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We consider the isotropic spin-1/2 Heisenberg spin chain weakly perturbed by a local
translationally- and SU(2)-invariant perturbation. Starting from the local integrals of motion of
the unperturbed model, we modify them in order to obtain quasi-conserved integrals of motion
(charges) for the perturbed model. Such quasi-conserved quantities are believed to be responsible
for the existence of the prethermalization phase at intermediate timescales. We find that for a suffi-
ciently local perturbation the quasi-conserved quantities indeed exist, and we construct an explicit
form for the first few of them.

I. INTRODUCTION

In classical mechanics there is a well understood dis-
tinction between integrable and non-integrable systems,
as well as between their long-time dynamics. Namely,
a generic non-integrable system typically exhibits an er-
godic behavior, leading to a chaos, whereas integrable
systems are non-ergodic and their phase space trajecto-
ries are confined to some subregions of the phase space
due to the existence of many conserved quantities. More-
over, there is a result of tremendous importance, the
Kolmogorov-Arnold-Moser (KAM) theorem, which en-
sures that classical integrable systems under a weak
integrability-breaking perturbation are stable for a suffi-
ciently long time [1–5].
Extending the KAM theorem to the quantum case is a

long-standing problem. Although recent findings demon-
strate some progress in this direction [6], a complete un-
derstanding is missing and there are numerous open ques-
tions. In part this is due to the fact that in the quantum
case even the very definition of integrability is subtle [7].
A widely accepted criterion for quantum integrability

is that a Hamiltonian H0 is integrable, if there exists a
large number of extensive, functionally-independent, and
mutually commuting conserved quantities (charges):

[H0,Qj ] = [Qk,Qj ] = 0. (1)

Importantly, the conserved charges Qj are assumed to
be local, in a sense that they are given by the sums of
operators with a finite support.
Just like in the classical case, the long time dynamics

is very different for integrable and non-integrable sys-
tems (to be precise, we do not consider here systems
that exhibit Anderson or many-body localization). Non-
integrable systems thermalize according to the Eigen-
state Thermalization Hypothesis (ETH), which (at least
according to one of the interpretations) means that the
total isolated system acts as a heath bath for its own
subsystems. This leads to the spread of entanglement
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over the whole system, such that in the long time limit
it is impossible to retrieve any information about the ini-
tial state using only local measurements [8, 9]. On the
contrary, in integrable systems, thermalization is very
different. It is described by the generalized Gibbs en-
semble (GGE), which takes into account that there are
many other conserved quantities apart from the total en-
ergy and the number of particles, as it is for the standard
grand-canonical ensemble [16–18]. Moreover, it has been
shown that to accurately describe thermalization of inte-
grable systems one should extend the GGE by including
not only the local conserved charges, as in Eq. (1), but
also the quasi-local ones [19–22].
Then, in the spirit of the KAM theorem, one may

ask what will happen if a quantum integrable system is
slightly perturbed away from integrability. What kind
of thermalization will it exhibit? Naively, one would
expect that nearly-integrable quantum systems simply
thermalize following the ETH. However, it is widely be-
lieved that such systems also exhibit a different, the so-
called prethermal, behavior at intermediate times [10–
12]. Different studies [13–15] suggest that the eventual
thermalization occurs at much later times tth ∼ λ−2,
where λ ≪ 1 is the strength of the perturbation, and
the scaling can be understood from the Golden Rule.
Moreover, it is believed that this prethermal phase should
be described by some effective GGE [23]. Therefore, it
is natural to ask what are the charges that define this
effective GGE in the prethermal phase. Clearly, since
this effective description is only valid at times t . λ−2,
these charges can only be quasi-conserved with the accu-
racy O(λ2). In other words, since the exact conservation
laws of the unperturbed system constrain the dynamics
of an integrable system, one can expect that the dynam-
ics of a perturbed system should be restricted by the
quasi-conserved charges.
This idea is also supported by the developments in the

context of the slowest operators [24, 25]. Indeed, for an
operator O that commutes with a Hamiltonian H , the
time evolution eiHtOe−iHt is trivial. In terms of the
quantum information language this means that the in-
formation encoded in O(0) does not spread. On the
contrary, if [O(0), H ] 6= 0, the typical timescale of
information spreading is inversely proportional to the
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norm of [O(0), H ], as follows from the Baker-Campbell-
Hausdorff formula. Thus, to slow down the spread of the
quantum information one needs to suppress (at least) the
first order term in the Baker-Campbell-Hausdorff expan-
sion.
Let us mention that the search for quasi-conserved

charges can be linked with an old problem in functional
analysis, related to almost commuting matrices [26] and
explicitly stated by Halmos in [27]. This long-standing
question “when two almost commuting matrices are close
to matrices that exactly commute” was answered even-
tually by H. Lin [28]. More precisely, Lin showed that
given ǫ > 0 there exists δ > 0 such that if N × N ma-
trices A,B are Hermitian, with ‖ AB − BA ‖< δ and
‖ A ‖, ‖ B ‖≤ 1, then there exists commuting Hermitian
N×N matricesX,Y such that ‖ A−X ‖ + ‖ B−Y ‖< ǫ,
where ‖ · ‖ is a matrix norm. Importantly, δ = δ(ǫ)
does not depend on the dimension N . Recently, Hast-
ings obtained an explicit estimate ǫ(δ) ∼ δ1/5, where
the exponent may depend on the choice of the opera-
tor norm [29]. Quite remarkably, the question whether
one can find triples of almost commuting matrices has
generically a negative answer [30]. A similar story about
unitary matrices is more involved [31, 32]. There, the ex-
istence of almost commuting unitary matrices have some
topological obstructions given by the so-called Bott in-
dices. There is an extensive mathematical literature on
the subject, see, e.g., Ref. [33]. Finally, we would like
to mention that there is a somewhat related research
direction in the context of AdS/CFT correspondence,
which deals with the so-called long-range deformed spin
chains [39, 40] and T T̄ -deformations [41, 42]. However,
these studies deal with the deformations that preserve in-
tegrability to all orders in the perturbation strength and
thus differ from the present work.
This paper is devoted to the search for quasi-conserved

quantities in a quantum spin chain weakly perturbed
away from integrability. The rest of the paper is orga-
nized as follows. In Section II we describe the model and
discuss some general properties of the exact conserved
charges that are present in the absence of the perturba-
tion. In Section III we present an ansatz for the quasi-
conserved charges and discuss the requirements that the
ansatz must satisfy. Finally, in Section IV we demon-
strate our findings, conclude, and formulate some open
questions for future research. The paper is supplemented
by several technical appendices which clarify our deriva-
tions using algebraic tools. Similar techniques can also
be used for other spin systems.

II. THE MODEL AND CONSERVED CHARGES

OF THE INTEGRABLE PART

Let us start by describing the specific model that we
are going to deal with. Consider a Hamiltonian

Hλ = H0 + λH1, (2)

where H0 is an integrable part, H1 is an integrability-
breaking perturbation, and λ > 0 is a numerical param-
eter characterizing the perturbation strength. We as-
sume λ ≪ 1, such that the perturbation is weak. For the
unperturbed system, we take a spin-1/2 isotropic Heisen-
berg spin chain (XXX model) on a one-dimensional lat-
tice:

H0 = J
∑

j

σj · σj+1, (3)

where σj is the vector of Pauli matrices and J is an ex-
change constant. It is well known that H0 is integrable,
the exact spectrum and the eigenstates can be found us-
ing the Bethe ansatz [34], and one has a large number of
conserved charges. Let us now break the integrability by
a perturbation of the following form:

H1 = J
∑

j

σj · σj+2, (4)

which is nothing other than the next-to-nearest neighbor
Heisenberg interaction. In what follows we put J = 1
and assume that the system is in the thermodynamic
limit. Let us mention that both the unperturbed Hamil-
tonian H0 and the perturbation H1 are translationally-
and SU(2)-invariant. Also, both are the sums of lo-
cal operators with the support on two and three sites
(for H0 and H1, respectively). Many facts are known
about the low-energy properties of this model [43]: When
λ < λc ≈ 0.241, the model is gapless and is described
by a marginally perturbed SU(2)1 Wess-Zumino-Witten
model, while for λc < λ ≤ 1/2 the ground state is
dimerized (with exactly known Majumdar-Ghosh state
at λ = 1/2) with a gap in the spectrum. Spontaneous
incommensurate order appears for λ > 1/2. In the limit
λ → ∞ the Hamiltonian (2) is equivalent to a pair of
decoupled XXX models (on even and odd sites), and in-
tegrability is restored. However, we do not consider the
case of large λ and restrict ourselves to λ ≪ 1. Be-
fore we turn to the problem of constructing the quasi-
conserved quantities for the perturbed Hamiltonian (2),
let us briefly summarize the most important properties of
the charges conserved by the integrable Hamiltonian H0.
Local conserved charges [as those given in Eq. (1)] can

be generated iteratively starting from Q2 ≡ H0 [by con-
vention, Q1 is the total magnetization] and using the
following relation [36–38]:

Qn+1 = [B,Qn], (5)

where B is the so-called boost operator, which reads

B =
1

2i

∑

j

j σj · σj+1. (6)

Thus, the boost operator acts as a ladder operator in the
space of conserved charges of the model. Importantly,
every next charge has a larger support as compared to
the previous one. For the XXX model, the n-th charge



3

Qn is a sum of operators with a support up to n sites. As
discussed in Ref. [36], the conserved charges with n > 3
generated as in Eq.(6) contain terms from the charges
with smaller n. For the sake of simplicity we work with
a different basis {Qn} in which every next charge does
not contain any terms that are present in the previous
ones. The first two charges coincide in both bases, i.e.
Qk = Qk for k = 1, 2. For completeness, here we present
expressions for the few higher charges in this basis:

Q3 =
∑

j

(σj × σj+1) · σj+2,

Q4 =
∑

j

{

((σj × σj+1)× σj+2) · σj+3

+ σj · σj+2

}

,

Q5 =
∑

j

{

(((σj × σj+1)× σj+2)× σj+3) · σj+4

+ (σj × σj+2 + σj × σj+1) · σj+3

}

,

Q6 =
∑

j

{

(σj · σj+2 + σj · σj+3)

+
(

(σj × σj+1 + σj × σj+2)× σj+3

)

· σj+4,

+
((

((σj × σj+1)× σj+2)× σj+3

)

× σj+4

)

· σj+5

+
(

(σj × σj+1)× σj+2

)

· σj+4

}

,

(7)

and the general form of Qn can be found in Ref. [36]. We
emphasize once again that B can only generate the local

charges, whereas the Hamiltonian (3) also possesses the
quasi-local ones [19]. To our knowledge, a corresponding
boost operator that can generate quasi-local charges has
not been found.
Let us now turn on the perturbation (4), such that the

total Hamiltonian is Hλ as given by Eq. (2), and λ ≪ 1.
The quantities Qn are no longer conserved, since they do
not commute with Hλ. Neither they are quasi-conserved,
since ‖[Hλ, Qn]‖ ∝ λ. Hence, they change significantly
over times much shorter than tth ∼ λ−2 and can not
govern the dynamics in the pre-thermal phase.

III. QUASI-CONSERVED CHARGES

We now proceed with looking for the quasi-conserved
quantities that survive during the pre-thermal phase up
to times ∼ λ−2. This simply means that we are looking
for a set of operators Q̃n that satisfy

∥

∥

∥[Hλ, Q̃n]
∥

∥

∥ ∝ λ2 (8)

and commute with each other with the accuracy O(λ2).
First of all, the Hamiltonian Hλ has the translational

and SU(2) symmetries, therefore we require that the

quasi-conserved charges Q̃n possess these symmetries as
well. In analogy with the integrable case, we identify the

second charge with the Hamiltonian, i.e., Q̃2 = Hλ [note

that Q̃1 = Q1, as the total magnetization is conserved by
Hλ]. This gives us the relation

Q̃2 = Q2 + λH1. (9)

Since the perturbation is weak, it is natural to expect
that similar relations should hold for higher charges as
well. Therefore, we make an ansatz

Q̃n = Qn + λ
M
∑

s=m

δQ(s)
n , (10)

where δQ
(s)
n is a local operator consisting of terms hav-

ing the support on s sites. The values of m and M will
be specified below, at the moment we can only expect
that M > n, i.e., the maximal support of Q̃n is larger
than that of Qn. This is a reasonable assumption be-
cause the perturbed Hamiltonian Hλ itself has a greater
support than H0. Let us emphasize that the ansatz (10)
fully determines the λ-dependence of the quasi-conserved
charge Q̃n. This is simply becasue the perturbed Hamil-
tonian Hλ has terms at most linear in λ, and thus keep-
ing in Q̃n any higher order terms results in the excess
of precision. Thus, taking into account Eq. (10), one
can clearly see that in order to fulfil the requirement
in Eq. (8), the commutator [Hλ, Q̃n] should not contain
terms linear in λ, i.e., the following condition must be
fulfilled:

[H1, Qn] +

M
∑

s=m

[

H0, δQ
(s)
n

]

= 0. (11)

In this case the commutator of Q̃n and Hλ reads

[Hλ, Q̃n] = λ2
M
∑

s=m

[

H1, δQ
(s)
n

]

(12)

and Eq. (8) is clearly satisfied.

Let us now discuss the structure of δQ
(s)
n from Eq. (10)

in more detail. First of all, translational invariance allows
us to express it in the following form:

δQ(s)
n =

s
∑

k=2

∑

ℓk(s)

cn
(

ℓk(s)
)

∑

j

Oj

(

ℓk(s)
)

, (13)

where cn
(

ℓk(s)
)

are real numerical coefficients, and the

local operator Oj

(

ℓk(s)
)

has a support on s sites and
acts non-trivially on k sites (2 ≤ k ≤ s), specified by the
components ℓi of the vector ℓk(s):

j + ℓ1, . . . , j + ℓk, (14)

where ℓi take values from {0, . . . , s − 1}. Importantly,
all ℓi are distinct and not necessarily ordered. Note that
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ℓk(s) always has ℓp = 0 and ℓq = s − 1 for some indices
p, q ∈ {1, . . . , k}.
Due to the SU(2) symmetry, Oj

(

ℓk(s)
)

in Eq. (13) can
be expressed in the basis of SU(2)-invariant tensor prod-
ucts of k spin-1/2 operators. To construct this basis we
follow Refs. [36–38] and introduce nested cross products
of the Pauli vectors, with the nesting going toward the
left:

V
(1)
j = σj+ℓ1 ,

V
(2)
j = σj+ℓ1 × σj+ℓ2 ,

V
(3)
j = (σj+ℓ1 × σj+ℓ2)× σj+ℓ3 ,

V
(k)
j = V

(k−1)
j × σj+ℓk .

(15)

Second, we consider the following scalar [and hence
SU(2)-invariant] spin polynomials:

fj(ℓ1, . . . , ℓk) ≡ fj(ℓk) = V
(k−1)
j · σj+ℓk . (16)

For instance, for the two-spin polynomial we have
fj(0, l) = σj · σj+l, for the three-spin polynimial
fj(0, l,m) = (σj × σj+l) · σj+m, and for the four-
spin polynomial the definition yields fj(l,m, n, p) =
[(σj+l × σj+m)× σj+n] · σj+p. Then the opera-
tor Oj

(

ℓk(s)
)

in Eq. (13) can be taken as

Oj

(

ℓk(s)
)

= fj(ℓ1, . . . , ℓk)

=
[

(

(σj+ℓ1 × σj+ℓ2)× . . .
)

× σj+ℓk−1

]

· σj+ℓk ,
(17)

where ℓj are the same as those discussed after
Eq. (14). Obviously, the charges Qn of the unperturbed
model H0 can also be expressed in terms of fj(ℓ1, . . . , ℓk)

from Eq. (16). Let us note that the corrections δQ
(s)
n

in Eq. (10) are allowed to have terms that are present in
the unperturbed charge Qn. Explicitly, the spin polyno-
mial in Eqs. (16) and (17) can be written as

fj(ℓ1, . . . , ℓk) =
∑

β1...βk

Cβ1...βk

k
⊗

p=1

σ
βp

j+ℓp
, (18)

where the coefficients Cβ1...βk
arise from expanding the

scalar product in the spin polynomial fj(ℓ1, . . . , ℓk).
For k = 2 and 3, one obviously has Cβ1β2

= 1 and
Cβ1β2β3

= εβ1β2β3
, correspondingly, where εijk is the

Levi-Civita symbol. For k > 3 the coefficients are given
by

Cβ1...βk
=

∑

α1...αk−3

εα1 βk−1 βk
εαk−3 β1 β2

×
k−4
∏

q=1

εαq αq+1 βk−q−1
.

(19)

Let us briefly discuss the dimensionality of the SU(2)
invariant spin polynomials j(ℓ1, . . . , ℓk). Clearly, for k =
2 and 3 there is only one such operator. For k = 4 there

are three inequivalent permutations, only two of which
are linearly independent. Namely, we have

fj(0, l,m, n)− fj(0,m, l, n) + fj(0, n, l,m) = 0, (20)

which one can easily check by a direct calculation using
Eqs. (18) and (19). Thus, for k = 4 the basis is two-
dimensional. For k = 5 and k = 6 the basis is 6- and
14-dimensional, correspondingly.
Thus, to fully understand the operator content of the

quasi-conserved charges Q̃n, it remains to determine the

support of the corrections δQ
(s)
n , i.e. the range of sum-

mation over s in Eq. (10). Let us consider the the spin
polynomial fi(m1, . . . ,mk) with the support on s sites,
i.e. for some p and q we have mp = 0 and mq =
s − 1. Then, as shown in Appendix A, the commu-
tator [fj(0, l), fi(m1, . . . ,mk)] contains terms with the
support up to s + l. Thus, since in general the unper-
turbed charge Qn may contain K terms with the sup-
port on {n1, . . . , nK−1, n} sites, with n1 < . . . < n,
the commutator [H1, Qn] consists of terms with the sup-
port {n1 + 2, . . . , nK−1 + 2, n + 2}. Therefore, we im-
mediately see that in order to satisfy Eq. (11) the cor-

rection
∑M

s=m δQ
(s)
n must include terms having the sup-

port on {n1+1, . . . , nK−1+1, n+1} sites, such that the

maximal support of the commutator [H0,
∑M

s=m δQ
(s)
n ]

matches that of [H1, Qn] and the two commutators can-
cel each other. Therefore, for the quasi-conserved charges
we finally have

Q̃n = Qn + λ

n+1
∑

s=n1

δQ(s)
n , (21)

where n1 and n are, correspondingly, the smallest and the
largest support of the terms in Qn. Note that some of the
terms in Eq. (21) may have zero coefficient. For instance,

as shown in the next Section, in Q̃3 the only corrections
that are present have the support s = n + 1 = 4. With
this, we now proceed to investigating the possibility of
satisfying Eqs. (8) and (11).

IV. RESULTS AND DISCUSSION

Taking into account Eqs. (10), (13), (16), and (17) to

construct the ansatz for the quasi-conserved charges Q̃n,
we fix the coefficients cn

(

ℓk(s)
)

in Eq. (13) such that the
criterion (11) is satisfied, which guarantees the required
scaling behavior of the commutator norm in Eq. (8). In
order to evaluate the commutators in Eq. (11) we used
the results of Appendix B. Then, for the lowest order
quasi-conserved charge Q̃3 we obtain

Q̃3 = Q3 + λ δQ
(4)
3 ,

δQ
(4)
3 =

∑

j

(σj × σj+1 + σj × σj+2) · σj+3.
(22)
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From Eqs. (7) and (22) we see that the correction δQ
(4)
3

has a structure resembling that of Q3, i.e., every term

in δQ
(4)
3 has the same number of spins, but the sup-

port is increased by one site. Let us now look at the
norm of [Q̃3, Hλ]. For computational convenience we use
Frobenius norm defined as

‖X‖F =
√

tr (X†X). (23)

Then, from Eqs. (12) and (23) we have

1

‖H0‖F

∥

∥

∥

[

Hλ, Q̃3

]

∥

∥

∥

F
= 8λ2, (24)

where ‖H0‖F =
√
3N 2N/2 is introduced for normaliza-

tion.
The situation with the higher order charges is slightly

more involved. It turns out that one can find families
of quasi-conserved quantities Q̃n satisfy Eq. (11) with
n > 3. In other words, the higher order quasi-conserved
charges Q̃n contain a number of free parameters. Re-
peating the steps from the beginning of this Section, we
obtained the families of quasi-conserved charges Q̃n with
n = 4, 5, and 6. The latter two, Q̃5 and Q̃6, contain a
large number of terms and for the sake of readability, we
present their explicit form in Appendix C. Here we only
give the expression for the family of Q̃4, which reads

Q̃4 = Q4 + λ

5
∑

s=3

δQ
(s)
4 ,

δQ
(3)
4 = (a− 2)

∑

j

σj · σj+2,

δQ
(4)
4 =

∑

j

{

σj · σj+3

+ a ((σj × σj+1)× σj+2) · σj+3,

− ((σj × σj+2)× σj+1) · σj+3

}

,

δQ
(5)
4 =

∑

j

{

((σj × σj+1)× σj+2) · σj+4

+ ((σj × σj+1)× σj+3) · σj+4

+ ((σj × σj+2)× σj+3) · σj+4

}

.

(25)

We stress that Eq. (11) is satisfied for arbitrary a. Thus,
one can use this freedom and minimize the number of
terms in Q̃4. This is achieved for a = 0 or a = 2. On
the other hand, the coefficient a in Eq. (25) can be used
as a variational parameter to further minimize the norm
of [Q̃4, Hλ], which is given by

1

‖H0‖F

∥

∥

∥

[

Hλ, Q̃4

]

∥

∥

∥

F
= 4

√
2λ2

(

4a2 + a+ 10
)1/2

. (26)

Eq. (26) is minimal at a = −1/8 and equals
√
318λ2,

whereas for a = 0 the squared norm (26) be-

comes
√
320λ2. The difference of approximately 0.6% is

negligibly small for our purposes, and one may use a sim-
pler form of Q̃4 with a = 0. Similar analysis for the next
quasi-conserved charges Q̃5 and Q̃6 can be found in Ap-
pendix C. We also point out that by looking at the (26)
(as well as at the expressions from higher quasi-conserved
charges) it would be tempting to suggest that if a is such
that is solves the quadratic equation 4a2 + a + 10 = 0,
the quasi-conserved charge becomes exactly conserved.
This would require a to be complex. We checked that
the whole procedure should be modified then and the fi-
nal answer is that the overlap always stays finite, even
for complex perturbations.

One can check by a lengthy but straightforward direct
calculation that the commutator of the quasi-conserved
charges [Q̃n, Q̃m] does not contain terms linear in λ. We
expect that this is correct for any n and m and have
checked this explicitly for Q̃n with 3 ≥ n ≥ 6. It is
also straightforward to see that any linear combination of
the quasi-conserved charges is a quasi-conserved charges
itself.

To summarize, in this paper we have shown that an
isotropic Heisenberg spin chain, weakly perturbed away
from integrability by a next to nearest neighbour inter-
action of strength λ, possesses quasi-conserved charges
Q̃n with 3 ≤ n ≤ 6, which are approximately conserved
up to times of the order λ−2. We conjecture that the
perturbed model Hλ from Eq. (2) has as many quasi-

conserved charges Q̃n as there are conserved charges Qn

for the integrable model (3), but the proof of our con-
jecture is beyond the scope of the present paper. We
also expect that our results can be extended to the case
of other perturbations and open boundary conditions, as
well as to other one-dimensional models with SU(2) sym-
metry, e.g. the anisotropic Heisenberg chains (XXZ and
XYZ models) and the Hubbard model, which we leave for
future studies. Presence of these quasi-conserved charges
could affect some transport properties, see e.g.[44], [45].
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Appendix A

Let us consider the commutator of fi(0, l) and fj(m1, . . . ,mk):

[

fj(0, l), fi(m1, . . . ,mk)
]

=
∑

i,j

∑

α

∑

β1...βk

Cβ1...βk

[

σα
j σ

α
j+l ,

k
⊗

p=1

σ
βp

i+mp

]

, (A1)

where the polynomial fi(m1, . . . ,mk) contains terms with k Pauli matrices and is assumed to have the support on
s sites. Then, we rewrite the commutator on the right hand side of Eq. (A1) as

∑

i,j

[

σα
i σ

α
i+l ,

k
⊗

p=1

σ
βp

j+mp

]

=
∑

j

k
∑

p=1

(

Aj(p) + (1− δl,mp
)

k
∏

q=1
q 6=p

(

1− δl,mp−mq

)

Bj(p)
)

, (A2)

where Aj(p) and Bj(p) arise from the terms in Eq. (A1) with i = j + mp and i + l = j + mp, correspondingly.
Explicitly, we have

Aj(p) =
[

σα
j σ

α
j+l , σ

βp

j

k
⊗

q=1
q 6=p

σ
βq

j+mq−mp

]

, Bj(p) = σα
j

[

σα
j+l , σ

βp

j+l

]

k
⊗

r=1
r 6=p

σβr

j+l+mr−mp
. (A3)

It is straightforward to see that

Aj(p) =

k
∑

q=1
q 6=p

δl,mq−mp
A(1)

j (p, q) +

k
∏

q=1
q 6=p

(

1− δl,mq−mp

)

A(2)
j (p), (A4)

where

A(1)
j (p, q) =

[

σα
j σ

α
j+l , σ

βp

j σ
βq

j+l

]

k
⊗

r=1
r 6=p,q

σβr

j+mr−mp
, A(2)

j (p) =
[

σα
j , σ

βp

j

]

σα
j+l

k
⊗

r=1
r 6=p

σβr

j+mr−mp
. (A5)

Thus, we obtian

A(1)
j (p, q) = 2i

(

δα,βq

∑

γp

εα,βp,γp
σ
γp

j + δα,βp

∑

γq

εα,βq,γq
σ
γq

j+l

)

k
⊗

r=1
r 6=p,q

σβr

j+mr−mp
,

A(2)
j (p) = 2i

∑

γp

εα,βp,γp
σ
γp

j σα
j+l

k
⊗

r=1
r 6=p

σβr

j+mr−mp
, Bj(p) = 2i σα

j

∑

γp

εα,βp,γp
σ
γp

j+l

k
⊗

r=1
r 6=p

σβr

j+l+mr−mp
.

(A6)

It is now easy to see that the commutator in Eq. (A1) consists of terms with the support not greater than s + l.
Indeed, let us consider, e.g. Bj(p) from Eq. (A6) and take mp = 0. Then, for some r = r∗ me have mr∗ = s− 1 and

the Pauli matrix with the largest index is σ
βr∗

j+l+s−1, whereas the Pauli matrix with the smallest index is σα
j . Clearly,

such term has a support on s+ l sites.

Appendix B

We use the following identities

[A ·X ,A · Y ] = 2i (X × Y ) ·A,

[A ·B, (B ×L) ·R] = −2i ((A×B)×L) ·R,

[A ·B, (A×B) ·R] = 4i (B ·R−A ·R) ,

[A ·B, ((L×A)×B) ·R] = 2i ((L×B) ·R− (L×A) ·R) ,

(B1)
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where A = {σx
j1
, σy

j1
, σz

j1
}, B = {σx

j2
, σy

j2
, σz

j2
}, and L, R are arbitrary tensor products that commute with both A

and B. Then, one can show that

∑

j,k

[fj(0, l), fk(0,m)] = 2i
∑

j

(

fj(0, l,m) + fj(0,m, l +m)− fj(0, l, l+m)− fj(0,m− l,m)
)

, l 6= m, (B2)

and zero if l = m.

∑

j,k

[fj(0, l), fk(0,m, n)] = 2i
∑

j

{

(1− δl,m − δl,n)fj(0, l,m, n) + 2δl,m [fj(0, n− l)− fj(0, n)]

− 2δl,n[fj(0,m− l)− fj(0,m)]− (1− δl,n−m)fj(m, l +m, 0, n) + 2δl,n−m[fj(0, l +m)− fj(0,m)]

+ fj(n, l + n, 0,m)− fj(0, l, l+m, l + n) + (1− δl,m)fj(0, l, l−m, l−m+ n)

− (1− δl,n)(1 − δl,n−m)fj(0, l, l− n, l +m− n)
}

,

(B3)

and

∑

j,k

[fj(0, l), fk(m,n, p, q)] = 2i
∑

j

{

K(l,m, n, p, q)−K(l, n,m, p, q) +K(l, p, q,m, n)−K(l, q, p,m, n)
}

, (B4)

where we denoted

K(l,m, n, p, q) = 4δl,n−m[f(0,−l−m+ p,−l−m+ q)− f(0, p−m, q −m)]

− 2δl,p−m[f(−l−m+ n, 0,−l−m+ q)− f(n−m, 0, q −m)]

− 2δl,q−m[f(−l−m+ p, 0,−l−m+ n)− f(p−m, 0, n−m)]

+ 2(1− δl,n−m − δl,p−m − δl,q−m)f(0, l, n−m, p−m, q −m)

− 2(1− δl,m)(1− δl,m−n)(1 − δl,m−p)(1− δl,m−q)f(0, l, l−m+ n, l −m+ p, l −m+ q).

(B5)

Appendix C

The basis of 5-spin polynomial is 6 dimensional and one has the following relations:



























fj(l, q,m, n, p)
fj(l, p, q,m, n)
fj(l, p,m, n, q)
fj(l, n, q,m, p)
fj(l, n, p,m, q)
fj(l, n,m, p, q)
fj(l,m, q, n, p)
fj(l,m, p, n, q)
fj(l,m, n, p, q)



























=



























0 1 −1 0 0 0
0 0 1 1 0 0
1 0 −1 −1 0 0
0 1 0 0 1 0
1 0 0 0 0 1
1 −1 0 0 −1 1
0 1 −1 0 0 −1
1 0 −1 −1 −1 0
1 −1 0 −1 −1 1









































fj(l, p, n,m, q)
fj(l, q, n,m, p)
fj(l, q, p,m, n)
fj(m,n, l, p, q)
fj(m, p, l, n, q)
fj(m, q, l, n, p)















. (C1)
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For the quasi-conserved charge Q̃5 we have

Q̃5 = Q5 + λ

6
∑

s=4

δQ
(s)
5 ,

δQ
(4)
5 = −a

∑

j

[

fj(0, 1, 3) + fj(0, 2, 3)
]

,

δQ
(5)
5 =

∑

j

[

fj(0, 1, 4) + 2fj(0, 2, 4) + fj(0, 3, 4) + afj(0, 4, 2, 1, 3) + afj(1, 2, 0, 3, 4) + (1 + a) fj(1, 3, 0, 2, 4)
]

+
∑

j

[

fj(0, 4, 3, 1, 2)− afj(1, 4, 0, 2, 3)− (1 + a) fj(0, 3, 2, 1, 4)
]

,

δQ
(6)
5 =

∑

j

[

fj(0, 3, 2, 1, 5)− fj(0, 5, 2, 1, 3)− fj(1, 2, 0, 3, 5)− fj(1, 3, 0, 2, 5) + fj(1, 5, 0, 2, 3)
]

+
∑

j

[

fj(0, 4, 2, 1, 5)− fj(0, 5, 2, 1, 4)− fj(1, 2, 0, 4, 5)− fj(1, 4, 0, 2, 5) + fj(1, 5, 0, 2, 4)
]

+
∑

j

[

f(j0, 4, 3, 1, 5)− fj(0, 5, 3, 1, 4)− fj(1, 3, 0, 4, 5)− fj(1, 4, 0, 3, 5) + fj(1, 5, 0, 3, 4)
]

+
∑

j

[

fj(0, 4, 3, 2, 5)− fj(0, 5, 3, 2, 4)− fj(2, 3, 0, 4, 5)− fj(2, 4, 0, 3, 5) + fj(2, 5, 0, 3, 4)
]

.

(C2)

Using Eq. (23), for the norm of [Hλ, Q̃5] we obtain

1

‖H0‖F

∥

∥

∥

[

Hλ, Q̃5

]

∥

∥

∥

F
= 8λ2

(

5a2 − 7a+ 20
)1/2

. (C3)

At a = 0.7 the norm is minimal and the right hand side of Eq. (C3) becomes ≈ 33.5λ2, whereas at a = 0 it is

equal 16
√
5λ2 ≈ 35.8λ2 and the difference is around 6%.

The basis of 6-spin polynomials is 14-dimensional and it can be chosen as

{

fj(2, 4, 0, 3, 1, 5), fj(2, 4, 1, 0, 3, 5), fj(2, 4, 1, 3, 0, 5), fj(2, 4, 3, 0, 1, 5), fj(2, 4, 3, 1, 0, 5),

fj(3, 4, 0, 1, 2, 5), fj(3, 4, 0, 2, 1, 5), fj(3, 4, 1, 0, 2, 5), fj(3, 4, 1, 2, 0, 5), fj(3, 4, 2, 0, 1, 5),

fj(3, 4, 2, 1, 0, 5), fj(1, 4, 3, 2, 0, 5), fj(1, 4, 3, 0, 2, 5), fj(0, 4, 3, 2, 1, 5)
}

.

(C4)

The quasi-conserved charge Q̃6 has the following form:

Q̃6 = Q6 + λ

7
∑

s=3

δQ
(s)
6 ,

δQ
(3)
6 = 2(a− 1)

∑

j

fj(0, 2), δQ
(4)
6 = (2a+ 3)

∑

j

fj(0, 3),

δQ
(5)
6 =

∑

j

{

fj(0, 4) + 2afj(0, 2, 1, 4) + 2(a+ 1)fj(0, 3, 1, 4) + 2afj(0, 3, 2, 4)− (1 + 2a)fj(0, 4, 1, 2)

− 2(1 + a)fj(0, 4, 1, 3)− (1 + 2a)fj(0, 4, 2, 3)
}

,

δQ
(6)
6 =

∑

j

{

fj(0, 2, 1, 5) + 2fj(0, 3, 1, 5) + 2fj(0, 3, 2, 5) + fj(0, 4, 1, 5) + 2fj(0, 4, 2, 5) + f(0, 4, 3, 5)

− fj(0, 5, 1, 2)− 2fj(0, 5, 1, 3)− fj(0, 5, 1, 4)− 2fj(0, 5, 2, 3)− 2fj(0, 5, 2, 4)− fj(0, 5, 3, 4)

+ (2a− 1)fj(0, 4, 3, 2, 1, 5) + (1− 2a)fj(1, 4, 3, 2, 0, 5)− afj(3, 4, 0, 1, 2, 5)+ (1 − a)fj(3, 4, 0, 2, 1, 5)

+ afj(3, 4, 1, 0, 2, 5) + afj(3, 4, 1, 2, 0, 5) + afj(3, 4, 2, 0, 1, 5)− (1 + a)fj(3, 4, 2, 1, 0, 5)
}

,

(C5)
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δQ
(7)
6 =

∑

j

{

fj(0, 4, 3, 2, 1, 6) + fj(0, 5, 3, 2, 1, 6)+ fj(0, 5, 4, 2, 1, 6)+ fj(0, 5, 4, 3, 1, 6) + fj(0, 5, 4, 3, 2, 6)

− fj(1, 4, 3, 0, 2, 5)− fj(1, 4, 3, 2, 0, 6)− fj(1, 5, 3, 2, 0, 6)− fj(1, 5, 4, 2, 0, 6)− fj(1, 5, 4, 3, 0, 6)

+ fj(2, 4, 0, 3, 1, 5)− fj(2, 4, 1, 3, 0, 5) + fj(2, 4, 3, 1, 0, 5)− f(2, 5, 4, 3, 0, 6)

− 1

2
fj(3, 4, 0, 1, 2, 6)−

1

2
fj(3, 4, 0, 2, 1, 6) +

1

2
fj(3, 4, 1, 0, 2, 6)+

1

2
fj(3, 4, 1, 2, 0, 6) +

1

2
fj(3, 4, 2, 0, 1, 6)

− 1

2
fj(3, 4, 2, 1, 0, 6)−

1

2
fj(3, 5, 0, 1, 2, 6)−

1

2
fj(3, 5, 0, 2, 1, 6)+

1

2
fj(3, 5, 1, 0, 2, 6) +

1

2
f(3, 5, 1, 2, 0, 6)

+
1

2
f(3, 5, 2, 0, 1, 6)− 1

2
f(3, 5, 2, 1, 0, 6)− 1

2
f(4, 5, 0, 1, 2, 6)− 1

2
f(4, 5, 0, 1, 3, 6)− 1

2
f(4, 5, 0, 2, 1, 6)

− 1

2
f(4, 5, 0, 2, 3, 6)− 1

2
f(4, 5, 0, 3, 1, 6)− 1

2
f(4, 5, 0, 3, 2, 6)+

1

2
f(4, 5, 1, 0, 2, 6)+

1

2
f(4, 5, 1, 0, 3, 6)

+
1

2
f(4, 5, 1, 2, 0, 6)+

1

2
f(4, 5, 1, 3, 0, 6)+

1

2
f(4, 5, 2, 0, 1, 6)+

1

2
f(4, 5, 2, 0, 3, 6)− 1

2
f(4, 5, 2, 1, 0, 6)

+
1

2
f(4, 5, 2, 3, 0, 6)+

1

2
f(4, 5, 3, 0, 1, 6)+

1

2
f(4, 5, 3, 0, 2, 6)− 1

2
f(4, 5, 3, 1, 0, 6)− 1

2
f(4, 5, 3, 2, 0, 6)

}

.

(C6)

Then, using Eq. (23), for the commutator norm we obtain

1

‖H0‖F

∥

∥

∥

[

Hλ, Q̃6

]

∥

∥

∥

F
= 8λ2

(

66a2 + 102a+ 113
)1/2

, (C7)

at a = −17/22 ≈ 0.77 we have ≈ 68.6λ2, at a = 0 we have ≈ 85λ2.
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