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We consider probe-based quantum thermometry and show that machine classification can provide model-
independent estimation with quantifiable error assessment. Our approach is based on the k-nearest-neighbor
algorithm. The machine is trained using data from either computer simulations or a calibration experiment.
This yields a predictor which can be used to estimate the temperature from new observations. The algorithm is
highly flexible and works with any kind of probe observable. It also allows to incorporate experimental errors,
as well as uncertainties about experimental parameters. We illustrate our method with an impurity thermometer
in a Bose-gas, as well as in the estimation of the thermal phonon number in the Rabi model.

Introduction- Measuring the temperature of a body has
long been a fundamental task in science and technology. The
enormous range of scales involved, from cosmology to ultra-
cold gases, motivate the development for a wide variety of
strategies. The drive toward the microscale has been push-
ing the development of novel methods [1–5], and recent ad-
vances in platforms such as ultra-cold atoms [6–10], nitrogen-
vacancy centers [11, 12] and superconducting circuits [13],
have opened up entirely new frontiers [14, 15].

There have been significant advances in understanding the
ultimate bounds on thermometric precision, which were an-
alyzed in a variety of models [16–23]. If the temperature is
estimated from direct measurements in the system, the opti-
mal strategy consists of performing projective measurements
in the energy eigenbasis [17, 24, 25]. Such a strategy, how-
ever, is seldom realistic. Instead, a more tractable scenario
is that of probe-based thermometry, where the temperature of
a system is estimated by first allowing it to interact with a
probe and then measuring the probe. Impurities in ultra-cold
gases represent a prototypical example [6–10], but several ex-
perimental platforms also fit this description. For instance,
the phonon occupation number of a trapped ion [26, 27] or a
mechanical resonator [28], are often estimated from quantum
optical measurements, and hence use light as the probe.

A single probe may be repeatedly measured [29], or multi-
ple probes may be sent sequentially [30, 31]. In Ref. [32] it
was recently shown that even using a single-qubit probe one
can still retain ∼ 64% of precision (as compared to a direct
measurement), provided optimal strategies are used. How-
ever, these studies focus on precision bounds, and most exist-
ing strategies for building actual estimators are highly model
dependent [33, 34]. For instance, Ref. [9] analyzed the de-
phasing factor of impurities in cold Fermi gases.

In this letter we show how machine classification algo-
rithms can be used to provide precise temperature estimation,
in a flexible and experimentally friendly way. The scenario
we consider is shown in Fig. 1. The temperature T of a sys-
tem S is measured by first sending a probe P to interact with
it, and then measuring the probe. This yields some data D,
from which we want to construct a reliable estimator T̂ (D).
Classification accomplishes this by training an algorithm in

FIG. 1. Probe-based thermometry and machine classification. The
temperature of a system is estimated by coupling it to a probe, which
is subsequently measured. Machine classification uses previously
trained data to predict the temperature from experimental observa-
tions. Here we use the KNN algorithm, which constructs an observa-
tion heat map (right plot) from training set consisting of pairs (Di,Ti),
corresponding to d-dimensional data Di (here d = 2) and associated
temperatures Ti.

advance, with a set of points (Di,Ti). This can be obtained
from, e.g., computer simulations or a calibration experiment.
The result is a predictor function, T̂ (D), which can be used to
estimate the temperature given any real observation D. Clas-
sification is a non-parametric technique, and hence is model
independent, making it extremely flexible. It accepts any kind
of probe observable, and any kind of S-P interaction strategy.
Moreover, it is also guaranteed to be asymptotically converge
to the true temperature provided the number of training fea-
tures increased [35–37].

Machine learning has recently seen an explosion of new
applications in physics [38, 39], from quantum phase tran-
sitions [40–43] to quantum dynamics [44–52] and adaptive
estimation [53–57]. We will show below that classification in
thermometry is robust against many issues commonly faced
in realistic thermometry scenarios. First, it naturally handles
experimental noise. And second, and most remarkably, it
handles cases where other parameters in the process are not
known. For instance, we explore the scenario in which the
S-P interaction strength is only known to lie within a certain
range, which is very reasonable from an experimental point of
view. Our methods are illustrated in two experimentally rel-
evant models: impurity thermometry in a Bose-Einstein con-
densate, and estimation of the thermal phonon number in the
Rabi model.

ar
X

iv
:2

10
7.

04
55

5v
2 

 [
qu

an
t-

ph
] 

 4
 O

ct
 2

02
1



2

Probe-based thermometry- We consider the setting de-
picted in Fig. 1. A system S, prepared in a thermal Gibbs state
ρS = e−βHS /Z, at a certain (unknown) inverse temperature
β = 1/T , is coupled to a probe P prepared in an initial state ρP.
The total Hamiltonian is taken as Htot = HS + HP + HI , where
HI is their interaction. The state of the probe after a certain
time t will then be given by ρP(t) = trS

{
e−iHtott

(
ρS ⊗ ρP)eiHtott

}
,

from which information about T can be extracted.
We assume this is accomplished by measuring the expecta-

tion values of some probe observables 〈O〉t := tr
(
OρP(t)

)
. The

uncertainty δT 2 resulting from ν measurements (obtained in
independent repetitions of the experiment) is then [8, 58, 59]

δT 2 =
∆2O

νχ2
T (O)

, (1)

where ∆2O = 〈O2〉t−〈O〉
2
t and χ2

T (O) = ∂T 〈O〉t. Some observ-
ables are more sensitive than others; the ultimate precision is
determined by the Cramer-Rao bound [58, 60]

δT 2 >
1

νF (T )
, (2)

where F (T ) is the Quantum Fisher Information (QFI). When
the probe fully thermalizes with the system, the QFI can be
written solely in terms of the probe’s energy variance [14, 15].
But in general , the state of the probe is out of equilibrium and
the QFI must be determined with the usual quantum metrol-
ogy tools [60].

Classification can make use of not only a single observ-
able, but a dataset D = (〈O1〉, . . . , 〈Od〉), of dimension d.
This could mean different observables, or the same observable
measured at different times. In either case, each observable is
determined from independent experiments. Intuitively speak-
ing, the richer the dataset, the less likely it is that the data was
generated from any other temperature than the real one.

The k nearest-neighbors (KNN) algorithm - We intro-
duce the KNN classification algorithm [37, 61, 62] as a
model-independent (non-parametric) approach to thermome-
try. Classification is a pattern recognition method [63]. We
first train the algorithm using N datasets (Di,Ti) generated
from either computer simulations, or a calibration experiment.
Each dataset Di is pictured as a point in a d-dimensional grid
(Fig. 1), which is also labeled by the corresponding tempera-
ture Ti. When an actual observation D arrives, the algorithm
locates its position in this grid and computes the Euclidean
distance to its k nearest-neighbors. The inverse distances
serve as weights to build the probability that D is associated
with each k neighbor. The average of said probability yields
the estimator T̂ (D). And the variance yields the so-called ex-
cess risk δT 2

exc, which represents the additional uncertainty in-
curred from using a finite number N of training points (which
vanishes if N → ∞). From δTexc we can then compute the
mean-squared error (MSE), which also takes into account the
bias:

MSE(D,T ) = δT 2
exc +

(
T̂ (D) − T

)2
, (3)

with T being the real temperature. The MSE can only be es-
timated if the true temperature is known in advance. Hence,
although it serves as a useful figure of merit, one generally
would not have direct access to it in an experiment. The KNN
algorithm is asymptotically unbiased [35, 37], so the MSE
also vanishes when N → ∞. In the applications below, we
have used the KNN implementation in Python from Ref. [64].

Impurity thermometry in a Bose-Einstein condensate
(BEC) - To illustrate the main idea, we start with the exper-
imentally meaningful problem of estimating the temperature
of a Bose gas by means of an impurity, for which the BEC acts
as a bath [6, 8, 65]. We follow an approach similar to [8, 66]
and consider a Yb impurity (the probe), trapped in a parabolic
potential of frequency Ω, and immersed in a K BEC with trap
frequency ωB. The solution for the reduced dynamics of the
impurity is given in [67], and is not restricted to weak cou-
pling. To illustrate the method, we focus on the steady-state
fluctuations of the impurity’s position, which reads [67]

〈x2〉 =
~

2π

ωB∫
−ωB

dω coth(~ω/kBT )χ̃′′(ω), (4)

where χ̃′′(ω) = (ωζ/mI)/[(ωζ)2 + (Ω2 − ω2 + ωθ)2] is the
impurity’s response function, with ζ = πγω3/2ω3

B and θ =

−(γω/2ω3
B)[ω2

B + ω2 ln((ωB/ω)2 − 1)]. Here, mI is the im-
purity’s mass and γ is a constant proportional to the BEC-
impurity interaction strength (see [67] for the full Hamilto-
nian).

We fix γ = 30 Hz, ωB = 2Ω = 2π×50 Hz. As a first test, we
assume that 〈x2〉 can be measured with infinite precision. To
train the algorithm, we generate pairs (Di,Ti) with N equally
spaced temperatures from 0.1 nK to 2 nK. The algorithm is
then tested using values of 〈x2〉 obtained from randomly cho-
sen temperatures within the same interval. Fig. 2(a) shows the
predictions T̂ as a function of the real temperatures T , using
only N = 10 training points. The error bars represent the ex-
cess risk δTexc. In Fig. 2(b) we plot the difference T̂−T±δTexc
for varying sizes N of the training set. Small values of N lead
to large uncertainties and systematic biases, specially at the
boundaries. But both are rapidly suppressed with increasing
N.

Next we turn to noisy datasets. In principle, noise could
also be included in the training set, e.g. when the data is ob-
tained from another calibration experiment. In the present
case, however, the training set is based on the analytical
model (4), and is hence error-free. Fig. 2(c) shows the average
MSE (3), obtained from ν = 2000 independent experiments,
for either N = 20 or N = 100 training points. We also plot
Eq. (1) in gray, and the Cramer-Rao bound (2) in dashed (com-
puted from [8, 23]). The latter can only be reached with spe-
cial choices of measurement operators [60, 68], while Eq. (1)
represents the best precision attainable using only measure-
ments of 〈x2〉 [8], as in our case.

When N = 20, the MSE is significantly above the gray
curve, but for N = 100 both the excess risk δTexc and the sys-
tematic biases are suppressed, bringing the MSE very close
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FIG. 2. Impurity thermometry of a BEC, focusing on the steady-
state position fluctuations (4). (a) Estimator T̂ versus the real temper-
ature T using N = 10 points in the training set. Error bars represent
the excess risk δTexc, and can be suppressed by increasing N. This is
further shown in (b), which plots T̂ − T ± δTexc for different choices
of N. (c) Average MSE from ν = 2000 repetitions of a noisy ex-
periment, for N = 20 and N = 100. Gray and black-dashed curves
corresponds to Eqs. (1) and (2) respectively. When only 〈x2〉 is mea-
sured, no estimator can improve below the gray curve.

to (1). Our method is thus capable of producing quantitatively
precise estimates of T . The only exception is the boundaries
of the training set. This happens because the fluctuations gen-
erate points 〈x2〉 associated with temperatures outside the in-
terval. In real experiments, it is important to avoid this by en-
suring the span of the training set is sufficiently broad. There
are also extensions of the KNN algorithm which can moni-
tor whenever a point lies outside the training set, a problem
known as anomaly detection [69, 70].

Rabi model- The previous model served to illustrate how
our method can efficiently handle realistic noise in the mea-
surement data. But the model itself was far too simple, as it
involved only a single feature 〈x2〉, which could also be com-
puted analytically. We now turn to a more complicated model
with two new ingredients: (i) the dynamics are not analyti-
cally soluble; and (ii) the system-probe interaction strength is
not known. The latter, in particular, is a very realistic assump-
tion, which is seldom considered in studies of probe-based
thermometry. Our algorithm can handle this efficiently using
additional features (d > 1) in the dataset. This combination of
flexibility and robustness is the main advantage of our frame-
work.

We illustrate the idea using the Rabi model, which fre-
quently appears in a variety of platforms, from cavity quan-
tum electrodynamics to trapped ions and superconducting cir-
cuits. Similar results can also be obtained, e.g., for the

Jaynes-Cummings model. The probe is a qubit, with Pauli
operators σ±, and the system is a bosonic mode, with annihi-
lation operators a. The total Hamiltonian is

H = ~ωa†a + ~Ωσ+σ− + ~γ(a + a†)(σ+ + σ−), (5)

where γ is the interaction strength. Estimation of the ther-
mal occupation number of the bosonic mode is one of the
most basic problems in e.g., trapped ions [26, 27]. Quan-
tities are measured in units of ω = 1. The probe is taken to
be resonant with the system (Ω = ω) and start in the excited
state ρP = |1〉〈1|. The free parameters are thus the coupling
strength γ, and the system’s initial temperature T . We focus
on the probe’s populations pt = 〈σ+σ−〉t, but the algorithm
also works with coherences. Numerically simulated curves of
pt vs. ωt, for different T , are shown in Fig. 3(a) (c.f. [71] for
experimental results). They serve to illustrate the non-trivial
temperature dependence, which would be difficult to fit with
standard methods (specially taking into account the computa-
tional complexity of simulating the model).

We consider kBT/~ω ∈ [0.1, 2], and assume γ/ω is only
known to lie in the interval [0.5, 1.5]. Populations were com-
puted numerically for a grid of 100 × 100 tuples (T, γ), and
for different times ωt = 0.5, 1.0, 1.5, 2.0, . . . (other choices of
times only marginally affect the results). To analyze the role of
the number of features d, we adopt the strategy that a dataset
with, e.g. d = 3 consists of D = (p0.5, p1, p1.5), and so on. For
simplicity, we also assume all data points are noiseless, as the
effects of such noise have already been explored in Fig. 2(c).

Fig. 3(b) shows the results of the estimation when d = 1
and d = 2. Since γ is not known, using only d = 1 yields
terrible results. But, remarkably, with as little as d = 2 fea-
tures, the results are already remarkably good. We explore
this further in Fig. 3(c), where the MSE is found to decrease
dramatically with increasing d (note the log scale), until satu-
rating at a value that is is ultimately determined by the number
of points N in the grid. We also show in Fig. 3(c) the re-
sults which would be obtained if γ was known with certainty.
In this case, the MSE is independent of d, with a value once
again determined solely by N. Thus, with sufficiently many
measurements, the precision becomes roughly independent of
our uncertainty in the interaction strength.

Thermometric data structures- The results just presented
indicate that the use of classification — and the KNN algo-
rithm — in probe-based thermometry is not only versatile, but
also robust. Similar tests have also been performed in various
other systems, such as qudit models and spin chains. And we
have also explored a large variety of parameter choices: e.g.,
resonant vs. non-resonant energy gaps in Eq. (5), different ini-
tial probe states, and so on. Even though the fine details differ
from one case to the other, the overall performance is similar
in all cases: precise estimation with asymptotically diminish-
ing errors.

We argue that this happens because the probe observables
depend smoothly on T . Even though the probe is intrinsically
out of equilibrium, the spirit is similar to equilibrium quan-
tities, such as energy, entropy or specific heat. It is rare, for
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FIG. 3. Temperature prediction in the Rabi model. (a) Population pt for γ/ω = 1 and different values of kBT/~ω. (b) Predicted vs. real
temperatures for d = 1, 2. (c) MSE vs. d, when γ/ω is known with certainty or when it is only known to lie within a certain interval.
The algorithm was trained by generating values of pt, with equally spaced tuples of (T, γ) in the intervals [0.1, 2] and [0.5, 1.5], at times
t = 0.5, 1.0, 1.5, 2.0, . . .. A dataset with e.g. d = 3 points consists in the array D = (p0.5, p1.0, p1.5).

FIG. 4. Qubit populations in the Rabi model, pt1 vs. pt2 , for
different choices of (T, γ), with the color of each point representing
the corresponding temperature. (a) pt=2 vs. pt=1. (b) pt=4 vs. pt=1.

instance, to find observables that are oscillatory in T , or be-
have very erratically. Instead, this smooth dependence causes
the data structures to be segmented into well-defined regions,
which is crucial for the KNN performance. Thermometry thus
represents a niche within the realm of parameter estimation,
where classification methods could prove to be particularly
useful.

To corroborate this argument, we analyze the data struc-
tures stemming from the Rabi model (5). Fig. 4 shows curves
of pt1 vs. pt2 for two choices of (t1, t2). The conditions are
similar to those of Figs. 3. As can be seen, irrespective of the
value of γ, points are clearly segmented by temperature, and
changes from the hot to the cold regions are always smooth.
There are very few regions, for instance, where hot and cold
points mix together. This explains why the KNN algorithm is
successful. One should also bear in mind that one often uses
more than d = 2 observations, which help to further disen-
tangle the cold and hot regions.

Significance- We have showed that classification provides
a general and flexible platform, that can be applied to any
probe-based system. It can accept any kind of observation
as input, handles noise in the dataset, and allows the inclu-
sion of additional uncertainties about the model parameters.
Moreover, as we have shown, it provides quantitative error
assessment and is asymptotically consistent. In light of these
facts, we, believe classification may become a useful tool in

experimental quantum thermometry. Indeed, several quantum
coherent experiments, such as trapped ions and optomechan-
ics, already fall under this category and could directly benefit
from this formalism.
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der M. Savin, and Jukka P. Pekola, “Opportunities for meso-
scopics in thermometry and refrigeration: Physics and applica-
tions,” Reviews of Modern Physics 78, 217–274 (2006).

[2] Yanan Yue and Xinwei Wang, “Nanoscale thermal probing,”
Nano Reviews 3, 11586 (2012).

[3] Roberto Onofrio, “Cooling and thermometry of atomic Fermi
gases,” Uspekhi Fizicheskih Nauk 186, 1229–1256 (2016).

[4] Bayan Karimi, Fredrik Brange, Peter Samuelsson, and Jukka P.
Pekola, “Reaching the ultimate energy resolution of a quantum
detector,” Nature Communications 11, 367 (2020).

[5] S. Gasparinetti, K. L. Viisanen, O.-P. Saira, T. Faivre, M. Arzeo,
M. Meschke, and Jukka P. Pekola, “Fast Electron Thermome-
try for Ultrasensitive Calorimetric Detection,” Physical Review
Applied 3, 014007 (2015).

[6] Carlos Sabı́n, Angela White, Lucia Hackermuller, and Ivette
Fuentes, “Impurities as a quantum thermometer for a Bose-
Einstein condensate,” Scientific Reports 4, 6436 (2015).

[7] Ugo Marzolino and Daniel Braun, “Precision measurements of
temperature and chemical potential of quantum gases,” Physical
Review A 88, 063609 (2013).

[8] Mohammad Mehboudi, Aniello Lampo, Christos Charalam-
bous, Luis A. Correa, M. A. Garcı́a-March, and Maciej Lewen-
stein, “Using polarons for sub- nK quantum non-demolition
thermometry in a Bose-Einstein condensate,” Physical Review

http://dx.doi.org/10.1103/RevModPhys.78.217
http://dx.doi.org/10.3402/nano.v3i0.11586
http://dx.doi.org/ 10.3367/UFNr.2016.07.037873
http://dx.doi.org/10.1038/s41467-019-14247-2
http://dx.doi.org/10.1103/PhysRevApplied.3.014007
http://dx.doi.org/10.1103/PhysRevApplied.3.014007
http://dx.doi.org/10.1038/srep06436
http://dx.doi.org/10.1103/PhysRevA.88.063609
http://dx.doi.org/10.1103/PhysRevA.88.063609
http://dx.doi.org/ https://doi.org/10.1103/PhysRevLett.122.030403


5

Letters 122, 030403 (2018).
[9] Mark T. Mitchison, Thomás Fogarty, Giacomo Guarnieri, Steve

Campbell, Thomas Busch, and John Goold, “In Situ Thermom-
etry of a Cold Fermi Gas via Dephasing Impurities,” Physical
Review Letters 125, 080402 (2020).

[10] Quentin Bouton, Jens Nettersheim, Daniel Adam, Felix
Schmidt, Daniel Mayer, Tobias Lausch, Eberhard Tiemann,
and Artur Widera, “Single-Atom Quantum Probes for Ultracold
Gases Boosted by Nonequilibrium Spin Dynamics,” Physical
Review X 10, 011018 (2020).

[11] P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Wald-
herr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter,
H. Sumiya, J. Isoya, and J. Wrachtrup, “High-Precision
Nanoscale Temperature Sensing Using Single Defects in Dia-
mond,” Nano Letters 13, 2738–2742 (2013).

[12] Jeong Hyun Shim, Seong-Joo Lee, Santosh Ghimire, Ju Il
Hwang, Kang Geol Lee, Kiwoong Kim, Matthew J. Turner,
Connor A. Hart, Ronald L. Walsworth, and Sangwon Oh,
“Multiplexed sensing of magnetic field and temperature in real
time using a nitrogen vacancy spin ensemble in diamond,” ,
1–8 (2021).

[13] D. Halbertal, J. Cuppens, M. Ben Shalom, L. Embon,
N. Shadmi, Y. Anahory, H. R. Naren, J. Sarkar, A. Uri, Y. Ro-
nen, Y. Myasoedov, L. S. Levitov, E. Joselevich, A. K. Geim,
and E. Zeldov, “Nanoscale thermal imaging of dissipation in
quantum systems,” Nature 539, 407–410 (2016).

[14] Mohammad Mehboudi, Anna Sanpera, and Luis A. Cor-
rea, “Thermometry in the quantum regime: Recent theoretical
progress,” (2018).

[15] Antonella De Pasquale and Thomas M Stace, “Quantum Ther-
mometry,” in Thermodynamics in the quantum regime - Funda-
mental Aspects and New Directions, edited by F Binder, L. A.
Correa, C. Gogolin, J. Anders, and G Adesso (Springer Inter-
national Publishing, 2018) pp. 1–16.

[16] Sania Jevtic, David Newman, Terry Rudolph, and T. M. Stace,
“Single-qubit thermometry,” Physical Review A - Atomic,
Molecular, and Optical Physics 91, 012331 (2015).

[17] Luis A. Correa, Mohammad Mehboudi, Gerardo Adesso, and
Anna Sanpera, “Individual quantum probes for optimal ther-
mometry,” Physical Review Letters 114, 220405 (2015).

[18] Antonella De Pasquale, Davide Rossini, R. Fazio, and Vitto-
rio Giovannetti, “Local quantum thermal susceptibility,” Nature
Communications 7, 1–8 (2016).

[19] T. H. Johnson, F. Cosco, Mark T. Mitchison, D. Jaksch, and
S. R. Clark, “Thermometry of ultracold atoms via nonequi-
librium work distributions,” Physical Review A 93, 053619
(2016).

[20] Patrick P. Potts, Jonatan Bohr Brask, and Nicolas Brunner,
“Fundamental limits on low-temperature quantum thermome-
try with finite resolution,” Quantum 3, 161 (2019).

[21] Luca Mancino, Marco Sbroscia, Ilaria Gianani, Emanuele Roc-
cia, and Marco Barbieri, “Quantum Simulation of Single-Qubit
Thermometry Using Linear Optics,” Physical Review Letters
118, 130502 (2017).

[22] Steve Campbell, Mohammad Mehboudi, Gabriele De Chiara,
and Mauro Paternostro, “Global and local thermometry
schemes in coupled quantum systems,” New Journal of Physics
19, 103003 (2017).

[23] Luis A. Correa, Martı́ Perarnau-Llobet, Karen V. Hovhan-
nisyan, Senaida Hernández-Santana, Mohammad Mehboudi,
and Anna Sanpera, “Low-temperature thermometry can be en-
hanced by strong coupling,” Physical Review A - Atomic,
Molecular, and Optical Physics 96, 062103 (2017).

[24] Matteo G A Paris, “Achieving the Landau bound to precision of

quantum thermometry in systems with vanishing gap,” Journal
of Physics A: Mathematical and Theoretical 49, 03LT02 (2016).

[25] Steve Campbell, Marco G. Genoni, and Sebastian Deffner,
“Precision thermometry and the quantum speed limit,” Quan-
tum Science and Technology 3, 1–7 (2018).

[26] D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E.
King, and D.M. Meekhof, “Experimental issues in coherent
quantum-state manipulation of trapped atomic ions,” Journal of
Research of the National Institute of Standards and Technology
103, 259 (1998).

[27] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum
dynamics of single trapped ions,” Reviews of Modern Physics
75, 281–324 (2003).

[28] P W Bowen and G. J. Milburn, Quantum Optomechanics (CRC
Press, 2016).

[29] Antonella De Pasquale, Kazuya Yuasa, and Vittorio Giovan-
netti, “Estimating temperature via sequential measurements,”
Physical Review A 96, 012316 (2017).

[30] Stella Seah, Stefan Nimmrichter, Daniel Grimmer, Jader P. San-
tos, Angeline Shu, Valerio Scarani, and Gabriel T. Landi, “Col-
lisional quantum thermometry,” Physical Review Letters 123,
180602 (2019).

[31] Angeline Shu, Stella Seah, and Valerio Scarani, “Surpassing
the thermal Cramér-Rao bound with collisional thermometry,”
Physical Review A 102, 042417 (2020).

[32] Karen V. Hovhannisyan, Mathias R. Jørgensen, Gabriel T.
Landi, Álvaro M. Alhambra, Jonatan B. Brask, and
Martı́ Perarnau-Llobet, “Optimal Quantum Thermometry with
Coarse-Grained Measurements,” PRX Quantum 2, 020322
(2021).
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