a central role in the creation of
blastocysts. In the mouse embryo, the first two cell fate decisions are conceptualized as two distinct
events. In the first decision, cells separate to form the inner cell mass (ICM) and the trophoectoderm
(TE). The second decision focuses on the pluripotent stem cells in the ICM. Here, cells differentiate into
either embryonic precursor cells in the form of epiblast (Epi) cells or alternatively into extra-embryonic
precursor cells in the form of primitive endoderm (PrE) cells [1, 2, 3, 4].

ICM organoids, a collection of mouse embryonic stem cells capable of organizing themselves into a
sphere-like structure, show similarities to the in vivo system in terms of cell differentiation to Epi and
PrE cells [5]. The large number of cells in a single ICM organoid is not only appealing to statistical
analysis but also to generalized modeling approaches.

The first markers of Epi and PrE cell fates are the transcription factors NANOG and GATA6. The
expression of NANOG plays a central role in the specification of Epi cells [6], whereas GATA6 is essential
for PrE cells [7]. The expression of both transcription factors is controlled by a complex gene regulatory
network (GRN). At the heart of the GRN resides the mutual inhibition of NANOG and GATA6 at the
intracellular level. Cell-cell communication in the form of intercellular signaling allows for cells to influ-
ence neighboring cells. The fibroblast growth factor / extracellular signal-regulated kinase (FGF/ERK)
pathway handles the task of communication, allowing for the formation of spatial patterns of the two
different cell types. The impact of FGF4 on either cell fate has been investigated in experimental studies,
showing the possibility to force cells to adopt either fate [8, 9].

Computational models have proven capable of capturing the cell fate specification up to some extent,
showing the possibility to create cell type proportions in a checkerboard pattern [10, 11]. Combined
with few successive rules, relevant features of mammalian blastocysts have already been reconstructed
in simulations [12, 13]. However, these models are always phenomenological in nature. Their heavy
reliance on various applications of the Hill equation might introduce nonphysical behavior and neglects
the characteristics of interactions between multiple constituents. A suitable physical description of the
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underlying mechanics as well as a rigorous mathematical analysis of the resulting equations are still
pending.

We introduce a mathematical description of the antagonistic effect between NANOG and GATA6
using statistical mechanics [14]. We cover the general description of transcription factor binding up to
the competitive or cooperative effect of the different interacting species. This leads to the description
of binding probabilities, which enable us to set up a system of ordinary differential equations (ODEs)
describing the concentration of NANOG and GATA6 in a physically meaningful way. These specifically
derived binding probabilities allow us to distance ourselves from existing models [10, 11, 15]. A detailed
linear stability analysis leads to an elegant parameter restriction for homogeneous and heterogeneous
steady states incorporating all of the model parameters. As a result, we get full control over the propor-
tions of the two cell types. An extension in the functionality of the FGF4 signaling suffices to display
the checkerboard pattern observed in the existing models. Finally, robustness of the model in terms of
parameter changes and tissue sizes is showcased.

2 Model Derivation

2.1 Transcription factor binding

We consider the problem of transcription factor binding in a gene regulatory network (GRN) in terms
of statistical mechanics [14]. Dividing our space into Ω different lattice sites, a number of transcription
factors A can rearrange in that space in

Ω!

A!(Ω−A)!

ways. Assuming there is only one binding site on the DNA for A to bind to, then the number of different
microstates in which A is bound is

Ω!

(A− 1)!(Ω−A+ 1)!
.

We assume there is an energetic difference in the bound and unbound state. Therefore, we introduce the
energies for the unbound and bound state as εA,u and εA,b, respectively. A state with no bound A will
then have an energy of

ε1 = AεA,u,

whereas for a bound state we get
ε2 = (A− 1)εA,u + εA,b.

In statistical mechanics, the partition function is given by the sum of all possible Boltzmann weights
e−βεi over every microstate, i.e.

Ztotal =
∑

microstates

e−βεmicrostate

=
Ω!

A!(Ω−A)!
e−βε1 +

Ω!

(A− 1)!(Ω−A+ 1)!
e−βε2

= Z1 + Z2.

The binding probability pA is then given by

pA =
Z2

Z1 + Z2
.

Up to this point, the procedure is very general in nature, i.e. find the number of microstates according to
your GRN and define your partition function. The binding probabilities for any species is then found by
dividing its part of the partition function by the total. Assuming Ω� A, we can use the approximation

Ω!
(Ω−A)! ≈ ΩA. We divide numerator and denominator by Z1 and define the energy difference ∆εA :=

β(εAb
− εAu).

pA =
Z2/Z1

1 + Z2/Z1
=

A
Ωe
−∆εa

1 + A
Ωe
−∆εa

. (1)

For simplicity, we replace the exponential expression with the following energy coefficient ηa := e−∆εa

and use a = A/Ω to get the volume fractions. Here, a = 1 would represent a fully occupied space, where
a = 0 resembles empty space. This leads to

pA =
ηaa

1 + ηaa
. (2)

This is the well-known Hill equation that is also commonly used in the same context [10, 11, 15, 16]. In
the following we will refer to this as phillA .
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2.2 Interactions

The crucial parts in transcriptional regulation are the interactions between constituents. In the following,
we consider two possibly interacting species A and B. This results in a system, with the following
microstates

1. Neither A nor B are bound. # of combinations = Ω!
A!B!(Ω−A−B)!

2. A is bound. # of combinations = Ω!
(A−1)!B!(Ω−A−B+1)!

3. B is bound. # of combinations = Ω!
A!(B−1)!(Ω−A−B+1)!

4. A and B are bound. # of combinations = Ω!
(A−1)!(B−1)!(Ω−A−B+2)!

The binding energy differences remain as before with an additional factor for the interaction ηab =
e−∆εab . The binding probabilities for A and B are then given by

pA =
ηaa+ ηaηbηabab

1 + ηaa+ ηbb+ ηaηbηabab
(3)

pB =
ηbb+ ηaηbηabab

1 + ηaa+ ηbb+ ηaηbηabab
. (4)

The advantage or disadvantage given by the interaction energy difference now determines the nature of
the interaction:

ηab = 0 ⇐⇒ ∆εab =∞ complete inhibition / blocking,

ηab < 1 ⇐⇒ ∆εab > 0 inhibition,

ηab = 1 ⇐⇒ ∆εab = 0 no interaction,

ηab > 1 ⇐⇒ ∆εab < 0 activation.

We emphasize that an energy difference of∞ is in fact a reasonable choice, considering one species might
be able to fully block the other’s binding site, leaving it no possibility to bind at all. Therefore, a state
where both species are bound does not exist. Furthermore, we take a look at the case of ∆εab = 0. It
can be seen from the probabilities that this indeed leaves us with no interaction as it reduces to

pA =
ηaa+ ηaηbab

1 + ηaa+ ηbb+ ηaηbab
=

ηaa(1 + ηbb)

(1 + ηaa)(1 + ηbb)
=

ηaa

1 + ηaa
= phillA . (5)

Since the denominator of pA is by definition always larger than the numerator, we get monotonicity with
respect to ηab (Fig. 1), i.e.

ηaa+ ηaηbηab

1 + ηaa+ ηbb+ ηaηbηab
<

ηaa+ ηaηbηab

1 + ηaa+ ηbb+ ηaηbηab
for η < η. (6)

Positive interactions lie above the Hill function, whereas negative interactions always remain below.
Finally, we realize that following this derivation any kind of interaction of this type is in fact mutual.
That means, if A inhibits B, then B also inhibits A. Likewise, if A activates B, then B also activates A.
Under the notion that transcriptional regulation occurs based on inhibition and auto-activation, previous
models have proposed to use the product of two Hill functions [10, 11, 16]. In the context of probabilities
this would imply stochastic independence. In a system, in which B inhibits A, the total probability of
A binding the product of two Hill functions largely underestimates the true binding probability even for
ηab = 0:

phillA (1− phillB ) =
ηaa

1 + ηaa
· 1

1 + ηbb
≤ ηaa

1 + ηaa+ ηbb
= pA

∣∣
ηab=0

. (7)

Furthermore, the interpretation from reaction kinetics also often leads to introducing the sum of various
Hill functions. However, this linkage can cause total ”probabilities” greater than 1. Consequently, this
coupling might cause nonphysical behavior in the dynamical system like e.g. concentrations exceeding
the possible maximum.
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Figure 1: Binding probabilities for different interaction coefficients. Plots were generated using a constant
value of b = 0.02 as well as −∆εa = 5 and −∆εb = 6. The black line represents the hill function (5).

2.3 Application to NANOG/GATA6/FGF

Previous work has provided a detailed insight into transcriptional regulation during early embryogenesis
through a complicated model [10, 11]. We aim to reduce the complexity of the GRN by condensing it to
the three essential building blocks: Normalized concentrations of NANOG n, GATA6 g and the signal s.
We interpret the signal, as the influence of neighboring cells acting on the cell via the Fgf/Erk signaling
pathway. In contrast to the general consideration of modeling based on reaction kinetics, our approach
is based only on the different possibilities for transcription factor binding (Fig. 2). Therefore, we extract
from the GRN one of the ways in which the different combinations of binding can look. Building our
binding probabilities, we assume the inhibition to be of the blocking type, i.e. NANOG and GATA6
cannot simultaneously bind to a binding site. Consequently, a triple bound state, i.e. for which NANOG,
GATA6 and the signal are bound simultaneously also does not exist. The signal is allowed to bind
together with NANOG but not with GATA6. Hence, we chose interaction coefficients

ηng = ηgs = ηngs = 0, ηns ≥ 1⇐⇒ −∆εns > 0. (8)

Any single bound state results in the terms ηαα with α ∈ {n, g, s}. The remaining state has n and s
bound simultaneously, yielding the term ηnηsηnsns. For the binding probability of NANOG, we collect
all the terms including n and divide them by the combination of all other terms, resulting in

pN =
ηnn(1 + ηsηnss)

1 + ηnn(1 + ηsηnss) + ηgg + ηss
. (9)

Likewise, the probability of GATA6 is given by

pG =
ηgg

1 + ηnn(1 + ηsηnss) + ηgg + ηss
. (10)

2.4 Transcriptional ODE

Our interest lies in the temporal evolution of the NANOG and GATA6 expressions. The transcription-
translation process enables us to formulate the evolution of transcription factors via the binding proba-
bilities. If n is bound, it will be reproduced with a reproduction rate rn. Simultaneously, n decays over
time with constant decay rate γn. Analogously, we apply this logic to g. Considering up to M individual
cells i = 1, ...,M interacting with each other, this results in the following system of ordinary differential
equations (ODEs):

dn

dt
= rn

ηnni(1 + ηsηnssi)

1 + ηnni(1 + ηsηnssi) + ηggi + ηssi
− γnni

dg

dt
= rg

ηggi
1 + ηnni(1 + ηsηnssi) + ηggi + ηssi

− γggi, i = 1, ...,M.

(11)

We note that the cell-cell interactions are fully encoded in the signal si obtained from every individual
cell. In the course of this study, we restrict ourselves to a signal only depending on the GATA6 expressions

4



NANOG

GATA6

Signal
N G

S
Inhibition

Activation

Figure 2: Schematic representation of the GRN (left). NANOG (N) and GATA6 (G) mutually inhibit
each other. The signal (S) activates N. The GRN is translated into a picture of the possible combinations
of bindings to the DNA (right). Binding sites are shown as circles. NANOG and GATA6 share their
binding site (bicolor border), whereas the signal gets a separate binding site (grey border). Bound states
for each species are indicated by disks with the respective color. The five different cases represent all
possible binding arrangements allowed in our model.

of other cells, i.e.

s : RM → RM : g 7→ s(g),
∂si
∂gi

= 0, i = 1, ...,M. (12)

The condition on the right of (12) guarantees that in this setting, the signal does not depend on the
GATA6 expression of itself.

3 Steady State Analysis

3.1 Steady states

In order to get a better understanding of our ODE system, we want to delve further into the resulting
steady states of the system. This means, we consider

dni
dt

= 0 =
dgi
dt
.

Consequently, we get

ηnni(1 + ηsηnssi)

1 + ηnni(1 + ηsηnssi) + ηggi + ηssi
=
γn
rn
ni, (13)

ηggi
1 + ηnni(1 + ηsηnssi) + ηggi + ηssi

=
γg
rg
gi. (14)

When rearranging (13) and (14), we find two possible solutions for ni and gi, respectively. These solutions
are

ni =

{
0
rn
γn
− 1+ηggi+ηssi

ηn(1+ηsηnssi)

, gi =

{
0
rg
γg
− 1+ηnni(1+ηsηnssi)+ηssi

ηg

(15)

Taking every combination of ni and gi from (15) into account, we end up with four different steady states.
For three of the steady states, we can get either no expression of NANOG and GATA6 or high expression
of one transcription factor and none for the other:

ni = 0, gi = 0 (16)

ni = 0, gi =
rg
γg
− 1 + ηssi

ηg
(17)

ni =
rn
γn
− 1 + ηssi
ηn(1 + ηsηnssi)

, gi = 0 (18)

These steady states share the lower bound 0. Additionally, a rough estimate for an upper bound is given
by the ratios of reproduction and decay rn/γn and rg/γg. For parameter combinations such that

rn
γn
� 1

ηn
,

rg
γg
� 1

ηg
+
ηs
ηg
si (19)
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the left hand sides of the inequalities provide a reliable estimate for the steady state values.
The fourth steady state is an oddity that arises by combining the non-zero solutions for ni and gi from
(15). When combined, the corresponding variables ni and gi cancel out and we find the relation

ηn(1 + ηsηnssi) = ηg
rgγn
rnγg

. (20)

This also leaves our system to be over-determined and the values of ni and gi cannot further be identified.
However, by using (20) in the steady state solution ni 6= 0 in (15), we obtain the following state:

rgγn
rnγg

ni + gi =
rg
γg
− 1 + ηssi

ηg
. (21)

For cell fate specification, (21) is not relevant. For the simulations, we choose parameter values such that
condition (20) cannot be satisfied. However, since the relation also depends on the signal, no general
expression for the parameters can be derived at this point. We will come back to this later, once we
have defined a concrete realization of our signal. Altogether, we have successfully identified the relevant
steady states (16)-(18) of our ODE system (11).

3.2 Linearization

In the following sections, we investigate the steady states in further detail. We employ linear stability
analysis to determine the parameter regime that allows us to find a desired steady state for the overall
system. At the single cell level, we rule out (16), since it is not relevant to cell fate specification. At
the tissue level, we distinguish between homogeneous and heterogeneous steady states. A homogeneous
equilibrium state consists of cells of a single type only. This means that either all of the cells in the tissue
are in state (17) or all of them are in state (18). To best reproduce the situation in the embryo, we want
a mixture of two cell types. Therefore, we aim at excluding the homogeneous steady states as well.

We follow the definition of linear stability for an ODE system

dxi
dt

= f(x), i = 1, ...,M.

We say, an ODE system is linearly stable in x∗, if its linearization matrix LODE = f ′(x∗) has only
eigenvalues with negative real part. Using the M -dimensional identity matrix IM , we can write the
linearization matrix of (11) as

LODE =

(
rn

∂pN
∂n − γnIM rn

∂pN
∂g

rg
∂pG
∂n rg

∂pG
∂g − γgIM

)
, (22)

where we define ∂pN
∂n :=

(
∂pN
∂nj ,

(ni, gi, si)
)
i,j=1,...,M

. The other block matrices are defined analogously.

Specifically, we obtain

∂

∂nj
pN (ni, gi, si) =

{
ηn(1+ηsηnssi)(1+ηggi+ηssi)

(1+ηnni(1+ηsηnssi)+ηggi+ηssi)2
, if i = j

0 if i 6= j
(23)

∂

∂gj
pN (ni, gi, si) =

{
− ηnηgni(1+ηsηnssi)

(1+ηnni(1+ηsηnssi)+ηggi+ηssi)2
, if i = j

ηnηsηnsni(1+ηggi)−ηnηsni

(1+ηnni(1+ηsηnssi)+ηggi+ηssi)2
∂si
∂gj

if i 6= j
(24)

∂

∂nj
pG(ni, gi, si) =

{
− ηnηggi(1+ηsηnssi)

(1+ηnni(1+ηsηnssi)+ηggi+ηssi)2
, if i = j

0 if i 6= j
(25)

∂

∂gj
pG(ni, gi, si) =

{
ηg(1+ηnni(1+ηsηnssi)+ηssi)

(1+ηnni(1+ηsηnssi)+ηggi+ηssi)2
, if i = j

− ηsηggi(ηnηnsni+1)
(1+ηnni(1+ηsηnssi)+ηggi+ηssi)2

∂si
∂gj

if i 6= j
(26)

Thus, both the first and the third block matrix in (22) are diagonal, which significantly reduces the
upcoming efforts in the stability analysis. Finding the eigenvalues of LODE seems quite brutal at first
but remember that for a system to be linearly unstable, only a single eigenvalue needs to be larger than
zero. We can use the computational rules of the determinant for block matrices to write the characteristic
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polynomial as

χ(λ) = det(LODE − λI2M )

= det

(
rn
∂pN
∂n
− (γn + λ)IM

)
· det

(
rg
∂pG
∂g
− (γg + λ)IM − rg

∂pG
∂n

[
rn
∂pN
∂n
− (γn + λ)IM

]−1

rn
∂pN
∂g

) (27)

As usual, the eigenvalues are defined as the roots of the characteristic polynomial.

3.3 Steady state (16)

In the following, we elaborate on how to exclude the first steady state (16) as solution for our ODE
system (11). Without loss of generality, we assume n1 = 0 = g1. It suffices to focus on the first factor of
the characteristic polynomial (27). We find

∂

∂n1
pN (0, 0, s1) = ηn

1 + ηsηnss1

1 + ηss1
.

Due to its diagonal structure, we find the very first factor of the complete determinant to be

rnηn
1 + ηsηnss1

1 + ηss1
− γn − λ

!
= 0.

This translates to the eigenvalue λ being

λ = rnηn
1 + ηsηnss1

1 + ηss1
− γn.

Now λ > 0 yields

ηn >
γn
rn

1 + ηss1

1 + ηsηnss1
.

Although the signal thus far has not been further specified, we propose a realistic physical representation
by assuming si ≥ 0. Furthermore, we consider an activation of n by the signal s, i.e. ηns > 1 and
therefore, inequality

ηn >
γn
rn

(28)

and consequently

−∆εn > ln

(
γn
rn

)
(29)

provides a necessary condition for instability. The exclusion of this steady state strengthens our focus on
(17) and (18), which represent the two different cell types PrE and Epi, respectively.

3.4 Homogeneous steady state (17)

With steady states (17) and (18), we aim to find a parameter region for which we achieve a heterogeneous
steady state, i.e. we get a tissue with a mixture of cells in the two states. To this end, we derive
conditions for instability of the homogeneous steady state. We start with state (17) and set ni = 0
and gi =

rg
γg
− 1+ηssi

ηg
for all i. Inserting these expressions into the derivatives (23)-(26) results in a

simplification of LODE . Since (24) is zero for every i, due to (27) the relevant derivatives are:(
∂pN
∂n

)
i,i

=
γgηn
rgηg

(1 + ηsηnssi) , (30)(
∂pG
∂g

)
i,i

=
γ2
g

r2
g

1 + ηssi
ηg

, (31)

(
∂pG
∂g

)
i,j

=
ηs
ηg

(
γg
rg
−
γ2
g

r2
g

1 + ηssi
ηg

)
∂si
∂gj

. (32)
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Altogether, using this result in (27) leaves us with the polynomial

χ(λ) = det

(
rn
∂pN
∂n
− (γn + λ)IM

)
det

(
rg
∂pG
∂g
− (γg + λ)IM

)
=

[
M∏
i=1

γg
rnηn
rgηg

(1 + ηsηnssi)− γn − λ

]
det

(
rg
∂pG
∂g
− (γg + λ)IM

)
.

The first factor already determines the first M eigenvalues. For instability, it is sufficient that only one
of these is greater than zero. In other words, this results in the inequality

γg
rnηn
rgηg

(1 + ηsηnssi) > γn.

After appropriate rearranging, we obtain a sufficient condition for our parameters

ηg < ηn
rnγg
rgγn

(1 + ηsηns max
i
si). (33)

At this point, the general case cannot be simplified further. Depending on the cell-cell interaction
and therefore the incoming signal si, one can find an even more accurate description of this relation.
Alternatively, we can formulate this condition in terms of energy differences as

−∆εg < −∆εn + ln
(

1 + e−∆εs−∆εns max
i
si

)
+ ln

(
rnγg
rgγn

)
, (34)

which allows us to see the maximum allowed deviation of the difference between ∆εn and ∆εg. Keep in
mind that for this condition, we only relied on the first M eigenvalues. In truth, this condition might be
even more relaxed than what we derived.

3.5 Homogeneous steady state (18)

We set ni = rn
γn
− 1+ηssi

ηn(1+ηsηnssi)
and gi = 0. Using the same approach as before, we can neglect the

off-diagonal matrices, since (25) is zero for all i. According to (27), the relevant derivatives are then(
∂pN
∂n

)
i,i

=
γ2
n

r2
n

1 + ηssi
ηn(1 + ηsηnssi)

,(
∂pG
∂g

)
i,i

=
γn
rn

ηg
ηn

1

1 + ηsηnssi
.

The characteristic polynomial then becomes

χ(λ) =

M∏
i=1

[
γ2
n

rn

1 + ηssi
ηn(1 + ηsηnssi)

− γn − λ
]
·
M∏
i=1

[
rg
γn
rn

ηg
ηn

1

1 + ηsηnssi
− γg − λ

]
.

We exploit again the instability condition that any eigenvalue must be positive and find two different
inequalities

ηn <
γn
rn

1 + ηssi
1 + ηsηnssi

, (35)

ηg >
rnγg
rgγn

ηn(1 + ηsηnssi). (36)

We remark, that condition (35) lies in conflict with (28) due to ηns > 1 and is therefore neglected.
Nevertheless, (36) yields a condition for ηg. As before, it is necessary to fulfill this inequality for a single
value si, i.e. the minimum of all possible signal values suffices in that regard

ηg >
rnγg
rgγn

ηn(1 + ηsηns min
i
si). (37)

Again, we write this in terms of energy differences

−∆εg > −∆εn + ln
(

1 + e−∆εs−∆εns min
i
si

)
+ ln

(
rnγg
rgγn

)
. (38)
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−
∆
ε n
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−∆εg

Figure 3: Illustration of the different steady states at the single cell level (left) and the tissue level (right).
The states we are aiming for are highlighted with higher opacity. Nodes and their corresponding number
on the axes reference the relevant equation for the transition from one state to another.

3.6 Steady state summary

The stability conditions (34) and (38) define an interval for −∆εg,

∆εmin < −∆εg < ∆εmax (39)

with

∆εmin := −∆εn + ln
(

1 + e−∆εs−∆εns min
i
si

)
+ ln

(
rnγg
rgγn

)
(40)

∆εmax := −∆εn + ln
(

1 + e−∆εs−∆εns max
i
si

)
+ ln

(
rnγg
rgγn

)
(41)

The reproduction rates rn, rg and decay rates γn, γg shift this interval by ln
(
rnγg
rgγn

)
. The length of the

interval is determined by the minimum and maximum signal values combined with the associated energy
differences −∆εs and −∆εns. In practice, si depends on g, which in return depends on si which requires
us to solve an equation to exactly find maxi si. In order to avoid this, it is possible to choose parameters
such that the steady state (17) admits to an approximate solution

gi =
rg
γg
− 1 + ηssi

ηg
≈ rg
γg
. (42)

Depending on the nature of the signal si, this can be used to define a simplified stability interval.
The results of our stability analysis are summarized in figure 3. From here on, we will designate

the cells with high NANOG expression and low GATA6 expression from steady state (18) as N+G–.
Analogously, (16) describes N–G– cells and (17) N–G+ cells. At the single cell level, we are able to exclude
N–G– cells using inequality (29). Therefore, at the tissue level, we can distinguish between three different
states. The stability interval (39) yields the exact parameter regime for the transition of the homogeneous
states to the heterogeneous ones. These elegant lower and upper bounds for −∆εg incorporate every
parameter in our ODE system (11). Finally, we know that the lower bound in (39) is associated with the
homogeneous N–G+ state, whereas the upper bound is associated with the homogeneous N+G– state.
Therefore, we expect a monotonous increase in the number of N–G+ cells as the energy difference −∆εg
increases.

4 Simulations

4.1 Cell arrangement

For our following simulations, we use a two-dimensional representation of a cell tissue with 177 cells that
was created based on an existing tissue-growth model [17, 18, 19] (Fig. 4). The number of cells was
chosen as a point in time of the tissue growth and carries no further significance. Without shifting our
focus too much on this part, we highlight the relevant steps of the tissue growth simulations:

• Initialization of a fixed number of cells with position and radius close to each other

• Logistic growth of the radius
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• Probabilistic cell division based on the radius

• Adhesion and repulsion result from overdamped motion using the Morse potential

This approach is capable of generating two-dimensional tissues. It is not limited to two spatial dimensions
and can in fact be used for any positive dimension. For visualization purposes, we used a cutoff Voronoi
tessellation to better highlight the size of the cell (Fig. 4). The evolution of the transcription factors is
carried out at the points for the cell nuclei, whereas shared cell boundaries are used to determine the
neighborhood relations.

Figure 4: Visualization of cells in a two-dimensional tissue. Points represent the center of mass of the
cell nucleus. Lines show the respective cell boundaries. The tissue was generated according to [17, 18]
starting with 9 cells. The resulting tissue has 177 cell.

4.2 Direct neighbor signaling

The complicated nature of signaling between ICM cells makes this an exciting field of research. We use a
generic description of the signaling that aligns perfectly with our previously defined model. We propose
the signaling protein concentration s to directly depend on GATA6 concentrations g. Either via slow
diffusion and a comparably fast uptake of these signals or specifically designed pathways to neighboring
cells, we can imagine a process that allows cells to only interact with their direct neighbors. We then
write the signal as

si =
1

|NG(i)|
∑

j∈NG(i)

gj , (43)

where we used the notation NG(i) from graph theory to denote the neighbors of vertex i in the Delaunay
graph G. Here, we used the average number of neighbors as a weight to the signal. This approach is
closely related to the one in [10, 11, 15]. However, since we do not include the detailed dynamics of the
signal, the receiving signal of a cell must not depend on the GATA6 expression levels of itself. We can
also write the whole signal in terms of an adjacency matrix

A = (Ai,j)i,j=1,...,M , Ai,j =

{
1

NG(i) if j ∈ NG(i)

0 if j /∈ NG(i)
(44)

such that s = Ag. Using this definition, the cell-cell interaction can be described as an activation of
NANOG through the GATA6 concentrations in the neighboring cells (Fig. 5).

4.3 Pattern formation

Models of cell differentiation characterized by lateral inhibition tend to form an approximate checkerboard
pattern of cells [20] with a trend towards alternating cell types wherever possible. Our goal in this section
is to show that our model is also capable of forming checkerboard patterns through lateral activation.
The parameters used in any of the following simulations are fixed to −∆εn = 6, −∆εn = −∆εns = 2,
rn = rg = 1 and γn = γg = 10. The remaining energy difference −∆εg is varied based on (39) to influence
the cell type ratio. In the resulting cell fate pattern, N+G– cells mostly avoid other N+G– cells in their
neighborhood (Fig. 6). The same behavior is also observed for N–G+ cells.
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Figure 5: Cell-cell interactions shown for two adjacent cells. NANOG and GATA6 again display their
mutual inhibition. The signal is incorporated into a direct activation going from one cell to the other.
Here, GATA6 activates NANOG in the neighboring cell.

(a)
−∆εg = 7

N : G = 2 : 1
(b)

−∆εg = 7.31

N : G = 99 : 78
(c)

−∆εg = 7.6

N : G = 1 : 2

Figure 6: Checkerboard pattern for three different ratios of N+G– and N–G+ cells (N : G). The coloring
uses the cell’s NANOG expression levels. High NANOG expressions are colored in magenta, low NANOG
expressions (high GATA6) in cyan.

4.4 Cell type proportions

ICM organoids show a wide variety of different cell type proportions [5]. Furthermore, the ratio of N+G–
cells to N–G+ cells in wild type embryos is precise and likely crucial for further embryonic development
[21, 13]. We analyze the range of possible cell type proportions and their dependence on our parameters.
The signal (43) is linear in g and the lower bound for the signal is given by 0. Using the normalization
and a rough upper bound yields si ≤ maxi gi < rg/γg = 0.1. For the chosen parameter values, we get
coefficients ηs = 7.39 and ηn = 403.43. We dismantle the terms in steady state (17) to find

1

ηg
+
ηssi
ηg
≤ 0.0025 + 0.0018� 0.1 =

rn
γg
. (45)

Hence, approximation (42) is valid and leads to maxi si ≈ rg/γg. Thus, (39) simplifies to

−∆εn < −∆εg < −∆εn + ln

(
1 + ηsηns

rg
γg

)
. (46)

In our simulations, this yields the following bounding intervals

ηg ∈ (403.43, 2606.08) ⇐⇒ −∆εg ∈ (6, 7.87). (47)

The various cell type proportions (Fig. 7) were simulated dividing the bounding interval (47) into
20 equidistant values for −∆εg. The simulation results underline the result of the stability analysis. At
the left and right boundaries we achieve homogeneity. In between, increasing −∆εg yields a monotonous
transition from only N+G– to only N–G+ cells. The boundary regions suggest that proportions with
about 70% of one cell type and 30% of the other are the maximum and minimum cell proportions
achievable before reaching homogeneity. We hypothesize that these jumps are a result of the irregularity
of the geometry itself. By this, we mean the different number of neighbors for every cell. In an idealized
geometry these sharp transitions seem to vanish (see Appendix).

4.5 Cell number

ICM organoids come with different cell numbers while still often showing similar cell fate patterns [5].
To test whether the cell number has an effect on the overall pattern in our model, we considered two
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Figure 7: Simulated cell type proportions for 20 equidistant values of −∆εg spanning over the stability
interval (39). N+G– cell proportions are colored in magenta, N–G+ in cyan.

additional model geometries with 93 and 324 cells. The simulations used the same parameter values as
above and −∆εg = 7.31. The checkerboard pattern is robust with respect to the number of cells in the
tissue (Fig. 8). This is in line with our expectation, since cells in our model are only influenced by
direct neighbors. The ratios of N+G– to N–G+ cells are 1.16, 1.27 and 1.33 for increasing cell number.
Hence, we observe a minimal increase. To analyse this in more detail, we generated 100 model geometries
with different cell numbers to run our simulations on. We find that the cell type proportions remain
approximately constant with respect to the number of cells (Fig. 9). The discrete nature of the system
together with deviations from a perfect circular geometry influence the number of neighbors for each
cell. This effect particularly prevails with low cell numbers giving rise to fluctuations with a standard
deviation of approximately 3.22 %. Together, both the checkerboard pattern and the cell type proportions
are robust to changes in the number of cells.

Figure 8: Final pattern for tissues of 93 (left), 177 (middle), and 324 cells (right). Simulations use the
same set of parameter values as before and −∆εg = 7.31. Cells with high NANOG expression are colored
in magenta, cells with low NANOG expression in cyan. For comparison, we visualize the tissues on the
same spatial scale.

4.6 Discussion

Statistical mechanics has already proven its usefulness in biological model systems like ion channel opening
and closing as well as oxygen hemoglobin binding [14]. These ideas have further been investigated for
transcriptional regulation and were successfully applied for a wide variety of examples [22, 23]. To our
knowledge, cell fate decision models have not been combined with statistical mechanics to date. We
derived a generalized model directly from physical principles describing the cell fate specification of PrE
versus Epi cells in preimplantation mouse embryos. Previously, the exclusivity of NANOG and GATA6
in late stages of development, and hence the existence of two different cell types, has been interpreted as
the result of mutual inhibition of these two transcription factors within a cell [10, 11]. Spatial patterns of
two different cell types further require intercellular interactions [20]. Starting from a generalized signal,
we subsequently describe cell-cell communication by a lateral activation from GATA6 in a cell to NANOG
in the neighboring cells.

We developed our model by applying a statistical mechanics approach [14]. The model distances itself
from previous modeling approaches [10, 11] by a restriction to the few sufficient building blocks of cell
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Figure 9: Cell type proportions versus 100 different cell numbers M . The cell numbers arise from
stopping the tissue generation algorithm at equidistant points in time. Since the number of cells grows
exponentially in time, the cell numbers are exponentially distributed. Simulations were carried out for
−∆εg = 7. Vertical black lines depict the mean values of the respective cell type.

differentiation in the inner cell mass, i.e. NANOG, GATA6 and a signal that allows cells to communicate.
At the same time, it differs from other reduced models for intercellular signaling [15] by using specifically
derived binding probabilities instead of various applications of the Hill function. Counting the number of
possible microstates for transcriptional regulation, we obtain the binding probabilities for NANOG and
GATA6 that form the core of the model. Without any interactions between the transcription factors,
our derivation results in the well-known Hill function. Extending this approach to interactions between
NANOG and GATA6 of neighboring cells, results in a single binding probability for each transcription
factor. A comparison with previous models highlights potential issues of the often used phenomenological
models involving Hill functions [10, 11, 15, 16]. Linking multiple Hill functions by multiplication results
in an underestimation of the true binding probabilities. In the context of probabilities the product would
also require stochastic independence of the transcription factors. The sum of Hill functions can lead to
binding ”probabilities” larger than one and hence nonphysical behavior.

In the final model, we consider a tissue with a fixed number of cells. Within each cell, reproduction
of transcription factors depending on their binding probabilities is balanced by exponential decay. A
thorough steady state analysis including linear stability analysis, resulted in conditions for the two cell
types of interest for mouse embryo development: high NANOG expression and low GATA6 expression
(N+G–, Epi) or vice versa (N–G+, PrE). At the tissue level, linear stability analysis revealed additional
parameter constraints that influence the decision between a homogeneous and a heterogeneous distribu-
tion of the cell types. Overall, this leads to a very high tractability of our model, which stands out from
other models for mouse embryo development [10, 11].

To complement the stability analysis, we performed numerical simulations. Simulations were carried
out on two-dimensional tissues inspired by the ICM organoids developed in [5]. We specified the intercel-
lular signal as direct neighbor signal, such that GATA6 of one cell activates NANOG in the neighboring
cell. This allowed the reproduction of the characteristic checkerboard pattern that has been observed in
previous models [10, 11, 15]. The the spatial pattern and the cell type proportions show robustness with
respect to cell numbers. In particular, the latter is in good agreement with experimental observations
on constant cell type proportions in mouse blastocysts with perturbed cell numbers [13]. Making use of
the parameter restriction for the energy differences introduced the possibility to calibrate the model for
various cell type proportions. This parameter constraint is characterized mainly by its dependence on
the incoming signal, so that the signal plays an important role in terms of cell proportions. This result
matches experimental findings for PrE differentiation in an in vitro stem cell culture [24]. There, FGF
signaling has been identified as the control for the proportion of PrE cells in the system.

Using statistical mechanics to model transcriptional regulation in cells led to a very accessible and
controllable ODE system for cell fate specification in preimplantation mouse embryos. It establishes a
first link to our previous studies on mouse blastocysts and ICM organoids [5, 25] using a theoretical
description of the pattern formation with two different cell types. The modeling is subject to a somewhat
more challenging procedure, but ultimately leads to a system that is easier to tackle overall. Our modeling
approach is deliberately general in nature to allow for an application to other GRNs. This facilitates the
development of new and interesting models with improved physical interpretation.
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A Cell type proportions in ideal geometries

We perform an analytical analysis of the relation of the cell type proportions and the parameter −∆εg.
We define an ideal geometry such that the number of neighbors for each cell is equal. We explore a regular
grid of k × k square cells. By introducing periodic boundaries, any cell in the system has exactly four
neighbors. Pattern formation on similar grids has been investigated previously [20]. Focusing on one cell
in the tissue, we come back to the fourth steady state (21), i.e. non-zero solutions for both transcription
factors, and its necessary condition (20) yields

ηn(1 + ηsηnssi) = ηg
rgγn
rnγg

. (48)

This equation describes the tipping point of a cell’s fate. Both sides represent the numerator of a
respective binding probability (9) and (10). This means that deviating from ”=” to ”>” will increase the
binding probability for NANOG, tipping its fate towards N+G–. Analogously, ”<” will lead to N–G+.
The signal si depends only on neighboring cells and the cells themselves are all equal in terms of their
neighborhood. Therefore, the signal becomes an approximate representation of the cell type proportions
for ideal geometries. At first, we isolate si in (48) to find

si =
rgγn
rnγg

ηg − ηn
ηnηsηns

. (49)

By definition (43), si is the mean of a cells neighboring gj values. Assuming the neighbors to be in steady
state and using the same steady state approximation as before, i.e.

gj = 0 or gj ≈
rg
γg
, j ∈ NG(i), i ∈ {1, ...,M}. (50)

the signal can be written as a fraction

si =
l

4

rg
γg
, l ∈ {0, 1, 2, 3, 4}. (51)

A cell of N–G+ fate supports a maximum of lmax N–G+ cells in its neighborhood, where

lmax :=

⌊
4
γn
rn

ηg − ηn
ηnηsηns

⌋
. (52)

Here, bxc describes the floor function, i.e. the nearest lower integer of a number x. A single cell
neighborhood can only mimic the true cell type proportions this far. However, in an ideal geometry with
enough cells we hypothesize that many of these single cell neighborhoods organize themselves such that
the prefactor l/4 can be replaced by a rational number that describes the total cell type proportions in

the tissue. We therefore define the proportions of N–G+ cells as a function f̂G of ηg with

f̂G(ηg) =
γn
rn

ηg − ηn
ηnηsηns

. (53)

When formulating (53) in terms of energy differences, we get

fG(−∆εg) =
γn
rn

e−∆εg − e−∆εn

e−∆εn−∆εs−∆εns
. (54)

Simulation results show that the function fG provides an accurate representation of how the cell type
proportions can be determined in an ideal geometry (Fig. A1).
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